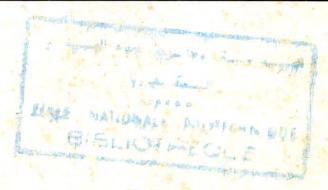
MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

U.S.T.H.B

14/83

14

ECOLE NATIONALE POLYTECHNIQUE


DEPARTEMENT HYDRAULIQUE

PROJET DE FIN D'ETUDES

ADDUCTION COMPLEMENTAIRE

DE

LA VILLE DE BOUIRA

Proposé par :

S.ET.HY.AL.

Etudié par :

A. ZERARA M. MAZOUZI Dirigé par :

K. BOUGUERRA


Page 1 , 2 paragraphe.

3 ligne , lire/: Blide et Médée à l'ouest.

Sétif et Béjaie à l'Est

Page 9
11 ligne, lire: Cout au lieu de coup.

Page 51
28 ligne , lire: Précédemment au lieu de prédemment.

ينوي هذا المشروع على دراسة ايمال المياه المهاه المهالة المشرب سمدينة البويرة والهذا العربي تدور الدراسة كلها حول : - حساب كميات المياه والكافيات الميات المياء والكافيات الميات المياء والكافيات الميات المي

ا خنيار القطر الا تنتمها دي (بطريقة عسسا بيات ، أخذا بعين الإعتبار الطاقات المستهاكة من طرف المضخات). ويعين الإعتبار الطاقات المستهاكة من طرف المضخات). ويعيز الدّبار بالمعنخات (اختيارها بيطريقات عسابية).

4. صماية الأنابيب من ظاهرة المطرقة:

أ _ في حالتَيْ الوقوف المفاجِئ و إِزْمِلا ق المفتخات ب ـ كيفدية إغلاق الناظم

5- حما ماية الذنابيب من التا كلد

ع- حساب الخرّانات المائية (الجم والموقع). ٤- القرّاح جهاز صراقبة اوُنوماتيكية،

قسم فبق الرضعوط في شبكة التوزيع (دراسة شبكة التوزيع خارج من نطاقنا ولكن أردنا تحقيقها دون إعطاء نشجك ...).

Dédicaces

Je dédie ce modeste travail:

- A mes parents.
- A mes frères et sœur.
- _ A tous mes amis (es) et ceux qui m'ont aide'.

A. ZERARA.

Je dédie ce travail:

- A mes parents.
- A mes frères et soeurs.
- A tous mes amis et particulièrement Louardi.
- -A tous ceux qui m'ent aidé et en particulier Missonachi, Lagarde et Saidi.
- Ama femme et mon enfant.
- A la mémoire de mon camarade Brahmia Salim.

M. MAZOUZİ

-REMERCIEMENTS-

Nous tenons à exprimer notre profonde gratitude à tous les professeurs qui ont contribué à notre formation .

Nous remercions Monsieur K. BOUGUERRA (notre promoteur)...

A. ZERARA M. MAZOUZI

ADDUCTION COMPLEMENTAIRE DE LA VILLE DE BOUIRA.

SOMMAIRE :

CHAPITRE I - GENERALITES	
I - Introduction	1
II - Démographie.	2
III - Evaluation des besoins en eau.	
IV - Ressources	3
CHAPITRE II - ADDUCTIONS .	
I - Choix du tracé	7
II - Choix des diamétres économiques.	7 .
III - Caractéristiques des conduites	21
CHAPITRE III - POMPES .	
I - Choix des pompes	. 22
A - Au niveau des forages.	- 22
B - Au niveau des stations de relévement.	. 22
II - Point de fonctionnement des pompes	. 24
CHAPITRE IV - PROTECTION DES CONDUITES	
I - Protéction des conduites contre le coup de bélier	31
A - Protéction des conduites de refoulement .	31
B - Protéction des conduites gravitaires	- 83

CHAPITRE V - RESERVOIRS

		I - Capacité - dimensionnement 90
•	£	II - Automatisation 9
		onolusion
*	/	Supplement 103
*	. /	Planches
#	/	dibliographie

CHAPITRE I - GENERALITES

i) introduction :

1 - Avant-propos:

Comme toutes les villes d'Algerie, Bouira n'a pas échappé à l'explosion démographique: Une progression "galopante" dont la motivation est tout à fait logique... L'éxode rural, pour ne citer qu'un côté de cette augmentation, a trop influé sur ce volet des occupations de l'état.

N'est-il pas dû (éxode rural) à cette décentralisation qui devait bénéficier d'une certaine priorité ?

Pour revenir au fin mot de la question, c'est à dire le probléme d'eau : Une des conséquences de l'extension précitée ; Bouira est l'une de ces villes dont les besoins en eau potable ne sont pas satisfaits . En réponse à cela , en termes de mobilisation de ressources , la S.A.FOR (Société Algerienne des Forages), sur demande des résponsables concernés, a implanté des forages tout autour de la ville . La S.ET.HY.AL (Société des Etudes Hydrauliques d'Alger) s'est occupée de relier ces forages à des réservoirs ; Autrement dit, elle s'est chargée de l'étude de l'adduction complémentaire de la ville de Bouira . Cette étude justement, est le sujet de notre projet de fin d'étude .

2 - Présentation :

Bouira est située à une centaine de kilométres, sur la route nationale N°5 .Les Wilayas limitrophes sont : Alger et Tizi-Ouzou au Nord, M'Sila au Sud; Blida et Médéa à l'Est; Sétif et Béjaia à l'Ouest .

3 - Climat :

une

Située dans sorte de cuvette ; la ville de Bouira présente évidemment un climat spécifique à ce genre de région ; C'est à dire un climat chaud en été , froid et sec en hiver .

II) DEMOGRAPHIQUE :

Au recensement de 1977, la population de Bouira s'évaluait comme suit :

- Population de la Commune : 42482 Habitants
- Population urbaine : 22412 Habitants .

Ceci donne bien un taux d'urbanisation de 52.75% pour la période 1966 - 1977.

- Evaluation de la population future de la ville de Bouira :

On calcule la population future ou l'accroissement de la population de la ville de Bouira à l'aide de la formule suivante :

PN - Population future pour l'horizon considéré.

P. - Population actuelle (c'est à dire en 1977).

7 - Taux d'accroissement démographique (en %).

~ Taux d'accroissement migratoire (en %).

N - Nombre d'années séparant l'horizon considéré et la date du dernier recensement (ou de l'horizon précédent).

Bien entendu, on peut procéder autrement, en utilisant les taux d'urbanisation pour chaque période (vu que notre projet concerne bien la ville de Bouira). Mais la formule ci-dessus donne des résultats beaucoup plus précis.

Calcul:

Données de base : 7 = 3,6 % = 0,036 9 = 1,5 % = 0,0159 = 22412 habitants.

Horizon 1985:

Population: Pg = 33366 habitants.

Horizon 1995:

Population: Pig = 54870 habitants.

Horizon 2005 :

Population: P28 = 90232 habitants.

III) EVALUATION DES BESOINS EN EAU POTABLE :

- Horizon 2005 :

La population à desservir s'élévera à 90232 habitants dont 20000 appartiennent à l'industrie.

Dotation: Qo= 160 l/j/habitant

Toutefois pour éviter tout déficit sur le réseau on supposera :

20 % de pertes sur le réseau.

24 % de majoration saisonnière .

Donc on aura :

Une dotation moyenne de :

160 x 1.44 ~ 230.5 l/j/hab.

Un débit moyen de :

On prendra alors un débit moyens :

Qm = 241 e/s

IV) RESSOURCES :

- 1 Ressources éxistantes :
 - * Puits Oued Dous : 7 L/s
 - * Forage Sidi Ziane: 23 L/s
 - * Forages : F1.tF2 35 L/s
 - * Source Merkalla : 8 L/s
- 2- Ressources complémentaires :
- a) -Caractéristiques des forages :

(Voir tableau ci-joint).

- Débits :

*	Forage	:	F	1:											6	L	/8	

- * Forage : F2:..... 23 L/s
- * Forage : F3:..... 15 L/s
- * Forage : F4:..... 12 L/s
- * Forage : F5:..... 15 L/s
- * Forage Sonatrach: F.S...... 12 L/s
- * Forage : F7:..... 25 L/s
- * Forage : F8:..... 30 L/s
- * Forage : F9:..... 15 L/s
- * Forage : F10:..... 15 L/s

Caractéristiques des forages.

Forage	Abscisse	Υ .	du forage Ø	Statique	dynamique	H	Débit du forage Q _{L/1}
41	609.00	3h2.25	ری ماص	Artésien	,65.00	206.00	6.00
_ل ۍ	612.10	3 ⁶ 30	" 1/2	nctesien	60.00	150.00	23.00
43	612.40	3AA.50	, w . w . w . w . w . w . w . w . w . w	Artégien	,5 ² .00	150.00	16.0°
4 kr	612.95	345.85	12, 2160	,20.00	,60.00		72.00
46	614.40	345.05	x" 1/2"	,27.00	69.00	150.00	15.00
46	614.65	3ª3.05	DEB	IT TA	OP F	AIBL	
رم	611.15	345.20	مار م	13.00		\50.00	26.00
40	606. k0	3k1 . FG	". \k	5. k0	18.00		30.00
49	602.90	340.00	, 310	19.30	25.30	64.50	14.00°
410	60tr.75	341.40	9" 5/00	16.55	30.21	20.00	16.00
4.5	608.65	3*°°.60	12, 110	,s.00	,20.00	30.00	12.00

Ce qui donne une somme de débits de :

$$\sum_{i=1}^{n} Q_i = 241 \ell/s$$

b) Remarque:

En faisant une comparaison entre le débit donné par les forages : $Q_{\rm s} = 241 \, \ell/s$

et le débit moyen demandé :

$$Q_m = 240.72 \approx 241 \text{ L/s}$$
 (Calculé précédemment).

On peut conclure que les besoins seront satisfaits jusqu'à l'horizon 2005. On a même une certaine marge de sécurité en plus des prévisions faites (pertes sur le réseau, majoration saisonnière).

Evidemment, de par les résultats donnés ci-dessus on peut déterminer les dotations pour des horizons intermédiaires, tels : l'horizon 1985 et l'horizon 1995.

Mode de calcul :

$$\frac{Q_{Rj}}{P_{H}} = Q_0 + 0.44Q_0$$

 $\mathcal{Q}_{\mathbf{z}_{\mathcal{J}}}$ - Débit journalier donné par les forages

Avec : Q = 2418/s

Donc Qg sera:

& - Population à l'horizon considéré.

Q. - Dotation journaliére

 $0.44 \, Q_0 \longrightarrow 44\%$ (Pertes sur le réseau + Majoration saisonnière) de la dotation journalière .

Donc :

- Horizon 1985 :

* Population : \mathcal{F}_8 = 33366 Habitants .

* Dotation movenne: $Q_0 = 433 \text{ L/j}$ Habitants.

- Horizon 1995:

* Population: \$\mathbb{R}_8 = 54870 \text{ Habitants}\$

* Dotation moyenne : Q = 263 L/j Habitants

CHAPITRE II - ADDUCTION

I) Choix du tracé :

Dans le choix du tracé, généralement, on veillera à réspécter certaines conditions dont les plus importantes sont les suivantes :

- Choix du tracé le plus court ou le plus direct entre la source et le résérvoir (avec le moins d'ouvrages possibles).
- Eviter les pentes et les contre,-pentes qui peuvent porter préjudice aux conduites (cavitations ...).
- Suivre, suivant les possibilités, les accortements des routes, ceci représente bien une solution économique surtout pour l'achéminement du matériel.
- Eviter les profils horizontaux .

En tenant compte des impératifs indiqués ci-dessus, nous avons fait deux tracés. Cependant un calcul nous a pemis d'opter pour la variante la plus économique c'est à dire la deuxième (voir tracé ci-joint).

Remarque:

- Le choix de certaines de nos adductions a été très limité à cause des données topographiques qui n'étaient pas tellement disponibles.
- La topographie des lieux a aussi influé sur le choix .

II) Choix du diamétre économique :

1 - Choix du type de tuyaux :

Toutes les conduites ont été prises en acier les causes de ce choix sont multiples :

Généralement, on utilise, dans les adductions des conduites en fonte, en acier ou en amiante-ciment. Cependant le choix des tuyaux en acier, qui sont plus économiques que les premiers mais ne le sont pas par rapport aux derniers, s'est imposé vu leur disponibilité sur le marché; de même qu'ils s'adaptent mieux dans les adductions au niveau de la ville (voir notre cas).

Outre ces faits argumentant notre choix, on ajoutera que les conduites en acier quoiqu'elles nécessitent une protéction éfficace contre la corrosion; elles présentent toujours plus d'avantages que d'inconvénients.

2 - Choix de la section économique :

Ce choix est basé sur un calcul téchnico-économique dont les différentes étapes sont exposées ci-dessous :

a) La relation de Bonnin :

$$\Phi = \sqrt{Q}$$

$$\Phi \text{ en [m]}$$

$$Q \text{ en [m3/5]}$$

nous donne une approche au diamétre économique. De cette base on se fixe une série, de trois (3) ou quatre (4) diamétres normalisés, sur laquelle portera notre étude téchnico-économique proprement dite (évaluation du coût de l'énérgie, du coup de la conduite elle-même ...).

Enfin de compte un tableau comparatif nous permettra de fixer notre choix .

b) Calcul:

Nous avons établi un programme de calcul sur la machine TI-59 - Données de base :

(Voir tableau ci-joint).

- Algorithme :

$$V = \frac{4Q}{\pi \phi^{2}}$$

$$R = \frac{IV/\phi}{\sqrt{2}}$$

$$f_{r} = \left(\frac{1.14 - 2 \log \frac{E}{\phi}}{\sqrt{2}}\right)^{-2}$$

$$J_{r} = \frac{f_{r} \cdot V^{2}}{\phi 2g}$$

$$\Delta h_{r} = J_{r} \cdot L$$

$$f_{e} = \left[-2 \log \left(\frac{E/\phi}{3.7} + \frac{2.51}{RVf_{e}}\right)\right]^{-2}$$

$$\lambda_{f}^{+5.3} = \frac{f_{e}}{f_{r}}$$

$$J_{ree} = \lambda_{f}^{5.3} J_{r}$$

DONNÉES DE BASE DE L'ADDUCTION

Thon Con	دائ و	**	w	3 2/3	44,0.5	Hack.
EP-64	0.45	3162	۵.۱۵	۸٥6	120.91	#
EJ- 640	0.025	1867	/ /	/ " /	192.50	#.
Er. B.k	0.006	1328	/ 1/	/ "/	68.50	*
RH-R2	0.059	224	/ " !	/ "/	57.50	3.00
65. 82	0.012	1232	/ "/	/ " /	100.50	*
ca-8,(E10)	0.015	2340	/"/	/ "/	23.200	4
a-(E10)-87	0.030	3000	/ "/	/ 4/	46.100	3.00
10-8/42.51.	2030	224	/ "/	11/	42.00	*
B1(85.5)-814	0.053	2030	/ "/	11/	9.50	*
an RA	0.433	4305	/"/	/ 4/	1.8.50	*
FH. RA	0.012	230	/ 11/	/ 11/	62.30	*
62-3	0.023	448	111	1 11/	98.80	*
43-5	0.015	450	111	1 11/	Partie 80	*
3. RA	0.038	1450	/"/	11/	23.80	*
RARM	0.050	3400	/ " /	/ 11/	77.30	3.00

· Abréelle = Oblineaire = Jréelle.L

Dhaingulière = c. Ahlineaire.

OH totale = Ohline aire + Ohsingulière.

HMT = Hg + AHtotale.

 $P = \frac{9.8.Q \text{ Him}T}{\text{M}^*}$

E = P.24 x 365

Prix Energie = E.e

 $A_1 = \frac{\dot{c}}{(\dot{c}+1)^{\frac{m}{2}}} + \dot{c}$

Prix conduite = P.U. .L

A = A . Prix Conduite

Prix total = Prix Energies+ A

Indications sur les éléments de l'algorithme :

√ -Vitesse de l'eau dans la conduite.

R -Nombre de Reynolds.

- Coefficient de frottement en régime turbulent rugueux donné par la formule de Nikuradsé.

Ε - Rugosité absolue des conduites.
 (voir tableau ci-joint).

Jr - Gradient de la perte de charge pour le régime rugueux.

Δhr - Perte de charge Linéaire pour le régime rugueux.

- Coefficient de frottement en régime de transition donné par la formule de Colebrook.

donné par la théorie de la longueur fluido-dynamique.

Rugosité absolue des conduites

	Matériau	Tuyau nouveau E mm	Tuyau ancier E mm
Adduction	Acier ou fonte.	0.1 à 0.4	1.0 à 1.5
Résedu	Acier ou fonte.	0.4 a 1.0	1.5 à 3.0
Adduction	Amiante- ciment.	0.03 à 0.1	0.1 à 0.4
Résedu	Amiante- Ciment	0.1 à 0.4	0.4 à 1.0
Adduction	P.V.C.	0.0 à 0.03	0.03 a 0.1
Reseau	P. V. C .	0.03 a 0.1	0.1à0.4
Adduction	Béton-armé	0.03 à 0.1	0.1 à 0.4
Réseau	Béton-armé	*	*

Ah réelle - perte de charge linéaire.

Ah sing- perte de charge locale.

Ahsing = c. Ah lin.

C - Coefficient de la perte de charge singulière éstimé à 15 %.

△Htatal-perte de charge totale

Hmr - hauteur manométrique totale (réfoulement)

P - Puissance absorbée

E - Energie annuelle

e _ Tarif de l'énergie

Calcul de "e" pour l'année 1982 (d'après la tarification donnée par la Sonélgaz).

Relation de calcul:

a - Redevance fixe
 c.Pc - Puissance mise à disposition
 d.Pa - Puissance absorbée.

Avec :

$$c.P_{c}+d.P_{q}$$
 - Terme de puissance.
 $\mathcal{E}e_{k}.n_{k}$ - Consommation éffective d'énérgie $(\frac{\mathcal{D}.A.}{\mathsf{Kwh}})$

Pour ce qui est du terme "ex", on a trois tarifs au cours de la journée.

Heures de pointes:
$$17h-21h$$
; $e_{R}=0.47350.A./kwR$; $n_{R}=\frac{4}{24}=0.167$

Heures pleines:
$$\begin{cases} 6h - 17h ; & b \\ 21h - 22h30; & e_{h_2} = 0.0981 \text{ D.A./kwh}; & m_{h_2} = \frac{12.5}{24} = 0.521 \end{cases}$$

Heures creuses : 22h 30-6h;
$$e_{h_3} = 0.0248 \, D.A./kwh; n_{h_3} = \frac{7.5}{24} = 0.312$$

Donc:
$$\sum e_k n_k = e_{k_1} \cdot n_{k_1} + e_{k_2} \cdot n_{k_2} + e_{k_3} \cdot n_{k_3} = 0.1379 D.A./KWR$$

Résultat de calcul pour " e "

e~ 0.19 D.A./KWK.

L-Taux d'intérêt éstimé à 80 %

P.U-Prix unitaire de la conduite (en DA)

P.U. représente le prix de revient au mêtre linéaire de la conduite (voir tableau récapitulatif ci-joint).

A₁ - Annuité d'amortissement de "1 DA " pour une durée de "m" années, avec un taux d'intérêt "i"

Avec n = 30 ans

BORDEREAU DESPRIX DES CONDUITES EN

ACIER Lot adduction

	 	1		·	T	
DIA DE	KUKA S.A.	SOUDURE.P.	A Sept P. A.	20° 3.F.	ARRIGIAN!	Party S. P.
100	84.44	1.70	50.00	4.00	7.17	147.31
'vo	104.39	2.61	60.00	8.00	9.93	184.93
000	137.59	4.32	65.00	10.00	12.65	229.56
250	162.32	5.75	67.00	16.00	16.15	267.22
30°	216.63	7.30	70.00	20.00	19.14	333.07
45°O	301.11	9.26	72.00	30.00	25.23	437.60
	345.17	11.27	75.00	4 0.00	29.00	500.44
40 ⁰	432.05	17.22	85.00	60.00	34.18	628.45

Programme : - Partition (420 0P17)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Le programme précédent Calcule le diamètre économique ainsi que les caractéristiques des Conduites:

1) Calcul diametre économique:

Leintroductions:

```
L -> 570 00

$\phi \constraint \sigma \constraint \sigma \constraint \constraint \constraint \sigma \constraint \constraint \sigma \constraint \sigma \constraint \constraint \sigma \constraint \cons
```

Les résultats:

a) Appuyer sur: - A

```
RCL 12 \Rightarrow U (m/d)

RCL 13 \Rightarrow R

RCL 14 \Rightarrow fr

RCL 16 \Rightarrow Jr

RCL 18 \Rightarrow fr

RCL 18 \Rightarrow fr

RCL 19 \Rightarrow fr

RCL 20 \Rightarrow Jriolle

RCL 21 \Rightarrow Ah sing. (m)

RCL 22 \Rightarrow Ah sing. (m)

RCL 23 \Rightarrow AH (m)

RCL 24 \Rightarrow HMT (m)
```

Avec Hmr et Q; du Catalogue (Courbe QIH) on trouve le rendement 7.

6) Imtroduire:

Appuyer sur: - B

```
RCL 25 => P (k.w)

RCL 26 => £ (KWh/an)

RCL 27 => Prix En. (D.A)

RCL 28 => A. (D.A.)

RCL 29 => Prix Cond.

RCL 30 => Prix annuel (frais d'exploitation).

RCL 31 => Prix fotal Cond.
```

Achaquefois en introlluit Qi_sto 01 et on procede de la même façon pour remplir les tableaux suivants (Annexe).

2) Calcul des Caractéristiques des Conduites, AH= f(Qi)
a) Introductions:

```
∠ -> $7000

$ -> $7000

$ : _> $7000

£ _> $7000

$ >> $7000

Precision>3€ $t
```

6) Résultats:

Appuyersur: - A

```
RcL 12 \Rightarrow V (m/s)

RcL 13 \Rightarrow R

RcL 14 \Rightarrow \delta^{2}

RcL 16 \Rightarrow J^{2}

RcL 18 \Rightarrow \delta t

RcL 18 \Rightarrow \delta t

RcL 19 \Rightarrow \delta t

RcL 20 \Rightarrow J_{1}cclle

RcL 21 \Rightarrow \Delta h \ lin. \ (m)

RcL 22 \Rightarrow \Delta h \ sing. \ (m)

RcL 23 \Rightarrow \Delta H \ (m)
```

Pour chaque valeur Q: - 5TO 02 et emprocéde de la même manière pour remplir les tableaux suivants (annexe)

*	Choix	de	la	section	économique	pour	les	adductions	gravitaires	_:
_					_			apartir		

Dans ce cas-là, le choix se fait de la caractéristique de la conduite $\left[\Delta H_i - f(Q_i)\right]$.C'est à dire qu'on cherchera à minimiser la perte de charge de façon à avoir la différence de côtes, entre le départ et l'arrivée de l'adduction, supérieure ou au moins égale à la perte de charge (\Box

Tableau: Choix du diamètre économique

pour les adductions gravitaires

Brl	F.SZ)_	R4		pour les adductions gravitaires											
D	V [m/s]	IR	Fr	Jr	Shr	Ft	$\lambda_{\mathcal{F}}^{\mathfrak{s}.\mathfrak{z}}$	Jreelle		Dhaing	ΔН	Péronom.			
250			0.022067	0.005260	10.65 74 \$3	0.0 22869	A.036335	N _H I	[m]	[m]	[[] 85	[mm]			
300															
300										THE RESIDENCE OF THE PARTY OF T	STATE NAMED OF THE OWNER, STATE OF THE OWNER, THE OWNER	-			
350	0.55	122808	0.020269	0.000 897	1.820123	0.021617	۸۰ ⁰⁶⁶⁴⁰⁵	0.000956	1.94 11.70	0. 2911 75	2.232345				

RI	7- F	71	¥		.90					¥		
D [mm]	V [m/s]	R	F _r	Jr	Ohr	Fé	λ _σ ^{5.3}	Treelle	Ahlin.	Oh sing.	Δ <i>H</i>	Permon [mm]
400	1.06	H23352	0.019616	0.002003	12.065469	0.020338	A.036805	0.002906			CALLED THE PROPERTY OF THE PERSON NAMED IN	NAME AND ADDRESS OF THE OWNER, WHEN
450	0.84	, 3 ⁴ 6313	0.013065	0.001512	6.407663	0.019934	1.045 55H		197	,	4.824 ⁷¹⁹	

III Caractéristiques des conduites :

La caractéristique d'une conduite est la parabole : $\triangle H := \{(Q_i^2), \text{ qui représente les variations de la perte de charge totale en fonction du débit . Ainsi donc, il faut passer par un calcul de perte de charge pour pouvoir tracer ces courbes caractéristiques .$

Calcul:

On a utilisé le même programme que celui qui a été donné pour le calcul des diamétres économiques. Automatiquement l'algorithme sera en partie, celui des diamétres économiques. Il se termine à la relation qui calcule la perte de charge totale.

