REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERES DE L'ENSEIGNEMENT SUPERIEUR

ECOLE NATIONALE SUPERIEURE POLYTECHNIQUE

Département d'Hydraulique

Mémoire de Projet de Fin d'Etudes

Pour l'obtention du diplôme d'ingénieur d'Etat en Hydraulique

Thème

Étude de diagnostic du réseau de distribution en eau potable de la ville d'AFIR

Sujet proposé par : Préparé par :

M^{me}: Kherbiche Mr: Rahmani.Amine

Promotion: 2008/2009

ملخص

الدراسة التى نقوم بها تهدف الى تشخيص نظام التزويد بالمياه الصالحة للشرب لمدينة أعفير بمعنى تحديد هياكل التخزين (خزانات المياه و قصور المياه) ن و أيضا النقائص الموجودة في الآبار الارتوانية (نقاط الأخذ)و مراجعة سعة الشبكة الحالية لإيصال التدفقات التي نحتاجها لأفاق الدراسة 2029 .

هذه المراجعة سمعت لنا بإعطاء بعض التعديلات و النصائح لتحسين التزويد بالمياه الصالحة للشرب للمدينة و هي وضع بناء محطتي استعادة و تغيير بعض الأنابيب الملحقات و أجهزة القياس .

كما نذكر أيضا طرق التسيير و عمليات المراقبة و التصليح التي تجري على منشات الري.

مفاتيح توزيع ، هياكل التخزين ، فحص ، ابار ، التعديلات

<u>Résume</u>

Notre étude consiste à établir un diagnostic du système d'alimentation en eau potable de la ville d'AFIR c'est à dire la détermination des défaillances des forages (points de captage), ainsi que les ouvrages de stockage (réservoirs et châteaux d'eau) et la vérification de la capacité du réseau existant de véhiculer les débits nécessaires à l'horizon d'étude (2029).

Cette vérification nous permettra de donner un certains nombres de modifications et recommandations pour améliorer l'alimentation en eau potable de la ville telle que : l'installation des accessoires et appareils de mesure et le changement de certaines conduites.

Nous citons aussi les notions de gestion, d'exploitation et les opérations de contrôle et d'entretien effectués sur tous les ouvrages hydrauliques.

Clés

Distribution, ouvrages de stockage, diagnostic, défaillances, forages, modifications.

Summary

Our study consists in establishing a diagnosis of the feeding system out of drinking water of the town of AFIR i.e. the determination of the failures of drillings (points of collecting), as well as the works of storage (water tanks and towers) and the checking of the capacity of the network existing to convey the flows necessary to the horizon of study (2029).

This checking will enable us to give certain numbers of modifications and recommendations to improve the drinking water supply of the city such as: the installation of the accessories and measuring apparatus, and change of certain conduits. We quote

also the concepts of management, exploitation and the check operations and maintenance to carry out on all the works hydraulic.

<u>Keys</u>

 $Distribution, works\ of\ storage,\ diagnosis,\ failures,\ drillings,\ modifications.$

Dédicaces

Je dédie ce Travail:

A mes très chers parents que Dieu les protège

A mes Frères

A mes deux Sœurs qui seront toujours présentes dans ma pensée A toute ma famille

A mes chers amis de Dellys

A mes chers amis de l'école,

A mes collègues Mr: KOUIDER Khaled,

Mr.: Bouasla Khaled, Mr: Douaibia Rochdi

A mes professeurs de l'Ecole Nationale Supérieure polytechnique

A tous ceux qui m'aiment et qui me portent dans leurs cœurs.

Merci à vous tous

Remerciements

Tout d'abord je remercie Dieu le tout puissant de

M'avoir donnée la chance et le courage

Pour réaliser ce travail.

Je tiens à remercier M^{me} kherbiche pour l'orientation,

Aide et conseil.

Par la même occasion je remercie tous mes

Enseignants du département Hydraulique.

Ma profonde gratitude va à ma mère et mon père

Et mes sœurs qui ont tout fait pour que je réalise

Mon rêve

De devenir ingénieur

A mes frères et tous mes amis

MERCI

Sommaire

Introduction Générale

CHAPITRE I: PRESENTATION DE LA VILLE

I.1- Situation géographique et topographique	1
I.2- Situation géologique et géotechnique	1
I.2.1- Géologie	1
I.2.2- Géotechnie	1
I.3- Situation Climatologique	1
I.3.1- Climatologie du site	1
I.3.2- Les paramètres climatiques	2
a) Les températures	2
b) Humidité	2
c) Les précipitations	2
d) Vents	3
e) Orages	3
f) Neige	4
g) Grêle	4
CHAPITRE II : LES BESOINS EN EAU DE L'AGGLOMERATION	
II.1- Introduction	5
II.2- Evaluation de la population	5

II.3- Catégories des besoins	6
II.4- Estimation des besoins	6
II.4.1- Choix de la norme unitaire de la consommation	6
II.4.2- Détermination de la consommation moyenne journalière	7
II.5- Calcul des besoins en eau pour chaque groupe de consommation	8
II.5.1- Agglomération	8
II.5.1.1- Besoins domestiques	8
II.5.1.2- Besoins sanitaires	8
II.5.1.3- Besoins scolaires	8
II.5.1.4- Besoin commerciaux	9
II.5.1.5- Besoins socioculturels e sportifs	9
II.5.1.6- Besoins publics	9
II.5.2- Besoins d'arrosage	10
II.6- Récapitulation de la consommation en eau moyenne totale	10
II.7-Conclusion	11
CHAPITRE III : CARACTERISTIQUE DE LA CONSOMMATION EN EAU	
III.1-Introduction	12
III.2- Etude des variations des débits	12
III.3- Calcul des consommations journalières maximales	12
III.4- Coefficient d'irrégularité journalière minimale	13
III.5- Coefficient d'irrégularité horaire	13
III.6- Calcul du débit de pointe	15
III.7- Calcul de la consommation horaire	16

CHAPITRE IV: RESERVOIRS

IV.1-Introduction	21
IV.2- Rôle des réservoirs	21
IV.3- Emplacement des réservoirs	22
IV.4- Principe de fonctionnement	22
IV .4.1- Fonctions techniques d'un réservoir	22
IV .4.2- Fonctions économiques d'un réservoir	23
IV.5- Classifications des réservoirs	23
IV.5. 1- Classification selon le matériau de construction	23
IV.5.2- Classification selon la situation des lieux	23
IV.5.3- Classification selon l'usage	23
IV.5.4- Classification selon des considérations esthétiques	24
IV.55- Classification selon la forme géométrique	24
IV.6- Choix du type de réservoir	24
IV.7- Détermination de la capacité	24
IV.7.1- Principe de calcul	25
IV.7.2-Détermination analytique de la capacité du réservoir D'alimentation	25
IV.8- Dimensionnement du réservoir	27
IV.9-Équipements du réservoir	27
IV.9.1- Conduite d'arrivée ou d'adduction	28
IV.9.2-Conduite de départ ou de distribution	28
IV.9.3-Conduite du trop-plein	29

IV.9.4-Conduites de vidange	30
IV.9.5-Conduit by-pass	30
IV.9.6-Système de matérialisation de la réserve d'incendie	30
IV.9.7 Les joints d'étanchéité	32
IV.9.8- système de canalisation IV.10- Conclusion	32 32
CHAPITRE V: DIAGNOSTIC ET RECOMMANDATION DU SYSTEME ACTUEL D'AEP	
V.1- Introduction	33
1. Les ressources	33
V.2-Diagnostic des Forages	33
V.2.1-Le Forage F ₁	33
V.2.2-Le Forage F2	34
V.2.3-Le Forage F3	34
V.3-Diagnostic du réseau de distribution	34
V.4- Diagnostic des ouvrages de stockage	37
V.4.1- Château d'eau 1000 m ³	37
V.4.2- Réservoir 500 m ³	38
V.5- Recommandations	39
V.5.1- Recommandations concernant les forages	39
V.5.1.1 -Traitement du colmatage mécanique	40
V.5.1.2 -Traitement du colmatage chimique	40

V.5.2	2 - Autre	s recommandations	40
V.5.2	2.1 - Dév	eloppement des forages	40
V.5.2	2.2 - Con	trôle de la fin du développement	41
V.5.3	8 – Reco	mmandation concernant les réservoirs	41
V.5.4	4 - Autre	s recommandations:	41
	a. Opé	ération de surveillances	41
	b. Opé	ration de nettoyage	41
V.6 -	Recomm	nandations concernant le réseau de distribution	42
V.6.1	l – Détec	etions des fuites	42
	A.	Enregistreurs de bruit	42
	A.1.	Configuration opérationnelle	43
	A.2.	Les étapes de la pré-localisation	43
	B.	La détection acoustique	
	B.1	Les appareils à amplification mécanique	46
	C.	Les appareils de corrélation	46
	D.	Le gaz traceur	47
	E.	L'Imagerie Thermique	48
V.7 -	CONCI	LUSION	49
		CHAPITRE V : REHABILITATION DU SYSTEME D'AEP	
VI.1	Introdu	uction	50
VI.2	Choix	du matériau des conduites	50
1	l.		Tu
	yaux	en fonte	50
2	2. Tuyau	x en acier	50

3. Tuyaux en PVC (Polychlorure de vinyle non plastifié)	50
VI.3 Equipement du réseau de distribution	51
VI.4 Calcul du réseau de distribution	52
VI.4.1 Détermination des débits du réseau	52
1.	Dé
bit spécifique	52
2. Débit en route	53
3. Débit aux nœuds	53
VI.5. Calcul hydraulique	62
VI.5.1 Méthode de calcul	62
1. Calcul des pertes de charge	62
2.	La
pression de service	62
VI.6 Interprétation des résultats de calcul	67
VI.7 Calcul de l'état de rénovation pour l'horizon d'étude	67
Conclusion générale	77

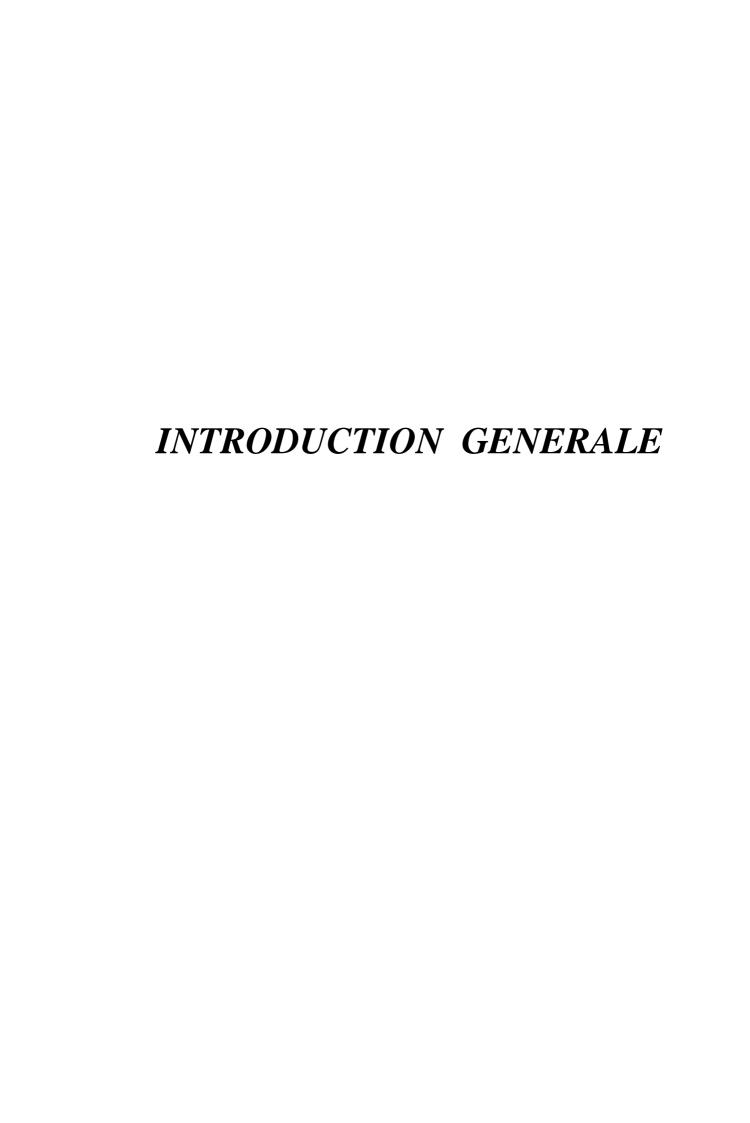

LISTE DES TABLAUX

Tableau I.1 : Type de pluie.	2
Tableau I.2 : Distribution des précipitations mensuelle et maximales journa	lière pour période
(1993-2005)	3
Tableau II.1: Evaluation de la population	6
Tableau II.2: Les normes unitaires de la consommation	7
Tableau II.3 : Détermination des besoins domestique	8
Tableau II.4 : Détermination des besoins sanitaire	8
Tableau II.5 : Détermination des besoins scolaires	8
Tableau II.6 : Détermination des besoins commerciaux	9
Tableau II.7: Calcul des besoins socioculturels et sportifs	9
Tableau II.8: Détermination des besoins publics	9
Tableau II.9 : Détermination des besoins d'arrosage	10
Tableau II.10: Récapitulation de la consommation en eau moyenne tota	nle 10
Tableau III.1 : Calcul des consommations maximales journalières	13
Tableau III.2 : Les valeurs de β en fonction de la population	14
Tableau III.3: Réparation des débits horaires en fonction du nombre d'habita	unts 16
Tableau III.4 : Détermination de débit maximum journalière	17
Tableau IV.1 : Détermination de la capacité du réservoir	25
Tableau V.1 : Les caractéristiques des forages	32
Tableau Erreur! Il n'y a pas de texte répondant à ce style dans ce documeréseau de distribution	nent. .2 : Etat du 34
Tableau V.3 : Distances entre les enregistreurs [Wikti]	43

Tableau Erreur! Il n'y a pas de texte répondant à ce style dans ce document1:	Débits
nodaux (cas de pointe)	53
Tableau Erreur! Il n'y a pas de texte répondant à ce style dans ce document2 :	Débits
nodaux (cas de pointe + incendie)	57
Tableau VI.3 : Variation de CHW	62
Tableau VI.4 : Calcul hydraulique (cas de pointe)	62
Tableau VI.5 : Calcul de pression (cas de pointe)	64
Tableau VI.6 : Diamètre économique du réseau en fonction du débit	67
Tableau VI.7 : Diamètres projetés	67
Tableau VI.8 : Calcul hydraulique après la correction (cas de pointe)	68
Tableau VI.9 : Calcul de pression après la correction (cas de pointe)	70
Tableau VI.10 : Calcul hydraulique après la correction (cas de pointe + incendie)	71
Tableau VI.11 : Calcul de pression après correction (cas de pointe + incendie)	73

Liste des figures

Figure I.1 : Situation géographique de la ville	1
Figure II.1 : Evaluation de la population.	6
Figure III.1 : Graphique de consommation pour les habitants	18
Figure III.2 : Courbe cumulée	19
Figure III.3. : Variation de débit maximum journalier	19
Figure III.4. : Variation de débit d'agglomération	20
Figure III.5 : variation de débit d'arrosage	20
Figure IV.1 : Conduite d'adduction	28
Figure IV.2 : Conduite de distribution	28
Figure n ⁰ 09 : Conduite de trop plein et vidange	29
Figure n ⁰ 10 : Conduite by - pass	30
Figure IV.3 : Matérialisation de la réserve d'incendie	31
Figure V.1 : Château d'eau 1000 m ³	38
Figure V.2 : L'emplacement d'un enregistreur de bruits	42
Figure V.3: Appareils enregistreurs de bruits	44
Figure V.4: Les appareils à amplification mécanique	45
Figure V.5: Les appareils à amplification électronique	46
Figure V.6 : Principe de fonctionnement des appareils de corrélation [Wikti]	46
Figure V.7 : Principe de fonctionnement d'un Gaz traceur	47
Figure V.8 : L'imagerie thermique	48

L'eau est un élément essentiel à toute forme de vie, a toujours influencé la vie de l'homme dans ses activités et son installation autour des points d'eau formant ainsi des agglomérations dont les besoins ne cessent de croître.

Depuis leurs origines les êtres humains ont été très sensibles à la qualité de l'eau, c'est l'un des besoins les plus fondamentaux de notre physiologie. Tant que l'humanité ne s'est pas sédentarisés, le problème de l'eau se limitait à la recherche d'un en droit d'approvisionnement facile d'accès (rivière, chute, source). Cependant, avec l'apparition de collectivités plus en plus importantes, c'est-à- dire à la naissance des cités, l'urbanisation éloignait la population du milieu naturel et restreignait la diversité des sources d'approvisionnement, le besoin de l'apporter s'est alors fait sentir.

Jadis, on croyait que l'eau est en quantité abondante et que ses ressources sont inépuisables, aujourd'hui son abondance et sa pureté sont mises à défaut par les conditions climatiques et les activités humaines.

Devant de telles situations, il est impératif de concevoir des systèmes de protection de cette ressource et un système judicieux d'adduction, de stockage et de distribution afin de satisfaire la demande et de pallier aux pertes.

Dans ce contexte s'inscrit le thème de mon mémoire de fin d'étude qui est l'étude de diagnostic du réseau de distribution en eau potable de la ville d'AFIR wilaya de Boumerdes. Nous avons opté par les chapitres suivants :

Dans un premier temps, chapitre I, nous allons présenter la ville (situation géographique, topographique, climat,...).

Dans le deuxième chapitre, nous présentons les besoins en eau de l'agglomération (les besoins :d'arrosages, socioculturelles, public, ...).

Le chapitre III, nous présentons les caractéristiques de la consommation.

Nous aborderons dans le chapitre IV, les réservoirs ; leurs emplacements, leurs rôles et la détermination de leurs capacités.

Dans le chapitre V, nous d'écrirons une diagnostique hydraulique pour déterminer les défaillances, ainsi leurs recommandations trouvées dans les forages, les châteaux d'eau ou réservoirs et le réseau de distribution. Les différents appareils de mesure, de recherche des fuites.

Dans le dernier chapitre VI, on fait reconfigurer ou réhabiliter le système de distribution.

Et en fin, nous terminerons par une conclusion.

CHAPITRE I

PRESENTATION DE LA VILLE

I.1- Situation géographique et topographique :

La commune d'AFIR est située dans le territoire de la wilaya de BOUMERDES, sur 80 Km environ à l'est de la wilaya, elle limitée au Nord par la mer méditerranée, à l'ouest par Oued Oubey, à l'est par Oued Taazibt et au Sud par un ensemble de collines de moyennes altitude, elle s'étend sur une superficie de 60.38 km² et une altitude de 410 m du niveau (+0.00) de la mer.

Elle traversée par d'importants axes routiers RN 24 et RN 71 qui assurent les liaisons vers TIZI-OUZOU et la wilaya de BOUMERDES.

