REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique École Nationale Polytechnique

Département Génie Civil Mémoire de projet de fin d'études Pour l'obtention du diplôme d'ingénieur d'état en Génie Civil

Etude d'un pont à poutres multiples en béton précontraint par post-tension reliant Ras El Hamra à Oued Begrat, Annaba

Réalisé par :
- GHEMIRED Mohamed Aymen
- BOUACHERIA Mohamed

Encadré par : - Mme. N. BAOUCHE, MAA - Mr. B.K. BENAZZOUZ, MCA

Présenté et soutenu publiquement le 12 juillet 2021

	Composition du Jury :	
Présidente :	Mme. M. CHERRAK	MCB. ENP
Rapporteurs :	Mr. B.K. BENAZZOUZ Mme. N. BAOUCHE	MCA. ENP MAA. ENP
Examinateurs:	Mr. S. LAKEHAL Mr. M. DEMIDEM	MCB. ENP MAA. ENP

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique École Nationale Polytechnique

Département Génie Civil Mémoire de projet de fin d'études Pour l'obtention du diplôme d'ingénieur d'état en Génie Civil

Etude d'un pont à poutres multiples en béton précontraint par post-tension reliant Ras El Hamra à Oued Begrat, Annaba

Réalisé par : - GHEMIRED Mohamed Aymen - BOUACHERIA Mohamed Encadré par : - Mme. N. BAOUCHE, MAA - Mr. B.K. BENAZZOUZ, MCA

Présenté et soutenu publiquement le 12 juillet 2021

Composition du Jury :

Présidente :	Mme. M. CHERRAK	MCB. ENP
Rapporteurs :	Mr. B.K. BENAZZOUZ Mme. N. BAOUCHE	MCA. ENP MAA. ENP
Examinateurs:	Mr. S. LAKEHAL Mr. M. DEMIDEM	MCB. ENP MAA. ENP

ENP 2021

REMERCIMENT

Nous tenons tout d'abord à remercier ALLAH le TOUT PUISSANT et MISERICORDIEUX, qui nous a donné la force et la patience de mener à terme ce modeste travail.

Nous exprimons notre reconnaissance et notre gratitude à nos encadreurs, Mme. N. BAOUCHE et Mr. B.K. BENAZZOUZ qui nous ont permis de bénéficier de leurs excellents encadrements, leurs conseils précieux, leur patience, leur aide et leur confiance. Sans cet apport considérable, nous n'aurions jamais pu achever cette étude.

Nos remerciements vont également au chef département de SAPTA d'Oued Semar Mr. A. BOULAKAKEZ qui a mis à notre disposition tous les moyens pour que notre stage se déroule dans de bonnes conditions, sans oublier le personnel (ingénieurs et techniciens) pour leur soutien moral et leurs encouragements.

Mr M. MOHAMED DAHMANE et Mr. T. SIOUANI, étaient toujours présents pour répondre à nos questions, nous les remercions sincèrement.

Nos remerciements vont également aux membres du jury pour le temps consacré à l'évaluation de notre travail.

Nous remerciements vont à tous les enseignants et tout le personnel du département Génie Civil qui ont contribué de loin ou de près à notre formation, et bien sûr nos familles, nos amis pour leur soutien et leur encouragement. ملخص

هذا العمل هو عبارة عن دراسة لجسر يربط بين راس الحمرة (شاطئ عين عشير) و واد بيقرات (شاطئ جنان الباي) في سيرايدي -عنابة ويحتوي على عرض الموقع والخصائص الرئيسية للجسر ، التصميم وحساب عناصر البنية الفوقية (عوارض اسمنتية، البلاطة الخرسانية، وسائد التحميل)، الدراسة الدينامكية بالاضافة الى دراسة البنية التحتية (الاعمدة،الاساس، الركائز الطرفية).

يتم عمل الخرسانة مسبقة الاجهاد الموصى بها باستخدام طريقة ما بعد التوتر لسببين الأول كون كبير والثاني لاسباب اقتصادية، يتم وضع النموذج بواسطة برنامج أوتوديسك روبوت 2021 فيم تم حساب حديد التسليح بواسطة برنامج روبوت اكسبار.