- Données de bases : (se référer au chapitre adduction: diamétres économiques).
- Les résultats de calculs sont donnés dans les tableaux suivants (annexe)

CHAPITRE III - LES POMPES

I) Choix des pompes :

A - Au niveau des forages :

a) Choix du genre de pompes :

On a équipé les forages de groupes éléctro-pompes immergés (deux pour chaque forage : une en marche, la seconde de secours).

On a choisi ce genre de pompesà cause de leur facilité ou commodité d'installation, leur entretien très simple. D'autant plus, leur rendement est élevé. De*même elles sont simplement abritées vu qu'elles sont plongées directement dans les forages.

b) Choix du type de pompes :

Le choix du type est fonction du débit à refouler (Q) et de la hauteur d'élevation (HMT).

Type de pompe choisi pour forage F.7:

- Caractéristiques de refoulement : Q = 25 l/5 = 90 m³/R Hm7 = 200.56 m

Du catalogue Jeumont - Schneider pour les pompes immergées, nous déterminons la pompe répondant aux caractéristiques ci-dessus.

De la même façon on a choisi les pompes pour les autres forages .

B .- Au niveau des stations de relévement :

Il est à noter; qu'on a prévu une station de pompage au niveau de chaque bâche de reprise. Cette derniére (bâche) a été dimensionnée pour une heure de pompage (voir détails sur la planche N° 5).

a) Choix du genre de pompe :

Pour le relévement des débits des bâches de reprise aux résérvoirs on a prévu pour chaque station une paire de pompes à axe horizontal (une en marche, la deuxième de secours).

Tableau récapitulatif pour Le choix du type de pompesimmergées

40 PACE	17 Ponge	100 S S 2 4 S S 2 4 S S 2 4 S S 2 4 S S 2 4 S S 2 4 S S 2 4 S S S 2 4 S S S S	REN DERRENT	or L'and	The state of the s	was sa (rag)	15 40 18 18 18 18 18 18 18 18 18 18 18 18 18	DE NISONA(")	Printers
61	0030 47	16.4	66.0	_{1,6} 50	39	139	2900	8	2.150
F2	12100R40		46.0	1.932	74	238	/"/	λl	2-430
63	1205523	21.9	45.8	17,12	45	200	/ " /	107	2.210
FH	12055R20	NW-6	42.3	1.827	32	1614	/ " /	/"/	2.320
F6	12055 R50	36.5	45.8	2.122	44	280	/ "/	/"/	2.670
6.65.	150 22 KM	29.0	42.8	1932	61	238	/ 0 /	/ " /	2.430
¢7	12100 RM		45.5	3.000	101	625	/ " /	/"/	3.500
F8	12140 RZe	(72.0	1929	45	228	/ " /	/ " /	2.430
49	12055 220		₄ 5.8	1.821	32	164	/ " /	/"/	2.320

Pour F10 (voir planche equipement du forage F10).

b) Choix du type de pompe :

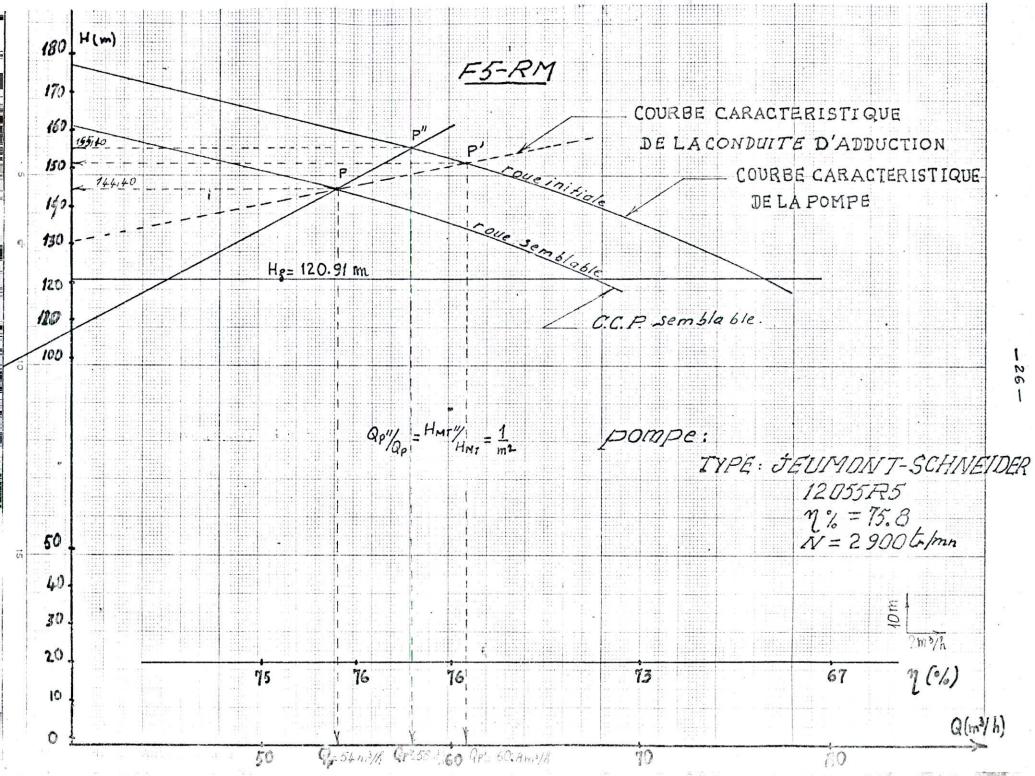
De la même façon que pour les pompes immergées; du Catalogue Jeumont - Schneider pour les pompes à axe horizontal, en fonction des caractéristiques de refoulement, on détermine le type de pompe répondant à notre situation.

Tableau des résultats :

1				y	-
STATION	TYPE DE POMPE	VITESSE DE ROTATION N[t-/min]	RENDEMENT	TEMPERATURE MAXIMALE SANS REFROIDISSEUR	TEMPERATIONE MAXIMALE AVEC REFROIDISSEUR £° [-°]
Br (F10)	80 NM2	2 <i>95</i> 0	70.5	105	150ā 140
R4	150NM2	1450	75-5	-"-	-11-
RA	100 NM3	2950	74.2	-"-	

II) Point de fonctionnement :

Le point de fonctionnement de la pompe est donné par l'interséction de la courbe caractéristique de la conduite de refoulement $(Q, \Delta H)$ et celle de la pompe (Q, H).


Par ailleurs, il éxiste une deuxième méthode graphique pour la détermination du point de fonctionnement (voir graphe, donné à la fin de ce chapitre, pour la détermination du point de fonctionnement pour le branchement en parallèle des pompes).

Remarques :

- Les points de la courbe caractéristique de la conduite de refoulement ont été calculés précédemment (à la fin du chapitre II).
- La courbe caractéristique de la pompe est donnée par le Catalogue du Constructeur (Jeumont Schneider pour notre cas).

Détermination du point de fonctionnement de la pompe installée au forage F 5 :

Sur le graphe ci-joint on remarque que le point de fonctionnement donne un débit nettement supérieur au débit voulu. Ce cas-là entraine bien des conséquences défavorables à la conduite (marche en cavitation ...).

Donc pour éviter ceci, bien entendu si le fournisseur n'est pas en mesure de répondre à notre commande, on optera pour l'une des trois solutions suivantes :

1- On réduira (\mathbb{Q}_{ρ}') en plaçant un robinet vanne sur la conduite de refoulement. L'action essentielle dans cette solution se traduit, au moment de la diminution de la section de passage de l'eau, par un serrage du robinet-vanne ; ce qui crée une perte de charge singulière.

Ceci s'explique par :

Avec :

Done:

YAH=AR sing.vanne

✓ - Coefficient de la perte de cherge
 Singulière de la vanne.

AQ - Diminution du débit provoquée par A sing.vanne

2- On accèpte le débit (Q_{ρ}') donné par le point de fonctionnement à la condition de diminuer le temps de pompage.

En guise d'explication à cette deuxième solution, on a fait un calcul qui donne la diminution du temps de pompage (voir tableau ci-joint).

3- Dans cette solution on rogne la roue de la pompe. Donc on aura une caractéristique (q,h) différente de la première. C'est ce qu'on appelle la courbe de la roue rognée.

Il est à noter que cette solution n'est valable que si le rognage n'est pas élevé (inférieur à 20 %)

Remarque :

Le rognage n'est pas réalisable pour les pompes immergées.

Cependant quoique ces trois solutions pallient les conséquences défavorables dont il a été question auparavant ; elles présentent aussi des inconvénients. Nous en citons quelques uns :

DIMINUTION DUTEMPS DE POMPAGE (& = 0; ())

Pache bere	Stand (who)	\$ Q (m)	Se Carlo	HRY EUR REGIS	Or (2)(8)	HATE	ON- HALLA	Drong (2)
٤N	. ₁₀ 0	0.006	518.4	۵۲.06	36.50	106.50	24.44	44
62	200	0.023	1987.2	89.26	83.00	94.00	4.74	24
43	150	0.015	1296.0	83.15	64.0	88.00	13.85	20
¢W .	160	0.012	1036.8	63.41	55.6	6k.00	0.59	19
FS	150	0.045	1296.0	144.40	60.8	153.00	8.60	21
¢.3.	150	0.012	1036.8	106.43	65.8	V/H.00	4.54	16
£7	200	0.025	2160.0	200.56	43.0	206.00	5.44	19
68	200	0.030	2592.0	43.46	140.0	44.50	1.04	19
49	150	0.015	1296.0	40.64	31.8	53.50	12.86	18
£10	150	0.035	1296.0	32.70	56.0	32.80	0.10	23
Br(ElO)	200	0.030	2592.0	68.64	138.5	80.20	11.56	10
D.H	30 ⁰	0.059	5097.6	61.17	284.0	63.80	2.63	18
RA.	250	0.050	4320.0	99.64	216.0	105.00	5.33	20
		*	2			ł •		
		8				,		
4								

- Vannage:

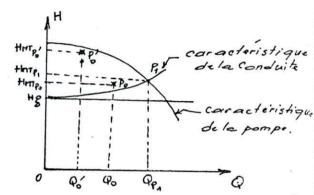
* Gaspillage d'énérgie

Energie = $P_x \ell_x 365$, t - temps de pompage en heure.

Avec:
$$P = \frac{9.8 \times Q \times H_{MT}}{\gamma}$$

HMT = HMTo + Dh sing. vanne

Il en résulte donc un gaspillage d'énérgie avec l'augmentation de la puissance

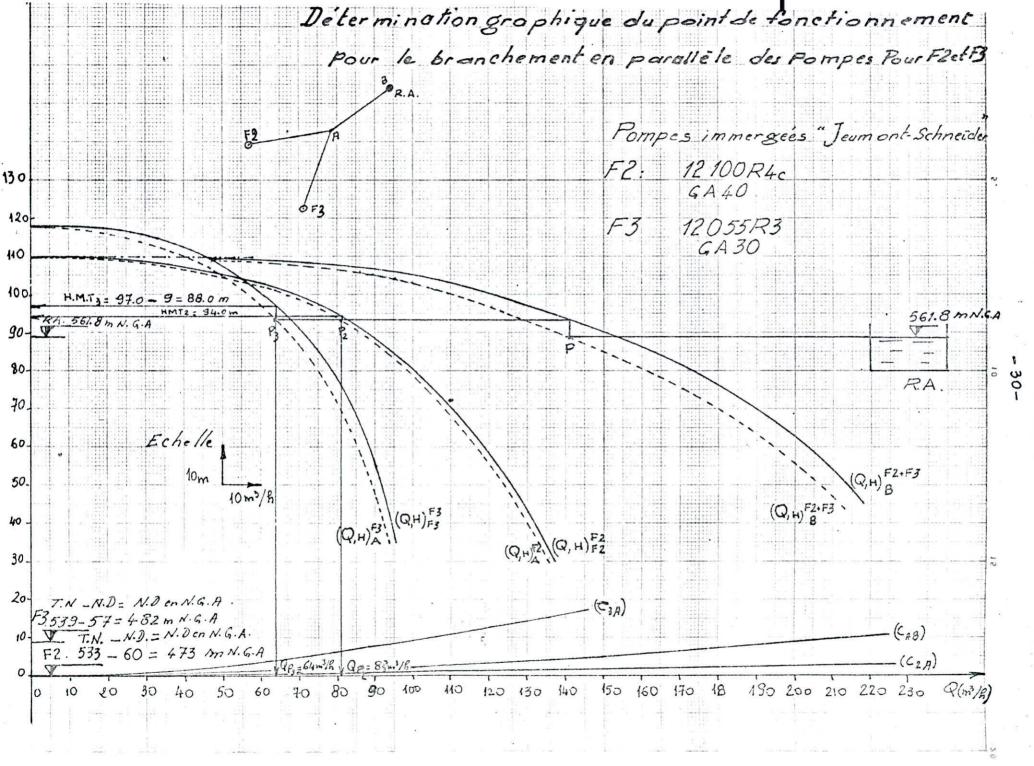

Energie gaspillée = $\frac{\Delta k sing. vanne * Q. 9.8 * t}{\gamma}$

* Sur le plan mécanique, la pompe devient bruyante par suite des chocs se produisant à la sortie de la roue.

- Diminution du temps de pompage :

- * Gaspillage d'énérgie si:
- HMTP, > HMTP.

à la hauteur (Harp;) voulue (2é cas sur la figure ci-contre)



- Rognage:

Cette solution n'est pas toujours possible.

Conclusion:

De par les inconvénients cités ci-dessus, il est préférable toujours de solliciter auprés du fournisseur une commande plus adéquate.

CHAPITRE IV - PROTECTION DES CONDUITES -

I) Protection des conduites contre le coup de bélier :

Le coup de bélier est un phénomène oxillatoire. Il se traduit dans sa forme la plus dangereuse par des dépressions et des surpressions importantes qui entrainent souvent des ruptures au niveau des canalisations.

- 1- Causes du Coup de bélier :
- Arrêt brusque du groupe éléctro-pompe par suite d'une disjonction inopinée.
 - -Démarrage du groupe.
- Fermeture ou ouverture instantanée (rapide ou lente) d'une vanne de sectionnement en bout de la conduite.
 - 2- Moyens à diminuer les effets du Coup de bélier :

Le phénomène du Coup de bélier est trés complexe, les moyens déstinés à l'éviter sont nombreux. Bien entendu, il n'existe pas de solution unique pour tous les cas ; au contraire il faudra étudier avec soin chaque cas particulier. A titre indicatif, nous citons quelques uns de ces moyens :

- Cheminée d'équilibre.
- Soupage de décharge.
- Réservoir d'air.
- Volant d'inertie.

Il est à noter que, dans notre cas, nous avons utilisé des réservoirs d'air.

A- Protection des conduites de refoulement :

- a) Protection à l'arrêt brusque :
 - * Calcul préliminaire du Coup de bélier :
- . Section droite de la conduite :

$$S_0 = \frac{\pi \phi^2}{4} \dots [m^2]$$
 ; ϕ -diamètre de la conduite ... $[m]$

• Vitesse initale de l'eau dans la conduite :

$$V_0 = \frac{Q_0}{S_0} \cdots [m/s]$$
 ; Q_0 -débit initialé $\cdots [m^3/s]$

¿ Célérité de l'onde de propagation de l'eau :

$$\frac{1}{a^2} = S\left(\frac{1}{\kappa} + \frac{\phi}{eE}\right)$$

$$a = \sqrt{\frac{\kappa/g}{1 + \frac{\kappa\phi}{eE}}} \dots [m/s]$$

Avec :

K - module d'élasticité volumétrique de l'eau ... [N/m²]

E - module d'élasticité de l'acier

S- Masse volumique de l'eau ... [Rg/m3]

e - Epaisseur de la paroi de la conduite ... [m]

Remarque:

Pour éviter un aplatissement de la conduite en acier en cas d'une forte dépression on prend :

e = \$\frac{\phi}{40}\$ (on priend \$\phi[m]\$ d'ou resultat de e [mm])

. Temps de retour de l'onde de propagation de l'eau :

$$\theta = \frac{2L}{a} \dots LsJ$$

. Le maximum de Coup de bélier :

Pression ou dépression dans la conduite :

Cas de surpression :

Ho-Hauteur géométrique de refoulement...[m]

Cas de dépression :

L'étude du phénomène du Coup de bélier montre bien que les pertes de charge amortissent les dépressions et les surpressions. A cet égard pour amortir les oxillations et réduire le volume du réservoir d'air, il serait préférable de disposer au droit de ce dernier, sur la conduite de refoulement un organe d'étranglement.

Cet organe peut être soit :

- Un diaphragme.
- Une tuyère.
- Un clapet à battant percé.

Cependant, il nous importe de signaler, que nous avons utilisé dans notre cas une tuyère de diamètre (d). Par ailleurs, le choix de ce paramètre se fait de façon à éviter les surpressions et les dépréssions.

* Calcul du Coup de bélier :

Le meilleur moyen de résoudre les problèmes du Coup de bélier

(même les plus complexes) est la méthode graphique de Bergeron.

Cependant, il est notoire que cette méthode graphique, quoiqu'elle est la plus recommandée; donne des résultats approximatifs; vu qu'elle présente dans certaines de ses étapes des cas de tâtonnements. C'est la raison pour laquelle nous avons traduit analytiquement, cette méthode ou tout simplement les épures de Bergeron.

Par conséquent, en termes de comparaison, il devient nécessaire d'ajouter, que cette méthode ou ce calcul analytique ne donnera sa précision remarquable que s'il est effectué sur ordinateurs ou sur machine programmable (avec nombre de mémoires et nombre de pas suffisants).

A notre niveau nous avons utilisé la machine programmable T.I.59; mais aprés avoir donné, bien sûr, une forme analytique à cette méthode graphique.

Le passage au calcul en question se traduit comme suit :

On choisit d"

de façon à avoir :

$$R = \frac{V_1}{V_4} = \frac{\phi^2}{\phi'^2} = \left(\frac{\phi}{0.92d}\right)^2$$

15 & K & 20

R'= 1.70K.

On calcule :

$$m = \frac{d'}{D^2} = \frac{(0.92d)^2}{D^2}$$

et $m' = \frac{d^2}{2D^2}$

ou a d'est le diamètre de l'orifice de la tuyere et d'son diamètre contracte.

0.92 est le coef. de Contract.

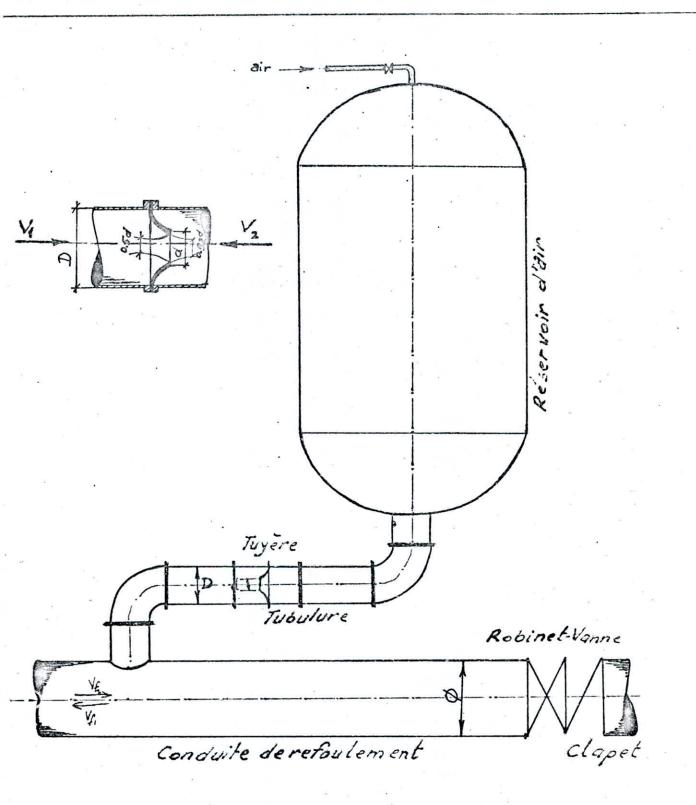
a la sortie de la luyere

* Vp est la vitese de l'eau dens la Conduite de ne foulement.

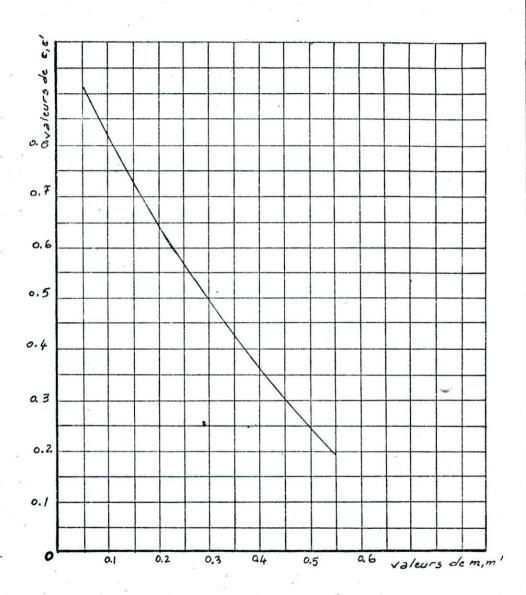
* & est le diamètre de la Conduite de refoulement.

* Dest le diamètre de la tubulure de branchement

" Va est la vitesse de l'eau à l'éntrec de la tuy ère.


à l'ui de de (m) et de (m), on lit sur le graphe du coefficient de P.D.C dans la tuyère (due, à l'étranglement), les valeurs des coefficients C et C'(soef. des P.D.C. à l'entreé ou à la sortie de la tuyère)

* En cas de monteé de l'eau dans la conduite,


Dha = EVi2 [m] avec V4 = KVf (Vf vitesse de l'eau dans la conduite)

* En cas de descente de l'eau dans la conduite:

La perte de Charge due ouvefoulement augmentée des pertes de charge singulières est:

Schema d'un reservoir d'air

Coëfficient de p.d.c. dans une tuyere

où Cest le coef. de p.D.c singulia.
c=0,75

fest le coef. de frot. **

de Cole brook

On prend for = (1.14-2 log =)-2

Comme première approximation au cuf. f

où fr est le cost de frot :

de Nikura d'se pour
régione turbulent-rugueux

La pression dans la Conduite anscp.D.c sera:

- Pour la montée :

Z-Oh,

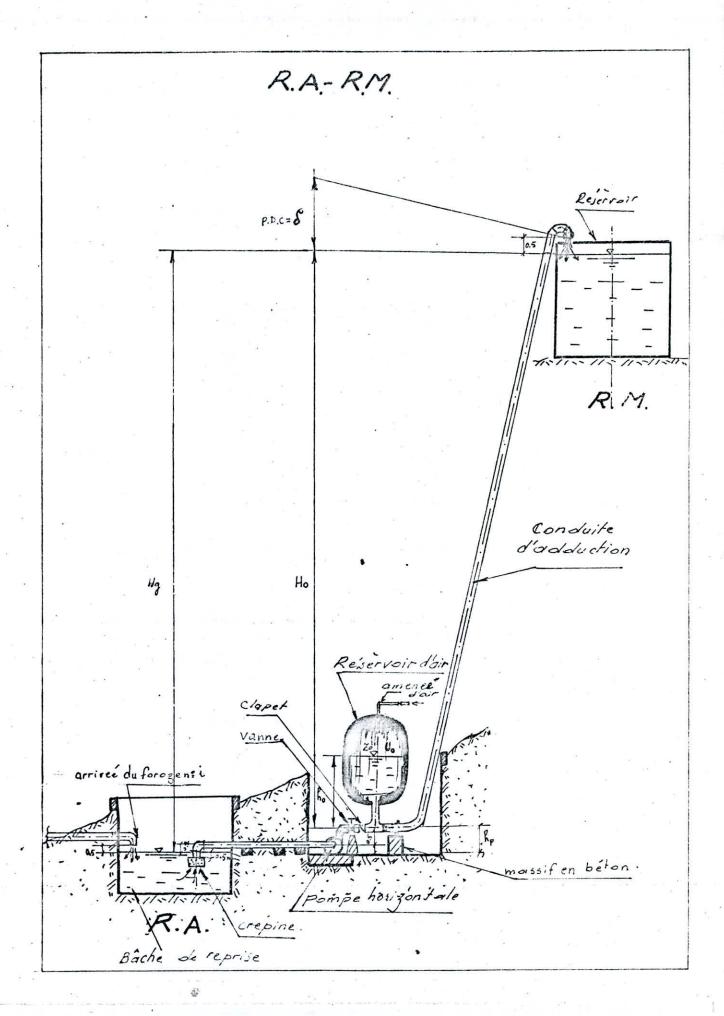
- Pour la descente

2+ sh2

où Z est la nouvelle pression dans la Conduite si la détente du flui de est conforme à la loi de poisson:

$$Z = \frac{(E_0 - h_j \sigma_0) \cdot u_0^{1,4}}{U_{i+1}^{1,4}}$$

où ho est la houteur d'equ dans le réservoir d'air.


oŭ:

Zo = Hor 10 pression absolue dans le nésenvoir d'air, So = (1+c). L = 1/62 p.D.c dues au refoulement en marche normale

Volume d'air dans le réservoir (en morche normale)

Uin= Li + AUin

Volume d'air dans le néservoir à l'instanté

 $\Delta U_{i+1} = \frac{\vee_0 + \vee_f}{2}. S_0.0$

ovest l'augmentation du volume d'air quand l'eau monte.

ou sena la diminution du volume d'air quand l'eau descend dans la Conduite

Vo. Vitesse intiale en marchenormale

Vf: vitesse de netour vers la pompe.