Figure I.1 : Situation géographique de la ville

I.2- Situation géologique et géotechnique

I.2.1- Géologie

Dans le schéma tectonique général de l'Algérie, la région d'AFIR se situe dans le Tell Septentrional du domaine géosynclinal alpin.

Le trait principal de cette méga structure est l'existence de nappes de charriages qui se seraient mises en place au cours du miocène (Tortonien Supérieur) ou, une surrection intense de la bordure septentrionale du sillon pré-tellien a lieu et a provoqué le glissement gravitationnel des séries déjà formées et la formation de chevauchements et de nappes de charriages.

I.2.2- Géotechnie

Les régions de flysch sont potentiellement propices aux instabilités de pentes avec apparition de phénomènes de chute de terrains. Cependant, seule une connaissance

approfondie des paramètres géotechniques intrinsèques de ces flysch, associée à la détermination des facteurs aggravants et déclenchant, permettrait d'estimer les risques potentiels.

Les seules données disponibles concernant les caractéristiques géotechniques du sol au niveau d'AFIR consistent en une étude de sol pour fondation réalisée sur une assiette réservée à la construction de 20 logements à proximité du siège de l'APC.

Il ressort de cette étude que le sol formé d'une mince couche de terre végétale et d'alternances d'argiles et de marnes compactes est homogène et se caractérise par une bonne capacité à la portance.

I.3- Situation Climatologique

I.3.1- Climatologie du site

La localité d'AFIR est située à 35⁰,54m de l'altitude au Nord et la longitude 4⁰ et à 410m d'altitude, influencé par la zone climatique de moyenne altitude et les dépressions atmosphériques qui déplacent de l'Ouest vers l'Est, une localité incluse au domaine méditerranéen, ne régie pas d'une grande variation thermique et pluviométrique par rapport à d'autre localités avoisinantes, sauf quelques influences du climat local.

I.3.2- Les paramètres climatiques

a) Les températures

La température est un facteur bioclimatique, il fait rendre au milieu habité la disponibilité de l'énergie.

A la station de DELLYS-AFIR on relève les températures moyennes de 18 C^0 à 28 C^0 pendant les mois d'Avril, Mai, Juin, et Octobre, la température se situe dans les limites confortables.

Au mois d'Aout, dans 50% des cas les températures maximales quotidiennes sont supérieures à 30 C^0 dans presque toute la région, alors qu'au mois de Janvier les températures minimales inférieures à 5 C^0 ne dépassent pas ce pourcentage.

b) Humidité:

La moyenne annuelle de l'humidité à AFIR représente un taux très élevé au cour de l'année vu l'influence maritime, l'augmentation de l'humidité absolue en été par rapport à l'hiver est liée à la rareté des précipitations et l'augmentation de l'évaporation sous l'influence d'une température élevée.

D'après les statistiques climatologiques mensuelles de la station DELLYS-AFIR, pour la période 1993-2005, l'humidité relative atteint son maximum durant l'été surtout le mois de Juin (78.90%), elle atteint le minimum au cour de l'hiver (71.5%) pour le mois de Janvier,

pour le reste des mois, les valeurs sont modérées mais la variation reste proche de la moyenne annuelle.

c) Les précipitations

Tableau I.1: La précipitation désigne en plus la pluie, la neige, la grêle et le grésil.

Type de pluie	Diamètre des goutes	Vitesse de chute
Humidité de brouillard	0.006 à 0.06 mm	0.1 à 20 cm/s
Bruine	0.06 à 0.6 mm	20 à 100 cm/s
Ondé	1 à 3 mm	150 à 400 cm/s
Averse	4 à 6 mm	500 à 800cm/s

Pluies annuelles

Les précipitations soumises aux facteurs de l'intensité saisonnière qui affecte directement la quantité annuelle des précipitations. D'après les tableaux statistiques traités à l'échelle régionale (carte d'ANRH) pour une période de retour, on remarque une variation dans l'espace et dans le temps.

Les séries de la concentration moyenne annuelle suivent les lois de distributions statistiques, à l'aide de ces lois, les concentrations ont été estimées de période de retour décennale, quinquennale pour des valeurs moyennes de :

Quinquennale sèche: 600 mm.

Quinquennale humide: 825 mm.

Décanale sèche : 550 mm.

Décanale humide: 950 mm.

Tableau 1.2: Distribution des précipitations mensuelle et maximales journalière pour la période (1993-2005).

Mois	Moyenne mensuelle	Maximale journalière
Septembre	039.1	045.6
Octobre	046.3	046.5
Novembre	112.9	112.7
Décembre	121.8	081.6
Janvier	115.1	0129
Février	065.5	038.2
Mars	043.3	039.4
Avril	068.7	055.3
Mai	040.9	062.2
Juin	005.8	014.0
Juillet	002.2	07.70
Aout	014.1	052.1

d) Vents

La direction Est représente une forte dominance (l'ordre de 16.32%) par rapport aux vents Nord et Nord-Ouest de faible dominance. Nous trouvons les vents Sud, Ouest et Sud - Ouest au deuxième degré dont les moyennes sont respectivement : 13.55, 12.08, et 9.68%.

La direction Nord et Nord –Ouest sont en troisième degré, généralement ils sont à 2.90% et 4.15 % des vents dominats. Alors que les autres directions sont soumises à des vents calmes.

e) Orages

Est une perturbation atmosphérique violente caractérisée par les phénomènes d'éclaires et de tonnerre. Il peut atteindre 10000m d'altitude et s'accompagne de la formation du cumulus d'orage typique et d'averses violentes de pluie ou de grêle.

f) neige

Précipitation solide constituée par les flocons eux-mêmes formés par le rassemblement des cristaux hexagonaux de glace (cristaux à six blanches), la neige tombe au dessous de 0C° souvent après le gel suivi d'un réchauffement partiel.

g) Grêle

Précipitation constituée par des boules de glaces qui se forment par les heurtes de goutes d'eau surgelées avec des cristaux de glaces, le tout se congelant ensemble.

CHAPITRE II

LES BESOINS EN EAU DE L'AGGLOMERATION

II.1- Introduction

Le calcul des besoins en eau d'alimentation pour une agglomération exige une fixation impérative des normes de consommations unitaires qui doivent rester valables tant que les critères qui ont contribué à l'établissement de ces normes restent inchangés.

En règle générale, les normes objectives résultent de l'adéquation des critères sociopolitiques et socio-économique procèdent à la fois de :

- ➤ La volonté politique des pouvoirs publics qui fixent pour chaque période de planification les objectifs qualitatifs et quantitatifs du secteur de l'alimentation en eau potable.
- ➤ des ressources en eau susceptibles d'être mobilisés pour satisfaire les besoins en eau domestiques (qualité et quantité) ...etc.

Pour l'essentiel, on peut dire que l'évaluation des besoins en eau d'alimentation postule la satisfaction d'un niveau sanitaire générale en étroite une relation et dépendance avec le développement socio-économique du pays.

II.2- Evaluation de la population

En **2009** la population de la ville d'AFIR a été estimée à **11067** habitants, les préventions seront établies pour l'horizon **2029**.

D'ici, nous pouvons avoir une idée approchée sur la population future par l'application de la relation suivante :

$$P_n = P_0 [1 + \tau]^n \qquad (II.1)$$

Avec;

 P_n : population future prise à l'horizon quelconque (hab).

P₀ : population de l'année de référence (hab).

 τ : taux d'accroissement annuel de la population.

[En générale ce taux est pris égal à 3% dans cette région].

n : nombres d'années séparant l'année de référence a l'horizon considéré.

Dans notre cas : $P_0=11067$ hab.

 $\tau = 3 \%$.

n = 20 ans $[2009 \div 2029]$.

Le tableau suivant présente le nombre d'habitant pour les différents horizons :

Tableau	77 1_	Evaluation	مل عام	population.
1 avieau	11.1-	Evaluation	ue ia	population.

Années	Evaluation de la population [Ha]
2009	11067
2019	14874
2029	20000

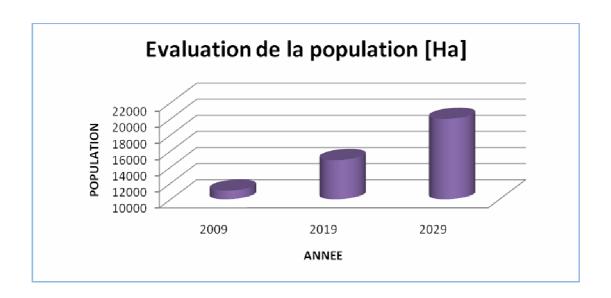


Figure II.1.: Evaluation de la population.

II.3- Catégories des besoins

Vu l'urbanisation, le niveau de vie et le confort que tend à connaître la ville d'AFIR, il est nécessaire de se pencher sur différentes catégories de besoins telle que :

- ➤ Besoins domestiques ;
- > Besoins sanitaires;
- ➤ Besoins scolaires ;
- ➤ Besoins commerciaux ;
- ➤ Besoins socioculturels et sportifs ;
- ➤ Besoins publics ;
- ➤ Besoins d'arrosages.

II.4- Estimation des besoins

II.4.1- Choix de la norme unitaire de la consommation

La quantité d'eau nécessaire à l'alimentation d'une agglomération est généralement évaluée en litre par habitant et par 24 heures, par carré de surface de végétaux, par mètre cube, par tonne de productivité, par tête d'animal, par véhicule......etc.

Cette quantité d'eau s'appelle **la norme de consommation** c'est à dire la norme moyenne journalière de la consommation en litre par jour et par usager qui dépend de certains critères dont les principaux sont :

- ➤ Le niveau de vie de la population ;
- ➤ Le nombre d'habitants ;
- ➤ Le développement urbain de la ville ;
- > Ressources existantes.

Cette norme est fixée à 150 l/hab.j et répartie comme suite :

Tableau Nº II.2: Normes unitaires de la consommation

Destination	Norme unitaire [l/j/hab.]
Boisson	3 à5
Cuisine	4 à 5
Lavabo	8 à 12
Douche	20 à 30
Blanchissage sur place	15 à 20
Baignoire	100 à 150
Ménage	3 à 8
Arrosage privé	30 à 40

II.4.2- Détermination de la consommation moyenne journalière

Le débit moyen journalier au cours de l'année est:

$$q_{moy} = \frac{N_{i} q_{i}}{1000}$$
 (II.2)

Avec;

 $\mathbf{q}_{\text{moy},j}$: Consommation moyenne journalière [m³/j].

 $N_i\colon \mbox{Nombre}$ de consommation dans chaque groupe [hab.].

 q_i : Norme moyenne journalière de la consommation [l/hab.j].

 \mathbf{i} : Nombre de groupes ($\mathbf{i} = 1, 2, 3 \dots N$).

II.5- Calcul des besoins en eau pour chaque groupe de consommation

II.5.1- Agglomération

II.5.1.1- Besoins domestiques

Le tableau suivant déterminer les besoins domestiques.

Tableau Nº II.3: Détermination des besoins domestique.

Année	N ^{bre} d'habitant	Dotation moyenne	Consommation moyenne
		[l/j/hab.]	Journalière [m3/j]
2009	11067	150	1660.1
2029	20000	150	3000.

II.5.1.2- Besoins sanitaires

Le tableau suivant déterminer les besoins en eau sanitaires on prend la dotation 5 l/j/m². *Tableau N°II.4*: Détermination des besoins sanitaire.

Nature de	Surface	Dotation	Consommation moyenne
l'établissement	[m2]	$[l/j/m^2]$	journalière [m³/j]
Salle de soins	920	5	4.6
Centre de santé	4800	5	24
Centre pour	5000	5	25
handicapés			
Polyclinique	3450	5	17.2
		Total	70.8

II.5.1.3- Besoins scolaires

Le tableau ci-dessous, nous illustre les besoins en eau scolaire comme suite :

Tableau N°II.5: Détermination des besoins scolaires.

Nature de	Nombre d'élèves	Dotation	Consommation
l'établissement		l/j/élève	moyenne
			journalière [m3/j]
Ecoles	800	30	24
Lycée	1500	30	45
Crèches	350	20	7

	=/
Total	76

II.5.1.4- Besoin commerciaux

Tableau N°II.6: Détermination des besoins commerciaux.

Type de besoins	Nombre d'unité	Dotation	Consommation moyenne
		L/j/unité	journalière [m³/j]
Commerce privé	1947 m ²	$6 l/j/m^2$	11.7
Souk el fellah	750 m^2	$6 l/j/m^2$	4.5
Abattoir	1	2500 l/j	2.5
Marché couvert	3200 m^2	$6 l/j/m^2$	1
Marché	1	5000 1/j	5
hebdomadaire			
Station de lavage	25 voitures	180 l/voiture	4.5
		Total	49.6

II.5.1.5- Besoins socioculturels et sportifs

Tableau II.7: Calcul des besoins socioculturels et sportifs.

Désignation	Superficie (m²)	Dotation (l/j/m ²)	Consommation moyenne journalière (m³/j)
Mosquées	3000 fidèles	10 (l/j/fidèle)	30
Cinéma	920 m^2	5	4.6
Maison de jeunes	350	4	1.4
Centre culturel	1500	4	6
Stade de football	5000	4	20
Douches	70 personnes	500 (1/j/p)	35
Hammam	50 personnes	600 (1/j/p)	30
		Total	127

II.5.1.6- Besoins publics

Le tableau suivant, nous montre les besoins en eau administratifs.

Tableau N°II.8: détermination des besoins publics.

Nature de	Superficie	Dotation	Consommation moyenne
l'établissement	(\mathbf{m}^2)	$(l/j/m^2)$	journalière (m³/j)
A.P.C	500	5	2.5
P.T.T	120	5	0.6
Police	350	5	1.75
OPGI	500	5	2.5
Protection civile	1500	5	7.5
Gendarmerie	3200	5	16
		Total	30.85

II.5.2- Besoins d'arrosage

Tableau Nº II.9: Détermination des besoins d'arrosage.

Nature de	Superficie	Dotation	Consommation moyenne
l'établissement	(m^2)	$(l/j/m^2)$	journalière (m³/j)
Jardin public	2200	5	11
Rues	10000	5	50
		Total	61

II.6- Récapitulation de la consommation en eau moyenne totale

Après l'étude détaillée des besoins, dressons un tableau récapitulatif pour pouvoir calculer le débit total nécessaire pour alimenter la localité jusqu'à l'horizon.

Tableau N° II.10 : Récapitulation de la consommation en eau moyenne totale.

Type de besoins	Consommation moyenne journalière		
	(m3/j)		
Domestiques	3000.00		
Sanitaires	70.85		
Scolaires	76		
Commerciaux	49.60		
Socioculturels et sportifs	127		
Administratifs	30.85		
arrosage	61		

Total	3415.30

II.7- Conclusion

On conclut que la consommation moyenne journalière ($3415.30 \text{ m}^3/j$) est inférieur au débit donné par les forages ($5875.20 \text{ m}^3/j$), donc il ne nécessite pas de projeter un nouveau forage.

CHAPITRE III

CARACTERISTIQUE DE LA CONSOMMATION

III.1-Introduction

L'estimation des besoins en eau d'une agglomération nous exige de donner une norme fixée pour chaque catégorie de consommateur. Cette norme unitaire (dotation) est définie comme un rapport entre le débit journalier et l'unité de consommateur (agent, élève, lit,...).

Cette estimation en eau dépend de plusieurs facteurs (évolution de la population, des équipements sanitaires, du niveau de vie de la population,...). Elle diffère aussi d'une période à une autre et d'une agglomération à autre.

III.2- Etude des variations des débits

En raison de l'irrégularité dans la consommation et en tenant compte des fuites qui peuvent avoir lieu, le débit exigé par les consommateurs sera déterminé en affectant au débit moyen journalier un coefficient qui tient compte des pertes et des saisons [2]. Ce dernier représente le coefficient d'irrégularité de la consommation journalière définie comme étant le rapport entre la consommation maximale journalière $[Q_{max,j}]$ et la consommation moyenne journalière $[Q_{moy,j}]$.

$$K_{\max_{j} i, j} = \frac{Q_{\max_{j} i, j}}{Q_{\max_{j} i, j}}$$
 (III.1)

III.3- Calcul des consommations journalières maximales

Le débit maximum journalier est :

$$Q_{\max,j} = Q_{moy,j} K_j$$
 (III.2)

K_j: coefficient d'irrégularité journalière.

Tel que ; $\mathbf{K_j} = 1.1 \div 1.3$ [besoins domestiques]. $\mathbf{K_i} = 1.0$ [autres besoins].

Les calculs sont représentés dans le tableau (III.1).

Nature des	Débit moyen	Coefficient	Débit maximum	
Consommations	journalier	d'irrégularité $[K_j]$	journalier	
	Q_{moys} [m3/j]		$Q_{\text{max.j}} [m^3/j]$	
1- Agglomération	3000	1.3	3900	
domestique				
Sanitaire	70.85	1.3	92.10	
Scolaire	76	1.3	98.80	
Commerciaux	49.6	1.3	64.48	
Socioculturels et	127	1.3	165.10	
sportifs				
Administratifs	30.85	1.3	40.10	
2- Arrosages		1	61.00	
jardins	61			
Rues		1		
		Total	4421.58	

Tableau III.1: Calcul des consommations maximales journalières

III.4- Coefficient d'irrégularité journalière minimale

Ce coefficient est défini comme étant le rapport entre la consommation journalière minimale et la consommation moyenne journalière [2], nous permet de déterminer le débit minimum journalier en envisageant une sous consommation en fonction de l'importance de l'agglomération variant entre 0.7 et 0.9.

Donc ,on a:

$$K_{\text{max } . j} = \frac{Q_{\text{min } . j}}{Q_{\text{moy } . j}}$$
 (III.3)

III.5- Coefficient d'irrégularité horaire

Le débit moyen subit non seulement des variations journalières ou saisonnières mais aussi des variations horaires.

$$Q_{moy .h} = \frac{Q_{max .j}}{24}$$
 (III.4)

Avec;

 $\mathbf{Q}_{\mathbf{moy.h}}$: débit moyen horaire [m³/h].

> Le coefficient d'irrégularité horaire maximale est donné par :

$$K_{\max.h} = \frac{Q_{\max.h}}{Q_{moy.h}} = \alpha_{\max} \beta_{\max}$$
 (III.5)

> Le coefficient d'irrégularité horaire minimale est donné par :

$$K_{\min.h} = \frac{Q_{\min.h}}{Q_{moy.h}} = \alpha_{\min} \beta_{\min}$$
 (III.6)

Avec;

 α : Coefficient qui dépend du niveau des conforts des conditions locales et du niveau de développement.

$$\alpha_{\text{max}} = 1.2 \div 1.4$$
; on prend $\alpha_{\text{max}} = 1.3$

$$\alpha_{mn} = 0.4 \div 0.6$$
; on prend $\alpha_{mn} = 0.5$

β: Coefficient qui dépend du nombre d'habitants [population].