الكلمات الرئيسية: جسر، خرسانة مسبقة الاجهاد، اعمدة، الاساس، در اسة الديناميكية.

ABSTRACT

The aim of this study is the design of a highway viaduct that connects Ras El Hamra (Ain Achir Beach) with Oued Begrat (Djenen El Bey Beach) in Seraïdi - Annaba. The work includes a presentation of the site, the principal characteristics of the viaduct structure, the predimensioning and the calculation of the superstructure elements (beams, concrete deck, bearings mechanism). Finally, the work is ended by the dynamic study in addition of to the infrastructure design (piers, foundations, and abutments).

The recommended prestressing is carried out by the post-tension method because of the span restriction as well as economic reasons.

The modeling has been made using the Autodesk ROBOT 2021 software as for the reinforcement; it has been calculated using ROBOT Expert software.

Key words: viaduct, prestressed concrete, pier, foundation, dynamic study.

RESUME

Ce travail s'intéresse à l'étude d'un viaduc autoroutier reliant Ras El Hamra (plage de Ain Achir) et Oued Begrat (Plage Djenen El Bey) à Seraïdi- Annaba. Il comporte la présentation du site de réalisation, les principales caractéristiques de l'ouvrage, le prédimensionnement, le calcul des éléments de la superstructure (poutres, hourdis, appareil d'appui), l'étude dynamique en plus de l'étude de l'infrastructure (piles, fondation, culée).

La précontrainte préconisée est réalisée par post-tension à cause, d'une part de la longueur de la travée, et d'autre part pour des raisons économiques.

La modélisation est faite au moyen du logiciel Autodesk ROBOT 2021. Quant au ferraillage, il est effectué à l'aide de logiciel ROBOT Expert.

Mots clés : viaduc, béton précontraint, pile, fondation, étude dynamique.

Table des matières

Liste des tableaux Liste des figures Introduction générale	16
Chapitre I : Description de proiet	
I 1 Introduction	18
I 2 Données fonctionnelles	10
I.2.1 Caractéristiques géométriques	
I.2.2 Charges et surcharges	21
I.3 Données naturelles et climatiques	21
I.3.1 Température	21
I.3.2 Géotechnique	22
I.3.3 Sismologique	22
I.4 Conclusion	22
Chapitre II : Caractéristiques des matériaux	23
II.1 Introduction	24
II.2 Béton	24
II.2.1 Résistance caractéristique à la compression	24
II.2.2 Résistance caractéristique à la traction	
II.2.3 Module de déformation longitudinale de béton E	24
II.2.4 Module de déformation transversale de béton G	
II.3 États limites	
II.4 Aciers	
II.4.1 Aciers passifs	
II.4.2 Aciers actifs	
II.4.3 Diagramme contrainte déformation	
II.4.4 Contrainte de l'acier a l'ELU	
II.4.5 Contrainte de l'acier à l'ELS	27
II.5 Conclusion	
Chapitre III : Prédimensionnement et caractéristiques géométrique	es29
III.1 Introduction	
III.2 Prédimensionnement de la poutre	
III.2.1 Hauteur de la poutre h _t	
III.2.2 Largeur de la table de compression b_0	
III.2.3 Epaisseur de la table de compression e	31
III.2.4 Largeur de talon L _t	31