N.B: Pour l'étape suivante V, sera Vo et on Cherche VI.

La pression dans la conduite sans p.D.C. sera:

Montee: P.= Z- Bhi-6

Descente:P= 2 + bhz+ d

betermination de P. graphiquement:

 $P_4' = BC = ABtgd$ arec $tgd = \frac{q}{gso} = \frac{P_4'}{qso}$ $\Delta Q = so(Vo - V_6) = AB$

done P= 50 (Vo-Vg). a g 50

20-Pi Pa

Pa=70-a(vo-vg) ...(2)

Des egalités (1) et (2) ona:

70- a (Vo-VI) = 2- sha-8

à la monter de l'eau.

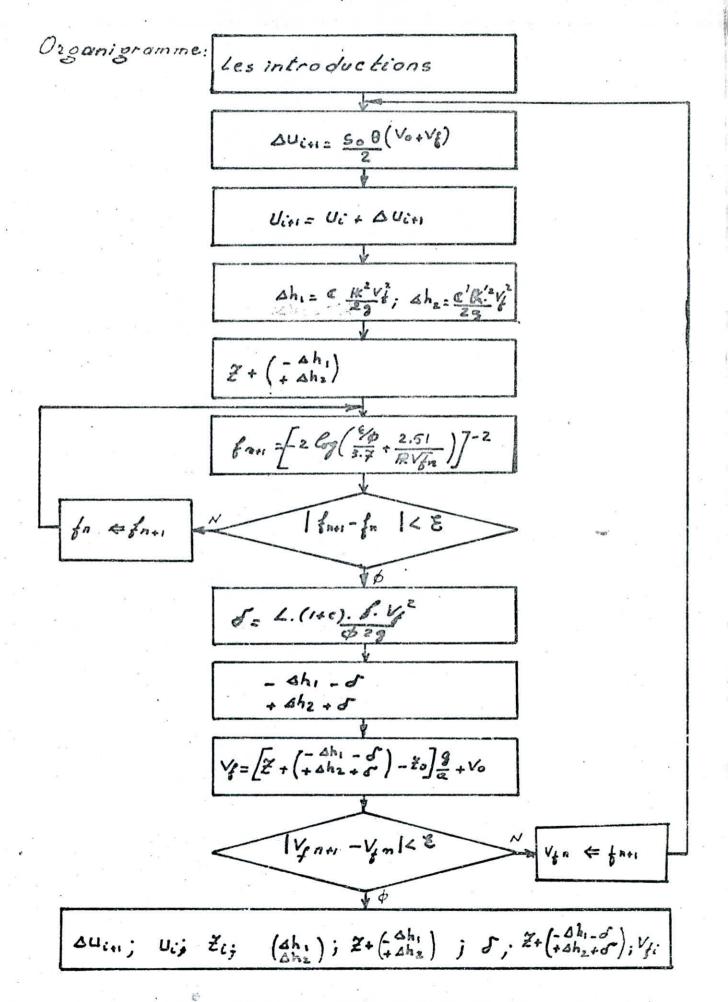
De la même façon ona:

$$\frac{2}{\sqrt{3}} \left(V_0 - V_{\xi} \right) = \frac{\left(\frac{2}{2} o - h_0 + \delta_0 \right) \cdot U_0^{\frac{1}{2}} + \left\{ -\frac{C R^2 V_{\xi}^2}{2 g^2} - \left(q + c \right) \cdot L \left[-2 \log \left(\frac{c}{\sqrt{3}} + \frac{2.51}{V_{\xi} \phi V_{\xi}} \right) \right] \frac{V_{\xi}^2}{2 g^2} \right\} \\
+ \frac{C R^2 V_{\xi}^2}{2 g^2} + \left(4 + c \right) \cdot L \left[-2 \log \left(\frac{c}{\sqrt{3}} + \frac{2.51}{V_{\xi} \phi V_{\xi}} \right) \right] \frac{V_{\xi}^2}{2 g^2} \right) \\
+ \frac{C R^2 V_{\xi}^2}{2 g^2} + \left(4 + c \right) \cdot L \left[-2 \log \left(\frac{c}{\sqrt{3}} + \frac{2.51}{V_{\xi} \phi V_{\xi}} \right) \right] \frac{V_{\xi}^2}{2 g^2} \right)$$

d'où on lire Vy par la méthode des approximations successives et la forme Vy = F(Vy), on aura:

Pour trouver Vi: :

Sur la figurer on voit que Vi: - Vie DB


02 DB= AB = Vo.Vf.

done Vi = Vf- (vo-Vf) = 24-Vo

Puis on refait la même Chose en Considérant que Vo = Vic et on cherche Vi (point E) etc...

Pour rendre plus pratique cette méthode on a fait un programme qui calcule:

VI, auin, aui, Z, (VI), (AhI), (Z-AhI), S, (Z-AhI-S) et VI;

Programme: - Partition (527 OP17)

3	7 4711 (5	27 OP 17)			Ta .
2nd 16/ 2nd stfla RCL 1:(xxcl 2nd x+4) STO 4570		RCL 1: 2 X . 9 2 2 = 507 Rcl 1: Rcl 5 = 2 . 2 = 508 Rcl 9 + 10	14=2 1/20 270 270 270 270 270 270 270 270 270 2	26 + cl 2 \times + cl 2 \times 3 \times 4 \times cl 2 \times 2 \ti	RCL 25 570 28 + RCL 20 = 570 29 RCL 3 RCL 8=
3 = 570 570 570 570 570 570 570 570	Vx2xc8=509c4xc4+908=500c2+c1=2+922=503c2+c1=2x2=50	: el 15 = 2 : 2 = 578 RC19 + 10 = 500 RC2 : e2 = 60 × 2/-+	RCL RCL RCL RCL RCL 19.6 = 575 20.51 ÷ cl RCL RCL RCL RCL RCL RCL RCL RCL	2 1/- 2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	2 1 1 8 8 1 2 x (R4 + LL 3) = 50 3 + CL 3 = 50 3 + CL 3 = 50
	2 = 5 TO 1 4	*/- † †	RcL 2 X RcL	# RCL 23	570 34 Y*

1 4= 550	1 † Rcl 0	22 6g X	Rcl 20 4 Rcl 39	RCL 31
35 Vx. X (RcL 29 + RcL	× RcL 32 ײ ÷ RcL	2 t/- = x ² \/ x 570 43	× 9 · 8 · £cl	570 31 2cl 39 2nd 161 2nd Cos
21) * &c.L 38 y= 1	2 : 1 9 · 6 = 570	2nd /x/ 2nd /x/ ENY 2nd x/t 50M	* RcL 31 = STO 45	37 570 46 2nd 161 2nd tan
4 = 570 3 9 RcL 3 6	2 nd 161 570 2 5	RCL 43 570 41 GTO 570 2nd 161	2nd /x/ 2nd /x/ 2nd xyt	Rel 44 = 5To 47 Rel 13
x RcL 13 x2 ÷ 1	201 32 201 201 X RCL 26	23 X	Rcl 45 570 32 Rcl 33 +/-	X RcL 4 = 5T0 30 R/s
6 X RCL 3 2 2 ² = STO	RcL 26 ÷ Rcl 2 ÷ RcL 41 Vz	RcL 4-2 X Rcl 8 = 570	+ RcL 34 = STO 34 470	RCL 31 570 48 RcL 34 570
570 37 RcL 23 570 41 X	Rel 41 Vz + Rel 22 ÷ 3	2nd 44 2nd 5in + 1- RCL 37	470 B 2nd [6] ÷ 2cl 45 570	49 R/s

```
Les introductions:
 C-> STO 00
 Q >5TO 01
Ø->STO 02
 K->STO 05
 e->5 1006
 L->51008
 d=>5TO $1
E->570 12
 D->5TO 15
S->51016
Ho->57019
Ro->5 TO 21
 E->STO 22
J->57026
E->25t (Precision)
```

Les résultats:

Appuyer sur :- A == L.5=V (Volume d'eau dans la Conduite)

Rcl 03⇒\$,
Rcl 04⇒Vo
Rcl 07⇒α
Rcl 09⇒θ
Rcl 10⇒hmax
Rcl 13⇒K
Rcl 14⇒K'
Rcl 14⇒M'
Rcl 18⇒m'
Rcl 20⇒₹o
Rcl 28⇒65
Rcl 29⇒₹o,60

L.50/ = Uo

Avec met m', du graphe on aura la valeur de ceté.

Introduire alors:

Uo →STO 34 STO 38 C→STO 36

```
Pour remplir le tobleau :
```

```
Appuyer sur:
```

et RCL 3170 On a monteé de l'eow.

```
RCL 33 AU: 11

RCL 34 Vi

RCL 30 Vi (montée de l'ecus)

V2 (descente-11-)

RCL 37 Abra (montée-11-)

RCL 46 X - Abra (montée-11-)

RCL 46 X - Abra (montée-11-)

RCL 44 S

RCL 47 Z - Abra (descente 11)

RCL 44 S

RCL 47 Z - Abra (descente 11)

RCL 44 S

RCL 47 Z - Abra (descente 11)

RCL 44 S

RCL 47 Z - Abra (descente 11)

RCL 44 S

RCL 47 Z - Abra (descente 11)

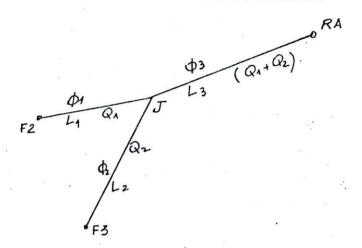
RCL 31 Vg (correspondent à 2P,4P,6P...)

RCL 31 Vg (correspondent à 1R,3R,5R,...)
```

Puis appuyer sur: R/s

Appuyer sur B pour obtenin la ligne suivante (dutableau)

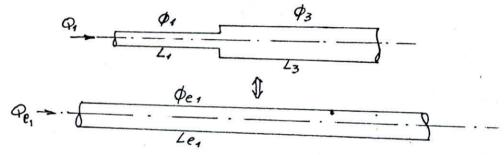
(b) Si RCL 04 <0.
Ou RCL 31 < 0
On a descente delleau. Introduire C'+5T036
Rel 145T013 RCL485T031RCL495T034
Puis faites Changer le programme de la foçon suivante:


GTO 2nd sin LRN 2nd Del + LRN
GTO 2nd Cos LRN + LRN
GTO 2nd tan LRN + LRN

Puis appuyer sur Blet rappeler les mêmes mémoires et ... que dans le cas de @.

Pour étudier une outre varianteil fout mendre le programme comme il était au début de la manière suivante:

GTO 2nd sin LRN 2nd insty_ - LRN
GTO 2nd cos LRN - LRN
GTO 2nd tan LRN - LRN


Etude de la ramification :

Afin de protéger le réseau aux cas les plus défavorables ; il nous parait utile de supposer deux cas .

1er cas: F2 en marche - F3 en arrêt:

Dans ce cas là (de même dans le deuxième d'ailleurs) on aura deux conduites en série .

On fixe un diamétre Φ_{e_1} (à base de Φ_1 et Φ_3 calculés déjà dans le chapitre II); ensuite on cherche la longueur équivalente (L_{e_1}).

Dans cet ordre d'idées toujours, il convient de noter que si on fait l'inverse; c'est à dire qu'on fixe une longueur équivalente pour les deux conduites en série, à partir de laquelle on calculera la séction équivalente; on tombera sans aucun doute (ou du moins dans la plupart des cas) sur un diamétre non normalisé qu'on doit arrondir automatiquement à un diamétre commercial supérieur. Ce qui n'est pas pratique pour le calcul de la protéction.

$$\phi_1 = 0.20 \text{ m}$$
 on prend $\phi_{e_1} = 0.20 \text{ m}$

Détermination de la longueur équivalente :

d'où:
$$L_{e_1} = \frac{\Delta h_{1+} \Delta h_3}{J_{e_1}}$$

En remplaçant Δh_4 et Δh_3 par leur expréssion on aura :

avec:

$$V_{i} = \frac{4Q_{i}}{\pi \phi_{i}^{2}}$$

$$R_{i} = \frac{V_{i}\phi_{i}}{\sqrt{2}}$$

$$f_{i} = \left[-2 \log \left(\frac{E/\phi_{i}}{3.7} + \frac{2.51}{R_{i}V_{f_{i}}^{2}}\right)\right]^{-2}$$

2e cas: F 3 en marche - F2 en arrêt :

On procéde de la même manière que pour le 2èp cas .

On prend: $\phi_{e_2} = 0.15 m$

Ensuite on calcule la longueur équivalente $\angle_{\mathcal{C}_2}$ en utilisant la relation donnée au 1er cas .

Calcul de la longueur équivalente :

Nous avons établi un programme sur la machine 7.1.59, qui calculeles longueurs équivalentes : $\angle e_1$ et $\angle e_2$

Tableau des données de base :

TRONCONS	DEBIT Q [m ³ /5]	RUGOSITE ABSOLUE E (m)	LONGUEUR	DIAMETRE $\phi [m]$	HAUTEUR GEOM. DE REFOULEMENT Ho [m]	HAUTEUR DE L'EAU DANS LE RESER- VOIR D'AIR R. [m]
.F2-J	0.023	4.10	118	0.20	28.0	1.0
 F 3 -J	0.015	-11-	450	0.15	22.0	1.0
 J-RA	0.038	-/-	1450	0.25	#	#

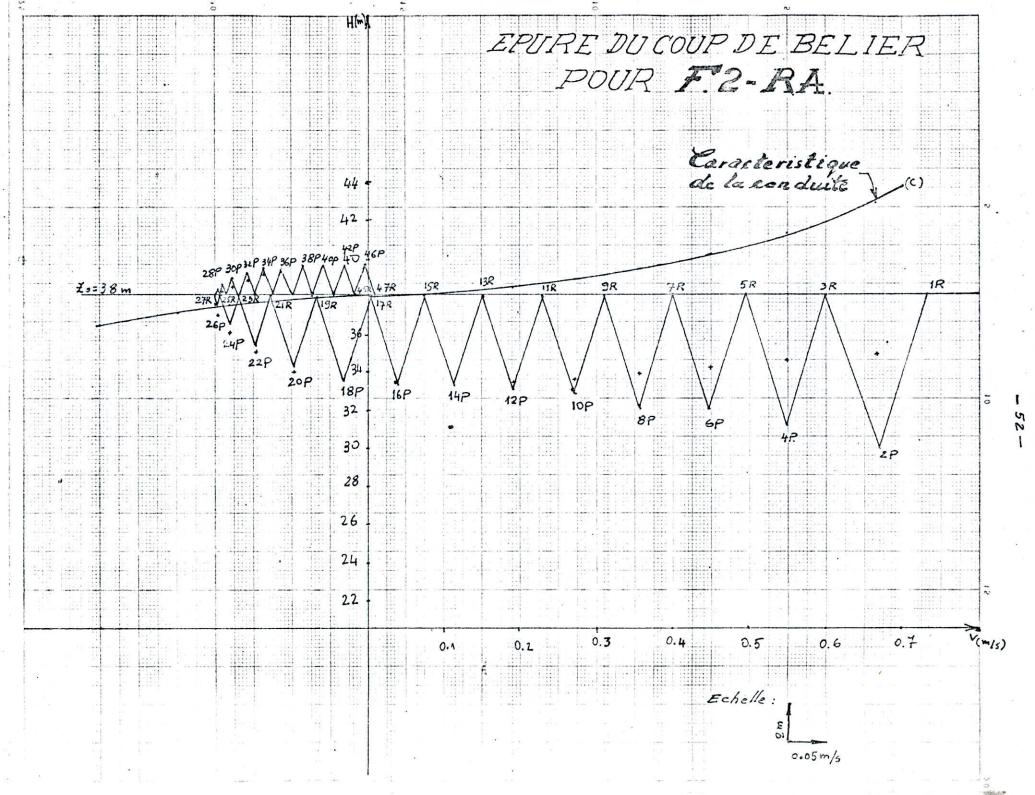
Résultats de calcul:

Le, = 1538.924781 = 1539 m

Lez = 1246. 109071 = 1246 m.

Programme pou	r le	CALCUL	de	:	Leget	Lez.
---------------	------	--------	----	---	-------	------

2nd lsl x RcL x 16 x x x 22	17 5
370 2 16 x	
X . 22	
	RCL SER STO
	ATTICATION OF THE PROPERTY OF
4 5 1 1 1 1 1 2 nd π 2	SOR 4/m
	STO X
2nd T ÷ RcL 9	x (
÷ RcL	RCL RCL 21 +
ReL 18 6	3 21
17 + :	
ReL 18 6 17 ÷ ÷ ReL ReL	STO RCL
= 13 17	22 22
22 RCL RCL 13 17 570 ÷	RCL)
16 RCL INV SER	10 7
x 17 2nd lbl	510
16 RCL INV 88R 2nd Lbl RCL 17 3 RCL	17 1
17 3 RCL	RCL +
17 3 RCL 7 STO	4 RCL
RCL 7 STO	SBR 12
14 = 1 97	570
= 2nd log RCL	1/2 =
STO X 4	
18 2 58R RCL = 570	X STO 24
RCL = STO	RCL RIS
13 X2 X	20
÷ 1/2 RCL .	+
## 1/2 RCL	RCL 1) Introductions
RCL 510 1 =	22 49-570 01
÷ - 570	22 L1 = 570 01 L2 -> 570 02
3 RCL 20	X 43-55003
· O pcl	(Q4 -> STO 04
7 = 8	1 02 570 05
- 2nd last con	1 1977 - 670-06
and log ENV 17	Rel DI = 570 07
x 2nd xyt RCL	12 12 570 08
2 2no x7t RCL 3um 5) D3 -> STO 09
= RCL SER	= De, - 570 10
x2 15 5TO	510 De2 -> 570 44
1/2 STO X	23 6 - 570 13
cro O RCL	RIS 1 57014
0 60 2 2	nd ell c -> sto 12
2nd (1) =	P Precision - 22t
RCL 2nd lil STO	RCL 2) Resultats
Rel sun 21	11 Appugersur:
O RCL Rd	370 J
Vz 15 9	17 -A => Le14>RC12
1/2 X STO	Rel - lez + Reliza
1/2 2/4	- 101 - LEZ


Bonnées de bose pour le calcul du Coup de belier (refoulement)

1804804	0.00	V. (4.)	wer	38/8	7° 4°	gr.	25	ر می و	Now.
69, 84,			1,10 14.10	16	51.9h	0.160	0.100	0.040	2.00
E1. 8w	0.025	1854	/n/.	/"	25.50	Particular and Control of the Control	0.100	0.065	2.00
Er En	0.06	132B	/"/	· /	3.50	0.100	0.060	0.025	٨.٥٥
BW-83	0.059	22*	/"/	/"/	5h.50	0.300	2.20°	0.080	٨.٥٥
10 Rh	0,0	1232	/"/	/"/	80.50	0.160	0.45	0.040	1.80
o or City	015	2340	/"/	/11/	,2.60	0.150	*	**	*
OLEIO)-K	0.030	3000	/"/	/"/	13.0°	0.200	0.,00	0.055	2.00
EDE RA	0.012	~ ³⁰	/11/		2.30.	0.150	0.000	0.0 k ⁰	٨.٥٥
62.2	0.023	1,8	/"/		1	0.000			
43.5	0.015	×50	/"/	/m/	22.30	0.150	•		
1 PA	030	1250	/11/	,	2 ^{Q.3}	0.250			
B. KA,	350	3×00	/11/		44.00	0.250	o.150	0.065	v.°
68-8-1603	0.030	224	/"/	/"/		0.200		0.055	N.00

```
Etude du coup de L'élier pour F2-RA.
1) Introductions:
 E= 4.10 m
 Qo= 0.023 m3/s
 Ø = 0.20 m
 7 = 10-6 m2/8
                                   précision : 8:106
 L = 1539 m
 Ho= 28.0 m
 ho= 1.0 m
 C - 0.15
 e = 0.005 m
 d= 0.05 m
 D = 0.15 m
2) Resultats:
  En appropant sur A on oura:
   So = 0.031416 m2
   Vo = 0.732113 m/s
   a = 1224.206594m/s
   0 = 2.514282 1.
   hmax= 91. 454821m
   70 = 38.0 m
   m = 0.094044 - C=0.82
   m' = 0.055556 - C' = 0.91
   L.So = 48-349111 m3 -> Uo = 1 m3
  So = 5.955588 m
  Zo. So = 43. 955588 m
  Dour remplir le tableau surrant on pracède de la façon
  exposer prédemment.
    Verification graphique.
    Echelles.
                                (1cm -> 2m
                                11m __ 0.5cm
                               {1cm → 0.05 m/s
1 m/s → 20cm

\frac{E_g}{Q} = \frac{a}{gs} = \frac{H}{Q} = \frac{H}{V.s} \Rightarrow \frac{H}{V} = \frac{9}{9} = \frac{9}{9} = \frac{424.9190 \, \text{m}}{1 \, \text{m/s}} = \frac{1}{20 \, \text{chelle}} = \frac{62.4595 \, \text{cm}}{20 \, \text{cm}} = 3.123

 pour une vitessed 2 = vo - 0.6 = 0.132113 m/s = 1'échelle: su= 2.642 cm
                       d'ou st: sv. sotsd = 8.25 cm - 166/1que 9/950
```


	Tobles	au: 1	Resu	Ita	ts d	Cal	/c4/	du (Coup	de be	lier (I	F2-RA)
Memoires	33	34	39	80	37	46	44	47	04	31	nation	, vėx
θ,	∇u∵	αć	Ži.	٧ <u>٠</u> ٠ ٧٠٠	Δh _{it} : Δh _z ;	Zi-bh;i	0.	Z:-sh:-6	.1.	Voi Point	De Signation du point	Observation
<u></u>	m³	m ³	m	m/s	m	m	m	Ziashind m	2LP	iR m/s		
0	0.0860		¥ 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .	0_	0	W3.5556	5.9556	36	Vo= 321	0.7321	18	marchanale
		4.0553	18.63°	12.6336	6.6774	35.0145	4.984°	30.0306	0.6683	o.6045	2P 3R	modilieon
	0.0481	1.1034	39.185	10.4027	4.5274	34.64 ¹¹	36	1275	05503	0.4961	40 62	/ "
30	0.0394	1.1429	34.63 h	g.4695	3.0011	24.2888	3.413b 2.2913	31.994	o.uugo	6.4°°	6P 2P	/11/
	0.0345	11440	35. 9860 35. 9860	6.7317	1.8959	33.990	1.4714	31.99 ⁴	0.35.61	0.3122	8P 3R	111
60	0.0248	1.1884	34.9524	5.1273	x.0839	33.4526	0.8736	32.8790	0.2712	0.2300	108 412	141
$\theta_{\mathcal{A}}$	0.0183	21/27	34.8524 34.4525	3.6148	s.subt	33.57	0.4502	32.8790 33.129	0.1912	0.1522	128 132	/11/
40	0.0121	2297	1 6 1	(10)	.0.	1 0.4	0.1726	33.286h	1145	764	14P 16R	/4/
φθ	0.0061	1.2358	33. Lisht 33. W28	0.7505	222	2.300	250	274	0.0397	0.0027	16P 178	141
90	20026	1.2332	3.523	A.0439	0.0506	33.5738		33.3740 33.5916	1 110	10617	198	descente de
100	0.0051	. 220	241	2.1209	0.4522	34.120	0.1284	34.300k	0.03%	-21271	20P 21R	111
110	0.0054						0.0148	34.300 h 36.4430	10.1479	10.1686	220 234	111/
120	0.0130	1.0054	34.60gg	15.76 ⁴²	1.5426	13 b. 1526	p.4023	36.5546	1801	1917	24P 25R	1 11
120	0.0148	1.1906	35.21 ⁵⁵	6.2610	1.8200	37.035	0.4701	34.300 h 34.300 h 36.4430 36.4430 38.244 38.244 38.244 38.244 38.244 38.244	3.1957	0.1896	26P 27R	/ 11/
Vn O	0.0185	1.145°	35.8694	6.3334	1.8623	37.23 ³	0.4804	38.22	(0.1978	0.1962	287 29R	111/
188	0.0153	1.1594	36.53 ⁵	16.0574	1.7262	34.26h	0.4 ⁴ ²	38.789	10.1905	1849	30P 31R	111/
100	0.0145	1.1462	37.1845	G. buby	N.4803	38.66k8	0.3870	39.0517	0.1765	-0.1680	32P 33K	111/
140	0.0132	1.1320	34.79 ²⁹	5.0468	1.1826	38.97 ^{ch}	0.3135	39.288	, KF7	~o.1474	35R	1 2
180	طاام،٥	1.120h	34.7929 34.7929 38.3413	4.344l	0.8762	39.275	0.2369	39.289 39.0617 39.289 39.289	0.1358	10.1241	36P 37K	1 11/
130	8600.0	1.1106	38.81W2	· 3. 5693	0.5915	39.4054	0.1645	39.5702	ران.o.۱۱۱۶	0.0990	38P 39R	111/

Ú-

ā	Suite du table au précédant (F2-RA).													
200	0.0078	1.1028	39.1383	2.2444	o.3497	39.5484 0.10	14 39.64°	0.0868	6.0226	408 41R	1111			
21 0	0.0057					0								
220	0.003b		39.6655						1200		1"/			
23 8	0.00/14		4		0.0007	39.7369 0.00	39.73							

On trouve:

lasurpression maximale: Hs = 1.7373 m

la dépression maximale : Hd = 7.9694 m

le volume d'air peut atteindu : Vmax = 1.2358 m3

Jour laiser entrer de l'eau dans le réservoir on prend U= 1.50 m3

be la fagen on a trouve pour le trongon F3-RA.