Tableau III.2: Les valeurs de β en fonction de la population

N ^{bre} d'habitants	1000	1500	2000	10000	20000	50000
$oldsymbol{eta}_{\scriptscriptstyle ext{max}}$	2	1.8	1.5	1.3	1.2	1.15
$oldsymbol{eta}_{\scriptscriptstyle{ ext{min}}}$	0.1	0.1	0.1	1.4	0.5	0.6

D'après le nombre de la population d'AFIR les valeurs de $oldsymbol{eta}_{ ext{max}}$ et $oldsymbol{eta}_{ ext{min}}$ correspondants sont :

$$\beta_{\text{max}} = 1.2$$

$$\beta_{min} = 0.5$$

Donc:
$$K_{\text{max},h} = 1.3 \text{ x } 1.2 = 1.56$$

$$K_{\text{min.}h} = 0.5 \times 0.5 = 0.25$$

$$K_{\text{max}.h} = 1.56$$

III.6- Calcul du débit de pointe :

En raison des variations journalière et horaire, il y a lieu d'appliquer au débit moyen un coefficient de majoration à fin d'obtenir le plus fort débit instantané que l'on peut avoir dans une conduite.

Donc, le coefficient de pointe sera égal au produit des deux coefficients journalier et horaire.

$$K_{p} = K_{j} K_{h}$$
 (III.7)

Avec;

► K_p: Coefficient de pointe.

 $ightharpoonup K_j$: Coefficient d'irrégularité journalière

➤ K_h: Coefficient d'irrégularité horaire.

* Pour l'agglomération, on a :

$$K_p = 1.3 \times 1.56$$

$$K_p = 2.02$$

On a:

$$Q = Q \qquad \text{moy } J K \qquad p \qquad \qquad \text{(III.8)}$$

Avec ; Q_p : débit de pointe.

Q_{moy,j}: débit moyen journalier

Donc:

$$Q_p = 3354.30 \times 2.02$$

$$Q_{p.agg} = 6775.68 \text{ m}^3/\text{j}$$

* Pour l'arrosage, on a :

$$K_p = 1 \times 1.56$$

 $Q_{p.arr} = 61 \times 1.56$

$$Q_{p.arr} = 95.16 \text{ m}^3/\text{j}$$

III.7- Calcul de la consommation horaire

Les conduites devront pouvoir transiter les eaux à plus fort débit instantané, l'heure de pointe est l'heure pour la quelle la consommation est maximale.

Le débit horaire demandé pour chaque groupe de consommation est :

$$Q_{h} = \frac{P \% Q_{\max . j}}{100}$$
 (III.9)

Avec;

 \mathbf{Q}_h : Débit horaire nécessaire $[m^3/j]$

P%: pourcentage horaire.

Tableau III.3: Réparation des débits horaires en fonction du nombre d'habitants

Heures	Nombre d'habitants							
(h)	Moins de 10000	10001à 50000	50001 à 100000	Plus de 100000	Agglomération de type rurale			
0-1	01	1.5	03	3.35	0.75			
1-2	01	1.5	3.2	3.25	0.75			
2-3	01	1.5	2.5	3.3	01			
3-4	01	1.5	2.6	3.2	01			
4-5	02	2.5	3.5	3.25	03			
5-6	03	3.5	4.1	3.4	5.5			
6-7	05	4.5	4.5	3.85	5.5			
7-8	6.5	5.5	4.9	4.45	5.5			
8-9	6.5	6.25	4.9	5.2	3.5			
9-10	5.5	6.25	4.6	5.05	3.5			

10-11	4.5	6.25	4.8	4.85	06
11-12	5.5	6.25	4.7	4.6	8.5
12-13	07	05	4.4	4.6	8.5
13-14	07	05	4.1	4.55	06
14-15	5.5	5.5	4.2	4.75	05
15-16	4.5	06	4.4	4.7	05
16-17	05	06	4.3	4.65	3.5
17-18	6.5	5.5	4.1	4.35	3.5
18-19	6.5	05	4.5	4.4	06
19-20	5.0	4.5	4.5	4.3	06
20-21	4.5	04	4.5	4.3	06
21-22	03	03	4.8	3.75	03
22-23	02	02	4.6	3.75	02
23-24	01	1.5	3.3	3.7	01

Remarque

Cette variation des débits horaires est exprimée en pourcentage (%) par rapport au débit maximal journalier de l'agglomération.

Pour notre cas nous choisissons la répartition variant entre 10000 et 50000 hab.

Tableau III.4: Détermination de débit maximum journalière

							_
Horaire	Aggl	omération	Aı	rrosage	Q _{max} j	journalier	Ordonnées de la
	Q _{max, j} =	4360.48 m ³ /h	$Q_{\text{max, j}} = 61 \text{ m}^3/\text{h}$		total = 4421.58 m ³ /h		Courbe integral
h	%	(m3/h)	%	(m3/h)	%	(m3/h)	%
0-1	1,5	60.17			1,48	65.44	1,48
12	1,5	65.41			1,48	65.44	2,96
23	1,5	65.41			1,48	65.44	4,44
34	1,5	65.41			1,48	65.44	5,92
45	2,5	109.01			2,47	109.21	8,39
56	3,5	152.62	20	12,2	3,71	164.04	12,1
67	4,5	196.22	20	12,2	4,69	207.40	16,79
78	5,5	239.90	20	12,2	5,68	251.14	22,47
89	6,25	272.53			6,17	272.81	28,64
910	6,25	272.53			6,17	272.81	34,81

1011	6,25	272.53			6,17	272.81	40,98
1112	6,25	272.53			6,17	272.81	47,15
1213	5	218.10			4,94	218.43	52,09
1314	5	218.10			4,94	218.43	57,03
1415	5,5	239.90			5,43	240.10	62,46
1516	6	261.63			5,93	262.22	68,39
1617	6	261.63	20	12,2	6,17	272.81	74,57
1718	5,5	239.90	20	12,2	5,68	251.14	80,25
1819	5	218.10			4,94	218.43	85,19
1920	4,5	196.22			4,45	196.76	89,63
2021	4	174.42			3,95	174.65	93,58
2122	3	130.81			2,96	130.90	96,54
2223	2	87.21			1,97	87.10	98,51
2324	1,5	65.41			1,49	65.88	100
TOTAL	100	4355.71	100	61	100	4421.58	

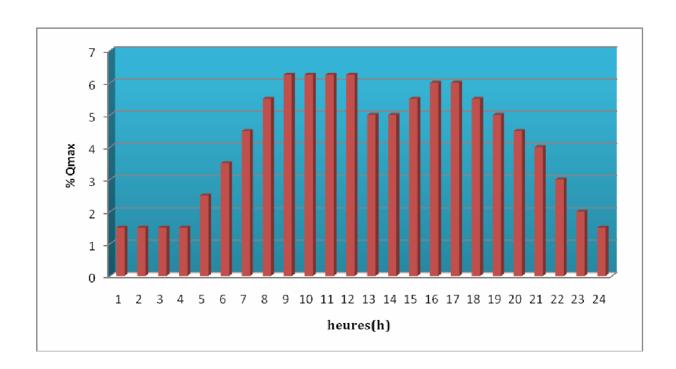


Figure III.1: Graphique de consommation pour les habitants

Figure III.2 : Courbe cumulée

A partir du tableau III.4, on trace:

> Les graphiques de consommation ;

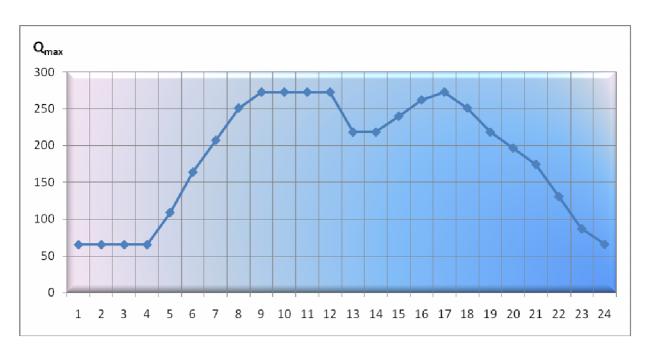


Figure III.3.: Variation de débit maximum journalier

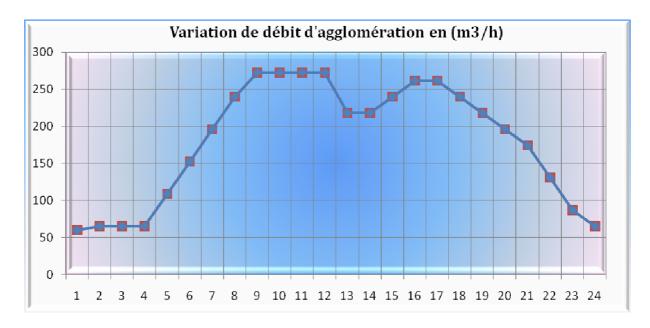


Figure III.4. : Variation de débit d'agglomération

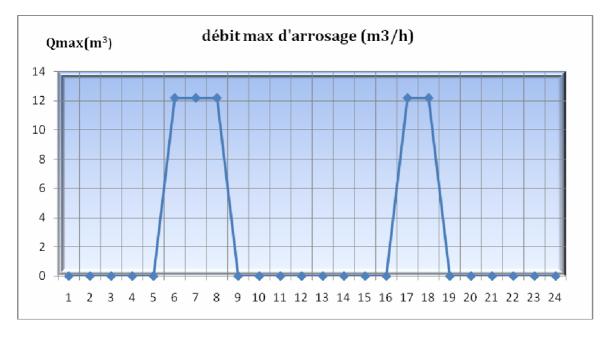


Figure III.5 : Variation de débit d'arrosage

IV.1-Introduction

Lorsque les besoins journaliers sont supérieurs au volume d'eau produit par la source en 24 heures, il est nécessaire de construire un réservoir de stockage. Le principe est de stocker l'eau sur les périodes où la demande des populations est faible, et de pouvoir fournir un débit plus important lorsque la demande augmente.

Les réservoirs sont des ouvrages dont la durée de vie est généralement assez étendue. Ils trouvent le plus souvent leur défaillance dans des insuffisances au niveau de leur conception.

Ces raisons montrent l'importance qu'il convient d'accorder à la phase de conception de l'ouvrage.

Un ouvrage bien conçu sera facile à exploiter et requerra des travaux d'entretien faciles et simples.

La conception des réservoirs doit impérativement tenir compte des deux facteurs suivants :

- Conserver la qualité de l'eau stockée.
- Faciliter les conditions d'exploitation et d'entretien.

IV.2- Rôle des réservoirs

Les réservoirs constituant une réserve qui permet d'assurer aux heures de pointe les débits maximaux demandés, de plus, ils permettent de combattre efficacement les incendies en plus les réservoirs offrant notamment les avantages suivants :

- Régularisation le fonctionnement de la station de pompage.
- Simplification l'exploitation.
- Assurer les pressions nécessaires en tout point du réseau.
- Coordination du régime d'adduction d'eau au régime de distribution.
- Maintenir l'eau d'une température constante et préserver des contaminations.
- Jouer le rôle de brise charge dans le cas d'une distribution étagée.
- Jouer le rôle de relais. [2]

IV.3- Emplacement des réservoirs

L'emplacement du réservoir tient compte du relief permettant d'obtenir des dépenses minimales des frais d'investissement et l'exploitation.

Donc on est amené à prendre en considération les facteurs suivants :

- 🍁 Le point le plus bas à alimenter.
- 🌲 La hauteur maximale des immeubles (bâtiment).
- Les pertes de charge à partir du réservoir jusqu'au point le plus défavorable de la ville en question.
- L'état du relief de la ville qui pourra favoriser la construction d'un réservoir au sol qu'aux propriétés technico-économique suivant :
- Simplicité de réalisation du coffrage.
- Etanchéité plus facile à réaliser.

IV.4- Principe de fonctionnement

Les fonctions d'un réservoir dans un système d'alimentation en eau sont de deux natures complémentaires l'une à l'autre à savoir :

- > Des fonctions techniques.
- > Des fonctions économiques.

IV .4.1- Fonctions techniques d'un réservoir

- ♣ Régularité dans le fonctionnement du pompage ou les pompes vont refouler suivent un régime constant.
- ♣ Assurer la continuité de l'approvisionnement étant donné les répercutions susceptibles d'être provoquées par un arrêt de distribution de l'eau conséquent à un arrêt de pompage suite à :
- ♣ Un accident au niveau de la conduite principale d'adduction ou même un simple nettoyage.
- ♣ Un accident au niveau de la prise d'eau.
- **Une** coupure d'électricité.
- Le réservoir est un régulateur de pression et de débit.
- Les réservoirs assurent un volume d'eau pour combattre les incendies.

IV .4.2- Fonctions économiques d'un réservoir

Réduction du coût de l'investissement sur les ouvrages de production puisque dans le cas d'une adduction on dimensionne selon le débit $(Q_{moy.h})$ pour une adduction continue et (q_{st}) pour une adduction discontinue à la présence d'un réservoir et avec le débit (Q_{maxh}) dans le cas contraire.

Réduction des dépenses d'énergie en réduisant la puissance consommée par les pompes.

IV.5- Classifications des réservoirs

Les réservoirs peuvent être classes de diverses façons selon les critères pris en considération :

IV.5. 1- Classification selon le matériau de construction

Cette classification est basée sur la nature des matériaux de construction des réservoirs :

- 1. Réservoir métalliques ;
- 2. Réservoir en maçonnerie;
- 3. Réservoir en béton armé;

IV.5.2- Classification selon la situation des lieux

Les réservoirs peuvent être classés selon leur position par rapport à la surface du sol :

- 1. Réservoir en terre.
- 2. Réservoir semi-enterré (sur surface).
- 3. Réservoir sur élevés ou sur tour.

IV.5. 3 - Classification selon l'usage

Vu les nombreux usages des réservoirs on peut les classer en :

- i. Réservoir principal d'accumulation et de stockage.
- ii. Réservoir d'équilibre (réservoir tampon).
- iii. Réservoir de traitement.

IV.5-.4- Classification selon des considérations esthétiques

Selon des servitudes d'esthétisme on peut affirmer les fonctions d'un réservoir comme on peut l'intégrer au paysage.

IV.5-.5- Classification selon la forme géométrique

Généralement, on retrouve dans la pratique deux formes usuelles :

- 1. Réservoir cylindrique.
- 2. Réservoir rectangulaire (carré).

Comme on trouve parfois des réservoirs de formes quelconques (sphérique, conique, ...).

IV.6- Choix du type de réservoir

Nous savons qu'il existe des réservoirs enterrés, semi enterrés ou semi élevés dit < châteaux d'eau > pour le choix sera bien entendu une question d'espèce pour chaque cas, ce pendant à chaque fois que cela sera possible, il sera préférable d'avoir recours au réservoir enterré, semi enterré ou au plus élévation au dessus du sol avec radier largement enterré.

Pour Notre cas le réservoir choisi sera de type réservoir semi enterré est qui présente les avantages suivants :

- ✓ Économie sur les frais de construction.
- ✓ Étude architecturale très simplifie.
- ✓ Etanchéité plus facile à réaliser.
- ✓ Conservation de la température constante de l'eau ainsi emmagasinée.

IV.7- Détermination de la capacité

Le calcul du volume du réservoir se fait à partir du débit rentrant et du débit sortant pour les différentes heures de la journée. La détermination de cette capacité, tient compte de la répartition journalière maximale du débit consommé caractérisé par le coefficient horaire.

IV.7.1- Principe de calcul

Pour estimer la capacité d'un réservoir, nous avons recours soit à la méthode graphique qui tient compte de la consommation totale déduite à partir des coefficients des variations horaires de la consommation et de la courbe d'apport de débit pompé.

La capacité est déduite à partir des extremums cumule de la consommation vis à vis de celle des apports.

IV.7.2- Détermination analytique de la capacité du réservoir D'alimentation

La détermination analytique de la capacité du réservoir d'alimentation exige deux régimes distincts :

Le régime de consommation de notre agglomération caractérisée par la courbe de consommation.

Le régime d'apport d'eau à partir de la source vers le réservoir que nous avons fixé à raison de 20 heures d'apport du fait d'un captage divers de la source souterraine.

En conséquence , la capacité sera déduite à partir des résidus entre le cumul d'apport et de départ d'eau pour chaque heure pendant 24 heures comme le montre le tableau IV.1 en ajoutant bien entendu la réserve minimale destinée à l'incendie estimée 120 m³, le volume utile est donnée par :

$$\mathbf{V_u} = \mathbf{P} \% * \mathbf{Q_{maxj}}/100$$
 (IV.1)

P % : représente le maximum des restes de Q maxi en pourcentage.

Le tableau suivant donne le calcul de la capacité du réservoir

Tableau IV.1: Détermination de la capacité du réservoir

Heures	consommation	refoulement	arrivée d'eau dans	départ d'eau	reste d'eau dans
	horaires de Q _{maxj}	d'eau	le réservoir	du réservoir	le réservoir
h	en %	en %	en %	en %	en %

01	1,48			1,48	8,76
12	1,48			1,48	7,28
23	1,48			1,48	5,8
34	1,48			1,48	4,32
45	2,47	5	2,53		6,85
56	3,71	5	1,29		8,14
67	4,69	5	0,31		8,45
78	5,68	5		0,68	7,77
89	6,17	5		1,17	6,6
910	6,17	5		1,17	5,43
1011	6,17	5		1,17	4,26
1112	6,17	5		1,17	3,09
1213	4,94	5	0,06		3,15
1314	4,94	5	0,06		3,21
1415	5,43	5		0,43	2,78
1516	5,93	5		0,93	1,85
1617	6,17	5		1,17	0,68
1718	5,68	5		0,68	0
1819	4,94	5	0,06		0,06
1920	4,45	5	0,55		0,61
2021	3,95	5	1,05		1,66
2122	2,96	5	2,04		3,7
2223	1,97	5	3,03		6,73
2324	1,49	5	3,51		10,24
total	100	100	14,49	14,49	

$$V_u = \frac{10,24 * 4421.58}{100} = 452.77 \text{ m}^3$$

$$V_T\!=452.77~m^3\!+\!120~m^3=572.77~m^3$$

Donc: $V_T = 572.77 \text{ m}^3$

On prend un réservoir de volume $V = 1000 \text{m}^3$.

IV.8- Dimensionnement du réservoir

On prendra un réservoir circulaire, les dimensions principales seront déterminées à partir de la relation suivante :

$$\boxed{V = (\pi D^2/4). H} \quad \text{donc} \quad D = \sqrt{\frac{4.V}{\pi H}}$$

V : volume du réservoir (m³).

D: diamètre du réservoir (m).

H: hauteur d'eau dans le réservoir (hauteur de la cuve en m).

Pour la hauteur « H » peut être variée entre (3 et 6) m cette hauteur peut atteindre 7 à 8 m dans les grands ouvrage.