111.2	2.5 Epaisseur du talon e _t	
III.2	2.6 Epaisseur de l'âme en travée b _t	31
III.2	2.7 Epaisseur de l'âme aux abouts d'appuis b _a	
III.2	2.8 Epaisseur de l'hourdis E _H	
III.2	2.9 Entraxe entre deux poutres d	
III.2	2.10 Nombre de poutres N _{poutre}	
III.2	2.11 Goussets	
III.3	Détermination des caractéristiques géométriques de la poutre	
III.3	3.1 Caractéristiques géométriques de la poutre à mi- travée	
III.3	3.2 Caractéristiques géométriques de la poutre d'about	
III.4	Caractéristiques géométriques du tablier	
III.4	4.1 Largeur roulable Lr	
III.4	4.2 Largeur chargeable Lc	
III.4	4.3 Nombre de voies N _{voies}	40
III.4	1.4 Largeur des voies Lv	40
III.4	4.5 Classe de pont	40
III.5	Conclusion	41
	Chapitre IV : Charges et Surcharges	42
IV.1	Introduction	
IV.1	1.1 Poids propre des éléments porteurs CP	43
IV.1 IV.2	1.1Poids propre des éléments porteurs CPPoids propre des éléments non porteurs CCP (charges complémenta)	43 aires
IV.1 IV.2 permanentes	 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémentas) 	43 nires 44
IV.1 IV.2 permanentes IV.3	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémentas) Actions dues au traffic 	43 nires 44 45
IV.1 IV.2 permanentes IV.3 IV.3	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta s) Actions dues au traffic 3.1 Système de charge A 	43 nires 44 45 45
IV.1 IV.2 permanentes IV.3 IV.3 IV.3	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta s) Actions dues au traffic 3.1 Système de charge A 3.2 Coefficient de majoration dynamique 	43 nires 44 45 45 45 45
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta s) Actions dues au traffic 3.1 Système de charge A 3.2 Coefficient de majoration dynamique 3.3 Système de charge B 	43 aires 44 45 45 45 45 45 46
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3 IV.3	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta s) Actions dues au traffic 3.1 Système de charge A 3.2 Coefficient de majoration dynamique 3.3 Système de charge B Autres Charges 	43 aires 44 45 45 45 45 45 46 49
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3 IV.4 IV.5	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta s) Actions dues au traffic	43 aires 44 45 45 45 45 46 49 50
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3 IV.3 IV.3 IV.5 IV.5	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta s) Actions dues au traffic	43 nires 44 45 45 45 45 46 49 50 50
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3 IV.3 IV.4 IV.5 IV.5	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta s) Actions dues au traffic	43 hires 44 45 45 45 45 46 49 50 50 50
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3 IV.3 IV.4 IV.5 IV.5 IV.5 IV.5	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta s) Actions dues au traffic	43 aires 44 45 45 45 45 45 46 49 50 50 50 50 50 50
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3 IV.3 IV.4 IV.5 IV.5 IV.5 IV.5	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta s) Actions dues au traffic	43 aires 44 45 45 45 45 45 46 49 50 50 50 50 50 54 54
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3 IV.3 IV.4 IV.5 IV.5 IV.5 IV.5 IV.5	 1.1 Poids propre des éléments porteurs CP	43 aires 44 45 45 45 45 45 45 46 49 50 50 50 50 50 54 54 55
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3 IV.3 IV.3 IV.3 IV.5 IV.5 IV.5 IV.5 IV.5 IV.6 IV.6 IV.6 IV.6	 1.1 Poids propre des éléments porteurs CP	43 aires 44 45 45 45 45 45 46 49 50 50 50 50 50 50 54 54 55 57
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3 IV.3 IV.3 IV.3 IV.3	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta 5) Actions dues au traffic	43 aires 44 45 45 45 45 45 46 49 50 50 50 50 50 50 54 54 54 55 57 58
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3 IV.3 IV.3 IV.3 IV.5 IV.5 IV.5 IV.5 IV.5 IV.6 IV.6 IV.6 IV.7	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta s) Actions dues au traffic	
IV.1 IV.2 permanentes IV.3 IV.3 IV.3 IV.3 IV.3 IV.3 IV.3 IV.3	 1.1 Poids propre des éléments porteurs CP Poids propre des éléments non porteurs CCP (charges complémenta s) Actions dues au traffic	