U= 1.0 m3

Remarque:

On peut choisir l'azole comme gaz injuité dans le réservoir si les pressions sont plusoumoins fortes(sicét possible). Car l'air peut facilement se dessoudre dans l'eau si les pressions et les température de dissolution seront atteintes. L'azole est un zaz ineite.

```
Onintroduit les données:

C=0.15 — Coêf. de p. D. C. singulière (15% de 1 lin; oire)

Qo=0.015 m³/s — de bit dons les conditions initiales (marche normale)

B=0.150 m — diamètre de la Conduite

K=2.16.109 N/m² — K: mollule d'élasticité volumétrique.

E=0.005 m — epaiss eur des parois de la conduite.

L=3152 m — longueur de ladduction.

d=0.040 m — diamètre de l'orifice de la tuyère.

E=1.958 m² — module d'élasticité de locier (de young)

D=0.100 m — diamètre de la tubulure de branchement.

g=1000 lg/m³ — masse rolumique de l'eau.

Ho=51.91 m — hauteur géométrique de refaulement.

Ao=2 m — hauteur de l'eau dans le réservoir d'air.

E=4104 m — rugosité absolue de la Conduite durant son service.

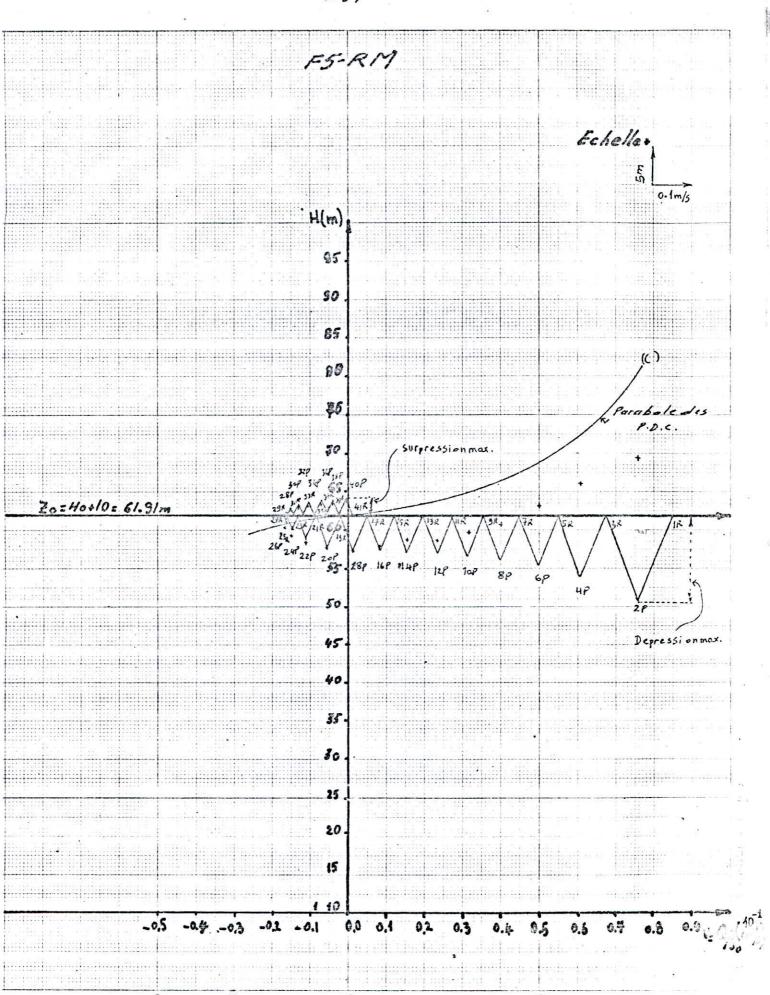
¬=106 m²/s — viscosité ciné matique de l'eau.

Précision &=106
```

En appuyant sur A onaura:

```
Surface (section droite) de la Conduite.
So= 0.017671m2
                   - vitesse initiale delleau dans " - " - .
Vo = 0.848826 m/s
                   - welérité de l'ande de propagation.
a = 1273.931316m/s
                   temps de retour de l'onde.
8 = 4.948461A
                   - la houteur (pression) que peut alleinde le coup de
hmax = 110.341478m
                   pression absolue. (Ho+10)m.
to = 61.91m
m = 0.135424 = c = 0.75 ___ coefficient dep.D.c. (montes).
m'= 0.08 == c'=0.85 == 11 == "-11-(decente).
K = 16.6/4485
K' = 28.125
50= 23.491182m - P.D.c. au refoul- (marche normale)
                 - Pression dans le reservoir d'air augmente de ho.
Zot50= 85. 401182m
L. So = 55.700438 m3 ____ volume deau dans toute la Conduite.
                       -> volume initiale du reservoir d'air.
don Vo = 1 m3
                             Uo 2 L.50
```

Onintroduit alors:


Uo = 1m3 C. = 0.75

Puis on appuie sur B pour remplir le tableau sui vant.

voir l'utilisation du programme.

The state of the s			-			-															
Nonvorcede monteus	Q	2	لئ	د	*	8	ۍ	X	8	6	1	۷,	૮	*	S	و	×	&	೯	O.V	41
ספצינת בן יים טוז	S. S	33,404	1 21	14	11	711	-11	· ×	1	1.1	Service of the servic	1	`,	` : \	1	14	1:1	10	12	1	15/
spined signed	4	95	95	4	9g	N.A.	136	45)	4	46)	4	823	^ج ې	872	_{1,98}	3,8	338	256	378	મુક્દ	NIR.
עולכנה בל ול השום" ('מרו העו מש רה שו המים ו	9109,00	8595x9.8	050155.0	(old na.c	2184560	152472.0	61x19b10	56 rag-0	Come 30.0	0780,0.0	92,280.0	*************	36 MO91.0/	8¢189\. o.	2,161.83	61KM1.0	187811.0	315080.0	15585000	8450°	×4000.00
string string	4	07	04	8,8	88	800	03.	84	89	88	80,2	44	9x/2	299	882	80.	825	8 Mg	896	D. B.C.	No. N
4 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	10. 98. 16.00 Joseph 18.00	41292.	*64.619.	x 5,00 m	got Jone o	282516.0	454540	K356310	96198°.	×14510.	£5250.0	° 100320	0869 417.6	x36x31.6	OLK HAJ.	JEW 281.0.	015141.0	£08×01-0	ECHALFO.	EE INO.0	98x18 co.0,
ברוא בי באון - לי (א.	16.1	AWSO-0	3.300	18812.	for or	8715°	B47188-3	69.580.75	PERMO-Y'S	4.33698	158/43.4	B. HAIMS	Ex085.0	ALBON 19	\$45.79	WHAMO. CO	^{ત્રુ,} મ્લુકમક્ષ્	WE Pre	Br. GTHING	Chesto.x	181868.x1
(m);	181.64.08 For 91.68	. o. &	*66 N	35 38 55 18 10 15 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10	151,205	* 46184.6	81x0x8.4	Towns.	186606.	SEIMO.	123940	-5169×	691/8.	95100.4	84500.	60x8.	4500A4.	WHCH.	१९१८७.	1. 0.0 E.	9515°C'
Pression dans la cond. Aux p.D.c. Anonto: 21- Ahri (h)	BY. HOME	180.69.69	65,092.99	400 11 X 5.40	841916.10	નાનનાનું હું	1 80 183	8.030y	Kras.	C 18056.75	CA: 54.780	18.20c.85	Seowe-65	96,50x.09	180K95.10	SEM # 1. 20	1. K. 8. 10	26. ce.	Stratt.	WY BO'CO	18.00.4°
P. D. C. dans la tuyere. montre : dhiz dive.	*	Cotto.	7.643.4	(29KB. 7	COCX+3	25.05.75°	186,495.0	40897.	498×0.	WYYOO.	B 160.0	SON'O	COLAT.	Kraye.	Budoto.	Sex 8x.	397665	Stoke.	360001.	Cy6090.	Orthoor
Vitesse dansla tubulure	*	^{رور ۲} ۶۶.	5067.	4000	X009.	37.	6805.	08949.	Been.	o Roy	9090 XX	75 × 0.	EXEE.	18279.	******	318481.	04.8 89.	CA 18.	WW. 60.	CAMON!	No. 2. C. S.
16 (50) d ans 16 (50) (6) (6) (6) (7) (7) (7) (7) (7)	18.10 M. 58	GOODS'SX	0.00 P. O.	"4014.AS	3.677.6	6580.10	C)304.60	58 4. 95	St. 63 billy	85256.45	4. W. 3080	92268.24	865.00 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Elyaki. 69	ENTEN.C	JA46.10	MANT-19	W186.79	12.45 ^{2.40}	16976.6	SHORO. NO
Volume d'air	EMN' & C	******	* 85° KN.N	H TOFF.	669812.	CM025-1	Man xa.	5941 PT.	10270K.	2x9906.1	33 305009 KA. W. 530808. A	× 28.28	K982.	"EKT.Y	4852.	SAM L.	genter.	FOLUN.	A.VIIV.A	184602.	18907.V
Variation du volums	00.0	WHO CO.	9,09000	1998,10.0	1540000	C.03445	0.0140St	557410.0	P.010.0	CAMOO.O	£4100.0	8x0x00.0	30.010.0°	E19410.0'	10.01×38.	898E10.01	Almalo.o.	18.010.0	158400.0V	,005088	SOLLOWO
Intervalles de	٥.٥		8				09		08	88	001			8	0 7	9	0,9,	0 1/	881	861	602

 $\hat{\mathfrak{h}}_{2}$

REBULTATS DU COUP DE BELIER (refoulement).

														,			
RONGON	4	4,	५० [%]	≾° √5	orls.	Ø .	John S.	40		3.5	હ	6	30,	Care lawar.	O mor	Jeng.	75.4
ERM	6.6145	28.1250	0.0177	0.8488 0.7958 0.7639	1273.931	4.9485	110.3415 99.4074 103.6978 103.6978 103.2889	61.9100	23.4912	55.70°	0.750	,.8 ⁵⁰	1.0000	4.17	uso		2.00
54-BE.	16.6128	26.4463	0.0314	0.2958	1224.206	3.03n8	39.4074 39.4074 103.6978 103.2889 119.2889	119.50°	B.4597	68.3394	0.565	0.730	1.2000	4.51	13.88	1.39	2.00
FARR	3000	2.000	0.0079	0.7639	1330,253	1.9966	103.6935	13.5000	11.7893	10.4300	0.730	0.830	0-1000	0.82	1.90	0.17	0.20
£8. 82	16.614	3,1250	0.0314	0.67.91	1273.9313	1.0342	88.2732	30.5000	5.93 W1	21.7712	0.575	0.740	0.5000	4.68	9.42	0.54	0.90
2.8.6	15.62	a b. WHO	0.0314	0.9549	1224.2066	0.3660	119.2889	24.0000	1.4591	4.0372	0.560	0.725	0.2000	2.00		0.25	0.30
RA-RA.	17.4774	₂ 9.5858	0.0314	1.0186	1179.8841	5.7633	Nich 6347	87.000°	18.9637	4.03 ⁷²	0.720	0.830	3.0000	4.32	g. 66	3.81	4.50
EH-RP	16.6145	28.1250	0.0491	0.6791	1273.9313	0.3611	80.2732	12300°	0.9633	14.06 WH	0.635	0.775		0.98	3.51	0.13	0.15
42.3	-	-	-		-	ı		_	_	_	_	-	_	_	-	-	
63-5	-	_	-	-	-	-	_	-	-	_	_	-	·-	-	_	_	-
K-RA	-	-	-	_	-	-		-	_	_	_	-	_	_	_	_	-
16191.83	15.6228	26.4463	0.03140	0.8347	1224.206	4.90ll	119.2889 97.0997	53.1000	1.5.5413	94.2478	0.560	0.720	1.9000	2.36	4.97	2.50	3.00
24.22	16.6145	28.1250	0.0707	0.8347	1440.0514	0.3930	97.0997	64.5000	0.6724	16.8336	0.730	0.860	0.4000	452	1	1	0.5

1581

b) Protéction des conduites au démarrage :

Tout comme à l'arrêt brusque, nous devons aussi protéger les conduites au démarrage du groupe estrem ar que ble que le coup de bélier à l'arrêt brusque. Dans la logique des choses, il est plus dangereux qu'au démarrage surtout si ce dernier est réalisé à vanne fermée. De par cette dernière recommandation, on est sûr, que le 2e cas, cest à dire la mise en marche à vanne grande ouverte, n'aura lieu que si on est pris au dépourvu.

Toutefois, il est serait préférable de protéger les conduites au cas le plus défavorable ; autrement dit à la mise en marche à vanne ouverte .

Méthode de calcul:

Nous avons établi un programme sur la machine T.I.59 qui calcule les éléments du tableau ligne par ligne .

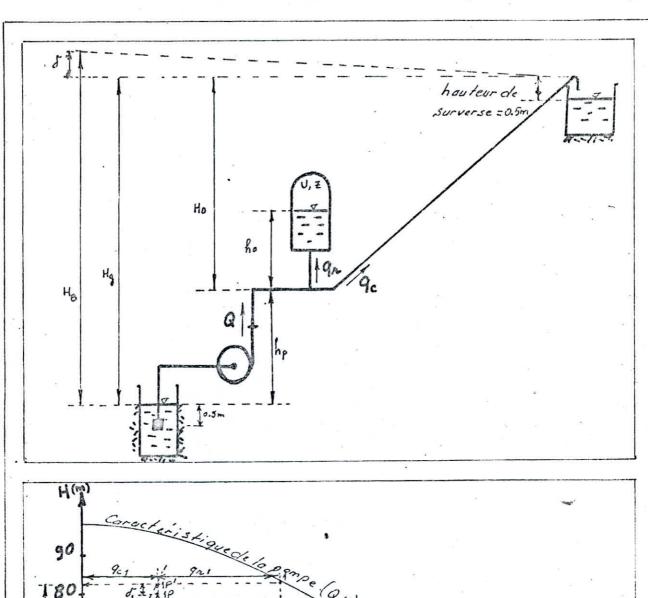
Algorithme :

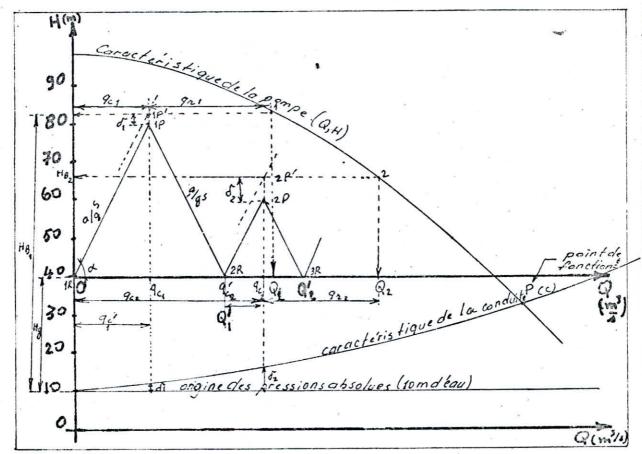
$$30 = \frac{\pi}{4} \frac{d^2}{4}$$

$$a = \sqrt{\frac{\kappa g}{1 + \frac{\kappa \phi}{eE}}}$$

$$S = \frac{\pi}{4} \frac{d^2}{4}$$

$$a / g S_0 = \frac{t}{g} \alpha$$


$$0 = \frac{2L}{a}$$


$$m_1 = \frac{d^2}{2D}$$

$$m_2 = \frac{d^2}{D^2}$$

$$d' = 0.92d$$

$$d'ou : m_2 = \frac{(0.92d)^2}{D^2}$$

$$V_{1} = \frac{9_{1}}{0.5\pi \frac{d^{2}}{4}}$$

$$V_{2} = \frac{9_{1}}{(0.92)^{2} \frac{\pi d^{2}}{2}}$$

Indications sur les éléments de l'algorithme :

	چ	_	Section droite de la conduite [m²]
	a	_	Célérité de l'orde de propagation de l'eau[m/s]
	8	_	Section de l'orifice de la tuyére [m²]
			Temps de retour de l'orde [s].
C,			Coefficients de perte de charge (à l'entrée) de la Tuyére.
			Perte de charge linéaire [m]
Н			Hauteur à projeter sur la courbe (Q.H) pour avoir Q [m]
9,		_	Débit qui entre dans le réservoir d'air au temps ¿ [m³/s]
9		_	Débit qui continue dans la conduite de refoulement [m3/s]
) .		_	Débit moyen qui entre dans le réservoir d'air entre les temps t_{i-1} et t_i . $[m_{j}^3]$
77.			
ΔUi.		-	Variation du volume d'air dans le réservoir au temps litm3
Ui			Volume du réservoir d'air au temps t c [m3]
V.			Vitesse au remplissage du réservoir d'air[m/s]
	5		coefficient decontraction = 0.5
,	V_2	-	Vitesse à la vidange du réservoir d'air (vidange d'eau) [m/s]
			coefficient de contraction $\zeta_{i}=0.92$
1	shi	-	Perte de charge occasionnée par, Vi [m]
			hp - Pression dans la conduite (graphique) [m]
	Z;	+	Ah. + ho _ Pression dans la conduite (analytique) [m]
			Différence de pression (écart) entre les deux méthodes [m]

Programme:- forthion (5 2nd 0917)

	•				
2nd 84 8 8 8 0 2 x 12 : 4 = 50 6 : 24 : (1 + 26 x 20 : 28 : 23) = 12 70 9 + 9	\$\forall 2 \tau \tau \tau \tau \tau \tau \tau \tau	8 : RES = 50 21 STO 20 RCL 21 = X 2 = SOL 22 + RCL 25 + 1 0 =	0= = x2 + + + + + + + + + + + + + + + + + +	570 27 - RCL 18 = 576 36 L27 Store 22 = 570 3 KCL 23 = 570 3 KCL 2	STO 32 X X RCL 19 = y 1 . 4 X (RCL 12 - RCL 13) = STO 3 RCL 29 + RCL 44 + RCL 21 = STO 3 + RCL 21 = STO 3 + RCL 21 = STO 3 + RCL 4.
V2 570 9 + 9 · 8 · RCL 5 =	2 x 9 2 x ² = 570 48 RcL 9	570 24 + Rcl 25 + 1 0 = 570 14 Rcl 15 ÷ Rcl	20 x ² ÷ RCL 5 X ² = STO 26 + RCL 14	23	34 x2 xeL 4+19.6=

```
1) Les introductions:
   570
   35
2nd 168
                                           pour Unetuyare:
                      ---- 570 00
2nd tan
                       570 02
                                               Ce, 20.5
                   e -- 570 03
   for
                                               Cc2 = 0.92
                   K --- STO 06
   RCL
                       -STO 07
                                           Pour un clapet
    33
                      ---- STO 08
    4
                                             ce, = 1
                   d -> 570 10
   RCL
                                             CEE O
                   20 - 5TO 12
   13
                                          (correleurs ne sont
    =
                    ho -== 5TO 13
                                            utilisables que pour
                    E -= 570 15
   STO
                   V -570
   37.
                                            ce programme).
                     --> STO 17
                   hp -= 5TO 18
   RCL
   36
                   Uo - 5TO 19 STO 32 570 42
    4m2
                   Hig -sto 25
                   D" -- STO 38
   215
                   Cc, -510 44 57046
   RCL
                   C12 -5TO 45
    41
   STO
   21
              2) Initialisation:
   RCL
   40
                 Appuger sur:
   510
   29
   RCL
                   RCL 05 \Longrightarrow 50 [m²]
RCL 09 \Longrightarrow a [m/s]
   42
   510
                   Rel 11 = s [m2]
Rel 22 = a/gso
   32
   RIS
2nd 668
                   RCL 23 _____ [S]
                   RCL 48 => m2 = -11-4-11- 62 = 5TO 43
   2
   RCL
   29
   STO
               3) Calcul du Coup de belier
   40
   RCL
                Pour une valeur de 9 [m3/s], on Cherchotta.
   21
  STO
               avec laquelle on lit la valeur Q.[m], I sur
   41
  ReL
               laxedes débits.
   32
  STO
                Avec Q[m3/s], le programme carlale Zirahi + ho
   42
   R15
```

On affiche Q [m3/s] puis on appuie sur is B > Ha:
On projette Ha: sur la Courbe (Q, H) puis sur l'uxe des débits.
On lit alors la raleur de Q; corres pondant.

On affiche Q: [m3/A] et on appuie sur => 6H;

SHi = Zi + shi + ha - (Hei = hp)

a) si otti est admissible:

Appuyer suro

&) si &Hi n'est pas admissible :

Appuyer sur - RIS puis recommencer ovec un outre 900 ...

Remarque:

* Si 9: > Q: on procède un changement du programme
comme suit:

GTO 2nd Sin LRN 2nd Ins +/- + LRN.

* Silande sort du plan limitée par la Courbe (Q,H) de la pompe, le réservoir d'air se vide, onmodifie le programme commesuit.

GTO EFLEN2" Ins x2 LRN.

GTO 2nd Sin LRN 2nd Ins +1- + LRN.

GTO 2nd COS LRN 2nd Del LRN.

GTO 2nd fan LRN 2nd Ins t/- LRN

RCL 45 57044 RCL 43 57004 * Si Opres être sortie du plan sus-Indique l'onde y entre, le programme sera modific Lomme suit:

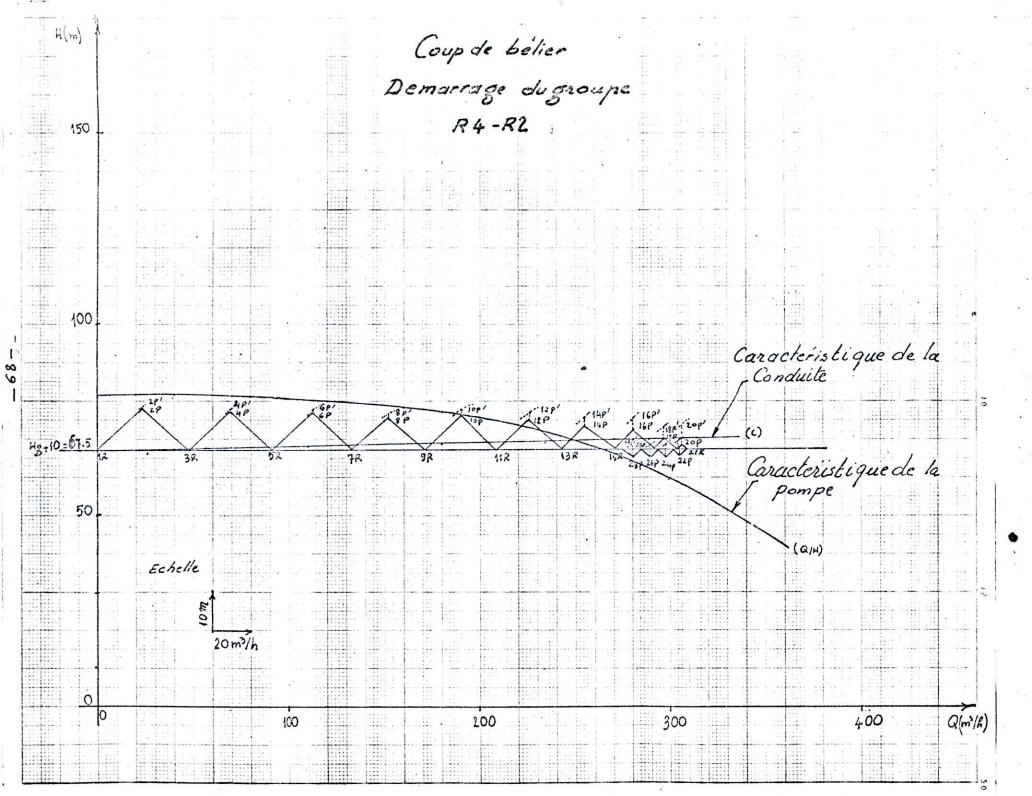
GTO 2nd Cos LRN 2nd Ins ti- LRN
GTO 2nd tan LRN 2nd Del LRN
GTO EE LRN 2nd Del LRN
RCL 46 5TO 44 RCL 47 5TO 04.