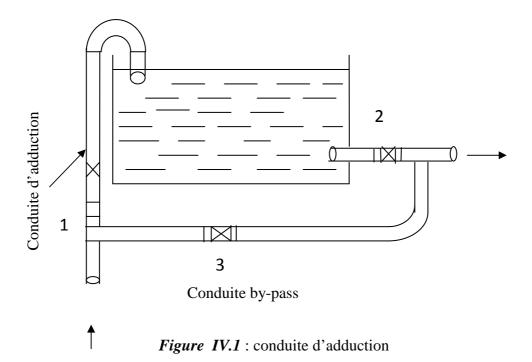
Dans notre cas on peut prendre H = 7m

Donc:

$$D = \sqrt{\frac{4.1000}{\pi.7}} = 14 \text{ m}$$

$$D = 14 m$$

IV.9-Équipements du réservoir


Le réservoir doit être équipé:

- 1. D'une conduite d'arrivée ou d'alimentation.
- 2. Une conduite de départ ou de distribution.
- 3. Une conduite de vidange.
- 4. Une conduite de trop –plein.
- 5. Système de matérialisation de la consigne d'incendie.
- 6. Conduit by -pass.

Ces conduites sont commandées dans une chambre de manœuvre.

IV.9.1- Conduite d'arrivée ou d'adduction

L'adduction est faite par refoulement, arrivée dans la cuve en siphon noyé (a la partie supérieur de la cuve), ou par le bas placé à l'opposé de la conduite de départ, afin de provoquer le brassage, par conséquent, un dispositif de contrôle situé au niveau de la station de pompage permet le déclanchement de l'arrêt ou de la mise en marche des pompes.

IV.9.2-Conduite de départ ou de distribution

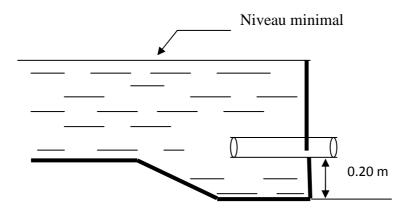


Figure IV.2 : conduite de distribution

C'est la conduite qui véhicule l'eau du réservoir (cuve) vers l'agglomération. Son orifice sera disposé à l'opposé de la conduite d'arrivée ; elle est placée à quelques centimètres (15/20

cm) au dessus du fond de la cuve, pour éviter l'introduction de matières en suspension de l'air. L'extrémité est munie d'une crépine courbée à fin d'éviter le phénomène De vortex (pénétration d'air dans la conduite).

Cette conduite est équipée d'une vanne à survitesse, permutant la fermeture rapide en cas de rupture au niveau de cette conduite.

IV.9.3-Conduite du trop-plein

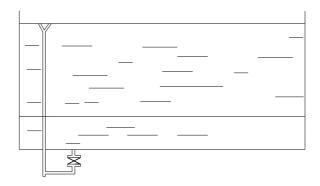
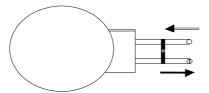


figure n°:09 conduite de trop plein et de vidange

Cette conduite a pour rôle d'évacuer l'excès d'eau arrivant a réservoir sans provoquer de déversement. Pour le cas où la pompe d'alimentation ne se serait pas arrêtée. L'extrémité supérieure de cette conduite est munie d'un entonnoir jouant le rôle d'un déversoir circulaire permettant cette évacuation.

IV.9.4- Conduite de vidange

Elle permet la vidange du château d'eau, en cas de nettoyage ou d'éventuelles réparations, il est nécessaire de prévoir la vidange au moyen d'une conduite généralement raccordée à la conduite de trop –pleine .Elle est munie d'un robinet vanne qui doit être nettoyé après chaque vidange pour éviter le dépôt de sable qui entraîne une difficulté de manœuvre. On a intérêt à n'effectuer cette vidange que sur un réservoir préalablement presque vidé en exploitation.


IV.9.5- Conduit by-pass

Elle relie la conduite d'adduction à celle de distribution (figure IV.1).

Elle assure la distribution pendant le nettoyage, son fonctionnement est le suivant :

Normale 1 et 2 sont ouverts le 3 est fermé,

En BY-PASS: 1 et 2 sont fermés le 3 est ouvert.

figurenº:10 conduite By-pass

IV.9.6-Système de matérialisation de la réserve d'incendie

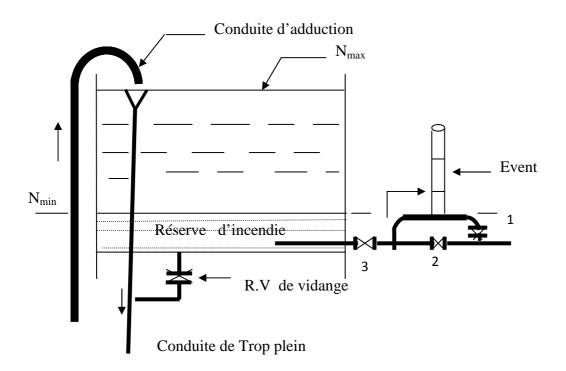


Figure IV.3 : Matérialisation de la réserve d'incendie

Pour conserver sûrement un réserve permettant de lutter contre l'incendie, il faut en interdire son utilisation, pour cela la figure (IV.3) présentée un système en siphon :

En temps normale 1 est fermé 2 est ouvert, en cas de sinistre il suffit d'ouvrir le 1, la réserve dans ce cas de sinistre une zone d'eau morte, qui peut avec le temps, donner une odeur désagréable à l'eau du réservoir.

Lèvent d'un siphon interdit l'utilisation du au dessous du niveau N-N tant que la vanne 2 est fermée (vanne d'incendie)

Son fonctionnement est le suivant :

• Normal : 3 et 1 ouverts, le 2 est fermé.

• Incendie : il suffit d'ouvrir 1 et 2.

C'est une disposition spéciale de la lientérie à adopter au niveau du réservoir, qui permet d'interrompre l'écoulement une fois le niveau de la réserve d'eau consacrée à l'extinction des incendies est atteint.

IV.9.7 Les joints d'étanchéité

Il fondra veiller aux traversés des conduites dans le béton de la cuve (les parois ou le radier). A cet effet, un barrage devra être effectué à l'aide d'un produit plastique recouvert de mortier de ciment.

IV.9.8- système de canalisation

Conduite: Les conduites sont de forme circulaire en fonte ductile, caractérisée par d'excellentes propriétés mécaniques (déformabilité, résistance à la corrosion).

Coudes et TE: Elles sont placées dans la tuyauterie; le coude permet le changement de direction, le TE permet la prise de canalisation secondaire sur la conduite principale.

Vannes : On prévoit des vannes au niveau de la conduite d'adduction à fin d'isoler les tronçons de la conduite en cas d'avarie, à la sortie de la conduite de départ, on admet des vannes papillons (à survitesse) ; utile en cas de vidange rapide.

Robinet flotteur : Il permet de maintenir à un niveau déterminé le plan d'eau dans la cuve et ceci en fermant la conduite d'arrivée quand ce niveau est atteint.

Conclusion

La ville d'AFIR est dotée actuellement de 3 châteaux d'eau avec une capacité de stockage de 1500 m³ .d'après notre calcule, le volume du réservoir qui doit suffit pour alimenter la ville est de 1000m³.

A titre de comparaison, on remarque qu'il n'est pas utile de projeter d'autre château d'eau.

CHAPITRE V

DIAGNOSTIC ET RECOMMANDATIONS DU SYSTEME ACTUEL D'AEP

V.1- Introduction

L'objet de ce diagnostic est de vérifier l'état du système de distribution en eau de la ville d'AFIR, et la détermination de leur défaillance.

Malgré leur importance, les ressources hydrauliques, tant superficielles que souterraines sont très peu mobilisées dans la commune d'AFIR.

1. Les ressources

L'alimentation en eau potable de cette ville se fait à partir de trois forages.

Les caractéristiques de ces forages sont représentées dans le tableau suivant :

Tableau V.1: Les caractéristiques des forages.

	Coord (m)	Prof (m)	N.S	N.D (m)	Hmt (m)	Qeq (l/s)	Qexp
			(m)				(l/s)
F1	X= 640.850	23.00	7.45	7.90	120.00	30.00	13.00
	Y= 393.350						
F2	X = 605.025	60.00	8.35	11.22	120.00	15.00	15.00
	Y= 393.950						
F3			5.00	5.00			40.00

Donc le débit d'exploitation de ces forages est : 5875.2 m³/j.

V.2-Diagnostic des Forages

V.2.1-Le Forage F_1

L'eau est captée par un groupe électropompes immergé dont le débit d'exploitation est de 13.0 l/s et une hauteur manométrique totale de 120.00m, l'eau est refoulée en suite vers le château d'eau 1000 m³ au centre ville. Il existe quelques défaillances qui sont :

- L'abri du forage est en état moyen (manque de peinture).
- Le manque de l'éclairage.
- L'inexistence du débit mètre.
- > Le câble d'électricité n'est pas protégé.
- > Des fuites au niveau de la conduite de refoulement.

- Absence d'une prise d'échantillon pour l'analyse d'eau.
- Manque des sondes qui donnent le niveau d'eau dans le forage.
- > Problème de colmatage.

V.2.2-Le Forage F2

L'eau est captée par un groupe électropompes d'un débit de 15.0L/s et une hauteur manométrique totale de 120,0 m. Les défaillances existant au niveau de ce forage sont :

- L'abri de ce forage est en état de dégradation.
- ➤ Le robinet vanne, le clapet anti-retour et la ventouse sont en mauvais état (début de corrosion).
- Absence du manomètre pour le calcul des pressions.
- Les équipements d'automatisme sont en mauvais état.
- Fuite au niveau de la vanne.

V.2.3-Le Forage F3

Le groupe électropompes débite un débit de 40.0 L/s, avec une hauteur de 137,7m.

Ce f orage est en état moyen avec les anomalies suivantes :

- Manque du débit mètre.
- Manque des sondes de niveau pour éviter la marche à sec de pompe.
- Début de corrosion des équipements de ce forage.
- Manque de javellisation pour le traitement.
- Manque d'étanchéité au niveau de ce forage.
- L'inexistence de la prise d'échantillon en mauvais état.

V.3- Diagnostic du réseau de distribution :

Le réseau de distribution de la ville d'AFIR couvre pratiquement la totalité de la ville, et il est de type maillé et ramifié.

Ce réseau a été réalisé au fur et à mesure du développement et de l'extension de la ville, a une longueur totale de **12118 m**

L'état du réseau de distribution ainsi que les caractéristiques de tous les tronçons sont représentes dans les tableaux suivants :

Tableau Erreur! Il n'y a pas de texte répondant à ce style dans ce document..2: Etat du réseau de distribution.

N° du	tronço	n	diamètre	longueur	matériaux de	cote TN	1	état de
tronçon	du	au	DN mm	m	la conduite	amont	aval	la conduite
1	1500	1	300	178	ACIER	366	348	cote TP=272.3
2	1	2	250	122	A CIMENT	348	340	moyenne
3	1	34	150	68	A CIMENT	348	350	moyenne
4	1	35	100	277	A CIMENT	348	345	moyenne
5	2	3	80	91	A CIMENT	340	337	moyenne
6	2	4	250	94	A CIMENT	340	338	moyenne
7	4	5	80	256	A CIMENT	338	325	moyenne
8	4	6	250	108	A CIMENT	338	328	moyenne
9	5	6	100	209	A CIMENT	325	328	moyenne
10	5	41	80	206	A CIMENT	325	326	moyenne
11	6	7	250	94	A CIMENT	326	333	moyenne
12	6	29	80	169	A CIMENT	328	332	moyenne
13	7	8	150	63	A CIMENT	333	339	moyenne
14	7	9	250	59	A CIMENT	333	327	moyenne
15	9	10	100	120	A CIMENT	327	332	moyenne
16	9	11	250	117	A CIMENT	37	323	moyenne
17	11	12	150	108	A CIMENT	323	317	moyenne
18	11	19	200	876	A CIMENT	323	308	moyenne
19	12	13	80	169	FONTE	317	316	rénovée
20	12	14	150	134	A CIMENT	317	315	moyenne
21	14	15	80	169	FONTE	315	314	rénovée
22	14	16	80	122	A CIMENT	315	313	moyenne
23	16	17	150	162	FONTE	313	314	rénovée
24	16	18	150	392	A CIMENT	313	310	moyenne
25	19	45	150	470	A CIMENT	308	313	moyenne
26	45	20	150	28	A CIMENT	313	317	moyenne
27	45	24	80	1019	A CIMENT	313	343	moyenne

28	20	21	150	303	A CIMENT	327	319	moyenne
29	20	22	80	197	A CIMENT	317	320	moyenne
30	21	22	150	106	A CIMENT	319	320	moyenne
31	22	23	125	235	A CIMENT	320	324	moyenne
32	24	25	125	23	A CIMENT	343	330	moyenne
33	24	31	100	23	ACIER	343	338	rénovée
34	25	26	100	23	ACIER	330	329	rénovée
35	25	28	100	136	ACIER	330	327	rénovée
36	26	27	80	124	A CIMENT	329	326	moyenne
37	26	46	80	303	A CIMENT	329	322	moyenne
38	27	28	100	19	A CIMENT	326	327	moyenne
39	28	29	100	21	A CIMENT	327	332	moyenne
40	29	30	125	59	A CIMENT	332	340	moyenne
41	29	34	150	237	A CIMENT	332	350	moyenne
42	30	31	125	68	A CIMENT	340	338	moyenne
43	30	33	100	247	A CIMENT	340	355	rénovée
44	31	32	100	273	A CIMENT	338	359	rénovée
45	32	33	125	73	A CIMENT	359	355	rénovée
46	33	34	125	61	A CIMENT	355	350	dégrade
47	35	36	80	77	A CIMENT	345	343	dégrade
48	35	39	80	225	A CIMENT	345	335	moyenne
49	36	37	80	166	A CIMENT	343	358	moyenne
50	36	38	80	157	A CIMENT	343	340	rénovée
51	38	39	80	326	A CIMENT	340	335	rénovée
52	38	41	80	592	A CIMENT	340	326	rénovée
53	39	40	80	73	A CIMENT	335	330	moyenne
54	39	41	80	83	A CIMENT	335	326	moyenne
55	41	42	125	1435	A CIMENT	326	294	moyenne
56	42	43	125	253	A CIMENT	294	292	dégrade
57	42	44	125	319	A CIMENT	294	289	dégrade

Les défaillances existantes sont les suivantes :

- **♣** La nature des conduites (amiante-ciment).
- Le réseau de distribution ne possède aucun système de comptage.
- Les conduites en amiante ciment présentent des fissures.
- ♣ Manque d'entretien.
- Les fuites au niveau des branchements.
- Les bouches d'incendie et les robinets vanne sont corrodés et le nombre est très limité.

V.4- Diagnostic des ouvrages de stockage

Le stockage de l'eau potable à AFIR est assuré un château d'eau et un réservoir semi enterré.

V.4.1- Château d'eau 1000 m³

Le château d'eau en question est un ouvrage en béton armé composé d'une cuve cylindrique reposant sur une tour conçue en voile circulaire en béton armé, cet ouvrage à une capacité de 1000 m³ et une hauteur de 28m. Le remplissage de ce château se fait à partir des forages, Il assure la distribution en eau potable de la zone basse d'AFIR, il est équipé des conduites suivantes:

- Conduite d'arrivée de DN250 en fonte.
- Conduite de trop plein de DN20 en fonte.
- Conduite de distribution DN400 en fonte vers le réseau de la distribution du centre de la ville.
- Conduite de vidange de DN150 en fonte.

Les anomalies constatées sont les suivantes :

- ✓ Les conduites sont corrodées surtout la conduite de l'arrivée.
- ✓ L'inexistence de dispositif de comptage au niveau de la conduite de départ.
- ✓ Manque de capteur de niveau.
- ✓ Présence des différents matériels au pied du château d'eau.
- ✓ Présence de beaucoup de poussière à l'intérieur de l'ouvrage ce qui risque de contaminer l'eau potable.
- ✓ Vitrerie des ouvertures brisée.

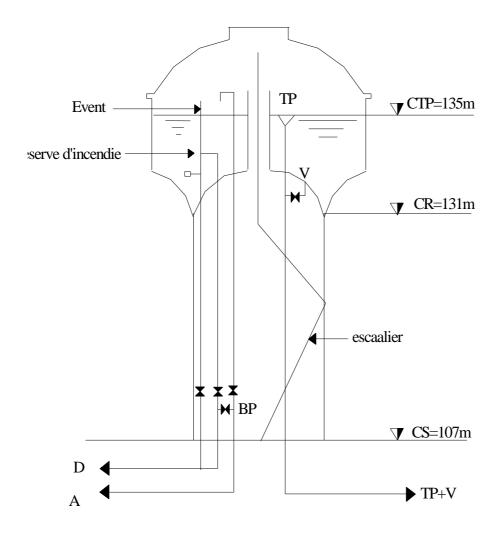


Figure V.1 : Château d'eau 1000 m³

V.4.2- Réservoir 500 m³

C'est un réservoir circulaire semi enterrée à parois latérales en béton armé.

Il assure la distribution en eau potable de la zone haute d'AFIR, il est équipé des conduites suivantes :

- > Conduite d'arrivée de DN250 en acier.
- ➤ Conduite de distribution de DN300 e n acier.
- ➤ Conduite de trop plein de DN200 en acier.
- ➤ Conduite de vidange de DN150 en acier.

Les constatations sont les suivantes :

- > Altération et disparition de l'étanchéité de la coupole dans certains endroits.
- Altération de la peinture extérieure du réservoir.
- ➤ Manque d'entretient des installations.
- Manque de capteur de niveau.
- La conduite d'arrivée est corrodée.

V.5- Recommandations

Apres avoir fait un diagnostic du système d'alimentation en eau potable de la ville d'AFIR les recommandations sont les suivantes :

V.5.1- Recommandations concernant les forages

- Le Entretien des abris des forages (peinture, éclairage...etc.).
- **♣** Equiper les armoires de commande.
- **♣** Entretenir les robinets vanne, les ventouses.

Pour le bon fonctionnement des forages il est nécessaire d'installer les équipements techniques suivants :

- Le compteur d'eau.
- ♣ Le monomètre.
- La prise d'échantillon pour l'analyse d'eau.
- 🖶 La sonde de niveau pour vérifier le niveau de la nappe.
- → Déterminer les paramètres de la nappe, le débit spécifique et le débit maximum d'exploitation, pour que le choix du groupe électropompe immergée soit bien adapté et cela par le refaire des essais de pompage.
- Mettre les paramètres d'exploitation de l'ouvrage à la disposition des exploitations:
 - ✓ La coupe technique de l'ouvrage.
 - ✓ Les principales caractéristiques physico-chimiques de l'eau.
 - ✓ La position de la pompe et ses caractéristiques.
 - ✓ Le débit maximum à ne pas dépasser…etc.
- Le forage F1 est colmaté: le colmatage des forages se traduit par une baisse progressive du rendement de l'ouvrage, sur le terrain on peut observer sur un même

ouvrage plusieurs types de colmatage : mécanique (ensablement ou colmatage du massif filtrant), chimique (carbonates ou dépôts ferrugineux) et biologique.