V.2.2 Affecta	tion des charges et surcharges	59
V.2.3 Définiti	on des combinaisons de charges	60
V.3 Résultats	numériques obtenus par le logiciel ROBOT	60
V.4 Conclusio	n	62
	Chapitre VI : Etude de la précontrainte	63
VI.1 Introduction	on	64
VI.2 Précontrai	nte par post-tension	64
VI.3 Etapes de	la précontrainte par post-tension	64
VI.4 Classe de	la précontrainte	65
VI.5 Dimension	nnement de la précontrainte	65
VI.5.1 Caracte	éristiques des matériaux	65
VI.5.2 Détern	nination du nombre de câbles	66
VI.5.3 Dispos	ition des câbles	67
VI.5.4 Tracé d	des câbles	68
VI.6 Calcul des	pertes de tension des câbles de précontrainte	70
VI.6.1 Pertes	dues au frottement de l'acier dans la gaine	70
VI.6.2 Pertes	par recul d'ancrage	71
VI.6.3 Pertes	de non-simultanéité	72
VI.7 Pertes diff	érées	73
VI.7.1 Pertes	dues au retrait du béton	73
VI.7.2 Pertes	par relaxation des aciers	73
VI.7.3 Pertes	par fluage	74
VI.8 Conclusio	n	75
Chapitre VII	: Calcul justificatif des poutres et calcul des déformations	s 76
VII.1 Introduc	ction	77
VII.2 Caractér	ristiques nettes et homogènes de la section médiane	77
VII.2.1 Calcu	l des caractéristiques nettes	77
VII.2.2 Calcu	l des caractéristiques homogènes (poutre +hourdis)	78
VII.3 Phases of	le construction	78
VII.4 Vérifica	tion des contraintes aux états limites de service (ELS)	78
VII.4.1 Contra	aintes admissibles en service	78
VII.4.2 Vérifi	cation de la contrainte normale	79
VII.5 Vérifica	tion des contraintes tangentielles	80
VII.6 Calcul d	les flèches et contre flèches	81
VII.6.1 Flèche	e due au poids propre	81
VII.6.2 Flèche	e due aux surcharges	82
VII.6.3 Control	e-flèche	82
VII.6.4 Flèche	e totale	83

VII.7 Calcul des rotations	83
VII.7.1 Rotation sous le poids propre	83
VII.7.2 Rotation sous les surcharges	84
VII.7.3 Rotation d'appui sous l'effet de la précontrainte	84
VII.7.4 Rotation totale	84
VII.8 Ferraillage des poutres	84
VII.8.1 Ferraillage passif longitudinal	84
VII.8.2 Armatures transversales	85
VII.9 Vérification à l'ELU	86
VII.9.1 Justification des armatures transversales	86
VII.9.2 Justification de la rupture par l'effort tranchant	87
VII.9.3 Sécurité à la rupture en flexion	87
VII.10 Conclusion	88
Chapitre VIII : Etude de l'hourdis	89
VIII.1 Introduction	90
VIII.2 Etude de la flexion transversale	90
VIII.2.1 Moments	90
VIII.2.2 Ferraillage	91
VIII.3 Etude de flexion longitudinal (sens des poutres)	91
VIII.3.1 Moments	91
VIII.3.2 Ferraillage	92
VIII.4 Vérification de contrainte de cisaillement	92
VIII.4.1 Suivant X-X	92
VIII.4.2 Suivant Y-Y	93
VIII.5 Schéma de ferraillage	94
VIII.6 Conclusion	94
Chapitre IX : Etude de l'appareil d'appui	95
IX.1 Introduction	96
IX.2 Appareils d'appui en élastomère fretté de type B	96
IX.3 Prédimensionnement de l'appareil d'appui	97
IX.3.1 Surface de l'appareil d'appui	97
IX.3.2 Épaisseur nominale totale de l'élastomère Te	97
IX.4 Épaisseur des frettes	97
IX.5 Détermination des efforts horizontaux et leur répartition	98
IX.5.1 Actions statiques	98
IX.5.2 Actions dynamiques	99
IX.6 Critères de stabilité	100
IX.6.1 Stabilité à la rotation	100