Calcul duréservoir d'air, de la pression (surpression)
pour R4-R2

1) Introductions:

0 = 0.30 e = 0.005 K = 2.16109 N/m8 5 = 103 E = 4.958.15 N/m2 d = 0.08 m 70 = 64.5 m Ro = 1.0 m E = 4.104 m 7 = 106 m2/s 0.15 hp = 2.5 m Uo = 0.4 m3 He = 57.5 m D = 0.2 m Cc, = 0.5 Cc. = 0.92

2) Initialisation.


On appuie sur: - A

 $50 = 0.0707 \text{ m}^2$ 0 = 444.0514 m/s $0 = 0.0050 \text{ m}^2$ 0 = 0.3930 A $0 = 0.080 \leftarrow C_1 = 0.86$ $0 = 0.1354 \leftarrow C_2 = 0.73$ $0 = 0.1354 \leftarrow C_2 = 0.73$

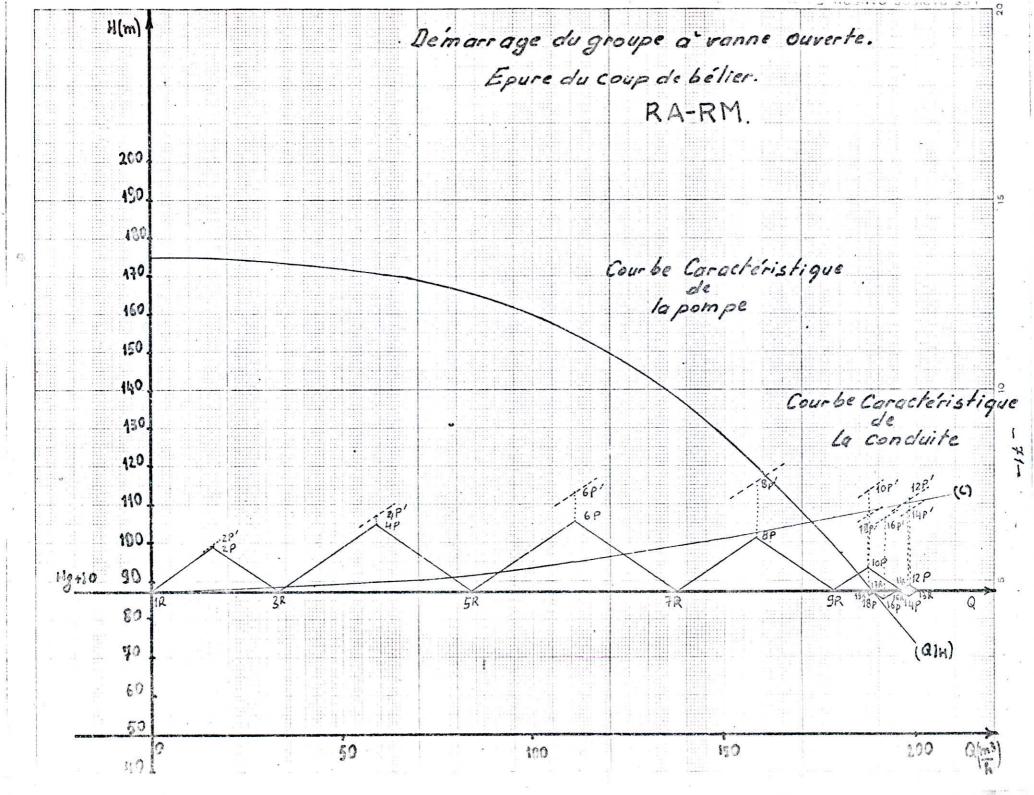
Puis on suit le procédé de calcul exposé précédémment pour remplir le tableau des résultats sui voint :

R4-R2

•	Properties and the second seco										-	-	-			-	-	germannesses
	obse	ervation	1		منه	رو م	700 a	ا روبا					٠,	1		1000	121	
T	désia	gnation		de	-01	-Cy	- 05	- 00	اق - رود	0.51-W.	JE - 03	~~ <u>~</u>	F - 00	R - 29	8-2	F- E	03-09	3-00
•	27.2.6	E.	2	48.4749	44.65.44	47.1003	46.1417	46世光	45.3081	43.8636	18 W-74		68.308	14.45 A	1591-99	65.6343	8057.59	65.1777
	21	,; Ø	m3/5	65,00	1	2420.0	0.0478	0.0583		3.5.40.0		1			C480.0		2840.0	0.0766
	26	ئ.	<u></u>	1800.0	8690.0	01810	0.078	6615.0	E4 84.0	9846.0	1.1333	1,1655				9787.1	8902.7	1,1253
	3.75	H3:-h 2+6h:1	ξ	6001.95	45.4083	7609.44	18九.社	£480.44	43.5568	1587-74	20.76gp	68.1059	8+84.49	5021.99	6851.69	6804.49	63.3050	63.61
	38	4-18H	3	45.9799	45.12.24	7282.712	3610.4t	44.1693	57.54.25	42.312	村花。	68.8319	4. 7512	3329	1800.59	本当、さの	or. 9576	67.4019
	7	Hg:	٤	48-4-84	24.62.42	74.98 T	46.5195	76.6693	5740.9t	74.817	4147.84	71-17	7157.04	68.839	1805.29	\$4.16.99	वर्डम. वव	106.39
ego.	35	δhi:	Ghz:	4.8134		5.04.7					63860	1465.0	0.5523	C874.0	6992.0	6241.0	0.0543	0.019
N 600 - N	34	V _f i:	12 c	6150.6X	9512.71	4.84 TZ	4680.41	00000		4600.E	3.26kg		1258.E	1385.4	6529.7	x856.7	50 MT.1	o.5846
	33	*;	/m	1835		1,08.0r	47.514	43.0873	47.6352	11.52.14	and the many that the state of	00.40.09	5050.79	8665.69	4504.40	3765.69	6296.29	1629.20
	32	ű:	m3	0		0.3697	8496.0	814.0		2498.0	37750	484°C.0		0.3908	6.3959	8666.0	470×1.0	0,404.0
-	16	øu:	33	440000		\$6000	6500.0	0,0000	5,00.0	0,000.0	15,000	1	49°0.0				4700.0	5,00.0
	30	5	m3/8	69,000	9880.0	9 47 0.0	00,00	1500.0	8400.0	10,00	6.0.33	05,0,0	6.0.0	0.0'S'K	62,0.0	66000	8900.0	
	2.9	٠, ک	m3/3			£6,0.0	C010.0	0000.0	5x00.0	8210.0	65.0.0	1910.0	4910.0	4410.0	4110.0	6800.01	10.0053	6200.01
	20	٩٤:	m3/3	•		*1,60.0	24 NO. O	1850.0	1690.0	T.40.0	0.0×83	0.000	0.0053	1980.0	0.0863	0.0837	9080.0	1840.0
	92	ග්	m3/3	*******	98 NO.C		8750.0	1860.0		0.0589	0.0 Cht	1,000	6890.0	+1+0.0	6540.0	0.0450	9540.0	9540.0
	Altrica	9.	(4)	0.0	1		30	0 3	50	09	30%	ලරි		408	011	0 3	1	OXII

Calcul du reservoir d'air, els surpressions et dépressions pour RA-RM.

1) In troductions des données :


$$0.25$$
 m
 $L = 3400$ m
 $L = 3400$ m
 $L = 0.005$ m
 $L = 2.16.10^9$ N/m²
 $L = 1.958.10^1$ N/m²
 $L = 0.065$ m
 $L = 0.065$ m

2) Initialisations:

$$So = 0.0491$$
 m^2
 $Q = 1179.8841$ m/s
 $S = 0.0023$ m^2
 $Q = 5.7633$ S
 $m_1 = 0.3756 \longrightarrow C_1 = 0.375$
 $m_2 = 0.1589 \longrightarrow C_2 = 0.64$
 $2/g_{50} = 2452.6940$

Suisonarempli le tableau suivant, ligne norligne.

	9		200					* ,	ű					4			*
		- /		ű e				RA-	-RM				ů	= 2• 2	9		1
Intervalles de temps 8: (8)	Debit de la pompe Q: (m3/1)	Desit qui va dons la conduite.	Debit qui entre ou sort du leservoir d'oir	De bit moyen entrant ou sortant du reser voir	Variation du volume d'air al. (m³)	Volume d'oir U. (m3)	pression dans le reservoir d'oir	Vitesse oru nassage de la tuyere	pertede Charge dans la tuyère la tuyère	Hauteur picko metrigue Choisie orbitroirementen Valur absolue Malmdlam	Pression dans la Conduis Correspondante à Historia	pression dans la Conduite Correspondant à la pression L'alan le resorbit d'air	porte de charge demo 10 Con chisto F (m)	obscisses des points 12 i compan	ordonnes des points i p ; intran	Sesignation despoints	Observations.
	28	20	29	30	31	32	33	34	35	27	36	37	26	21	27-26		
0	0.0000	0.000	٥.٥٥٥٥	0.0000	0.0000	Jo: 3,000	2000 85	0.0000	0.0000	48° 87.4	87.0000	84.00°°	0.0000	0.0000	0.0000	٧.٣	٧/٠
Θ	0.0507	0.0047	0.0456	2228	1313	3600	ou - Kana	7 3280	, 3465	99.4451	98.3451	38.8414 106.3988	0.1630	0.0094	33.2821	28 28'	37
20	0.0482	0.0162	1.0317	0386	0.2225	2.6462	104.3251	a.5430	3.0666	204.0695	106.3695	106.39\$8	1.9962	0.0236	232	HP HP	100
30	0.0492	11	.41	. 9	0.0564	2.5029	109.5377 109.5377 109.5377	5.44t2	0.9970	N3.1684	112.4684	112.5347	4.0732	0.0386	106.0952	59 69'	1 2
6,4	. (8	0.0443	0.00 15	0.0098	0.0564	2.4465	N3.0913	0.4604	0.0071	16.0417	115.3117	145.00,84	N4.3450	0.0500	101.6667	a?	i i
69	0.0469	0.0525	10.00 6W	10.0039	0.0227	2.4692	111.6354	1.9253	0.1248	113.9737	113.2737	113.5105	20.1420	0.0550	93.8317	108 108	100
୍ଡ	o.048t	0.0556	6.0089	10.0076	0.0440	2.5133	108.9072	2.67.87	0.2416	4416.111	NO-9174	110.6656	22.55 48	0.0561	89.0626	12P 129'	20,0
40	0.0476	0.0525 0.0525 0.0554 0.0554	5.0078	10.0083	0.0480	2.5643	106.0530	2.3439	0.1850	108.4389	107.7389	107.8740	22. 4421	0.0547	85.3969	149 149	30,000
80	0.0482	0.0538	10.00 56	10.0067	0.0384	2.5997	103.8710	1.6742	0.0944	106.1280	105.7280	105.7767	21. 425	0.0528	85.3154	168 168°	20
0,9	0.0483	0.0525 0.0525 0.0554 0.0538 0.0528	6.00 kl	5.0050	0.0289	2.5708	109.5377 109.5377 111.6354 111.6354 106.0530 106.0530	1.3394	0.060k	108.0012	104.3012	107.5728	20.3557	0.0528	93.8317 93.8317 89.0626 85.3967 85.3154 87.6455	186 186	70

B - Protéction des conduites gravitaires :

Tout comme pour les conduites de refoulement, les conduites gravitaires n'échappent pas au phénoméne du coup de bélier .Elles sont sujettes à ce phénoméne justement au moment de la fermeture ou de l'ouverture (rapide ou lente) de la vanne de régulation qui se trouve à l'aval de l'adduction.

Pour protéger les conduites en question, nous avons la vanne de régulation à une allure de ferméture, qui évitera aux canalisation, d'être sollicitées par des dépressions et des surpressions importantes.

- a) Détermination de l'allure, du temps et de la vitesse de ferméture :
 - On prend comme unité de temps un aller ou un retour :

$$t = \frac{L}{a}$$
 ... [5]

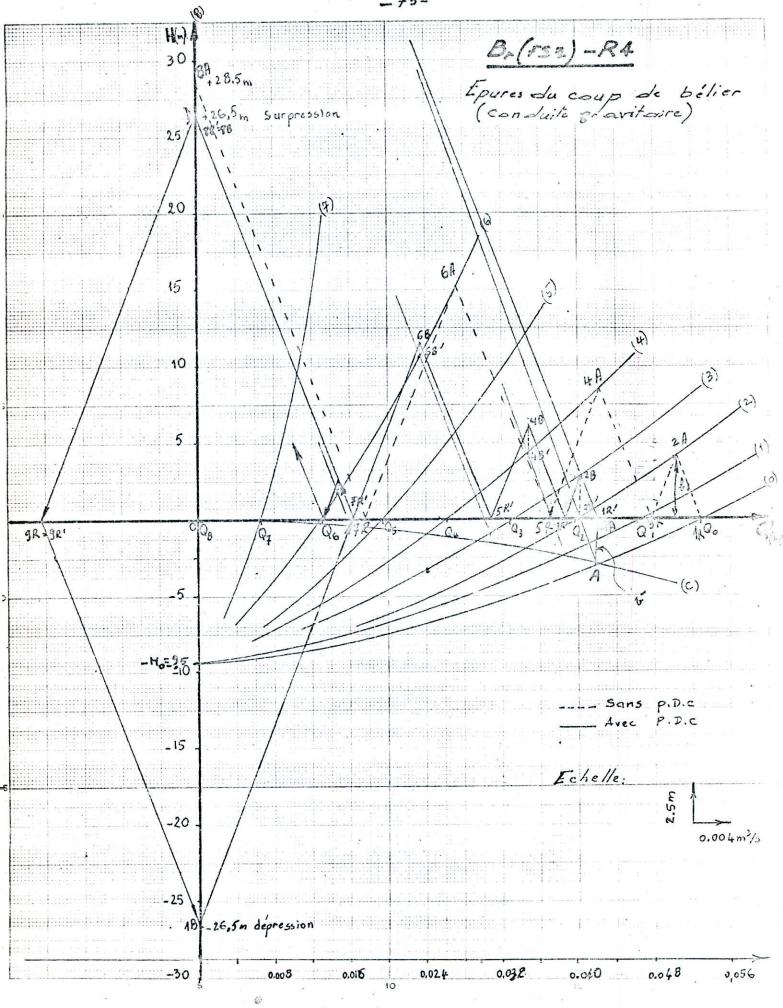
L - Longueur de la conduite ... [m]

a - Célerité de l'onde de propagation de l'eau ... [m/s]

- On suppose en première approximation :

Ce qui revient à dire qu'on suppose " $\mathcal N$ " .

Donc on divise Q_o en " n " parties égales tel que :


 Q_o - débit initial (vanne grande ouverte)...[m/s]

Avec: m - Coefficient de correction de débit .

li-Surpression ou dépression

Ho - Hauteur géométrique.

 \mathcal{S}_{ι} - Section géométrique , pour une ferméture au temps $\dot{\mathcal{E}}_{\iota}$. D'où l'aboutissement à l'équation de paraboles :

Et comme $\mathcal Q$ est la seule variable au niveau de cette équation , on aura alors " $\mathcal N$ " paraboles .

Détermination des surpressions et des dépressions au temps $t_f = \frac{m}{2} t_x$:

A partir des caractéristiques de cette adduction on trace les épures de Bergeron (voir graphe ci-joint).

Aprés cela on procéde à la vérification de la condition suivante :

- Si les surpressions et les dépressions sont admissibles (c'est à dire que la conduite n'est pas soumise à des sollicitations défavorables) pour le temps de ferméture supposé; on optera pour cette allure de ferméture.
- Par contre, si les surpressions et les dépressions sont importantes on augmente le paramétre " η " .

Autrement dit on augmente le temps de ferméture ce qui donne une ferméture beaucoup plus progressive. Ensuite, on refait le tracé des épures de Bergeron. On revérifie la condition ci-dessus. Et ainsi de suite jusqu'à obtention de l'allure qui convient à notre adduction.

Note:

Dans le graphe des surpressions et des dépressions donné précédemment, les paraboles passent par deux points. Pour donner à cette représentation justement plus de précision; nous avons déduit une relation qui permettra d'avoir un troisième point pour le tracé de la première parabole.

Et comme l'allure des autres courbes est bien semblable à celle de la première, on peut dire que la petite rectification apportée est tout à fait générale.

Avec : ≪ - la résistance hydraulique

où : m _ Coefficient de correction de débit .

En remplaçant (ℓ') et (m) par leurs expressions dans la formule de $Q_{\!\!A}$ on aura :

d'où on tire Q_A :

On repére le débit $\mathcal{Q}_{\mathcal{A}}$ sur l'abbisse. On projette ce point sur la caratéristique de la conduite. . . L'interséction obtenue donne le 3e point de la première parabole.

Relations de calcul:

Pour " η " donné auparavant, on α :

Qi = Qo
$$\left(1 - \frac{i}{n}\right)$$

Si = So $\left(1 - \frac{i}{n}\right)$ avec So = $\frac{\pi \phi^2}{4}$
 $ti = \frac{i}{2} t_2$; $i = 1, 2, ..., n$
 $v_i = \frac{x_i}{t_i}$

D'où pour ¿-n, quand la vanne est totalement fermée.

$$Q_m = Q_0 \left(1 - \frac{m}{m}\right) = 0$$

$$S_m = 0$$

$$t_f = \frac{m}{2} t_r$$

 $xi = \phi$

Remarque:

Dans le but d'avoir une idée sur l'effet des pertes de charge sur les surpressions et dépressions, nous avons considéré, dans le tracé des épures de Bergeron, les deux cas : avec perte de charge et sans perte de charge.

Calcul:

Données de base :

Bronfons	Q [m3/s]	L [m]	الساع	٦ [m²/s]	H°[m]	Ф _[m]	#
13 r (FS.7)-84	0.053	2030	4.104	10 ⁶	9.5	0.300	#
RM-R1	0.133	4305	-11-	-11-	18.5	0.400	#

Résultats: (voir tableaux suivants)

* Allure et temps de for meture de la vanne. Br(F&Z)-R4

Nº	Intervalles de temps O sec	Surpressions m d'eau	Dépression m d'eau	Sections offertes cu passage de l'eau m²
0	0.000000	0.00	-11-	0.070686
4	3.561243	4.25	-11-	0.053014
2	7.122486	8.50	-11-	0.035343
3	10.683729	15.25	-1	0.017671
4	14.244972	28.50	28.5	0.000000
5		_"	/."/	//

2) Avec p. D.C.

Νº	Intervalles de tempo B sec	Surpressions m d'equ	Depressions in deau	Sections offertes au passage de l'eau m²
0	0.000000	0.00	-11-	0.070686
1	3.5612 43	D.12	_1	0.053014
2	7.122486	4.35	_1, _	0.035343
3	10.683729	10.70	—n—.	0.017671
4	14.244972	26.5	26.5	0.000000
5		/"/	/"/	/"

Le temps de formeture: tj= 4tr= 14.244972 s.

- La surpression maximale: Hs = 26.50 md eex.

- La dépression maximale: He & 26.50m d'eau.

Conduite R M - R 1:

On a utilisé le même procédé que pour le cas précédent.

Résultats :

$$t_1 = 3t_2$$
; $m = 6$ } $t_1 = 24.1139785$

Surpression maximale (en tenant compte des pertes de charge)=31.50 m. Dépression maximale (en tenant compte des pertes de charge)= 31.50 m.

Détail sur la vanne de régulation :

En guiss de commentaire sur la vanne de régulation; nous avons jugé utile de donner le présent détail, qui est caractérisé par la détermination des trois (3) paramétres suivants : Si, Xi effic.

$$v_i = \frac{x_i}{t_i} \dots [m/s]$$

où : Ef temps de ferméture totale de la vanne.

$$\xi_f : \frac{n}{2} \cdot \xi_r = \frac{n}{2} \cdot \frac{2L}{a} = n \cdot \frac{L}{a} \cdot \dots \quad [s]$$

$$\alpha = \left[\frac{\kappa/\beta}{1 + \frac{\kappa \phi}{8E}} \right] \cdot \dots \quad [m/s]$$

Pour chaque instant ti(l'=1,2,...,n) on détermine si, xi et hi

Si-Section mouillée.

Zi- Enfoncement de la vanne dans la conduite .

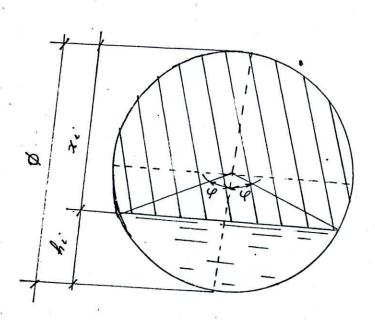
 h_{i-} Hauteur d'eau dans la conduite au niveau de la vanne .

$$Si = So(1 - \frac{i}{m}) \dots [m^2]$$

Si: t₁ = d est pris comme unité de temps

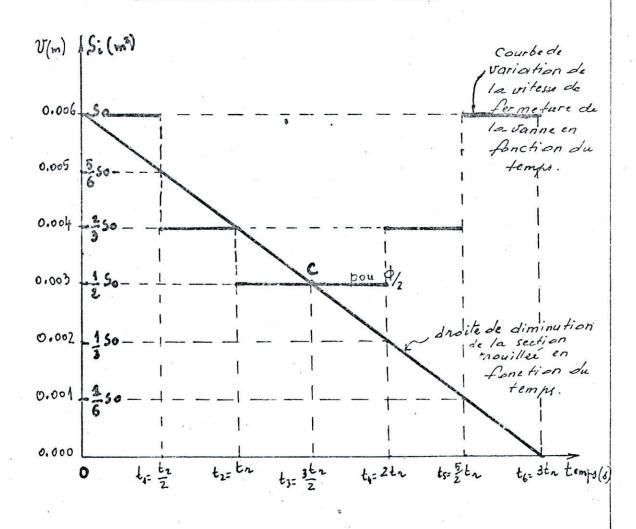
 η - Nombre d'allers ou de retours de l'onde de propagation de l'eau. L'angle ψ sera déterminé par :

$$Si = \frac{\phi^2}{4} \left(\varphi_i - Sin \varphi_i \cdot Cos \varphi_i \right) \dots [m^2]$$


$$\phi$$
 - diamétre de la conduite ... [m]
 $\varphi_i = \frac{4S_i}{6^2} + Sin \varphi_i \cos \varphi_i ... [radians]$

 \mathcal{L} sera calculé par approximations successives (à l'aide du programme qui suit). Calcul de \mathcal{L} (paramétre de forme).

d'où:


Enfin on a l'enfoncement de la vanne :

$$d'o\bar{u}: v_{i'} = \frac{2x_{i'}}{t_{T}}$$

and ese	Rel 1 =	1 50
A	5 22 121	17
2nd stf/	- 1	
2 5177) ENV	Rel
8	= 2 2 27, t	16
RCL	Vie n2	530
0	STO Rel	19
x2		RIS
×	9 13	
2nd TC		1) Introductions:
		amount of JATIOULE
	Z GTO	1 6
4		9-> 570 00
=	RCL 2 201 Rbf 22	n-> 570 01
STO	2 763	L-> 570 02
8	= Rel	K -> 570 03
×	570 13	E -> 570 04
	11 2 cos	e -> 51005
4	× +/-	8-35006
	gel +	€-> STO 07
0.1	1 4	2-3310
RcL	2 3	precision -o = 2t
7	-(= =	
7 :	2 = = = = = = = = = = = = = = = = = = =	
RCL	12 2	77 11
1 210	est =	2) Résultats:
> 2h	Exc STO	
=	RCL 14	10-> 510 18
	10 ×	· Acquera sur [A]
570		Appuyer sur 20 A
10	x Rel	
lcL	4 0 =	Red 08 = 50
5		RCL 09 → a
+	RCL STO	RCL 10 => Gi
LeL	0 15	Rch 11 => En
	22 +/-	RCL 12 = Ei
-	+ +	Rel 13 = 19:
6 : (Rcl Rcl	
	18 0	RCL 14 => 3:
+ 200	Sin =	Rcl16 => xi
ReL		
		RCL17 = The
3 X	RcL 16	
	18 -	
Rcl 2m	- Cos RcL	A P A
	= 13	Achaque fois:
0 %	550 =	· '
Rel	570 = 13 ÷	i -> 570 07
	- Rd	
4 +	RCL 11	0
· ·	10	1 decures [A]
. []	18 =	et Appuyez sur -> [A]
	€a	

Résult	Résultats de calcul du détail de la vanne de régulation:									
i	ن کہ	Li	ti	95°:	hi	χi	Vi			
1	o. 10G	2.157	tx.019	0.747	0.311	5.089	ط٥٠٥			
2	0.084	1.839	4.038	0.633	0.253	0.147	0.004			
3	0.063	1.64	12.067	0.500	0.200	0.200	0.003			
4	0.042	1.302	16.076	0.367	0.147	0.253	0.003			
5	0.021	0.985	\$0.095	0.923	0.089	0.311	0.004			
6	0.000	0.000	9-4-114	0.000	0.000	0.400	0.006			
			ion marima 50 m	on the same of the	*					

Conclusion:

La relation suivante:

avec: P -pression intérieure ... [kg/cm²]

Ja -Contrainte admissible de l'acier... [kg/cm²]

e -Epaisseur de la conduite ... [m]

Pext-diamétre extérieur de la conduite... [m]

Nous a permis de vérifier que certaines de nos conduites ne nécessitent pas une protéction anti-bélier.