V.5.1.1 - Traitement du colmatage mécanique

Le traitement est basé sur l'enlèvement des dépôts de sable qui encombre le forage, cette opération se fait par air lift ou pompage.

Dans la deuxième étape, on fait le traitement chimique, on utilise le poly phosphate qui permet de dé floculer les argiles de l'aquifère.

L'eau du forage doit être agitée soit par pompage alterne soit par pistonnage et ceci pendant 24 heurs. [2]

V.5.1.2 - Traitement du colmatage chimique

Pour le traitement du colmatage par le fer manganèse on utilise le poly phosphate, le dosage peut être de 2 à 4Kg pour 100 litre d'eau. [2]

V.5.2 - Autres recommandations

V.5.2.1 - Développement des forages

Cette opération consiste à améliorer la perméabilité naturelle de la formation aquifère dans la zone de captage, plusieurs méthodes sont utilisées pour le pompage de développement :

- a) Le sur pompage : consiste en un pompage d'un débit supérieur au débit d'exploitation.
- b) Le pompage alterné : alternance de démarrages et d'arrêts brusques de la pompe afin de créer de brèves et puissantes variations de pression sur la couche aquifère.
- c) Développement à l'émulseur : c'est la méthode la plus employée elle fait intervenir une alternance de phase du pompage par émulseur et la phase d'envoi d'air sous pression à partir d'un dispositif (double colonne) ; une colonne d'envoi d'air dans

une colonne de production d'eau émulsionnée. Cette méthode simple nécessite quand même un dimensionnement correct de dispositif d'air lifte. [2]

V.5.2.2 - Contrôle de la fin du développement

Le but du développement est d'empêcher les veines de sable, donc on peut penser que l'opération sera achevée lorsque l'eau extraite de l'ouvrage ne contiendra plus d'éléments fins. [2]

V.5.3 - Recommandation concernant les réservoirs

- ➤ Installer des compteurs au niveau de la conduite de distribution pour l'ensemble des réservoirs.
- > Installer des capteurs de niveau.
- Reprise la penture avec une peinture contre l'humidité.
- > Reprise de la vitrerie des ouvertures brisées.
- Elimination des tracés d'humidité sur les parements extérieurs par brossage.
- ➤ Rétablissement du système d'évacuation des eaux pluviales et mettre en place des descentes d'eau pour éviter un ruissellement sur les parois.

V.5.4 - Autres recommandations

Les réservoirs sont des ouvrages nécessitant des interventions régulières (opérations courantes de surveillance et d'entretien, nettoyage).

a. Opération de surveillances

- Etat de l'ouvrage.
- ➤ Aération : devant être conçus pour éviter l'introduction de la pollution dans le réservoir.
- > Trop plein et vidange : fonctionnement et étanchéité.
- Etat des conduites et robinetterie.
- Contrôle des pertes d'eau de l'appareillage de mesure.

b. Opération de nettoyage

Les opérations de nettoyage- désinfection des réservoirs comportent les diverses phases suivantes :

- Nettoyage proprement dit : soit par brossage raclage manuel (pour les petits réservoirs) soit par voie chimique, en utilisant les produits ayant un pouvoir dissolvant vis-à-vis des dépôts afin de faciliter le nettoyage du réservoir, ces produits sont pulvérisés à basse pression sur les parties du réservoir en contact avec l'eau, ils comportent le plus souvent un produit désinfection.
- Décapage des dépôts et rinçage des parois des poteaux et du radier eau jet sous pression, en prenant soin de ne pas détériorer les revêtements éventuels.

V.6 -Recommandations concernant le réseau de distribution

- Réparation des branchements avec un bon raccordement.
- ♣ Changement de la nature des conduites pour les amiantes ciment.

Le raccordement s'effectue sur la bride d'un Té qui aura été disposé à l'emplacement voulu à l'occasion de pose de la conduite ou sur un collier de prise, dans ce cas le robinet d'arrêt est protégé dans ces petits diamètres par un coffre en fonte appelé tabernacle lequel est surmonté d'un tube raccordé à la bouche à clé.

V.6.1 – Détections des fuites

A. Enregistreurs de bruit :

Les enregistreurs de bruit sont des appareils autonomes de pré-localisation des fuites. Ils sont particulièrement indiqués pour le contrôle des secteurs bruyants ou de trafic routier important. Placés au contact des conduites, ils captent à des heures ou des jours déterminés les bruits qu'elles transmettent et en mémorisent le niveau minimum constant, sensé être l'indice d'une fuite.

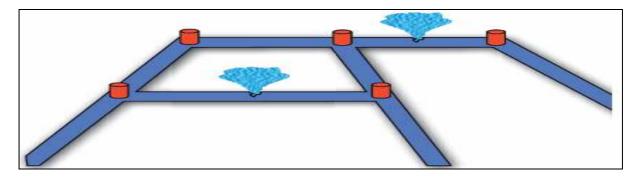


Figure V-2: L'emplacement d'un enregistreur de bruits

A l'issue de la période d'enregistrement programmée, les appareils sont connectés à un micro-ordinateur pour transfert des données stockées.

L'opérateur analyse alors ces données :

En repérant pour chaque point d'écoute les bruits permanents dont le niveau sonore est minimum:

- 辈 et portant ces résultats sur le plan du réseau,
- **4** en déterminant comme suite une zone suspecte, par comparaison des niveaux sonores de chaque point écouté.

A.1. Configuration opérationnelle

Les enregistreurs de bruit sont spécialement utiles – et rentables – pour le travail dans des secteurs d'écoute difficile, soit en raison du bruit environnant, des risques de la circulation, des conditions de remplissage du réseau, ou pour toute autre raison. Il ne peut se faire que de nuit ou le week-end.

Ils permettent de pré-localiser les fuites à 50 ou 100 mètres près.

A.2. Les étapes de la pré-localisation

a. Réalisation d'un plan de pose

- 🏶 Positionner les points d'écoute sur un plan.
- Déterminer nombre d'enregistreurs de bruit nécessaires pour couvrir complètement le secteur.
- 🏶 Délimiter la zone à contrôler sur un plan du réseau.

b. Programmation du parc d'enregistreurs

- Dates, horaires et durées des cycles d'acquisition.
- Nombre de mesures par cycle.
- Niveau d'amplification

c. Pose des enregistreurs sur les points d'écoute

Noter les emplacements exacts sur la chaussée et sur le plan de pose.

d. Enregistrement des bruits

Page 43 ENSP 2009

Déclenchement en mode automatique suivant les cycles programmés.

e. Analyse des données acquises

- Transfert des données acquises sur micro-ordinateur.
- Détermination des niveaux minimum de bruits permanents de chaque enregistrement.

f. Pré-localisation des zones de fuites probables

- Report des niveaux de bruits sur le plan de pose.
- Visualisation graphique des zones les plus bruyantes.

A.3. Mise en place sur le terrain :

La mise en place s'effectue aux endroits prévus sur le plan de pose, les distances maximales entre enregistreurs sont données dans le Tableau IV.2 :

Tableau V.3: Distances entre les enregistreurs [Wikti]

Environnement	Matériau de la conduite	Distance entre deux enregistreurs
Zone urbaine	Métallique (fonte, acier)	200 à 300 m
	Amiante – ciment	
	Plastique (PVC, PEHD)	100 à 160 m
Zone péri –urbaine et rurale	Métallique (fonte, acier)	400 à 500 m
	Amiante – ciment	
	Plastique (PVC, PEHD)	160 à 200 m

Figure V-3: Appareils enregistreurs de bruits

B. La détection acoustique

Les matériels utilisés pour ce faire sont basés sur le principe du stéthoscope, simplement complété par un dispositif d'amplification et généralement aussi de filtration. Les appareils sont classés en deux catégories :

B.1. Les appareils à amplification mécanique

Ils sont en principe composés d'une membrane vibrante insérée dans une cloche métallique formant une caisse de résonance dans laquelle est vissée une tige métallique servant de capteur (Figure V-4).

Ces appareils aux performances réelles mais limitées requièrent de la part de l'opérateur une « oreille » exercée dont généralement, avec de l'expérience, il fait preuve. Ils permettent de dégrossir le travail de recherche et par ailleurs d'assurer un contrôle rapide du réseau en tout point où on y intervient.

A cette catégorie d'appareils se rattachent en particulier la canne d'écoute et l'hydrosol.

Figure V-4: Les appareils à amplification mécanique

B.2. Les appareil s à amplification électronique

Ces appareils sont identiques aux précédents dans leur principe, à la différence qu'un microphone remplace l'ensemble canne – membrane, et qu'un amplificateur / filtre remplace la cloche.

Ces appareils, plus sensibles et plus précis que les précédents desquels viennent en complément, permettent de localiser correctement, sous certaines conditions toutefois, la plupart des fuites.

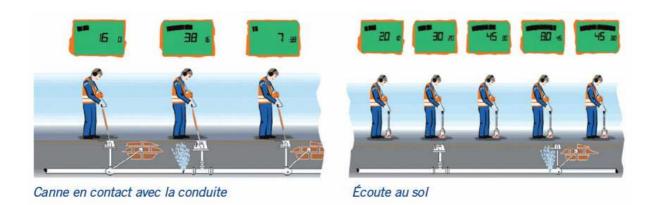


Figure V-5: Les appareils à amplification électronique

C. Les appareils de corrélation

Le corrélateur est un ensemble composé de deux capteurs, deux émetteurs et d'un récepteur calculateur.

Les capteurs sont placés aux extrémités de la conduite directement sur la canalisation (ou en contact avec le fluide pour les hydrophones). Ils enregistrent le bruit (intensité, fréquence) et transmettent un signal aux émetteurs ; Les émetteurs transmettent le signal par onde radio au récepteur qui va filtrer et analyser le signal. A partir de la vitesse de propagation de la fuite, il va positionner la fuite par rapport aux capteurs.

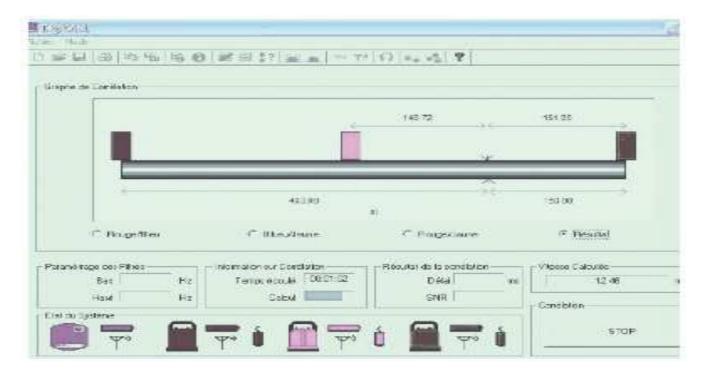


Figure V-6 : Principe de fonctionnement des appareils de corrélation [Wikti]

C.1. Configuration opérationnelle :

A condition de connaître avec certitude la longueur du tronçon inspecté, la nature de la conduite et le diamètre de celle-ci, ces appareils donnent des résultats de précision remarquables, avec l'avantage d'être peu affectés par les bruits extérieurs et indifférents à la profondeur d'enterrement du réseau.

Il est donc très adapté à la recherche lorsque:

- ♣ les canalisations sont profondément enterrées,
- ♣ les points de contact sont espacés (pas à plus de 500 m toutefois),
- ♣ le sol est gelé, submergé ou encombré,
- ♣ l'environnement est bruyant.

C.2. Utilisation:

L'opération consiste à placer les deux capteurs aux extrémités du tronçon de la conduite à contrôler, puis à lancer le corrélateur préalablement renseigné sur la longueur, le diamètre et la nature du tronçon considéré : s'il y a une fuite l'appareil en détecte la présence et en indique la position par rapport aux capteurs.

Pour l'utilisation du corrélateur il est parfois nécessaire d'opérer à deux techniciens notamment lorsque les conditions de sécurité l'exigent.

Les capteurs types « hydrophone » peuvent être raccordés sur des branchements existants ou accessoires du réseau.

D. Le gaz traceur

Le principe global est de contaminer le sol au droit des fuites par apport d'hélium contenu dans l'eau du tuyau fuyard, puis de détecter ces concentrations anormalement élevées par un spectromètre analysant l'air du sol aspiré par une pompe à vide (Figure IV-7). L'injection d'hélium dans l'eau nécessite quelques précautions simples, et uniquement un point d'injection du type prise en charge.

La détection se fait par un spectromètre embarqué sur un véhicule, réglé pour détecter l'hélium. L'équipe suit le parcours des canalisations à analyser, et prélève l'air du sol grâce à une canne reliée à une pompe à vide tous les 10 mètres.

Figure V-7: Principe de fonctionnement d'un Gaz traceur

La mise en œuvre est la suivante :

- ♣ Injection du gaz sous pression dans la conduite (prise en charge, branchement, etc.).
- 4 Réalisation de petits trous à l'aplomb du tracé de la conduite.
- Détection du gaz traceur à l'aide d'une sonde de détection.
- L'emplacement de la fuite correspond à l'endroit de concentration maximale.

E. L'Imagerie Thermique

L'imagerie thermique consiste à analyser à l'aide d'un équipement d'imagerie infrarouge, la température de la surface du sol le long d'un tracé de canalisation et à repérer les endroits où se présente une discontinuité – réchauffement, refroidissement, une humidité anormale du sol celle-ci pouvant être causée par une fuite (Figure IV-8).

Le principe est de survoler le tracé de la conduite principale avec un avion léger, spécialement appareillé d'un matériel d'imagerie thermique couplé à un système de positionnement global (GPS).

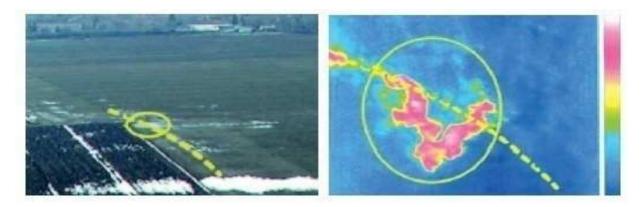


Figure V-8: L'imagerie thermique

Le matériel d'imagerie repère les zones de sol humide autour de la conduite principale et on compare cette information avec des images couleur de la zone préalablement stockées.

- Le GPS détermine avec précision les coordonnées géographiques des zones de fuite.
- Les données de positionnement fournies par le GPS associées à l'image fournie par le matériel d'imagerie, permettent de définir sur une carte les coordonnées précises des fuites. La technique s'applique principalement à l'étude de longs tronçons de conduites principales pour identifier les zones de fuites possibles.

Il est possible de contrôler jusqu'à 100 kilomètres de conduites par jour. La trajectoire de la conduite doit être comprise dans une zone préférablement rurale et autorisée au survol.

V.7 - CONCLUSION

La situation du système d'alimentation en eau potable de la ville d'AFIR est caractérisée par des insuffisances et le réseau de distribution ne peut assurer sa fonction convenablement.

Les trois forages assurant l'approvisionnement en eau de la de ville fonctionnent 24h/24h pour une production de **5875.20 m³/j.** Les pertes d'eau dans le système sont considérables.

Le débit d'exploitation des forages devra être déterminé en procédant à de nouveaux essais de pompage du moment qu'il y a rabattement de la nappe.

Les ouvrages de stockages présentent certaines anomalies.

CHAPITRE VI REHABILITATION DU SYSTEME D'AEP

VI.1 Introduction

Apres avoir présenté les problèmes faisant obstacle à l'alimentation en eau potable de la ville d'AFIR il s'avère nécessaire d'améliorer les conditions de distribution qui consistent en la réhabilitation du système d'alimentation.

VI.2 Choix du matériau des conduites

Le choix du matériau utilisé est en fonction de la pression supportée, de l'agressivité du sol et de l'ordre économique (coût et disponibilité sur le marché) ainsi que la bonne jonction de la conduite avec les équipements auxiliaires (joints, coudes, vannes...etc.). [1]

Par mis les matériaux utilisés on peut citer : l'acier, la fonte et le PVC

1. Tuyaux en fonte

Présentent plusieurs avantages :

- Bonne résistance aux forces internes.
- Bonne résistance à la corrosion.
- Très rigides et solides

L'inconvénient est que les tuyaux en fonte sont très lourds, très chers et ne sont pas disponible sur le marché.

2. Tuyaux en acier

Les tuyaux en acier sont plus légers que les tuyaux en fonte, d'où l'économie sur le transport et la pose.

Bonne résistance aux contraintes (choc et écrasement)

Leur inconvénient est la corrosion.

3. Tuyaux en PVC (Polychlorure de vinyle non plastifié)

- Bonne résistance à la corrosion
- Disponible sur le marché
- Une pose de canalisation facile

Leur inconvénient est le risque de rupture.

Remarque

Dans notre projet on utilise des conduites en acier enrobé avec le dispositif de protection contre la corrosion (protection cathodique).

VI.3 Equipement du réseau de distribution

Le long d'une canalisation différents organes accessoires sont installés pour :

- Maria Assurer un bon écoulement.
- Régulariser les pressions et assurer les débits.
- Protéger les canalisations.
- Soutirer les débits

Les appareils qui sont utilisés pour notre réseau de distribution sont les suivants :

1. Les robinets vannes

Ce sont des appareils de sectionnement leur rôle est de permettent l'isolement des tronçons du réseau de distribution lors de leur réparation et permettent aussi la régularisation des débits

2. Poteaux d'incendie

Ils doivent être raccordés sur des conduites capables d'assurer un débit de 17 l/s et une pression de 1 bar.

3. Les cônes

Permettent le raccordement des conduites ayant des diamètres différents, ils peuvent être placés au niveau de l'emplacement des robinets vannes et d'autre accessoires.

4. Les Tés et les croix

Permettent le raccordement des canalisations secondaires à la canalisation principale.

5. Les coudes

Ce sont des pièces utilisées dans le cas de changement de la direction

6. Robinets de décharge

Ce sont des appareils que l'on place au niveau des points bas de la conduite en vu de vider celle-ci, dans le but d'éliminer les dépôts qui se sont formés ou dans le cas de réparation.

7. Les compteurs

Le réseau de distribution nécessite l'emplacement des compteurs qui seront installés en des points adéquats, et servent l'évaluation du rendement du réseau de distribution et le contrôle de la consommation.

VI.4 Calcul du réseau de distribution

Le calcul du réseau de distribution se fera pour les deux cas suivants :

- Cas de pointe.
- Cas de pointe plus incendie.

En premier lieu nous ferons le calcul du réseau tel qu'il est, c'est à dire prendre les mêmes diamètres existants.

Les vitesses inférieures à 0.3 m/s sont considérées comme étant des vitesses faibles qui favorisent la formation des dépôts.

L'intervalle des pressions acceptables est limité entre 2 et 6 bars.