IX.6.2	Stabilité au flambement	
IX.6.3	Stabilité au glissement	
IX.7 Ét	ude des dès d'appuis	
IX.7.1	Dimensionnement des dés d'appuis	
IX.8 Fe	rraillage des appuis	
IX.8.1	Armatures de chainage	
IX.8.2	Armatures horizontales	
IX.8.3	Frettes supérieures	
IX.8.4	Frettes inférieures	
IX.8.5	Schéma de ferraillage	
IX.9 Co	onclusion	
	Chapitre X : Etude dynamique	
X.1 In	troduction	
X.2 Co	befficient d'accélération de zone	
X.3 Cl	assification du sol	
X.4 Fa	cteur de correction d'amortissement	
X.5 Et	ude dynamique	
X.5.1	Analyse monomodale spectrale	
X.5.2	Principe de la méthode	
X.5.3	Critères de la méthode	
X.5.4	Evaluation des efforts sismiques	
X.5.5	Séisme longitudinal	
X.5.6	Séisme transversal	111
X.5.7	Composante verticale du séisme	
X.6 Co	onclusion	117
	Chapitre XI : Etude de l'infrastructure	
XI.1 In	troduction	
XI.2 Et	ude de la pile	
XI.3 Fe	rraillage des chevêtres	
XI.3.1	Charges et surcharges	
XI.3.2	Ferraillage du chevêtre du voile plein	
XI.3.3	Chevêtre voile évidé	
XI.3.4	Schéma de ferraillage	
XI.4 Fe	rraillage de Fût	
XI.4.1	Evaluation des efforts	
XI.4.2	Efforts sismiques	
XI.4.3	Charges supplémentaires	
XI.4.4	Surcharge	

XI.4.5	Charge et surcharges
XI.4.6	Combinaison des charges129
XI.4.7	Ferraillage130
XI.4.8	Vérification de flambement fût (P11) :131
XI.4.9	Schéma de ferraillage
XI.5 F	Ferraillage des semelles
XI.5.1	Charges supplémentaires
XI.5.2	Charges et surcharge
XI.5.3	Combinaison des charges
XI.5.4	Vérification des fondations136
XI.5.5	Méthode utilisée140
XI.6 H	Etude de la culée144
XI.6.1	Dimensionnement de la culée144
XI.6.2	Etude de semelle
XI.6.3	Etude et ferraillage du mur garde-grève (C2)158
XI.6.4	Etude et ferraillage de la dalle de transition (C2)160
XI.6.5	Corbeau d'appui162
XI.6.6	Mur en retour
XI.6.7	Mur frontal164
XI.7 J	oint de chaussée168
XI.7.1	Souffle
XI.7.2	Calcul du souffle des joints
XI.7.3	Choix de type de joint169
XI.8 C	Conclusion169
Conclusi	on générale
Références	s
Annexes	

Liste des tableaux

Tableau II- 1: Résistances caractéristiques	
Tableau II- 2: Modules des déformations longitudinales E	
Tableau II- 3: Module de déformation transversale G	
Tableau II- 4: Contraintes limites de compression du béton à l'E.L.U	
Tableau II- 5: Contraintes limites de compression du béton à l'E.L.S	
Tableau II- 6: Contrainte limite de compression d'acier a l'ELU	
Tableau II- 7: Contraintes limites de l'acier	
Tableau II- 8: Caractéristiques des câbles de précontrainte	
Tableau III- 1: Caractéristiques géométriques de la poutre médiane	
Tableau III- 2: Caractéristiques géométriques de la poutre intermédiaire	35
Tableau III- 3: Caractéristiques géométriques de la pourte médiane avec hourdis	
Tableau III- 4: Caractéristiques géométriques de la pour intermédiaire avec hourdis	
Tableau III- 5: Caractéristiques géométriques de la pourre d'about	
Tableau III- 6: Caractéristiques géométriques de la poutre d'about avec hourdis	
Tableau IV- 1:Récapitulatif du poids total du tablier	
Tableau IV- 2: Valeur de al (RCPR 2008)	
Tableau IV- 3: Valeurs de V_0 (RCPR 2008)	45
Tableau IV- 4: Valeurs de A en fonction du nombre de voies chargées	45
Tableau IV- 5: Valeur de bc (RCPR 2008)	
Tableau IV- 6: Charge du système Bc par essieu	47
Tableau IV- 7: Charge de système Bt	
Tableau IV- 8: Efforts de freinage	
Tableau IV-9 : Calcul des ordonnées cas 1	
Tableau IV- 10 : Calcul des ordonnées cas 2	
Tableau IV- 11 : Moments maximum	
Tableau IV- 12 : Efforts tranchants maximums	
Tableau V- 1:Combinaisons de charge	
Tableau VI- 1: Caractéristiques géométriques de la section à mi- travée	66
Tableau VI- 2 : Tracé général du câble	
Tableau VI- 3 : Valeurs de l'angle θ	71
Tableau VI- 4 : Pertes par frottement	71
Tableau VI- 5: Valeur de λ pour chaque câble	
Tableau VI- 6: Pertes par recul d'ancrage	72
Tableau VI- 7: Excentricité des câbles	
Tableau VI- 8 : Pertes dues au raccourcissement élastique du béton	73
Tableau VI- 9: Pertes instantanées	73
Tableau VI- 10: Pertes par relaxation des aciers	74
Tableau VI- 11: Pertes par fluage	74
Tableau VI- 12 : Pertes totales dues aux pertes différées	75
Tableau VI- 13 : Pertes totales	75
Tableau VII- 1: Caractéristiques brute et nette de la section médiane sans hourdis	77
Tableau VII- 2: Caractéristiques brute et nette de la section médiane avec hourdis	77