Cependant, pour éviter à nos conduites (avec appareils et accessoirs) d'être sollicitées, nous avons prévu un système de protéction sur toutes les conduites.

II - Protéction des conduites contre la corrosion :

A - Note:

Quand on a une conduite en acier à poser dans un sol, il est de première nécessité d'avoir certaines données (du moins les caractéristiques nécessaires) du terrain en question, pour pouvoir mettre en évidence le phénomène de la corrosion, et l'éviter par un des moyens de protéction s'adaptant à la situation.

Pour revenir à notre cas, quoiqu'on ne dispose pas de données nécessaires concernant le terrain; nous avons jugé nécessaire quand même d'exposer le phénomène en général.

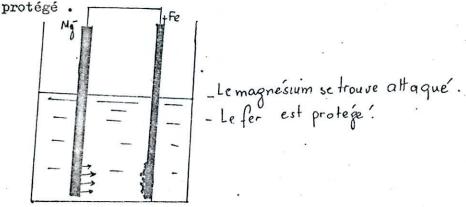
B - Généralités :

La corrosion des canalisations en acier se traduit par la déstruction de ces derniéres sous l'action du milieu ambiant . Elle se caractérise généralement sous deux aspects :

- Corrosion chimique:

Cas de combinaison directe du métal et du milieu ambiant (corrosion dûe à la nature agressive du sol).

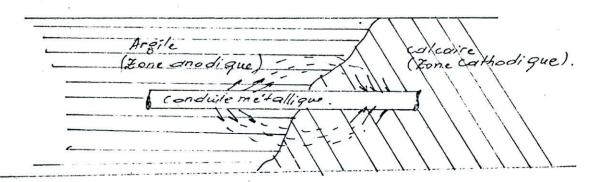
- Corrosion éléctrothimique:


Due à l'influence des installations éléctriques, à courant continu, situées au voisinage des réseaux d'alimentation en eau, pour ce faire, et sans nous livrer à un exposé théorique qui serait fastidieux, nous exposons les deux formes de la corrosion.

1 - Corrosion par formation de pile:

La corrosion dans ce cas-là, se présente sous deux (2) aspects :

a - Couple galvanique (pile constituée de métaux différents):
Une simple analogie nous donne l'explication à cette forme.


Deux métaux, à potentiels d'équilibre différents, reliés éléctriquement et plongés dans un éléctrolyte forment une pile. Le métal dont le potentiel est le plus négatif (anode) se dissout, l'autre métal (athode) se trouve

b - Pile de concentration (pile géologique) :

Elle s'obtient quand on plonge deux éléctrodes de même métal, dans un éléctrolyte à des concentrations différentes.

En termes d'illustration nous citons l'exemple suivant : Les terrains argileux, marécageux humides et peu aérés sont anodiques, par contre ceux calcaires, sableux secs et bien aérés sont cathodiques . Ceci représente un éléctrolyte à des concentrations différentes .

sche'ma: Corrosion de la Conduite par formation de pile de concentration.

Schéma : Corresion de la conduite par formation de pile de concentration .

2 - Corrosion par courants vagabonds :

Dans ce cas, la corrosion est due à une éléctrolyse à la suite de courants dits vagabonds. Elle s'explique comme suit : Le courant continu de traction est amené à la motrice par des conducteurs aériens et le retour s'effectue par les rails jusqu'à la sous-station. Mais, en fait, une fraction, souvent importante, du courant pénétre dans le sol (courants vagabonds), puis circule dans les canalisations se trouvant à proximité pour revenir aux rails généralement le plus prés possible de la génératrice du courant.

Ainsi par éléctrolyse, il y aura corresion dans la zone où le courant quittera la conduite pour regagner la sous-station en passant par les points du rail à potentiel négatif par rapport au sol.

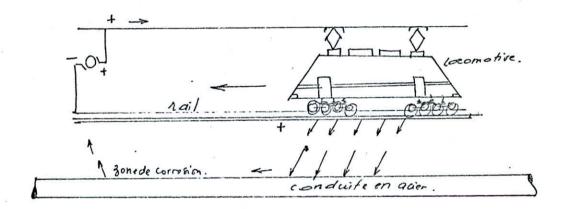


Schéma - Corrosion par éléctrolyse (courant vagabonds).

3 - Protéction cathodique:

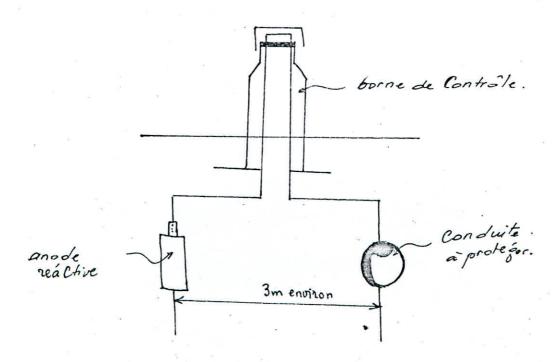
En plus des dispositions qu'il faut prendre, en vue d'éviter les cas de corrosion cités plus haut, On doit procéder nécessairement à une protéction cathodique.

Principe de la protéction cathodique :

La protéction cathodique consiste :

- Soit à constituer, avec un métal plus éléctro-négatif que le fer, une pile où le fer jouera le rôle de cathode.
- Soit à relier la conduite, d'une part à une source d'énérgie éléctrique extérieure et, d'autre part, à une anode enfouie dans le sol et déstinée à se corroder.

Remarque :


Le fer est rendu cathodique quand le potentiel minimal, par rapport à une éléctrode de référence au sulfate de cuivre, a pour valeur : - 0.850 Volt.

a/ Protéction cathodique par anode réactive :

Il s'agit de relier de place en place, dans les terrains agressifs, la conduite à une pièce de métal plus éléctro-négatif que le fer : Zine ou magnésium (formation de pile).

Comme l'indique le schéma ci-dessous, on enfouit dans le sol des anodes réactives cylindriques de 15 à 30 Kg à environ 3,000 m de la conduite à laquelle elles sont reliées. Pour l'éfficacité de la protéction les anodes seront entourées d'une bouillie à base d'argile colloidale.

Schéma : Protéction cathodique par anode réactive .

En guise d'illustration, nous donnons les deux (2) relations qui calculent la masse et le nombre d'anodes qu'il faut pour cette protéction :

- La masse nécessaire d'anode à dissoudre pour une certaine durée de passage de courant est donnée par la loi de Faraday :

Avec : I - Intensité du courant ... [A]

M - Masse atomique du métal de l'anode ... [9]

t - Temps de passage du courant ...[3]

V - Valence du métal de l'anode.

F - 1 Faraday = 96 500 coulombs

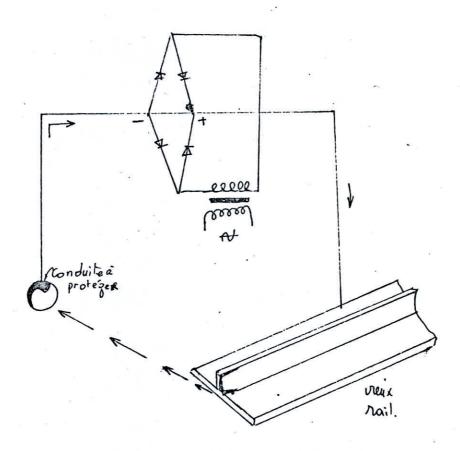
m - Masse dissoute de l'anode ... [3]

- Le nombre d'anodes nécessaires pour la protéction est donnée par la relation suivante :

$$n = \frac{5.i}{I}$$

Avec : S - Surface de la canalisation à protéger ... [m²]

i - Densité de courant ... [mA/m²]


I - Courant probable de l'anode ... [m A]

Cette protéction n'est valable que pour des réseaux de petits diamétres et de faibles longueurs .

b/ Protéction cathodique par soutirage de courant :

Le principe de cette protéction consiste à relier au pôle négatif d'une source à courant continu (Courant alternatif redressé) la canalisation à protéger. Tandis que le pôle positif est relié à une anode métallique (vieux rails par exemple) enterrée à une certaine distance (une centaine de métres environ). Le courant partant de l'anode, traverse le sol, est capté par la canalisation et retourne à la source de courant. La canalisation est alors rendue négative par rapport au sol dans lequel elle est enterrée. La corrosion est reportée sur l'anode.

Ce type de protéction est très efficace. Il évite la corrosion à des réseaux, de toute nature, en présence de courants vagabonds. Cependant, il conduit à une dissolution importante.

Schema de la protection par soutirage de Courant.

III - Protéction contre les phénoménes divers :

1 - Effets de l'eau :

D'aprés l'analyse, l'eau de la nappe de Bouira ne contient pas des éléments qui ont des effets conséquents sur la conduite . Donc, aucune protéction particulière à prévoir .

De même qu'elle ne présente aucune particularité du point de vue potabilité; ce qui fait qu'une simple chloration suffit pour son tratement.

2 - Protéction des conduites au niveau des points hauts et des points bas :

- Au niveau des points hauts :

Il arrive souvent qu'on a de l'air dans les conduites. Cet air en s'accumulant, généralement au niveau des points hauts, perturbe l'écoulement. Il peut même entrainer des ruptures. Pour remédier à cela on prévoit des ventouses aux points hauts. Elles permettent l'évacuation de cet air.

- Au niveau des points bas :

Tout comme les crêtes au niveau du réseau; les points bas représentent aussi des points défaillance. Pour cela on prévoit des décharges en vue de la vidange de la conduite en cas de nécessité.

I) Capacité - Dimensionnement :

A - Capacité:

La détermination de la capacité d'un résérvoir peut se faire de deux maniéres :

- Soit à partir du débit pompé .
- Soit à partir du débit de distribution .

Pour notre cas, nous avons fait un calcul à partir de la consommation journalière (débit de distribution) .

* Détermination de la capacité du réservoir : Valeurs du débit horaire moyen de distribution :

Avec :

2.4 - Coefficient de peinte

 Q_{j} - Débit journalier donné par la source . C - Consommation journalière .

D'où:
$$Q = \frac{2.4 Q_i}{24} = 0.1 Q_i ... [m^3/h]$$

Ensuite en fonction des coéfficients horaires donnés ci-dessous par A.DUPONT (Ouvrage : Hydraulique urbaine Tomme II).

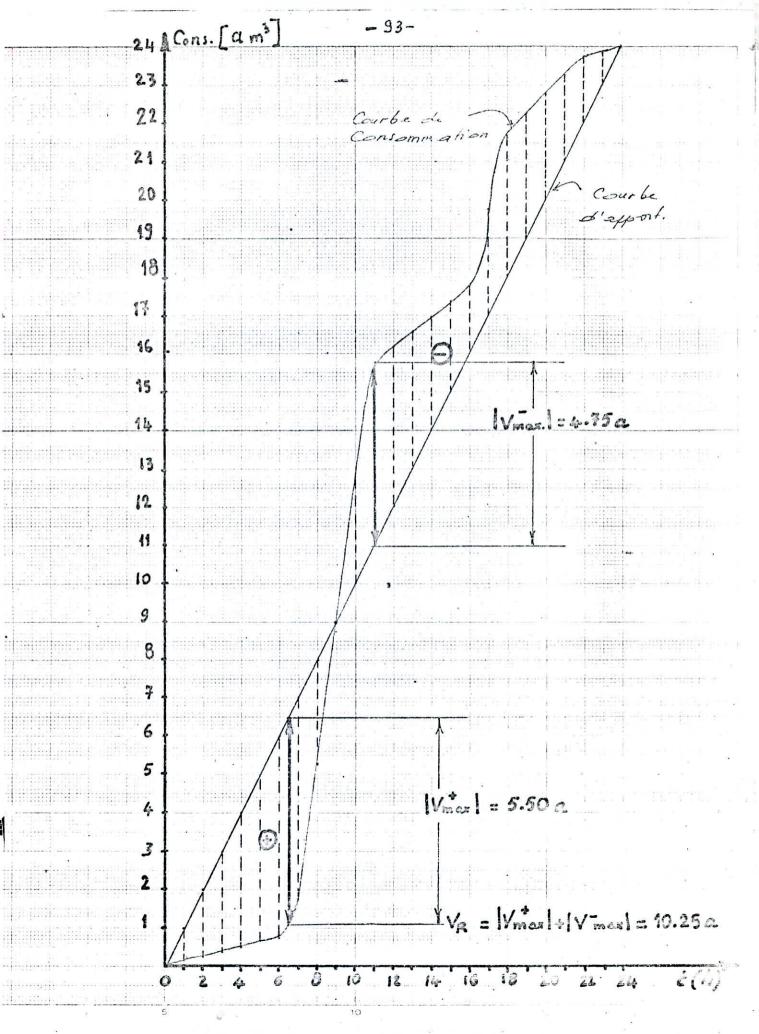
6 h	à	7 h	***************************************	а
7 h	à	11 h		3.5 a
11 h	à	16 h		0.4 a
16 h	à	18 h	•••••	2 a
1 8 h	à	22 h		0.5 a
22 h	à	6 h .		0.125 a

On a établi le tableau des coefficients horaires . Relativement à ce tableau on a tracé le graphe ci-joint :

Résultats donnés par le graphe :

D'où:

Ceci donne :


$$\frac{10.250}{24a} = 42,7\%$$
 de la consommation journalière .

En tenant compte de la réserve d'incendie (120 12),

Le volume total du réservoir sera :

Tableon des coefficients hor sires

"Il Arrivée de Depart pour Différences											
Heures	L'adduction	la distribution	+	TANDERS OF STREET							
0 _ 1	10	0.1250	architectural accounts to the second	0							
	2.02	0.2500	0.875 a	0							
1 - 2	3 a	0.3750	2.625 a	0							
2 - 3		0.500 a	3.500a	0							
3 - 4	40	0.625a	4. 375a	0							
4 - 5	500										
5 - 6	60	0.760 a	5.250a	0							
6 - 7	70	1.750 a	5.250a	0							
7 _ 8	8 a	5.2500	2.750a	0							
8 - 9	902	8.750a	0.250a	0							
9 - 10	10 a	12.250 OL	0	2.250a							
10 - 11	На	15. 750 a	0	4.750a							
11 - 12	12 a	16.150 a	O	4.150 a							
12 _ 13	13 a	16.550a	0	3.550R							
13 - 14	140	16.950a	0	2.950 a							
14 - 15	15 a	17.3500	0	2.350 a							
15 - 16	160	17.750a	0	1.750 a							
16 - 17	17 a	19.750a	0	2.750a							
17 - 18	18a	21.750a	0	3.750a							
18 - 19	190	22.2502	0	3.250 a							
19 - 20	200	22.750a	0	2.750a							
20 -21	21a	23.2500	0	2.250a							
21 - 22	22a	23.750a	0	1.750a							
22 _ 23	23 a	23.8754	0	0.8750							
23-24	242	24.000 a	0	0.000							

II - Dimensionnement des réservoirs :

On a opté pour des réservoirs circulaires, jumelés, semi-enterrés. Pour les réservoirs semi-enterrés (Déchauteur :

On prend

d'où:

$$\sqrt{R_T} = \frac{\pi \phi^2}{4}.H$$

$$\phi = \sqrt{\frac{4 \sqrt{R_T}}{\pi H}} \dots [m]$$

On aura donc :

$$\phi = \sqrt{0.1592(1.025Q+120)}$$

$$\phi = 0.4 \sqrt{V_{R_T}}$$

$$\phi = \frac{\sqrt{V_{R_T}}}{2,5}$$

Les résultats de calcul sont donnés dans le tableau suivant :

-		de aus		DIMENSSONNE MENT DES RESERVOIRS								
	Reser voir	De Que	Débit journe	1 James Jair	June die	Joduros di (m)	rombien der	Jack a Wing)	How town	Diamilia		
	RI			4 9 95.6		4 9 95.6	2	2500	8	20		
		0.133	11491.2									
	R6	22	-VRH=1500 VX+V6= 9991.2	4 9 95.6	120	5115.6	2	2601	8	20.4		
	R7	0.030	2592.0	2657	120	2777	2	1406	8	15		
The second second second second second	R2	0.071	6134.4	6288	0	6288	2	3165	පි	22.5		

Notes:

- 1 L'emplacement des réservoirs a été imposé par la D.H.W (Direction de l'Hydraulique de la Wilaya).
- 2 On n'a pas prévu de réserve d'incendie au niveau du réservoir (R1), puisqu'il est utilisépoul'accumulation seulement. La distribution est faite à partir du réservoir (R6).
- 3 Le réservoir (R5), dont la capacité est évaluée à 750 $\%^3$ est un réservoir existant .

Il était alimenté auparavant par les sources de Merkalla, que nous avons déviées sur le réservoir (RM) à cause des pertes considérables constatées sur son adduction (conduite d'environ 20 Km).

A ce niveau- là nous proposons que le réservoir (R5) soit utilisé pour le stockage de la réserve d'incendie. Dans cet ordre d'idées toujours, nous préconisons le branchement du réservoir en question sur le réseau de distribution du secteur Est (alimenté surtout par le réservoir R2).

Enfin de compte, nous aurons la réserve d'incendie du secteur Est au niveau du réservoir (R5).

II) Automatisation :

L'automatisation des différentes opérations se rapportant à la pompe est tout à fait nécessaire. En plus de son rôle de protéction, elle assure un fonctionnement rationnel et économique au groupe éléctropompe.

Dans le sens de ce qui précéde, en tenant compte des données de notre projet nous avons prévu deux (2) systèmes :

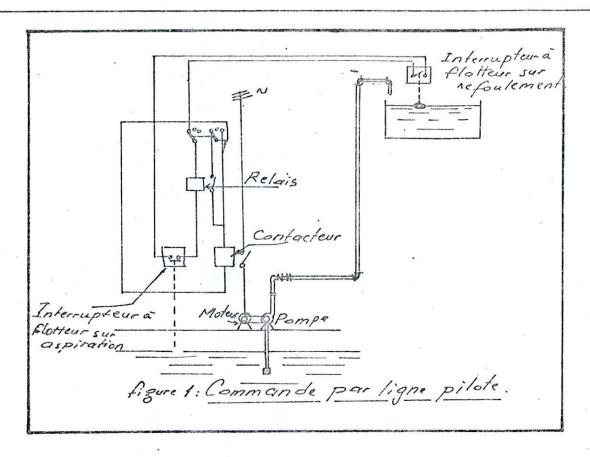
1 - Commande par ligne pilote (voir figure 1):

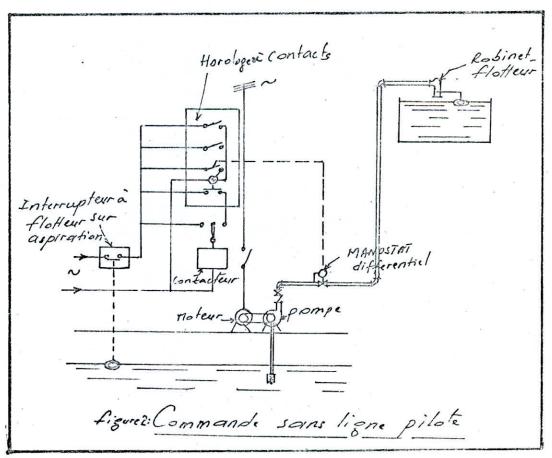
Ce permier système est utilisé pour de petites adductions (faible distance entre la station et le réservoir).

- Au niveau du réservoir d'accumulation :
 - * On relie éléctriquement le réservoir au moteur .
 - * On dispose un flotteur à la partie haute du réservoir .

Dans ce cas-là, suivant que le niveau monte ou descend, le flotteur ferme ou ouvre le circuit, ce qui permet l'arrêt ou le démarrage de la pompe.

- Au niveau de la source :


Dés que le niveau baisse, le flotteur sous l'effet de son propre poids descend.


De par ce mouvement, le flotteur ouvre le circuit auquel il est lié et le moteur s'arrête.

2 - Commande sans ligne pilote (voir figure 2):

Dans le cas des grandes adductions on s'en passe de la commande par ligne pilote, qui devient dispendieuse, pour la remplacer par celle sans ligne.

Pour cela, on prévoit un dispositif constitué par un robinet-flotteur installé au réservoir, et un monostat différentiel en liaison avec un diaphragme installé à l'aval de la pompe sur la conduite de refoulement. Le monostat différentiel permet justement d'arrêter le moteur dés que le niveau monte.

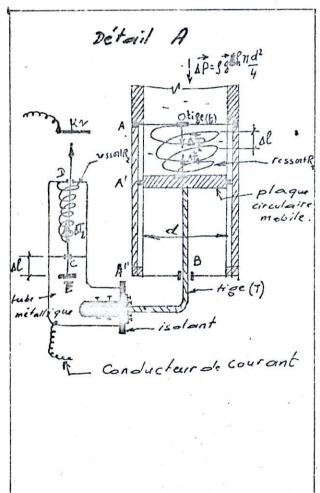
Dispositif d'automatisation proposé (pour la commande sans ligne pilote):

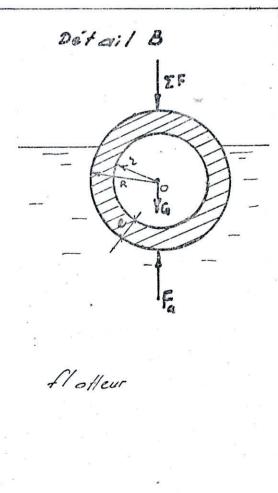
Pour ce qui est de l'automatisation donc, nous avons exposé deux (2) systèmes de commande que nous avons jugé adaptables à nos cas.

Ces deux (2) systémes ont été donnés dans l'ouvrage : "Hydraulique urbaine " par A. DUPONT .

Outre cela, nous avons proposé un autre dispositif de commande (pour les longues adductions) que nous avons jugé plus économique .Bien entendu, il se peut que ce jugement ne soit pas bien fondé du côté de la pratique; car tous comptes faits, notre proposition repose toujours sur nos connaissances de base qui sont beaucoup plus théoriques que pratiques (calcul, vérifications ...).


Les opérations de commande du dispositif dont il est question, se résument ainsi :


- Si le niveau du plan d'aspiration baisse, l'interrupteur " K_1 " ouvre le circuit (le moteur s'arrête) .
- Si le niveau du plan d'eau dans le réservoir monte l'interrupteur " K2 " ouvre le circuit (le moteur s'arrête).


Détails des opérations (voir figures schématiques ci-jointes):

On dispose d'un servo-clapet au niveau du réservoir qui vanne (ferme) sur le refoulement si nécessité l'éxige. A ce moment la hauteur manométrique sight au car augmentée de "Ah"; ce qui donne une pression mobile de diamétre "d". Cette plaque mobile (coulissante) est fixée à sa partie supérieure à un ressort (R_1) de raideur " R_1 ", attaché lui-même par son extrémité supérieure à une tige fixe (t).

La force de pression : $\Delta P = \Delta R$. $\frac{\pi d^2}{4}$, fait déplacer la plaque dans son sens d'application sur une distance égale à " ΔR " (A A " est la distance maximale de déplacement).

Par voie de conséquence , le ressort (R_1) réagit par la tension : $\Delta T_1 = -k_1 \cdot \Delta \ell$

Aussi la tige (T) subit le même déplacement " Δ (".

La tige (T), dans son déplacement, entraine le tube qui se trouve fixé sur elle par l'intermédiaire du joint en caoutchouc (isolant).

L'aiguille, qui était, jusqu'à ce moment, en contact avec l'interrupteur " K2 ", sera entrainée avec le tube dés que le point " C " arrive au point " E " .Ceci conduit automatiquement à l'ouverture du circuit .