Les valeurs supérieures à 6 bars sont considérées comme des surpressions, donc il faut éviter ces pressions qui risquent de créer des fuites.

VI.4.1 Détermination des débits du réseau

1. Débit spécifique

Pour le calcul on admet l'hypothèse selon la quelle les besoins domestiques sont répartis régulièrement sur la longueur des réseaux de distribution, pour cette raison on a calculé le débit spécifique \mathcal{Q}_{spi} qui est égal à :

$$Q_{spi} = \frac{Q_r}{\sum l_i} (l / s / ml)$$
 (VI.1)

 Q_r : débit en route Avec;

 $\sum l_i$: Somme des longueurs des tronçons.

2. Débit en route

Le débit en route de chaque tronçon est le débit uniformément réparti sur son parcours, il est donné par la formule suivante :

$$Q = Q_{eons} - \sum Q_{eonc} \qquad (l/s)$$
 (VI.2)

 $Q_{\it cons}$: Le débit consommé (heure de pointe). Avec:

 $Q_{\it conc}$: Débit concentré.

3. Débit aux nœuds

Les débits nodaux sont des débits concentrés en chaque nœud pour alimenter la population répartie autour de la moitié du tronçon de conduite ayant en commun les nœuds considérés, il est déterminé par la relation suivante :

$$Q_{ni} = 0.5 \sum Q + \sum Q_{eonc} (l/s)$$

$$Q_{ni} : \text{Le débit au nœud.}$$
(VI.3)

Avec:

 $\sum \! \mathcal{Q}_{conc}$: La somme des débits concentrés au niveau du nœud considéré.

Les débits du réseau de distribution de la ville d'AFIR sont donnés dans le tableau suivant :

Tableau Erreur! Il n'y a pas de texte répondant à ce style dans ce document..1 Débits nodaux (cas de pointe)

N° de	Tronço	n	diamètre	longueur	Qsp	Qr	0.5∑Qr	Q conc	Qnodaux
nœud	du	au	mm	m	l/s/ml	1/s	1/s	1/s	1/s
	1	2	250	122		1,78			
1	1	34	150	68		0,99	3,40		3,40
	1	35	100	277		4,03			
	1	2	250	122		1,78			
2	2	3	80	91		1,33	2,24		2,24
	2	4	250	94	0,0146	1,37			
3	2	3	80	91		1,33	0,67		0,67
	2	4	250	94		1,37			
4	4	5	80	256		3,73	3,33		3,33
	4	6	250	108		1,57			
	4	5	80	256		3,73			
5	5	6	100	209		3,05	4,89		4,89
	5	41	80	206		3,01			
	4	6	250	108		1,57			
6	5	6	100	209		3,05	4,23		4,23
	6	7	250	94		1,37			
	6	29	80	169		2,46			
	6	7	250	94		1,37			
7	7	8	150	63		0,92	1,57		1,57
	7	9	250	59		0,85			
8	7	8	150	63		0,92	0,46		0,46
	7	9	250	59		0,85			
9	9	10	100	120		1,75	2,16		2,16
	9	11	250	117		1,71			
10	9	10	100	120		1,75	0,88		0,88
11	9	11	250	117		1,71			

11	11	12	150	108		1,58	8,03	8,03
	11	19	200	876		12,77		
	11	12	150	108	0.0146	1,58		
12	12	13	80	169		2,46	3,00	3,00
	12	14	150	134		1,95		
13	12	13	80	169		2,46	1,23	1,23
	12	14	150	134		1,95		
14	14	15	80	169		2,46	3,09	3,09
	14	16	150	122		1,78		
15	14	15	80	169		2,46	1,23	1,23
	14	16	150	122		1,78		
16	16	17	80	162		2,37	4,93	4,93
	16	18	150	392		5,71		
17	16	17	80	162		2,37	1,18	1,18
18	16	18	150	392		5,71	2,85	2,85
19	11	19	200	876		12,77	9,82	9,82
	19	45	150	470		6,86		
	45	20	150	28		0,41		
20	20	21	80	303		4,41	3,85	3,85
	20	22	150	197		2,87		
21	20	21	80	303		4,41	2,97	2,97
	21	22	80	106		1,54		
	20	22	150	197		2,87		
22	21	22	80	106		1,54	3,91	3,91
	22	23	150	235		3,42		
23	22	23	150	235		3,42	1,71	1,71
	45	24	150	1019		14,86		
24	24	25	125	23		0,34	7,77	7,77
	24	31	125	23		0,34		
	24	25	125	23		0,34		
25	25	26	100	23		0,34	1,33	1,33
	25	28	100	136		1,98		
	25	26	100	23		0,34		

26	26	27	100	124	1,81	3,28	3,28
	26	46	80	303	4,41		
27	26	27	100	124	1,81	1,04	1,04
	27	28	100	19	0,27		
	25	28	100	136	1,98		
28	27	28	100	19	0,27	1,28	1,28
	28	29	100	21	0,31		
	6	29	80	169	2,46		
29	28	29	100	21	0,31	3,54	3,54

Suite du Tableau Erreur! Il n'y a pas de texte répondant à ce style dans ce document..1

29	29	30	125	59		0,85		
	29	34	150	237		3,45		
	29	30	125	59	0.0146	0,85		
30	30	31	125	68		0,99	2,72	2,72
	30	33	100	247		3,60		
	24	31	125	23		0,34		
31	30	31	125	68		0,99	2,66	2,66
	31	32	100	273		3,98		
32	31	32	100	273		3,98	2,52	2,52
	32	33	125	73		1,06		
	30	33	100	247		3,60		
33	32	33	125	73		1,06	2,78	2,78
	33	34	125	61		0,89		
	1	34	150	68		0,99		
34	29	34	150	237		3,45	2,67	2,67
	33	34	125	61		0,89		
	1	35	100	277		4,03		
35	35	36	80	77		1,13	4,22	4,22
	35	39	80	225		3,28		
	35	36	80	77		1,13		
36	36	37	80	166		2,43	2,92	2,92
	36	38	80	157		2,29		

CHA	PIT	$\Gamma R F$	VI

37 36 37 80 166 2,43 1,21 1,21 36 38 80 157 2,29 38 38 39 80 326 4,75 7,84 7,84 38 41 80 592 8,64 35 39 80 225 3,28	4
38 39 80 326 4,75 7,84 7,84 38 41 80 592 8,64 35 39 80 225 3,28	
38 41 80 592 8,64 35 39 80 225 3,28	
35 39 80 225 3,28	
	_
39 38 39 80 326 4,75 5,16 5,16	6
39 40 80 73 1,06	
39 41 80 83 1,22	
40 39 40 80 73 1,06 0,53 0,53	3
5 41 80 206 3,01	
41 38 41 80 592 8,64 16,89 16,8	89
39 41 80 83 1,22	
41 42 125 1435 20,92	
41 42 125 1435 20,92	
42 42 43 125 253 3,69 14,63 14,6	63
42 44 125 319 4,65	
43 42 43 125 253 3,69 1,85 1,85	5
44 42 44 125 319 4,65 2,32 2,32	2
45 19 45 150 470 6,86	

Suite du Tableau Erreur! Il n'y a pas de texte répondant à ce style dans ce document..1

45	45	20	150	28	0.0146	0,41	11,06	11,06
	45	24	150	1019		14,86		
46	26	46	80	303		4,41	2,21	2,21
								174.08

Tableau Erreur! Il n'y a pas de texte répondant à ce style dans ce document.. 2 Débits nodaux (cas de pointe + incendie)

N°de	Tronç	on	diamètre	longueur	Qsp	Qr	0.5∑Qr	Qconc	Qnodaux
Nœud	du	au	mm	m	l/s/ml	1/s	1/s	1/s	1/s
	1	2	250	122		1,78			
1	1	34	150	68		0,99	3,40		3,40
	1	35	100	277		4,03			
	1	2	250	122	0,0146	1,78			
2	2	3	80	91		1,33	2,24		2,24
	2	4	250	94		1,37			
3	2	3	80	91		1,33	0,67		0,67
	2	4	250	94		1,37			
4	4	5	80	256		3,73	3,33		3,33
	4	6	250	108		1,57			
	4	5	80	256		3,73			
5	5	6	100	209		3,05	4,89	17,00	21,89
	5	41	80	206		3,01			
	4	6	250	108		1,57			
6	5	6	100	209		3,05	4,23		4,23
	6	7	250	94		1,37			
	6	29	80	169		2,46			
	6	7	250	94		1,37			
7	7	8	150	63		0,92	1,57		1,57
	7	9	250	59		0,85			
8	7	8	150	63		0,92	0,46		0,46
	7	9	250	59		0,85			
9	9	10	100	120		1,75	2,16		2,16
	9	11	250	117		1,71			
10	9	10	100	120		1,75	0,88		0,88
	9	11	250	117		1,71			
11	11	12	150	108		1,58	8,03		8,03
	11	19	200	876		12,7			

					7		
	11	12	150	108	1,58		
12	12	13	80	169	2,46	3,00	3,00
	12	14	150	134	1,95		
13	12	13	80	169	2,46	1,23	1,23
14	12	14	150	134	1,95		

Suite du Tableau Erreur! Il n'y a pas de texte répondant à ce style dans ce document..2

14	14	15	80	169		2,46	3,09	3,09
	14	16	150	122		1,78		
15	14	15	80	169	0.0146	2,46	1,23	1,23
	14	16	150	122		1,78		
16	16	17	80	162		2,37	4,93	4,93
	16	18	150	392		5,71		
17	16	17	80	162		2,37	1,18	1,18
18	16	18	150	392		5,71	2,85	2,85
19	11	19	200	876		12,7	9,82	9,82
						7		
	19	45	150	470		6,86		
	45	20	150	28		0,41		
20	20	21	80	303		4,41	3,85	3,85
	20	22	150	197		2,87		
21	20	21	80	303		4,41	2,97	2,97
	21	22	80	106		1,54		
	20	22	150	197		2,87		
22	21	22	80	106		1,54	3,91	3,91
	22	23	150	235		3,42		
23	22	23	150	235		3,42	1,71	1,71
	45	24	150	1019		14,8		
						6		
24	24	25	125	23		0,34	7,77	7,77
	24	31	125	23		0,34		
	24	25	125	23		0,34		

25	25	26	100	23	0,34	1,33	1,33
	25	28	100	136	1,98		
	25	26	100	23	0,34		
26	26	27	100	124	1,81	3,28	3,28
	26	46	80	303	4,41		
27	26	27	100	124	1,81	1,04	1,04
	27	28	100	19	0,27		
	25	28	100	136	1,98		
28	27	28	100	19	0,27	1,28	1,28
	28	29	100	21	0,31		
	6	29	80	169	2,46		
29	28	29	100	21	0,31	3,54	3,54
	29	30	125	59	0,85		
	29	34	150	237	3,45		
	29	30	125	59	0,85		
30	30	31	125	68	0,99	2,72	2,72
	30	33	100	247	3,60		
31	24	31	125	23	0,34		

Suite du Tableau Erreur! Il n'y a pas de texte répondant à ce style dans ce document..2

31	30	31	125	68		0,99	2,66	2,66
	31	32	100	273	0.0146	3,98		
32	31	32	100	273		3,98	2,52	2,52
	32	33	125	73		1,06		
	30	33	100	247		3,60		
33	32	33	125	73		1,06	2,78	2,78
	33	34	125	61		0,89		
	1	34	150	68		0,99		
34	29	34	150	237		3,45	2,67	2,67
	33	34	125	61		0,89		
	1	35	100	277		4,03		
35	35	36	80	77		1,13	4,22	4,22
	35	39	80	225		3,28		

	35	36	80	77	1,13		-	
36	36	37	80	166	2,43	2,92		2,92
	36	38	80	157	2,29			
37	36	37	80	166	2,43	1,21		1,21
	36	38	80	157	2,29			
38	38	39	80	326	4,75	7,84		7,84
	38	41	80	592	8,64			
	35	39	80	225	3,28			
39	38	39	80	326	4,75	5,16		5,16
	39	40	80	73	1,06			
	39	41	80	83	1,22			
40	39	40	80	73	1,06	0,53		0,53
	5	41	80	206	3,01			
41	38	41	80	592	8,64	16,89		16,89
	39	41	80	83	1,22			
	41	42	125	1435	20,9			
					2			
	41	42	125	1435	20,9			
					2			
42	42	43	125	253	3,69	14,63		14,63
	42	44	125	319	4,65			
43	42	43	125	253	3,69	1,85		1,85
44	42	44	125	319	4,65	2,32		2,32
	19	45	150	470	6,86			
45	45	20	150	28	0,41	11,06		11,06
	45	24	150	1019	14,8			
					6			
46	26	46	80	303	4,41	2,21		2,21
								191,08

VI.5. Calcul hydraulique

VI.5.1 Méthode de calcul

La méthode utilisée dans les calculs du réseau de distribution est celle de **HARDY CROSS** effectuée par le logiciel de simulation **LOOP** qui peut prendre en charge jusqu'à 500 tronçons, 400 nœuds et 15 ouvrages de stockage, il utilise l'algorithme **HARDY CROSS** pour déterminer les corrections des débits dans les conduites, la correction est basée sur deux hypothèses :

La première : En un nœud quelconque d'une maille, la somme des débits entrants est égale à la somme des débits sortants.

La deuxième : La somme des pertes de charge dans une maille est nulle.

1. Calcul des pertes de charge

La formule utilisée pour la détermination des pertes des charges est celle de **WILLIAM-HAZEN**:

$$J = 10 ,69 \frac{\left(\frac{Q}{C_{HW}}\right)^{1,852}}{D^{4,871}}$$
 (VI.4)

Avec ; J : Perte de charge linéaire (m).

D: Diamètre de la conduite (m).

Q: Débit véhiculé (m3/s).

CHW: Coefficient de HAZEN-WILLIAMS [3]

La variation de CHW en fonction de la rugosité est représentée dans le tableau suivant :

Tableau VI.3: Variation de CHW

Rugosité K (mm)	2,0	1,0	0,5	0,25	0,1	0,05	0,04	0,025
Coefficient H-W	95	106	116	130	136	141		146,5

2. La pression de service

Les conduites du réseau doivent être dimensionnées de façon à supporter les pressions exigées au niveau de réseau selon la hauteur des immeubles, on prévoit les pressions suivantes :

- 12 à 15 m pour R+1.
- 16 à 19 m pour R+2.
- 20 à 23 m pour R+3.
- 24 à 27 m pour R+4.
- 28 à 32 m pour R+5.
- 33 à 36 m pour R+6.
- 37 à 40 m pour R+7.

D'une façon générale, on peut écrire :

$$H_{sol} = 10 + 4n$$

n : désigne le nombre des étages.

Dans le cas de la ville d'AFIR, on prend n=3, donc $H_{sol}=10+4*3=22m$

Les résultats de calcul sont indiqués dans les tableaux suivants :

Tableau VI.4: Calcul hydraulique (cas de pointe)

N°	Du	Au	Diamètre	Longueur	CHW	Débit	Vitesse	Perte de
tronçon	Nœud	Nœud	(mm)	(m)		(1/s)	(m/s)	Charge (m)
1	1500	1	300	178	136	174,08	2,47	2,97
2	1	2	250	122	116	99,07	2,02	2,34
3	1	34	150	68	116	38,18	2,16	2,69
4	1	35	100	277	116	33,66	4,29	62,45
5	2	3	80	91	116	0,67	0,13	0,04
6	2	4	250	94	116	96,16	1,96	1,7
7	4	5	80	256	116	9,89	1,97	17,73

8	4	6	250	108	116	82,94	1,69	1,49
9	5	6	100	209	116	18,93	2,41	16,24
10	5	41	80	206	116	23,92	4,76	73,2
11	6	7	250	94	116	60,42	1,23	0,72
12	6	29	80	169	116	0,64	0,13	0,07
13	7	8	150	63	116	0,46	0,03	0
14	7	9	250	59	116	58,39	1,19	0,43
15	9	10	100	120	116	0,88	0,11	0,03
16	9	11	250	117	116	55,35	1,13	0,76
17	11	12	150	108	116	17,74	1	1,03
18	11	19	200	876	116	29,58	0,94	5,32
19	12	13	80	169	130	1,23	0,24	0,2
20	12	14	150	134	116	13,28	0,75	0,75
21	14	15	80	169	130	1,23	0,24	0,2
22	14	16	80	122	116	8,96	1,78	7,05
23	16	17	150	162	130	1,18	0,07	0,01
24	16	18	150	392	116	2,85	0,16	0,13
25	19	45	150	470	136	19,76	1,12	5,49
26	45	20	150	28	136	12,44	0,7	0,14
27	45	24	80	1019	136	3,74	0,74	11,69
28	20	21	150	303	136	6,84	0,39	0,5

Suite du Tableau VI.4

29	20	22	80	197	136	1,75	0,35	0,56
30	21	22	150	106	116	3,87	0,22	0,06
31	22	23	125	235	116	1,71	0,14	0,07
32	24	25	125	23	116	0,42	0,03	0
33	24	31	100	23	116	11,09	1,41	0,5
34	25	26	100	23	136	3,1	0,39	0,05
35	25	28	100	136	136	4,86	0,62	0,64
36	26	27	80	124	136	2,39	0,48	0,62
37	26	46	80	303	116	2,21	0,44	1,31
38	27	28	100	19	116	3,43	0,44	0,06

39	28	29	100	21	116	9,56	1,22	0,46
40	29	30	125	59	106	6,04	0,49	0,19
41	29	34	150	237	116	19,78	1,12	2,77
42	30	31	125	68	116	8,63	0,7	0,42
43	30	33	100	247	116	5,31	0,68	1,83
44	31	32	100	273	116	5,12	0,65	1,89
45	32	33	125	73	116	7,64	0,62	0,36
46	33	34	125	61	116	15,73	1,28	1,14
47	35	36	80	77	116	15,87	3,16	12,81
48	35	39	80	225	116	13,57	2,7	28
49	36	37	80	166	116	1,21	0,24	0,24
50	36	38	80	157	116	11,74	2,34	14,96
51	38	39	80	326	116	0,82	0,16	0,23
52	41	41	80	592	116	3,08	0,61	4,75
53	40	40	80	73	116	0,54	0,11	0,02
54	41	41	80	83	116	8,69	1,73	4,53
55	42	42	125	1435	116	18,81	1,53	37,17
56	43	43	125	253	116	1,85	0,15	0,09
57	44	44	125	319	116	2,33	0,19	0,17

Tableau VI.5: Calcul de pression (cas de pointe)

N°	Débit	Cote terrain	Cote	Pression
Nœud	(l/s)	natural (m)	Piézométrique(m)	m
1500	174,08	366,3	372,3	6
1	3,4	348	369,33	21,33
2	2,24	340	366,99	26,99
3	0,67	337	366,95	29,95
4	3,33	338	365,28	27,28
5	4,89	325	347,55	22,55
6	4,23	328	363,79	35,79
7	1,57	333	363,07	30,07
8	0,46	339	363,07	24,07

Suite du Tableau VI.5

9	2,16	327	362,65	35,65
10	0,88	332	362,62	30,62
11	8,03	323	361,88	38,88
12	3,23	317	360,85	43,85
13	1,23	316	160,65	44,65
14	3,09	314,5	360,1	45,6
15	1,23	314	359,9	45,9
16	4,93	313	353,05	40,05
17	1,18	313,5	353,05	39,55
18	2,85	310	352,93	42,93
19	9,82	308	356,57	48,57
20	3,85	317	350,94	33,94
21	2,97	319	350,44	31,44
22	3,91	320	350,38	30,38
23	1,71	324	350,31	26,31
24	7,77	343	362,77	19,77
25	1,33	330	362,77	32,77
26	3,28	329	362,72	33,72
27	1,04	326	363,34	37,34
28	1,28	327	363,4	36,4
29	3,54	332	363,87	31,87
30	2,72	340	363,68	23,68
31	2,66	338	363,26	25,26
32	2,52	359	365,15	6,15
33	2,78	355	365,5	10,5
34	2,67	350	366,64	16,64
35	4,22	345	306,87	-38,13
36	2,92	343	294,06	-48,94
37	1,21	358	293,83	-64,17
38	7,84	340	279,1	-60,9
39	5,16	335	278,88	-56,12
40	0,53	330	278,85	-51,15

41	16,89	326	274,35	-51,65
42	14,63	294	237,18	-56,82
43	1,85	292	237,09	-54,91
44	2,32	289	237	-52
45	11,06	313	351,07	38,07
46	2,21	322	361,41	39,41

VI.6 Interprétation des résultats de calcul

Le réseau de distribution de la ville d'AFIR présente un certain déséquilibre du point de vu vitesse et pression.

D'après notre étude, nous constatons que :

- Les résultats de calculs obtenus sont défavorable pour quelques nœuds, notamment ceux qui ont la cote du terrain proche à celle du réservoir. néanmoins on enregistre des pressions négatives pour les nœuds 35,36, 37, 38, 39, 40, 41, 42,43 et 44 ceci est du à la cote très élevée de ces nœuds et du choix des diamètres mal dimensionné.
- Ont peut remédier dans ce cas par le changement des diamètres existants par d'autres diamètres.

VI.7 Calcul de l'état de rénovation pour l'horizon d'étude

Il faut changer les tronçons qui présentent un faible ou une grande vitesse ainsi que les tronçons qui sont en mauvais état par d'autres dimensionnements dont le choix du diamètre se fait avec le débit de la répartition arbitraire (logique).

Le tableau suivant donne le diamètre économique du réseau en fonction du débit

Tableau VI.6: Diamètre économique du réseau en fonction du débit

Débit limite (l/s)	Diamètre (mm)		
<7,3	80		
7,3-10,6	100		
10,6-15,1	125		
15,1-19,8	150		
19,8-26,5	175		

26,5-42	200
42-65	250
65-93	300

Les diamètres projetés sont représentés dans le tableau suivant.

Tableau VI.7 Diamètres projetés

N°tronçon	D existant (mm)	D projeté	longueur (m)
		(mm)	
1-2	250	300	122
1-34	200	250	68
1-35	100	250	277
2-4	250	300	94
4-5	80	200	256
5-41	80	200	206
14-16	80	100	122
24-45	80	150	1019
33-32	125	300	73
33-34	125	250	61
35-36	80	200	77
35-39	80	125	225
36-37	80	125	166
36-38	80	200	157
38-39	80	100	326
38-41	80	150	592
39-41	80	150	83
41-42	125	250	1435
42-43	125	80	253
42-44	125	80	319

Les résultats de calcul après la correction des diamètres pour le cas de pointe et le cas de pointe plus incendie : sont les suivants

Tableau VI.8: Calcul hydraulique après la correction (cas de pointe)

N° d e	Du	Au	Diamètre	Longueur	CHW	Débit	Vitesse	Perte	Observa-
tronçon	Nœud	Nœud	(mm)	(m)		(l/s)	(m/s)	Charge (m)	tion
1	1500	1	300	178	136	174,08	2,47	2,97	
2	1	2	300	122	136	85,1	1,2	0,54	projeté
3	1	34	200	68	136	41,74	1,33	0,58	projeté
4	1	35	250	277	136	44,06	0,9	0,88	projeté
5	2	3	80	91	116	0,67	0,13	0,04	
6	2	4	300	94	136	82,19	1,16	0,39	projeté
7	4	5	200	256	136	22,77	0,72	0,71	projeté
8	4	6	250	108	116	56,1	1,14	0,72	
9	5	6	250	209	136	4,35	0,09	0,01	projeté
10	5	41	200	206	136	13,53	0,43	0,22	projeté
11	6	7	250	94	116	52,79	1,08	0,56	
12	6	29	80	169	116	3,43	0,68	1,65	
13	7	8	150	63	116	0,46	0,03	0,02	
14	7	9	250	59	116	50,76	1,03	0,33	
15	9	10	100	120	116	0,88	0,11	0,03	
Suite du	Tableau	ı VI.8							
16	9	11	250	117	116	47,72	0,97	0,58	
17	11	12	150	108	116	17,74	1	1,03	
18	11	19	200	876	116	21,95	0,7	3,06	
19	12	13	80	169	130	1,23	0,24	0,2	
20	12	14	150	134	116	13,28	0,75	0,75	
21	14	15	80	169	130	1,23	0,24	0,2	
22	14	16	100	122	136	8,96	1,14	1,77	projeté
23	16	17	150	162	130	1,18	0,07	0,01	
24	16	18	150	392	116	2,85	0,16	0,13	
25	19	45	150	470	136	12,13	0,69	2,23	
26	45	20	150	28	136	12,44	0,7	0,14	

27 45 24 150 1019 136 11,37 0.64 3,19 projeté 28 20 21 150 303 136 6.84 0.39 0,5 30 21 22 150 106 116 3.87 0,22 0,06 31 22 23 125 235 116 1,71 0,14 0,07 32 24 25 125 23 116 15,97 2,03 0,97 34 25 26 100 23 136 2,24 0,29 0,03 35 25 28 100 136 136 6,74 0,86 1,16 36 26 27 80 124 136 3,25 0,65 1,1 37 26 46 80 303 116 2,21 0,44 1,31 38 27 28 100 19 116 4,29 <th></th> <th></th> <th>-</th> <th></th> <th>_</th> <th></th> <th>=</th> <th></th> <th>_</th> <th></th>			-		_		=		_	
29 20 22 80 197 136 1,75 0,35 0,56 30 21 22 150 106 116 3,87 0,22 0,06 31 22 23 125 235 116 1,71 0,14 0,07 32 24 25 125 23 116 15,97 2,03 0,97 34 25 26 100 23 136 2,24 0,29 0,03 35 25 28 100 136 136 6,74 0,86 1,16 36 26 27 80 124 136 3,25 0,65 1,1 37 26 46 80 303 116 2,21 0,44 1,31 38 27 28 100 19 116 4,29 0,55 0,09 39 28 29 100 21 116 12,3 1,57	27	45	24	150	1019	136	11,37	0,64	3,19	projeté
30 21 22 150 106 116 3,87 0,22 0,06 31 22 23 125 235 116 1,71 0,14 0,07 32 24 25 125 23 116 15,97 2,03 0,97 34 25 26 100 23 136 2,24 0,29 0,03 35 25 28 100 136 136 6,74 0,86 1,16 36 26 27 80 124 136 3,25 0,65 1,1 37 26 46 80 303 116 2,21 0,44 1,31 38 27 28 100 19 116 4,29 0,55 0,09 39 28 29 100 21 116 12,3 1,57 0,74 40 29 30 125 59 106 7,19 0,59	28	20	21	150	303	136	6,84	0,39	0,5	
31 22 23 125 235 116 1,71 0,14 0,07 32 24 25 125 23 116 3,16 0,26 0,02 33 24 31 100 23 116 15,97 2,03 0,97 34 25 26 100 23 136 2,24 0,29 0,03 35 25 28 100 136 136 6,74 0,86 1,16 36 26 27 80 124 136 3,25 0,65 1,1 37 26 46 80 303 116 2,21 0,44 1,31 38 27 28 100 19 116 4,29 0,55 0,09 39 28 29 100 21 116 12,3 1,57 0,74 40 29 30 125 59 106 7,19 0,59	29	20	22	80	197	136	1,75	0,35	0,56	
32 24 25 125 23 116 3,16 0,26 0,02 33 24 31 100 23 116 15,97 2,03 0,97 34 25 26 100 23 136 2,24 0,29 0,03 35 25 28 100 136 136 6,74 0,86 1,16 36 26 27 80 124 136 3,25 0,65 1,1 37 26 46 80 303 116 2,21 0,44 1,31 38 27 28 100 19 116 4,29 0,55 0,09 39 28 29 100 21 116 12,3 1,57 0,74 40 29 30 125 59 106 7,19 0,59 0,26 41 29 34 150 237 116 19,61 1,11	30	21	22	150	106	116	3,87	0,22	0,06	
33 24 31 100 23 116 15,97 2,03 0,97 34 25 26 100 23 136 2,24 0,29 0,03 35 25 28 100 136 136 6,74 0,86 1,16 36 26 27 80 124 136 3,25 0,65 1,1 37 26 46 80 303 116 2,21 0,44 1,31 38 27 28 100 19 116 4,29 0,55 0,09 39 28 29 100 21 116 12,3 1,57 0,74 40 29 30 125 59 106 7,19 0,59 0,26 41 29 34 150 237 116 19,61 1,11 2,73 42 30 31 125 68 116 11,35 0,92	31	22	23	125	235	116	1,71	0,14	0,07	
34 25 26 100 23 136 2,24 0,29 0,03 35 25 28 100 136 136 6,74 0,86 1,16 36 26 27 80 124 136 3,25 0,65 1,1 37 26 46 80 303 116 2,21 0,44 1,31 38 27 28 100 19 116 4,29 0,55 0,09 39 28 29 100 21 116 12,3 1,57 0,74 40 29 30 125 59 106 7,19 0,59 0,26 41 29 34 150 237 116 19,61 1,11 2,73 42 30 31 125 68 116 11,35 0,92 0,69 43 30 33 100 247 116 6,87 0,88	32	24	25	125	23	116	3,16	0,26	0,02	
35 25 28 100 136 136 6,74 0,86 1,16 36 26 27 80 124 136 3,25 0,65 1,1 37 26 46 80 303 116 2,21 0,44 1,31 38 27 28 100 19 116 4,29 0,55 0,09 39 28 29 100 21 116 12,3 1,57 0,74 40 29 30 125 59 106 7,19 0,59 0,26 41 29 34 150 237 116 19,61 1,11 2,73 42 30 31 125 68 116 11,35 0,92 0,69 43 30 33 100 247 116 6,87 0,88 2,95 44 31 32 33 300 73 136 9,81	33	24	31	100	23	116	15,97	2,03	0,97	
36 26 27 80 124 136 3,25 0,65 1,1 37 26 46 80 303 116 2,21 0,44 1,31 38 27 28 100 19 116 4,29 0,55 0,09 39 28 29 100 21 116 12,3 1,57 0,74 40 29 30 125 59 106 7,19 0,59 0,26 41 29 34 150 237 116 19,61 1,11 2,73 42 30 31 125 68 116 11,35 0,92 0,69 43 30 33 100 247 116 6,87 0,88 2,95 44 31 32 100 273 116 7,29 0,93 3,63 45 32 33 300 73 136 9,81 0,14	34	25	26	100	23	136	2,24	0,29	0,03	
37 26 46 80 303 116 2,21 0,44 1,31 38 27 28 100 19 116 4,29 0,55 0,09 39 28 29 100 21 116 12,3 1,57 0,74 40 29 30 125 59 106 7,19 0,59 0,26 41 29 34 150 237 116 19,61 1,11 2,73 42 30 31 125 68 116 11,35 0,92 0,69 43 30 33 100 247 116 6,87 0,88 2,95 44 31 32 100 273 116 7,29 0,93 3,63 45 32 33 300 73 136 9,81 0,14 0,01 projeté 46 33 34 250 61 116 19,46 <td>35</td> <td>25</td> <td>28</td> <td>100</td> <td>136</td> <td>136</td> <td>6,74</td> <td>0,86</td> <td>1,16</td> <td></td>	35	25	28	100	136	136	6,74	0,86	1,16	
38 27 28 100 19 116 4,29 0,55 0,09 39 28 29 100 21 116 12,3 1,57 0,74 40 29 30 125 59 106 7,19 0,59 0,26 41 29 34 150 237 116 19,61 1,11 2,73 42 30 31 125 68 116 11,35 0,92 0,69 43 30 33 100 247 116 6,87 0,88 2,95 44 31 32 100 273 116 7,29 0,93 3,63 45 32 33 300 73 136 9,81 0,14 0,01 projeté 46 33 34 250 61 116 19,46 0,4 0,04 projeté 47 35 36 200 77 116<	36	26	27	80	124	136	3,25	0,65	1,1	
39 28 29 100 21 116 12,3 1,57 0,74 40 29 30 125 59 106 7,19 0,59 0,26 41 29 34 150 237 116 19,61 1,11 2,73 42 30 31 125 68 116 11,35 0,92 0,69 43 30 33 100 247 116 6,87 0,88 2,95 44 31 32 100 273 116 7,29 0,93 3,63 45 32 33 300 73 136 9,81 0,14 0,01 projeté 46 33 34 250 61 116 19,46 0,4 0,04 projeté 47 35 36 200 77 116 19,54 0,62 0,16 projeté 48 35 39 200 <t< td=""><td>37</td><td>26</td><td>46</td><td>80</td><td>303</td><td>116</td><td>2,21</td><td>0,44</td><td>1,31</td><td></td></t<>	37	26	46	80	303	116	2,21	0,44	1,31	
40 29 30 125 59 106 7,19 0,59 0,26 41 29 34 150 237 116 19,61 1,11 2,73 42 30 31 125 68 116 11,35 0,92 0,69 43 30 33 100 247 116 6,87 0,88 2,95 44 31 32 100 273 116 7,29 0,93 3,63 45 32 33 300 73 136 9,81 0,14 0,01 projeté 46 33 34 250 61 116 19,46 0,4 0,04 projeté 47 35 36 200 77 116 19,54 0,62 0,16 projeté 48 35 39 200 225 116 20,3 0,65 0,51 projeté 50 36 38	38	27	28	100	19	116	4,29	0,55	0,09	
41 29 34 150 237 116 19,61 1,11 2,73 42 30 31 125 68 116 11,35 0,92 0,69 43 30 33 100 247 116 6,87 0,88 2,95 44 31 32 100 273 116 7,29 0,93 3,63 45 32 33 300 73 136 9,81 0,14 0,01 projeté 46 33 34 250 61 116 19,46 0,4 0,04 projeté 47 35 36 200 77 116 19,54 0,62 0,16 projeté 48 35 39 200 225 116 20,3 0,65 0,51 projeté 49 36 37 150 166 116 1,21 0,07 0,01 projeté 50 36 38 200 157 116 15,41 0,49 0,21 projeté </td <td>39</td> <td>28</td> <td>29</td> <td>100</td> <td>21</td> <td>116</td> <td>12,3</td> <td>1,57</td> <td>0,74</td> <td></td>	39	28	29	100	21	116	12,3	1,57	0,74	
42 30 31 125 68 116 11,35 0,92 0,69 43 30 33 100 247 116 6,87 0,88 2,95 44 31 32 100 273 116 7,29 0,93 3,63 45 32 33 300 73 136 9,81 0,14 0,01 projeté 46 33 34 250 61 116 19,46 0,4 0,04 projeté 47 35 36 200 77 116 19,54 0,62 0,16 projeté 48 35 39 200 225 116 20,3 0,65 0,51 projeté 49 36 37 150 166 116 1,21 0,07 0,01 projeté 50 36 38 200 157 116 15,41 0,49 0,21 projeté 51 38 39 100 326 116 1,3 0,17 0,13 <t< td=""><td>40</td><td>29</td><td>30</td><td>125</td><td>59</td><td>106</td><td>7,19</td><td>0,59</td><td>0,26</td><td></td></t<>	40	29	30	125	59	106	7,19	0,59	0,26	
43 30 33 100 247 116 6,87 0,88 2,95 44 31 32 100 273 116 7,29 0,93 3,63 45 32 33 300 73 136 9,81 0,14 0,01 projeté 46 33 34 250 61 116 19,46 0,4 0,04 projeté 47 35 36 200 77 116 19,54 0,62 0,16 projeté 48 35 39 200 225 116 20,3 0,65 0,51 projeté 49 36 37 150 166 116 1,21 0,07 0,01 projeté 50 36 38 200 157 116 15,41 0,49 0,21 projeté 51 38 39 100 326 116 1,3 0,17 0,13 projeté 52 38 41 150 592 116 6,27 0,35	41	29	34	150	237	116	19,61	1,11	2,73	
44 31 32 100 273 116 7,29 0,93 3,63 45 32 33 300 73 136 9,81 0,14 0,01 projeté 46 33 34 250 61 116 19,46 0,4 0,04 projeté 47 35 36 200 77 116 19,54 0,62 0,16 projeté 48 35 39 200 225 116 20,3 0,65 0,51 projeté 49 36 37 150 166 116 1,21 0,07 0,01 projeté 50 36 38 200 157 116 15,41 0,49 0,21 projeté 51 38 39 100 326 116 1,3 0,17 0,13 projeté 52 38 41 150 592 116 6,27 0,35 0,62 projeté 53 39 40 80 73 116 0,54	42	30	31	125	68	116	11,35	0,92	0,69	
45 32 33 300 73 136 9,81 0,14 0,01 projeté 46 33 34 250 61 116 19,46 0,4 0,04 projeté 47 35 36 200 77 116 19,54 0,62 0,16 projeté 48 35 39 200 225 116 20,3 0,65 0,51 projeté 49 36 37 150 166 116 1,21 0,07 0,01 projeté 50 36 38 200 157 116 15,41 0,49 0,21 projeté 51 38 39 100 326 116 1,3 0,17 0,13 projeté 52 38 41 150 592 116 6,27 0,35 0,62 projeté 53 39 40 80 73 116 0,54 0,11 0,002 54 39 41 150 83 136 18,81	43	30	33	100	247	116	6,87	0,88	2,95	
46 33 34 250 61 116 19,46 0,4 0,04 projeté 47 35 36 200 77 116 19,54 0,62 0,16 projeté 48 35 39 200 225 116 20,3 0,65 0,51 projeté 49 36 37 150 166 116 1,21 0,07 0,01 projeté 50 36 38 200 157 116 15,41 0,49 0,21 projeté 51 38 39 100 326 116 1,3 0,17 0,13 projeté 52 38 41 150 592 116 6,27 0,35 0,62 projeté 53 39 40 80 73 116 0,54 0,11 0,002 54 39 41 150 83 136 15,9 0,9 0,48 projeté 55 41 42 150 1435 136 1,85	44	31	32	100	273	116	7,29	0,93	3,63	
47 35 36 200 77 116 19,54 0,62 0,16 projeté 48 35 39 200 225 116 20,3 0,65 0,51 projeté 49 36 37 150 166 116 1,21 0,07 0,01 projeté 50 36 38 200 157 116 15,41 0,49 0,21 projeté 51 38 39 100 326 116 1,3 0,17 0,13 projeté 52 38 41 150 592 116 6,27 0,35 0,62 projeté 53 39 40 80 73 116 0,54 0,11 0,002 54 39 41 150 83 136 15,9 0,9 0,48 projeté 55 41 42 150 1435 136 18,81 1,06 5,4 projeté 56 42 43 80 253 136 1,85	45	32	33	300	73	136	9,81	0,14	0,01	projeté
48 35 39 200 225 116 20,3 0,65 0,51 projeté 49 36 37 150 166 116 1,21 0,07 0,01 projeté 50 36 38 200 157 116 15,41 0,49 0,21 projeté 51 38 39 100 326 116 1,3 0,17 0,13 projeté 52 38 41 150 592 116 6,27 0,35 0,62 projeté 53 39 40 80 73 116 0,54 0,11 0,002 54 39 41 150 83 136 15,9 0,9 0,48 projeté 55 41 42 150 1435 136 18,81 1,06 5,4 projeté 56 42 43 80 253 136 1,85 0,37 0,79 projeté	46	33	34	250	61	116	19,46	0,4	0,04	projeté
49 36 37 150 166 116 1,21 0,07 0,01 projeté 50 36 38 200 157 116 15,41 0,49 0,21 projeté 51 38 39 100 326 116 1,3 0,17 0,13 projeté 52 38 41 150 592 116 6,27 0,35 0,62 projeté 53 39 40 80 73 116 0,54 0,11 0,002 54 39 41 150 83 136 15,9 0,9 0,48 projeté 55 41 42 150 1435 136 18,81 1,06 5,4 projeté 56 42 43 80 253 136 1,85 0,37 0,79 projeté	47	35	36	200	77	116	19,54	0,62	0,16	projeté
50 36 38 200 157 116 15,41 0,49 0,21 projeté 51 38 39 100 326 116 1,3 0,17 0,13 projeté 52 38 41 150 592 116 6,27 0,35 0,62 projeté 53 39 40 80 73 116 0,54 0,11 0,002 54 39 41 150 83 136 15,9 0,9 0,48 projeté 55 41 42 150 1435 136 18,81 1,06 5,4 projeté 56 42 43 80 253 136 1,85 0,37 0,79 projeté	48	35	39	200	225	116	20,3	0,65	0,51	projeté
51 38 39 100 326 116 1,3 0,17 0,13 projeté 52 38 41 150 592 116 6,27 0,35 0,62 projeté 53 39 40 80 73 116 0,54 0,11 0,002 54 39 41 150 83 136 15,9 0,9 0,48 projeté 55 41 42 150 1435 136 18,81 1,06 5,4 projeté 56 42 43 80 253 136 1,85 0,37 0,79 projeté	49	36	37	150	166	116	1,21	0,07	0,01	projeté
52 38 41 150 592 116 6,27 0,35 0,62 projeté 53 39 40 80 73 116 0,54 0,11 0,002 54 39 41 150 83 136 15,9 0,9 0,48 projeté 55 41 42 150 1435 136 18,81 1,06 5,4 projeté 56 42 43 80 253 136 1,85 0,37 0,79 projeté	50	36	38	200	157	116	15,41	0,49	0,21	projeté
53 39 40 80 73 116 0,54 0,11 0,002 54 39 41 150 83 136 15,9 0,9 0,48 projeté 55 41 42 150 1435 136 18,81 1,06 5,4 projeté 56 42 43 80 253 136 1,85 0,37 0,79 projeté	51	38	39	100	326	116	1,3	0,17	0,13	projeté
54 39 41 150 83 136 15,9 0,9 0,48 projeté 55 41 42 150 1435 136 18,81 1,06 5,4 projeté 56 42 43 80 253 136 1,85 0,37 0,79 projeté	52	38	41	150	592	116	6,27	0,35	0,62	projeté
55 41 42 150 1435 136 18,81 1,06 5,4 projeté 56 42 43 80 253 136 1,85 0,37 0,79 projeté	53	39	40	80	73	116	0,54	0,11	0,002	
56 42 43 80 253 136 1,85 0,37 0,79 projeté	54	39	41	150	83	136	15,9	0,9	0,48	projeté
	55	41	42	150	1435	136	18,81	1,06	5,4	projeté
57 42 44 80 319 136 2,33 0,46 1,52 projeté	56	42	43	80	253	136	1,85	0,37	0,79	projeté
	57	42	44	80	319	136	2,33	0,46	1,52	projeté