Relation de calcul:

- La tension du ressort :

Avec :

k-raideur du ressort ... [N/m]

Δ(- déplacement [m]

- La variation de la force de pression de l'eau agissant sur la plaque mobile sera :

SP= Sig. sh. Ti.d2

Avec :

f - Masse volumique de l'eau ... $[kg/m^3]$ g - Accélération de la pesanteur ... $[m/s^2]$

Δh - Perte de charge due à la ferméture de la conduite de refoulement au niveau du réservoir ... [m]

d - Diamétre de la plaque mobile ... [m]

- La force de pression totale agissant sur la plaque devient :

$$P + \Delta P = \int_{-\infty}^{\infty} g \cdot \frac{\pi \cdot d^2}{4} \left(H_{nT} + \Delta h \right) \dots (2)$$

Avec: Hmr - hauteur manométrique totale ... [m]

En égalisant les expressions (1) et (2) on aura :

- CONCLUSION -

- La documentation comme les données (en partie) nous ont fait défaut. Bien entendu ceci n'a pas été sans gêne. Cependant nous avons fait de notre sé mieux pour mener à bien cette étude.
- L'étude de l'adduction complémentaire (sujet de notre projet de fin d'étude) a été donnée par la D.H.W. à la S.ET.HY.AL. (Société des Etudes Hydrauliques d'Alger). Celle du réseau de distribution a été donnée à un autre bureau d'étude.

Cette manière de faire ne donne-t-elle pas à refléchir.

Si l'on juge bon ; des points d'incomptibilité apparaitront certainement, ne serait-ce que sur le plan de la mise en relation des deux (2) composantes du projet.

D'ailleurs, c'est ce même détail qui nous a donné l'idée de procéder à une vérification des pressions au niveau du réseau de distribution (voir supplément).

- Pour terminer, nous ajoutons, qu'un devis éstimatif du projet aurait été à-lui-même une bonne conclusion pour cette étude.

Malheureusement les données nécessaires n'étaient pas disponibles comme nous l'avons indiqué auparavant .

- SUPPLEMENT -

Vérification des pressions au niveau du réseau de distribution .

La vérification des pressions dont il est question se fera aprés détermination des débits corrigés et des pertes de charge.

A cet effet, nous devons passer nécessairement par un calcul des débits soutirés.

Détermination des débits soutirés :

- On partage le réseau de distribution en mailles .
- On détermine la surface totale. De même on donne les surfaces des secteurs Est et Ouest (voir schémas des réseaux pages 111 et 114).
- En fonction de la surface limitée par le périmètre d'urbanisme (y compris l'extension) et la population totale on calcule la densité (supposée uniforme faute de données).
 - On calcule la dotation spécifique par héctare.
- A partir de cela, on peut répartir les débits au niveau du réseau et donner la première approximation .

Les étapes de calcul sont données dans les pages qui suivent .

Calcul des surfaces:

On décompose la surface totale en surfaces triangulaires Formule de calcul:

$$S_{ABC} = \frac{1}{2} a \times \left\{ x^2 = L^2 - y^2 = c^2 - (a - y)^2 ...(1) \right\}$$

$$\begin{cases} x^2 = c^2 - (a - y)^2 \\ x^2 = c^2 - (a - y)^2 \end{cases}$$

L'equation (1) s'écrit:

$$y = \frac{\alpha^2 \cdot \ell^2 \cdot c^2}{2\alpha} \Rightarrow x = \sqrt{\ell^2 \cdot \left(\frac{\alpha^2 \cdot \ell^2 \cdot c^2}{2\alpha}\right)^2}$$

On aura:
$$S_{ABC} = \frac{1}{2} a \sqrt{4 a^2 b^2 - (a^2 + b^2 - c^2)^2} \frac{1}{4 a^2} = \sqrt{\frac{2}{16} b^2 + a^2 b^2 - (a^2 + b^2 - c^2)^2}$$

$$Posons = \frac{a + b + c}{2} = R$$

$$S_{ABC} = \sqrt{\frac{2}{16} a^2 b^2 - (a^2 + b^2 - c^2)^2} \sqrt{\frac{2}{16} a^2 b^2 - (a^2 + b^2 - c^2)^2}$$

$$S_{ABC} = \sqrt{\frac{2}{16} a^2 b^2 - (a^2 + b^2 - c^2)^2} \sqrt{\frac{2}{16} a^2 b^2 - (a^2 + b^2 - c^2)^2}$$

$$S_{ABC} = \sqrt{\frac{2}{16} a^2 b^2 - (a^2 + b^2 - c^2)^2} \sqrt{\frac{2}{16} a^2 b^2 - (a^2 + b^2 - c^2)^2}$$

$$S_{ABC} = \sqrt{\frac{2}{16} a^2 b^2 - (a^2 + b^2 - c^2)^2} \sqrt{\frac{2}{16} a^2 b^2 - (a^2 + b^2 - c^2)^2}$$

Programme: (T159)

mad on is			1
2nd 868	RCL	RCL	- /
A	1	7	Rel
STO	*	7	3
0/6	RCL	X	=
2nd 8/5	2	RCL	₽ Vx
B	= ÷ 2	4	SUM
STO	2	_	5
2	=	Rel	RIS
R15	STO	2	-
2nd 666	4)	
C	×	X	.*
STO		()	
2	C.E	RCL	

Utilisation

$$\begin{array}{c} a_i \longrightarrow A \\ b_i \longrightarrow B \\ \\ c_i \longrightarrow B \longrightarrow S_i \\ \\ Rel 05 \longrightarrow \sum_{i=1}^{n} S_i \end{array}$$

- Surfaces :

* Surface totale limitée par le périmétre d'urbanisme

$$S_T = 675$$
 hectares

* Surface de la partie Est :

$$S_{E}$$
 = 250 hectares.

* Surface de la partie Ouest :

$$S_0 = 425 \text{ hectares.}$$

- Densité de la population :

Pour l'horizon 2005; 🔑 = 90232 habitants.

$$d = \frac{90232}{675} \approx 134 \text{ habitants / hectare}$$

- Dotation spécifique (par hectare):

Dotation totale :

$$Q_r = 230.5 \text{ l/j/habitants}$$
 = 90232 habitants $= 230.5 \text{ X } 90232 = 241 \text{ l/s}$

d'où:

Dotation spéficique :

$$q = \frac{241}{675} \approx 0.357 \, 1/s/hectare$$
.

- Débit pour la partie Est :

- Débit pour la partie Ouest :

Note:

R 6 alimente l'Est et l'Ouest.

* Débit pour l'Ouest :

$$Q_{R6} = 151,7 - 30,0 - 7,0 = 114,7 1/s.$$

* Débit pour l'Est :

$$Q_{R6_{z}} = 133,0 - 114,7 = 18,3 1/s.$$

Il est à noter que R6 alimente l'Ouest (une partie) par une conduite et par une autre l'Est et l'Ouest.

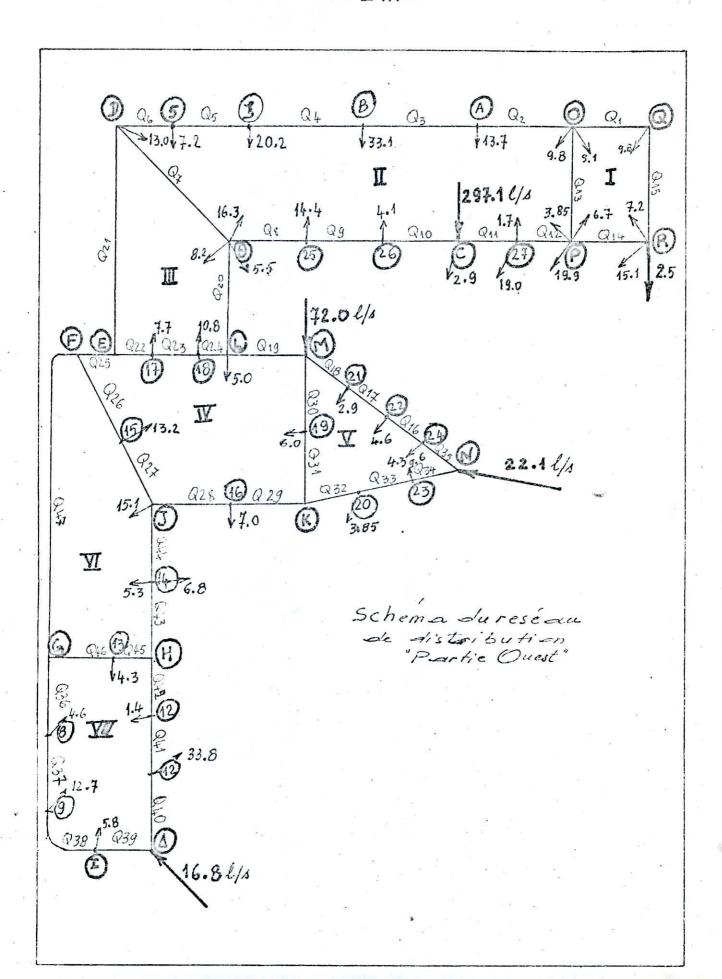
Surface Ouest alimentée (seule) par R 6 : (voir planche)

Débit : $Q_{R6_0} = 25,86 \text{ X } 0,357 \neq 9,2 \text{ 1/s}.$

DEBITS SOUTIRÉS Q: (e/s)

Sur faces	27.0) 6/2 . 45	Gur Laces	4.	, ola	Pr. Cares	ış.	5, 61.	contracts	7.7	15 612
	+-						1	हु ही ह	Chr Man		
15.9509	۸	5.7	9.2344	200	3.3	5.0996	39				١.2
14.14673	2	۱. 🖈	19.6539	Ø,	7.0	18.6042	/A.	6.6		ಳ್ಳಿ	2.1.
4.5690	3	1.6	7.2018	er.	2.6	4.2194	Ŋ		6.9263	60	2.5
1.9446	L ₄	0.7	14.3038	3	6.1	4.5051	A.		8.0992	8	2.9
3.35 40	5	1.2	5.066k	y V	۸.6	1.7053	1	0.6	12-46 92	63	и.5
38.7254	6	13.8	6.8472	S.S.	2.45	0.9548	1/1/1	0.3	15.5125	એ	5.5
7650	*	۸.٦	5.2731	d,		2.5290	S'A	0.9		64	6.3
10.62 HZ	8	ŋ.ô	9.9041	¢√ _√	3.51	2.3889	N	0.9		\$	1.85
11.4639	3	w.	5.383°	200	١.9	1.6200	1/3	0.6		طو	2.2
4.789h	0	2.3	5.7670	Ş	2.1	3.2214	NS.	1.2	5.1117	ړχ	۸.8
6.3225	14	3.0	6.3394	30	2.3	4.0597	P _W	1.6		8	0.6
23-5123	'n	8.4	4.42.76	Ŋ	1.6	1:3200	50	٥٠٨	5.14151	69	1.9
8.4421	5,	3.O	4.60 93	3	1.7	3.6024	S	1.3	14.7950	χo	5.3
14.9804	/k	5·4	1.74.33	_ر .	0.6	W.5356	Ç.		39.5 ^{†85}	×	14.1
19.1230	ç	6.8	6.4367	3 ^{lx}	1.9	3.5983	ঐ	۸.3	6.7848	À	٧.4
6.3008	d	2.3	8.6097	Ş	3.1	5.0001	64	4	9.5113	A)	3.4
38.0215	3	7.9	3.9349	ηb	1.4	5.3659	క	۸.9	9.0784	XX	3.2
23.0988	4	8.3	5.6694	ş	2.0	14.0580	华	и.O	16.8067	ψ,	6.0
17.5991		6.3	6.6613	B	2.4	12	ŝ	۸.6	於	Ħ	*

DEBITS SOUTIRÉS MULTIPLIES PAR LE COEFFICIENT DE POINTE 2.4

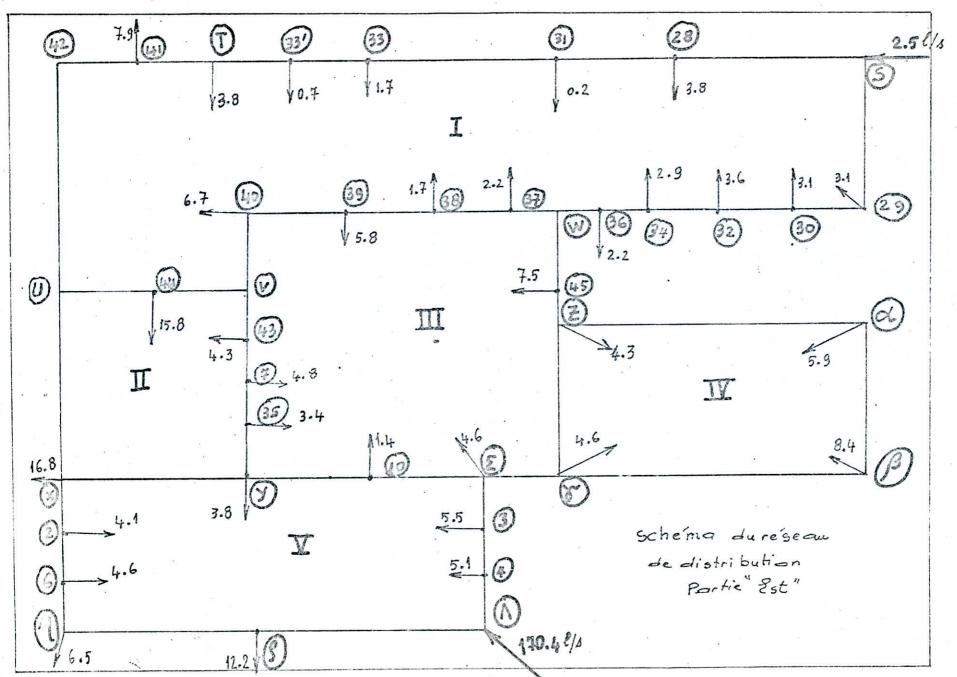

paneed:	THE RESTRICTION OF THE PARTY OF THE PARTY.	Desiration	THE RESERVE THE PARTY OF THE PARTY OF THE PARTY.	-	CONTRACTOR WAS INVESTIGATED TO	-			_
· 1/4.0	Q:	ر الأده	Ois O:	, tr	Q: £19	1 L'0	Q: lis	i hi	Q: LIS
٨	٧3.4	*	No.0	32	W.A	13	٨.٦	ß	b.04
2	9. O	\$	1.0.0	3,	<i>4.</i> w	w8	2.9	6,5	13.2
3	3.8 ⁶	19	15. ¹	3	w.G	3	3.6	164	16.1
w	΄,γ	20	4.9	33	4.5	50	۰۰۶	ıs	6.3
5	2.9	N	8.01	36	3· ¹	6,	3.1	bb	6.3
6	33. ¹	22	6.5	x 5	۰	62	3.40	b\$	\×.³
*	W.1.0	₹)	12.2	30		63	3.1	8	٧٠,١٠
B	0,1	2 ^{tt}	^{7×} .»	39	1	54	w.3	ક	1×.6
00	9.8 6.4	S	6.9	Q X	۸4,8	દુક	ж.b	20	12.7
14	4.2	do	w.b	ň	6.74	66	9.6	4	33.G
12	20.2	2	8-14	142	3.0	54	n. ⁸⁵	弘	ج. ⁸
3	₹.1	20	ط _{.×} ,	13	۸,3	رق	2.9	23	Ф. ²
14	٥. س	29	6·°	Mik	0.7	ڏي	5.0	14	7.7
Ŕ		3	6. ⁶	XX.	1	60	٥.٥	於	14.4
16	6.5	3	3.8	1/6	2.2	61	7.0	外	*

Côtes et Longueurs du réseaude distribution. Partie Ouest

- 33									*:						
	to y con	V CONTRACTOR	o so	You w	V ₄	The Trees.	You X	do n	48	V.r.	VI ON STATE OF THE PARTY OF THE	Q Orror	a of the	14 Em	V _w
	6.0	Sus	556	مار	630	4.13	517	525.5	,8.5	270	19 X	518	5741	4	260
	OA	556	574.5	18.5	380	13-G	\$25.5	610	A.5	340	4-1	63h.5	537	- 2.5	105
		544.5	555	19.5	ୃଷ୍ଟ	4-14	517	518	_1	210	V-18	537	528.5	8.5	215
	6,5	₅ 55	553	2		14-3	518	525	,7	225	18.17	528. ⁵	535.5	-7	100
	les's	453	su8		1185	5-15	525	532	<i>/</i> }	1	3.81	53 ^{5.5}		5.5	175
	579	5×8	543.5	4.5	145	15-4	43 ²	53H	,2		10	637		-4	120
	DE	_{5\\3} .5	532	11.5	250	5-16	625	62y	١.			541	541	0	905
	£, F	1	53 ¹⁴	,2	340	16.4	624	514	10	130	25,26	541	5 45.5	-4.5	605
	. !	૬3 [∖] t	530	Ч	195	12.20	514	521.5	7.5	275		545.5	558	_12.5	290
	6, 8	430	526	k	140	2023	621.5	523.5	,2	315	4	ડ્રક્8	547	11	385
	q,′ ⁹	626	८३१		115	2354	523.5			ц5 ⁰		५५ने	650	-3	2.15
	3.5	43 ¹	552	,21	*85	41.2h	525	634			e-Q	५५०	ξ ς1	-2	500
I	5,0	452	552.5	۸۵.5	240	24-22	53 ¹⁴	63 ⁸	بار		Q.Q		540	12	475
	Pull	552.5	547	4.5	120	22-21	63 ⁸	534.5	3.5	180	_		548.5	-2.5	510
	1772		536	1/1		51.W	534.5	53 ^{4.5}	٥	140		13	556	-6	580
	12-H	636	517	10	135	14.19		618	46.5	415	#	A	Þ	4	<u>۸</u>

Débits en première approximation et diamètre des con duites. Partie Quest.

1100g	de a (els)	di che (mm)	Viousion.) 6 % (0 13	dianote (men)	(confor	July (1/8)	diametre.
a-0	108.95	150	H-13	90.0	ж00	19-K	1.0	150
0-A	190.05	200	13-6	24.3	200	W-F	53.0	200
A-8	176.35	200	H-14	51.8	100	L-18	20.0	200
8-5	143.25	200	14-5	63.9	100	18-17	9.2	200
3-5	123.05	160	5-15	76.15	150	17-E	1.5	200
57	115.85	150	15-F	89.35	150	L-0	28.0	100
D-E	५ ४.५ ८	250	5-16	2.85	k00	0-25	19.0	200
E-F	43.35	200	16-K	9,85	. K ⁰⁰	25-26	4.6	300
f-6	6.0	200	K-20	q.85	400.	26-6	0.5	300
6-8	30-30	200	20-23	12.7	400		294.7	300
8-9	34.90	200	23-N	22.3	400	27-9	274.0	300
g - [4.f.6	200	N-24	0.2	250	P-R	143.55	200
2-4	53.4	250	24-22	1×.5	250	R-Q	118.75	150
D-11	36.6	200	22-21	9.1	200	0-0	21.0	150
11-12	70.4	150	21-M	12.0	200	P-0	100.0	150
12-H	71.8	150	M-19	7,0	150	4	Ħ	Ħ



Côtes du terrain naturel du réseau de distribution Partie Est.

Con to the total of the total o	d on the	d of the	Ho w	\r	14 . Co.	Dan.	V of or	₹ ¹ 0,45	>.	17 CO	X to X	V coly	ror rot	\ _x
5-18	5 43	546	,3	140	3-2	503	507	, 4	1	38-33		512.5	۰.5	45
28-31	546	guo	6	285	4.0	८०२	510	/3	60	39-40	5125	512	۰,۶	60
21-33	(40	531	g	215	8-13	510	510	0	465	10-N		510	2	85
33-33	531	52 ⁷	4	70	8-2	610	63 1	-21	490	1-44	ç۱°	506	4	275
1	524	512	45	135	4-7	531	52°	41	370	U_44	506	509	-3	175
1.4ª	512	514	,2	100	1-45	SV	517	ß	110	V-43	۶۱0	₹08	2	45
141-142	514	514	0	135	45-W	५१४	sit	0	345	43-7	500	5 04	Ч	210
	پر ۱ ۹	509	ς.	440	W-36	517	519	,2	45	4-35	50 ⁴	500	4	255
いナ	૬૦૭	503	6	525	36-34	519	530	.11	235	35-Y		500	0	185
+2	503	508	۶,	120	34.32	63°	८३१	,7	165	4-7	50°	503	-3	325
11	408	613	کر	460	32-30	537	८भ्रय	رچر	295	4-10	500	ر ه ^ه	0	95
6.7	513	GIM	۸	175	1			۰.5	175	10-2	500	507	-7	155
25	514	516	1	95		Skl	543	1	215		彩	×	*	*
9-1	515	५०९	6	505	8-2	510	500	١٥	535	*	A	×	*	*
1-14	509	503	7	85	4.37	517	61 ⁵	2	125	·*	*	麥	滲	*
k,m	503	ς ₀ 3	1	250			513	2	150	苓	*	*	**	*

Débits en première approximation et d'amêtres du Conduites. "Partie 2st"

		٠				7		CAMPACATIC
110n.50n	de algo	diametre	Trongon	de Q(els)	diametre	Trongon	dé dieles	displace
5-28	21.5	200	3-2	59.9	150	38/39	29.8	150
28-31	25.7	200	2-8	54.9	200	39-40	24.0	150
31-33	25.9	200	8 - B	25.0	150	40 N	14.3	400
33-33'	27.6	260	B-2	16.6	15°	1-44	5.8	Veo
33'-5	28.3	No	d-72	10.70	150	44-U	10.0	45°
7-41	32.1	No	72-45	31.4	150	V-43	14.5	450
41-42	k0.0	400	45-24	24.2	150	W3.74	42	400
1×2-U	4°.0	150	W-36	9.5	150	125	2.14	400
U/t	60.0	150	3634	11.7	150	35-7	7.0	400
+-2	42.6	YQ	34,32	14.6	150	4-4	5.8	400
2-6	46.7	Y00	32-30	18.2	150	4-10	٨.٥	200
6.7	ع <i>ا</i> روی	200	30,20	21.3	150	102	0.4	200
7-5	₆ 7.8	200	295	24.4	150	#	*	*
9-1.	100.0	100	8.7	25.3	150	Ħ	叁	*
r, k	70·4	w50	W/37	33.7	150	#	×	¥
4-3	65.4	150	37-38	31.5	150	#	#	*

CALCUL DE MAILLES :

(Détermination des débits corrigés):

A ce niveau-là, on utilise la méthode de Hardy-Cross.

$$\Delta Q_{i} = \frac{\sum_{i=1}^{\infty} \Delta H_{i}}{2 \sum_{i=1}^{\infty} \left| \frac{\Delta H_{i}'}{Q_{i}} \right|}$$

$$A \text{Vec} : \Delta H_{i} = J_{i} \cdot L_{i} = L_{i} \cdot \frac{\text{ft. } Q_{i}^{2}}{\phi_{i} \cdot 2g \cdot S_{o}^{2}}$$

On prendra la précision de calcul:

On effectue ce calcul, en donnant des débits (choix arbitraire) pour la première approximation. Cependant on conserve les diamétres et les longueurs donnés par le bureau d'études qui a fait le projet du réseau de distribution et c'est là justement l'objet de ce supplément, c'est-à-dire la vérification dont on a parlée auparavant.

Pour plus d'explication là-dessus; explication dont va dépendre le résultat essentiel de ce supplément, on ouvre une petite parenthése :

Pour résoudre ce probléme des débits corrigés à partir des paramétres qu'on s'est fixés, on a pensé tout d'ébord à un programme sur machine T.I.59, mais vu la compléxité du réseau on a vite su qu'elle ne peut répondre à cela (nombre de pas et de mémoires insuffisant ...). Ensuite on a eu l'idée d'utiliser l'ordinateur, effectivement c'est une bonne solution et plus pratique même. Mais ce moyen est tellement rare qu'on est en droit, pratiquement, de le considérer inéxistant (surtout avec les chatacles qu'on aura de ce côte ci et le temps dont on dispose ...). Enfin de compte, on a établi un programme simple (voir la fin du supplément) sur la machine T.I. 59 qui calcule ligne par ligne.

Programme:

Programme:		
2 661 V		Red 1) Introductions:
and step Rc.	4 4	\$41- \\ \\ \Q_i \rightarrow \$570.00 \\ \$401 \\ \Q_i \rightarrow \$570.01
8 3 Rcl ÷ 3 3	9	9 4:>570 02
3 3 Rcl 7	8	Rel & ->570 03 11 7 ->570 04
Rcl 7	RCL	the precision == z=t
and a RC	4 y*	RCL 2) Résultats:
Y =	6119	19
1	7 1	RIS Appuyer sur:
+/- + 2 1 +/-	R/5 ×	
4 = 2	RCL	$\mathbb{R}I5 \Rightarrow \Delta H_i$
4 1/2 = 576	٧ = ١	$\mathbb{R}\mathbb{Z} \Longrightarrow \frac{\mathcal{L}\mathcal{H}}{\mathcal{Q}_{i}}$
χ^2 6	8	Refeter la même
A/X STO RC		Chose pour tous les mi
2nd 65e 5 =	R/S	tron consquis,
$= \frac{2^{nd}/2!}{2}$	RCL ·	Offpreyer sur:
5 2nd x7	2 570	B = ZAH:
1 RC.		RIS => E CH:/Q:
RCL STO	RIS	RIS => BQ=- \(\overline{\gamma_{\text{am}}} \)
and X GT	2no ese	Qi
x 2nd 26	! Red	Remarque:
RCL 2º	L RIS	a) si acco lintroduire
÷ 6 × 8 × 8	Rel	etintroduire Lavecle
PCL A	R/S	on aura shilo et ship
and 1 RC	= =	b) Nejamais utiliser la
÷	2 STO 12	touche [CLR]
5	1 1 1 1 1	
b	1	*

On a fait les approximations en passant par un calcul fastidieux. On est arrivé à une dizaine d'approximations et le résultat (c'est-à-dire $\triangle \mathcal{P}_i$) tournait toujours autour de 45 l/s : Ce qui donne bien entendu des pertes de charge et des pressions inadmissibles .

- PLANCHES -

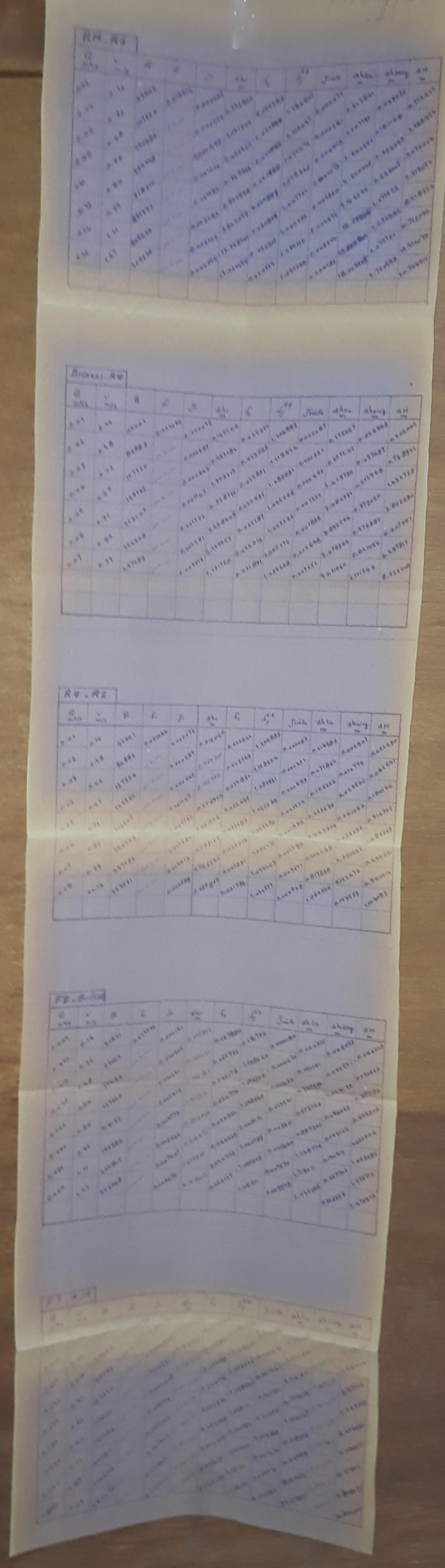
- * Nº 1 : Schema vertical de fonctionnement.
 - Echelle : 4/1000
- * Nº 2 : Plan de masse de la ville de Bouira .
 - Echelle : 1/5000
- * Nº 3 : Equipement du forage F 10 .
 - Echelles : { 1/10 1/50
- * N° 4: Profils en long des adductions suivantes : $B_r(F.10)$ -R \neq , F.S.-R2 , F.5-RM et F.7-RM.
 - Echelles : $\begin{cases} V \rightarrow 1/500 \\ H \rightarrow 1/10000. \end{cases}$
- * N° 5 : Equipement de la bâche de reprise $\mathcal{B}_r(F.10)$.
 - Echelle : 1/20
- * Nº 6 : Réseau d'adduction de la ville de Bouira .
 - Echelle : 1/10000
- * Nº 7 : Réseau de distribution de la ville de Bouira .
 - Echelle: 1/5000
- * Nº 8 : Equipement hydraulique du réservoir R7.
 - Echelle: 1/50

- BIBLIOGRAPHIE -

- 1) Alimentation en eau potable des agglomérations .
 - * J. Bonnin .
- 2) Catalogues :-pompes immergées .-Pompes horizontales.
 - * Jeumont Schneider.
- 3) Eléments de construction : Résistance à la pression intérieure .

 * Aide-mémoire.
- 4) Etude de l'armature urbaine au ressencement de 1977.

 * Secrétariat d'Etat au Plan.
- 5) Hydraulique générale et appliquée.


 * M. Carlier.
- 6) Hydraulique urbaine (tome II et III) * A. Dupont.
- 7) Longueur fluido-dynamique.* G. Lapray.
- 8) Manuel d'hydraulique générale . * A. Lencastre .

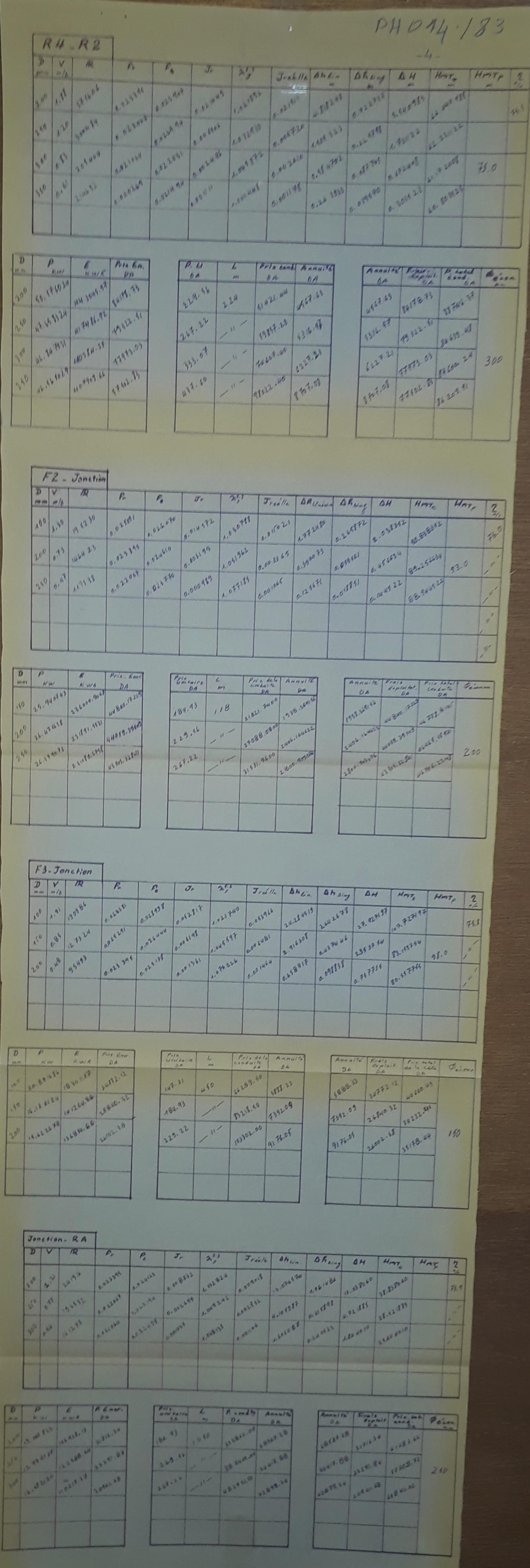
F5.	RM										
Q m3/s	V m/s	R	f-	J.	Oh-	ft	15.3	Joélle	oh lin	Shains	ДН
	0.18	42441	0.02529	0.000689	2.10203	0.028345	1.120770		13285	364929	2.197188
0.010	0.57	84883	,"/	0.002755			Andrew Contract of the Contrac	,	CONTRACTOR STATE		2:17
0.015		127324		A STATE OF THE PARTY OF THE PAR	19.53 326	0.026444		6481	THE RESIDENCE OF THE PARTY OF T	064	13.491192
The state of the s		169765		0.011019		0.026177		CONTRACTOR OF THE PARTY OF THE	A.	5,39217	1.339565
0.025		212207	1.	0.017217	54.26 \$5 \$2	0.026012	.028511	0.017108	204	37 2221 6	4.187025
		254648		0.024792		0.025901	.024104	0.025350	0.018883	.004332	1.033215
		297083			7	0.015820		The second second second		6.238432	.8T1978
		339531	1./	0.055 183		-		The second second second	1.496720 2	31:554	4120
		301.		0.00	0	.025712	.016627	.056710 175	3.150361	3123 205	562915

Q m3/5	V 14/5	R	fr	J-	Ahr m	f	75.3	Juil		. she	7. AH
0.002	0.11	16977	0.0252	0.000110	0.02534	0.031678	1.252529	0.00013	8 0.0314	3 0.004 76	0.036
0.00k	0.23	33953	111/	0.00049	0.1043743	0.028971					
0.006		50930	111	0.000992	0.22 90 85						
0.00 B	0.45	67906	16/			Control of the last of the las					
0.010	0.51	84883	/"/	1 08	0.633581	0.026956	-				
0.012	0.68	101859	/"/			Printer and the last of the la					V.
0.014	0.19	118836	1/	0.005399							A STATE OF THE PARTY OF THE PAR
.016	0.91	135812	/"/		1.621967	0.026378	The second second second				
810.	1.02	152789	1.1	0.008925		The second secon	CONTRACTOR OF THE PERSON NAMED IN				

Q -112	V 11/1	R	Fr	Jr	Dhr	F.	255	Jreelle	Bhen	Dhaing	AH
0. 500	5.43	24,000	0-02339	6 0000 7	0.0141	0.02822	4.12 2964	0.000119	0010019	0.002103	0.01012
. , . ?	0 35	40 4 92	1	0.000 387	0.029666	0.026488	1-10946	0000458	0.087.46	0.00 \$ \$ 4 \$	05934
1.013	0 18	92344	1.1	0.000 874	0-102 249	0021163	4092696	0.00911	1 2273	0.016841	129 114
.016	0.1	101 19	1"	0.0014 48	0-182	0.024075	1.07,419	0-001659	8-1963Pd	0.029372	0.22 41 1
. 20	1	13/13/24		5.00 Lu19	0285413	0-0 24 7 94	1.048460				
0211	0.46	142789	1	0.003483		0 024 5 84				1	
023	, 84	,21264	. 11/	the second secon	The same of the same of		1.043 440	-	0.41 3711		0.17.12.45
032	1.02	203115	11	0.06192	0.430418	0.024 294	1.03220	0.00 84 30	0.718745		
		229183	101	000 2814	1. 12 419	0.014 202	1.934 941		45 66 MI		-117

FS	Jenetio					1	-				
a	V	1/k	F.	J.	Ah-				DR.	Dharay	DH
0 702		15.437				0.031.00			9 962 00	0.00014	21.42
		, ,						20105	******	0.014.83	
	3.30	X1 200					10 M/A		. 4933.45	.1315	. 11
		1700		A 100 A	. 9915"		e efert	2. 45. 451	41 10 83	- 1901	g (.)?
		100			"		2,00.1515	0.00.091	40 101	19517	-M
.12	1.09	1010		, , , ,				10			si teli
	. 15	19 9 4					1. 00 156' I	3	12 74 FT	132113	42.57%
, ,		1-1				-11	, T	10000	1181 -	4111.35	100. 10
		, 115		550	-		. C (D)	and the last	0.100	12 4. 04 3	-

R 1,0 J Jirch and all a faithful a to hear the MINIMA 0.041.981. 1.11 1111 O.01.8991. 1.144.51 dalla diete sielle St. H. 1814 o. o. 2. 1119 le a contrav. J. 7651550 O. Hay sin 10/10/9 Adje A A SAME AND 19 11119 0.01 W. W. 0.00 0.111 140000 0.012x59 41.681040 (p.802.010) 36.815460 1.01 10.09 0.06 A.H.A.A. MAT 4474 17


7764

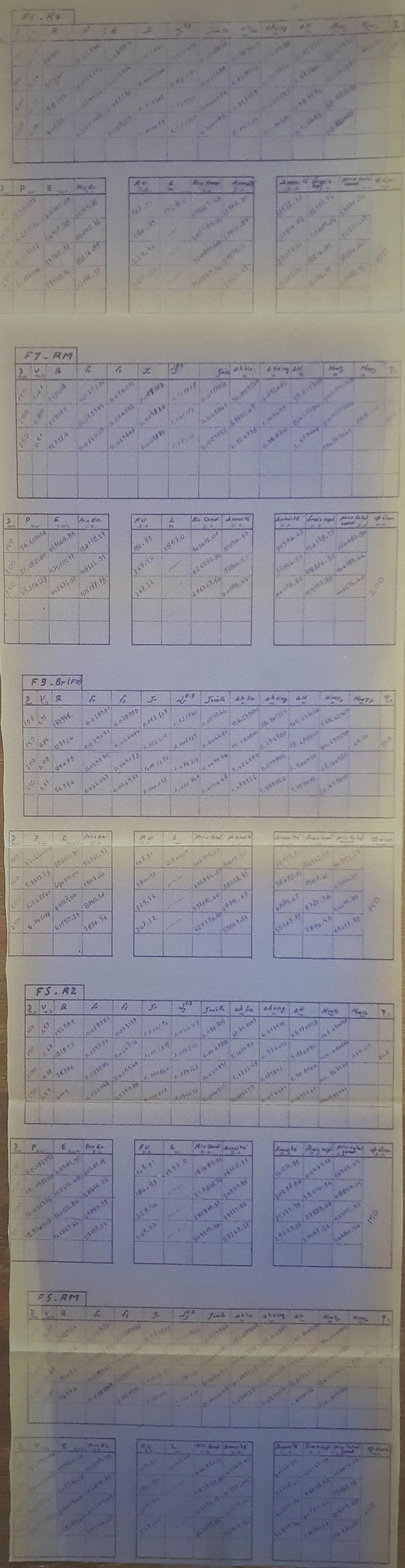
F9.1	betries]									
mols.	1 Vala	R	Fr	J.	Sha	6	1500	Trialla	ahlin.	sh sin	9. AH
0.004	0.00	19461	0.02620	0.000689	A.61H 99	0.02834	12077	0 000 777	6120	10919	2.07707
		66863	200	0.002,758	" HH100	694	1.064851	0.002.996	6.87047	0.0531	2.0000
		127024	-	0.006.98	14. 69 0 91	0.026012	1.006697	0.006481	15.16480	2.21475	N. 13952
		109765	-	0.011019	14:48191	0.026012	1.035018	0.0114.05	26.686079	"ccsoy,	10.689905
		212207	100	0.017217	10.743 HA	0.026012	1.000511	0.017100	DI. 23 CILT	6.215418	7.651535
		agains.		0.02.0792	11.013965	0.025901	1.029104	0.026390	69.41236	8.411846	68.32 8151
		297089		0.095765	44.96144	0.014010	.020920	0.0000001	30.415336	12.09250	2.707636
		200001		*.0 ke ole	108.119.00	0.025759	.018412	160 300	12.701727	5:4514.53	0.80181B
1.045	9.66	381972	~	0.096788	10.23111	, ets 712	.olecz7	6910	3.585.5	9.401219	A.122993

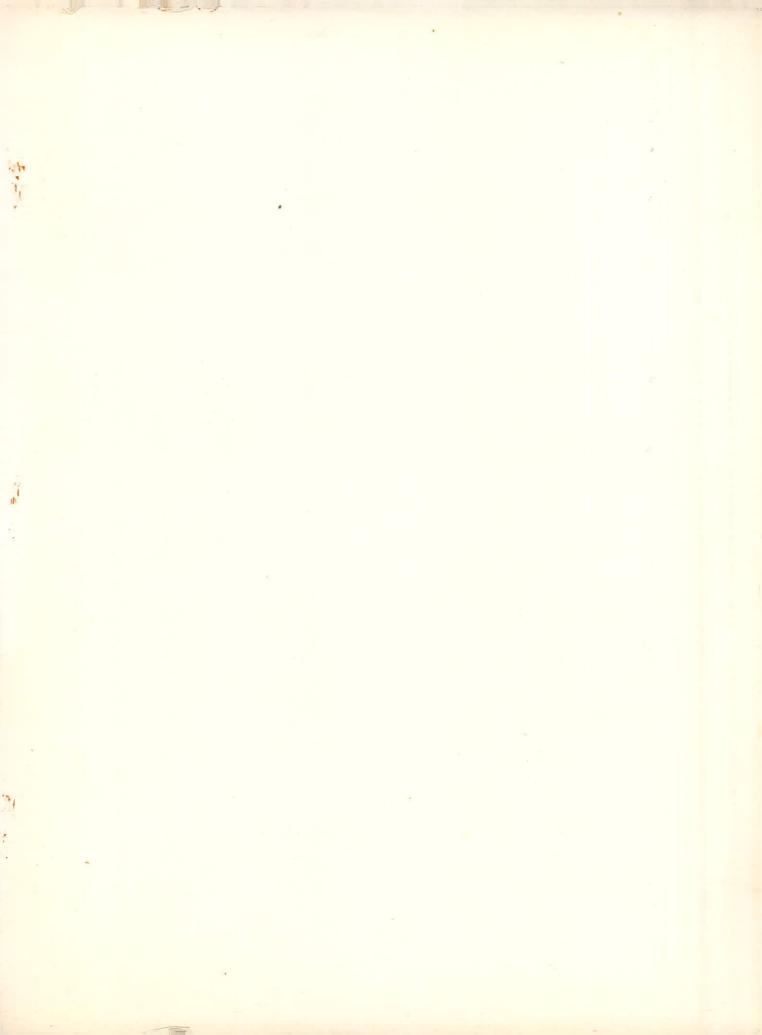
mv1	Y h	R	t	J.	Sha	f.	72.3	Treelle	Sh lin.	Sharma	ДН
0001	010	1000	0.02838	0.0000	0.911T 11º	0.005048			0.3849	0.05+tus	-
0.002	The many	14464	111/	0.0000	3 THE 241	0.032171					1.6264
0.003		00107	-	0.002113	2.001617	0.001062	1.094100	002 311	269669	160450	280110
0.008			1	0.000756	1.500 10 1 1.500 10 1 1.500 10 10 10 10 10 10 10 10 10 10 10 10 1	0.000450	1.072896	0.004030	5.9510.05	0.802714	6.159139
		62005	211	0.000069	4.40.200	0.00013	1.060611	0.006218	8.258068	1. 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.496778
-		16.04	The state of the s	0.0000	11.222.62	0029814	1060496	0.008875	11.789323	148308	3.56772
2007		99197	111	0.011502	19.2412.42	0.020626	1.043EPD	0.012007	5A89035	2.91255	0.15679
		101869	1"	0.015024	NO. 05.15.	0.029451	180 ueo.	0.016606	2.725137	2. 18 18 18 18 18 18 18 18 18 18 18 18 18	033909
.09	1.18	114502	11	0.019010	21.34021	0.020069	86198	18676	129581	OIS HER S	0.049018

200	Y's	R	2	3.	4hi	4	75.8	Juice	. Shire.	Sharing	AH
000	0.10	41881	0.0199	85 a res e161	0.011618	0.02700	0 10179	B 000 8	0 64087	1 10 11 a	0.6215
.010	0.53	01602		0.00040	a.Date 18	0.01595	1.1000	0 00067	0.7	20/120	0.6
.26	0.40	02043	1	0.001001	Malan	1917	76356		4.59175	0.014	2.9.
000		1-1020	100	2.01019	1.211.42	0.01048	1.0000	2000	~ 680103	" I STATE OF THE PARTY OF THE P	9.00
	680	14.0164	10/	0.000179	111/070	0.010 550	1.648151	0.00361	860.85	, suit	0.00
	* de _	190956	1.1		11.11.11		1.040783		1. 492458	13 83 68	13.00
	4.44	*** 011	4.1	0.001001	- Brestie	002,003	200.00	1670	10.000019	01162	9.001
.00	1.41	254690	100	0.046Ti	Marine.	- with			M. DO 0000 16.992.950 16.992.950 18.992.950 18.992.950	* 40 0 D	- 2380 Pr.
		206.79	1-1	-11265	2010	· disc.	101		218417	101	2.07.015

*	1º	R	12		ah.	1.	7,	3	dia.	dheir	84
-		100	a such	a country of	149		1000	100000		. 2000	
					" 110.1	10.0		- contra			" Hales
											A SERVE

		10.000		-	A STATE OF THE STA		. 1.81				of the !
443		1		-261		4101		40		100	- No.
-15	*11	000		2000		2.0				74.	195
		30.50							1	The state of	10
	. 81	** e.							****************	EL SUL	1325




PH01-4 /83 RA-RM 25.7 Jrealle Je 200 (0 00 HE 12 1.011154 240 212201 0.001192 1.01 1291 41 7.381938 100 0.000 148 0.020215 1.070026 10.000 8 5 W 2500 48/841 13.338197 0.7 Annult min KOVE KUI D74 DA cond. 43.321388 DA 180504.00 mon 1229.56 69330.17 (200 155324.12 576574.88 65.819121 109690,18 908948.00 1432438.00 Boths.19 267.22 1"/ 80,403.19 109550.18 190254.16 250 250 48.16 F317 509549.40 T HB6155.36 96813.68 333.01 14 B4 B40 00 100 591. 56 132161.01 96813.68 197405.24 300 65.49 FI BZ 92369.52 192369.52 224530.55 111 350 (H37.60 F4-RA Ft J-Jreelle Whiling mis mn HMTP 0.029139 152789 0.029139 7.98 2233 0.0 33803 9.179968 0.034 705 1.026692 [71.47968] 1.197335 1.63 1100 172.31 0.025291 0.026704 1.055867 0.00 3967 0.144499 101859 0.004183 0.68 0.963327 63.407826 150 1.104826 0.02.3395 1.092696 0.025583 0.080 769 62.551663 6.000 BFI 46394 0.032826 0.000 951 0.218838 200 0.50 0.022067 0.025038 0.000269 1.134614 0.000 305 61116 0.070 234 10.010 535 250 (0.2H) Prix. En. P. U Pris. cond Annuite Frais Prix. bt. KW. Pecon. 20.00 KNEIR DAd'expt DA m DA 07 11.6265 52 10 18 H8 . 60 04 33893.60 MM 19341.23 3009.79 19351.23 1100 147. 31 13009.79 230 22.361.03 90347.47 10.313639 42533.90 17166.02 3478.77 20944.20 17166.02 184.93 130 150 11 10.17.19.77 10.146 982 99127.16 16934.23 52798.90 4689.98 21624.22 /"/ BP. 68 9H 16934.23 200 229. 56 16887.97 61 H60.60 5459.40 16887.97 1250 22347.36 267.22 15459.40 / 11 CAL. Br(F10) - RT 75.3 HMTPM Tréelle HMTPm Shlin. AH m 2%. D Jr Ah sing 0.024349 0.024792 2.548868 87.595066 0.025390 1.024104 136.695069 0.025291 76.169622 254649 110 50 0.803076 0.314732 16.992453 1.040783 0.023395 0.005664 190986 0. 20.51 1001 78.0 0.022831 0.001682 0.000699 5.353838 0.022063 1.060949 54256913 152789 OPI 250 1.093481 0.021064 127324 51.512944 0.42 500 Annuité frais expl. Pris total Pecos. Aircond. Annuite P.U. 47643.27 23.014100 698630.05 49250.53 149280.51L 3000.00 (10 k. 45 150 21.481995 201859.58 U7645.23 901660.00 61133.68 89757.26 38353.28 108816.15 61173.68 (229.56 800 25750.63 100562.68 7-1209,40 267.22 in the second 99757.26 99910.00 124511.89 343.04 000 F8 - Br(FSE) D Vall 72.3 Jaiobe ah lin. 9. AH HMA 120224792 1005390 5,40 2334 10.04.701 (6.6 404 52) 4.02410 9 353440 (0.853100 10 LA 10000000 10.41 Mil 10.45 Marie 10.65 14.254 170 1401 46 (33.453716) (c.manus) 10.0101.63 (... y ...) (0.000,01) 109145 (0.011)(8 0.1014 Free Cond. Annuald Amoité frag repl Printotal decen P.U. (ALMINE) (443,64 Almio.n 3146161 acre co (44.44) A. 11 S (M) . 13 91,44,11 13141.11 224 23416.40 (2401.13) A S I L I I 219.60 100 hours with 100 hours and 100 hours are seen as a second secon 31417.45 138-21.com 3331.01

0

2%

74.2