Tableau VI.9 Calcul de pression après correction (cas de pointe)

N°	Débit	cote terrain	Cote	Pression
Nœud	(l/s)	natural (m)	piézométrique (m)	(m)
1500	174,08	366,3	372,3	6
1	3,4	348	369,33	21,33
2	2,24	340	366,99	28,78
3	0,67	337	366,95	31,74
4	3,33	338	365,28	30,39
5	4,89	325	347,55	42,68
6	4,23	328	363,79	39,67
7	1,57	333	363,07	34,11
8	0,46	339	363,07	28,11
9	2,16	327	362,65	39,78
10	0,88	332	362,62	34,75
11	8,03	323	361,88	43,2
12	3,23	317	360,85	48,17
13	1,23	316	160,65	48,97
14	3,09	314,5	360,1	49,92
15	1,23	314	359,9	50,22
16	4,93	313	353,05	49,65
17	1,18	313,5	353,05	49,14
18	2,85	310	352,93	52,52
19	9,82	308	356,57	55,14
20	3,85	317	350,94	43,76
21	2,97	319	350,44	41,27
22	3,91	320	350,38	40,21
23	1,71	324	350,31	36,13
24	7,77	343	362,77	21,09
25	1,33	330	362,77	34,11
26	3,28	329	362,72	35,09
27	1,04	326	363,34	39,18
28	1,28	327	363,4	38,28
29	3,54	332	363,87	34,01
30	2,72	340	363,68	25,76
				1

31	2,66	338	363,26	27,07
32	2,52	359	365,15	9,69
33	2,78	355	365,5	13,7
34	2,67	350	366,64	18,74
35	4,22	345	306,87	23,44
36	2,92	343	294,06	25,28
37	1,21	358	293,83	10,27
38	7,84	340	279,1	28,07
39	5,16	335	278,88	32,94
40	0,53	330	278,85	37,91

Suite du Tableau VI.9

41	16,89	326	274,35	41,45
42	14,63	294	237,18	62,06
43	1,85	292	237,09	63,27
44	2,32	289	237	65,54
45	11,06	313	351,07	47,9
46	2,21	322	361,41	40,77

Tableau VI.10: Calcul hydraulique après la correction (cas de pointe + incendie)

N°	Du	Au	Diamètre	Longueur	CHW	Débit	Vitesse	Perte de
tronço	Nœud	Nœud	(mm)	(m)		(l/s)	(m/s)	charge
n								(m)
1	1500	1	300	178	136	191,08	2,71	3,53
2	1	2	300	122	136	97,77	1,38	0,7
3	1	34	200	68	136	42,43	1,35	0,6
4	1	35	250	277	136	47,7	0,97	1,02
5	2	3	80	91	116	0,67	0,13	0,04
6	2	4	300	94	136	94,86	1,34	0,51
7	4	5	200	256	136	26,69	0,85	0,96
8	4	6	250	108	116	64,84	1,32	0,94
9	5	6	250	209	136	5,09	0,1	0,01

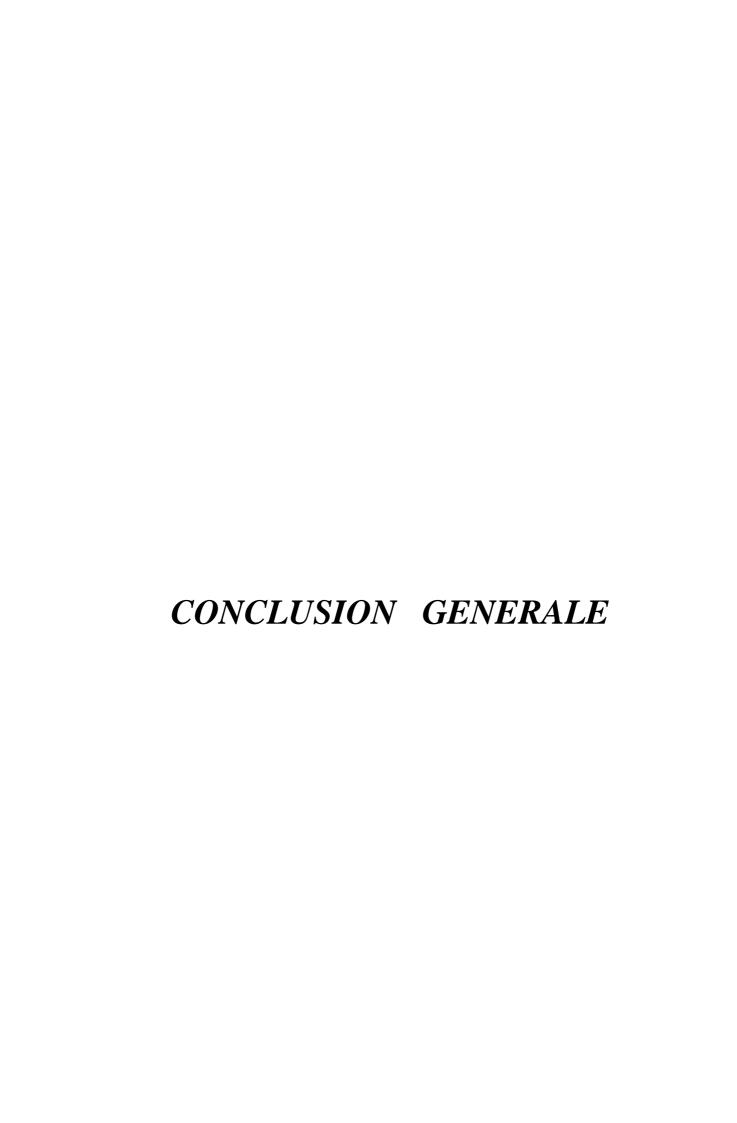
10	5	41	200	206	136	9,88	0,31	0,12
11	6	7	250	94	116	52,52	1,07	0,56
12	6	29	80	169	116	3,01	0,6	1,3
13	7	8	150	63	116	0,46	0,03	0,01
14	7	9	250	59	116	50,49	1,03	0,32
15	9	10	100	120	116	0,88	0,11	0,03
16	9	11	250	117	116	47,45	0,97	0,57
17	11	12	150	108	116	17,74	1	1,03
18	11	19	200	876	116	21,68	0,69	2,99
19	12	13	80	169	130	1,23	0,24	0,2
20	12	14	150	134	116	13,28	0,75	0,75
21	14	15	80	169	130	1,23	0,24	0,2
22	14	16	100	122	136	8,96	1,14	1,77
23	16	17	150	162	130	1,18	0,07	0,01
24	16	18	150	392	116	2,85	0,16	0,13
25	19	45	150	470	136	11,86	0,67	2,13
26	45	20	150	28	136	12,44	0,7	0,14
27	45	24	150	1019	136	11,64	0,66	3,33
28	20	21	150	303	136	6,84	0,39	0,5
29	20	22	80	197	136	1,75	0,35	0,56
30	21	22	150	106	116	3,87	0,22	0,06
31	22	23	125	235	116	1,71	0,14	0,07
32	24	25	125	23	116	3,24	0,26	0,02
33	24	31	100	23	116	16,17	2,06	1

Suite du Tableau VI.10

34	25	26	100	23	136	2,22	0,28	0,03
35	25	28	100	136	136	6,79	0,86	1,18
36	26	27	80	124	136	3,27	0,65	1,11
37	26	46	80	303	116	2,21	0,44	1,31
38	27	28	100	19	116	4,31	0,55	0,1
39	28	29	100	21	116	12,38	1,58	0,74

40	29	30	125	59	106	7,13	0,58	0,25
41	29	34	150	237	116	20,04	1,13	2,84
42	30	31	125	68	116	11,42	0,93	0,7
43	30	33	100	247	116	7,01	0,89	3,05
44	31	32	100	273	116	7,41	0,94	3,74
45	32	33	300	73	136	9,93	0,14	0,01
46	33	34	250	61	116	19,72	0,4	0,04
47	35	36	200	77	116	20,88	0,66	0,18
48	35	39	200	225	116	22,61	0,72	0,62
49	36	37	150	166	116	1,21	0,07	0,01
50	36	38	200	157	116	16,75	0,53	0,25
51	38	39	100	326	116	1,56	0,2	0,19
52	38	41	150	592	116	7,34	0,42	0,83
53	39	40	80	73	116	0,54	0,11	0,02
54	39	41	150	83	136	18,47	1,05	0,64
55	41	42	150	1435	136	18,81	1,06	5,4
56	42	43	80	253	136	1,85	0,37	0,79
57	42	44	80	319	136	2,33	0,46	1,52

Tableau VI.11: Calcul de pression après correction (cas de pointe + incendie)


N°	Débit	cote terrain	Cote	Pression
Nœud	(l/s)	natural (m)	piézométrique (m)	(m)
1500	191,08	366,3	372,3	6
1	3,4	348	368,77	20,27
2	2,24	340	368,07	28,07
3	0,67	337	366,95	31,02
4	3,33	338	365,28	29,56
5	21,89	325	347,55	41,6
6	4,23	328	363,79	38,61
7	1,57	333	363,07	33,06
8	0,46	339	363,07	27,06
9	2,16	327	362,65	38,73

10	0,88	332	362,62	33,7
11	8,03	323	361,88	42,16
12	3,23	317	360,85	47,12

Suite du Tableau VI.11

13	1,23	316	160,65	47,92
14	3,09	314,5	360,1	48,87
15	1,23	314	359,9	49,17
16	4,93	313	353,05	48,6
17	1,18	313,5	353,05	48,09
18	2,85	310	352,93	51,48
19	9,82	308	356,57	54,17
20	3,85	317	350,94	42,9
21	2,97	319	350,44	40,41
22	3,91	320	350,38	39,35
23	1,71	324	350,31	35,27
24	7,77	343	362,77	20,38
25	1,33	330	362,77	33,4
26	3,28	329	362,72	34,37
27	1,04	326	363,34	38,48
28	1,28	327	363,4	37,58
29	3,54	332	363,87	33,32
30	2,72	340	363,68	25,07
31	2,66	338	363,26	26,37
32	2,52	359	365,15	9,12
33	2,78	355	365,5	13,12
34	2,67	350	366,64	18,17
35	4,22	345	306,87	22,74
36	2,92	343	294,06	24,56
37	1,21	358	293,83	9,55
38	7,84	340	279,1	27,31
39	5,16	335	278,88	32,13
40	0,53	330	278,85	37,1

41	16,89	326	274,35	40,49
42	14,63	294	237,18	61,09
43	1,85	292	237,09	62,3
44	2,32	289	237	64,57
45	11,06	313	351,07	47,04
46	2,21	322	361,41	40,06

Notre étude a englobé tous les points qui touchent le plan spécifique à la réalisation d'un projet d'alimentation en eau potable.

Nous signalons que durant notre étude, une priorité a été donnée tant au coté technique qu'au coté économique et cela afin d'assurer une pression convenable et un débit suffisant aux abonnés.

On a constaté que quelques paramètres influant sur l'organisation du travail n'ont pas été bien détaillés, mais on à essayé de se rapprocher le maximum à la bonne marche du chantier, enfin de pouvoir réaliser se système dans le délai accordé et avec le coût souhaité, et on remarque que tout les équipements hydraulique, et matériaux de constructions, ainsi que les engins d'exécution sont de production nationale et sont disponible sur le marché local.

Les ressources mobilisables d'AFIR restent supérieurs à la demande, mais le citoyen soufre toujours du déficit d'eau à ça domicile sons aucune idée des vrais causes de ce manque d'eau.

Le problème de manque d'eau dans la ville ne résulte pas de manque des ressources ou manque d'eau dans les forages, mais le problème réside dans la mauvaise gestion

(Absence de la culture de gestion) et dans l'état que présente le réseau de distribution à cause de son vétusté et des piquages illégales que font les citoyens.

Pour lutter contre ce problème, on a prévu un nouveau réseau de distributions de type maillé et en maintenant le même matériau des conduites (Acier) pour que la rugosité soit constante le long du réseau.

Pour les forages, nous proposons la bonne gestion et le développement de chaque forage qui est ou sera envasé et de faire des essais de pompage régulièrement pour le bon control du débit, et aussi il faut installer, les capteurs de niveau pour éviter la cavitation, et protéger les canalisations par la peinture.

Les réservoirs d'eau et malgré leur vétusté ils sont en bon état de coté génie civil et peuvent servir aux besoins de la population jusqu'à l'an 2029 ou plus, mais ça, après l'entretien régulier et la protection des conduites et robinetteries et les murs par la peinture, et surtout il faut installer des capteurs de niveau.

Enfin, on espère que notre modeste travail puisse servir à l'élaboration d'un nouveau réseau d'alimentation en eau potable dans la ville.

BIBLIOGRAPHIE

- [1] DUPONT.A: Hydraulique urbaine Tome I et II. Editions Eyrolles Paris 1988.
- [2] J. BONIN: Aide mémoire d'Hydraulique urbaine. Editions Eyrolles Paris 1982.
- [3] DUPONT.A: Exercices et projet. Editions Eyrolles 1980.
- [4] E. IVANOV: Organisation de la construction d'un Système du projet de distribution d'eau. I.H.B 1985
- [5] DEGREMONT : Mémento technique de l'eau. Editions Eyrolles (huitième édition). Paris 1978.
- [6] CYRIL GOMELA et HENRI GUERREE : Guide de l'alimentation en eau dans Les agglomérations urbaines et rurales. Tome I, Paris 1985.
- [8] Y. BALAZARD: préparation d'un chantier de travaux publics.
- [9] MARGAT et MONNITION: Qualité des eaux, pollution, Prévention. Editions Eyrolles, paris 1976.
- [10] Catalogue HYDROCHOC
- [11] GOMELLA et GUERRE : Distribution des eaux dans agglomérations urbaines et rurales. Chihab Eyrolles, 1994.
- [12] P.NONCLERCQ: Hydraulique urbaine appliquée 3^{ème} partie. Edition CEBEDEC, 1981.
- [13] LAVOISIER. : L Mémento du gestionnaire d'AEP et de l'assainissement. Edition Lyonnaise, (1994)
- [14] CARLIER.M: Hydraulique générale et appliquée. Edition Eyrolles, paris 1972.
- [15] M ESCAND.L "Hydraulique générale", Tome II. Edition paris 1971.