Tableau VII- 3: Caractéristiques homogènes de la section médiane (poutre + hourdis)	78
Tableau VII- 4 : Phases de vérification des contraintes	78
Tableau VII- 5: Vérification des contraintes normales	80
Tableau VII- 6: Caractéristiques brute et nette de la section d'about sans hourdis	80
Tableau VII- 7 : Caractéristiques brute et nette de la section d'about avec hourdis	81
Tableau VII- 8: Caractéristiques homogènes de la section d'about (poutre + hourdis)	81
Tableau VII- 9 : Résultats du calcul de la vérification des contraintes tangentielles	81
Tableau VII- 10: Calcul du moment de précontrainte moyenne	83
Tableau IX- 1: Efforts statiques des appareils d'appui	99
Tableau IX- 2 : Dimensionnement des dés d'appui.	103
Tableau X- 1: Coefficient d'accélération de zone	106
Tableau X- 2: Taux d'amortissement en fonction du matériau	107
Tableau X- 3: Caractéristiques des sections	113
Tableau X- 4: Rigidités longitudinales et transversales des piles (culée)	113
Tableau X- 5: Rigidités longitudinales et transversales des différents systèmes	114
Tableau X- 6: Données des raideurs longitudinale et poids des systèmes	
Tableau X-7: Période propre, spectre de réponse, force longitudinale et déplacement de chaque	
svstème	
Tableau X- 8: Données des raideurs transversale et poids des systèmes	115
Tableau X- 9: Période propre spectre de réponse force transversale et déplacement de chaque	
système	115
Tableau X-10: Période propre spectre de réponse et force verticale	117
Tableau X-11: Forces sismiques et leur déplacement	117
Tableau X- 11. Forces sistingues et leur deplacement	
Tableau XI- 1: Dimension des piles type voile évidé	120
Tableau XI- 2: Dimension des piles type voile plein	121
Tableau XL 3: Surcharges d'exploitations	121
Tableau XI- 5. Suicharges d'explorations	121
Tableau XI - 5: Combinaison des charges à l'ELU	122
Tableau XI- 5: Combinaison des charges à l'ELO	122
Tableau XI 7: Force de freinage	122
Tableau XI-7. Force de fremage.	120
Tableau XI 9: Combinaisons des charges à L'ELU	120
Tableau XI- 9. Combinaisons des charges à L'ELO	129
Tableau XI 11: Combinaisons des charges à L'ELA	129
Tableau AI- 11. Combinaisons des charges à L'ELA	
Tableau VI 12. Déaugénetif des effents abtenus nous coloular la femeille se	120
Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage	120
Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage Tableau XI- 13: Résultats de calcul Tableau XI- 14: Résultats de farmillage des fâte	130
Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage Tableau XI- 13: Résultats de calcul Tableau XI- 14 : Résultats de ferraillage des fûts	130 132 132
Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage Tableau XI- 13: Résultats de calcul Tableau XI- 14 : Résultats de ferraillage des fûts Tableau XI- 15: Charge appliqué sur la semelle Tableau XI- 16: Complexitient de la semelle	129 130 132 132 134
Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage Tableau XI- 13: Résultats de calcul Tableau XI- 14 : Résultats de ferraillage des fûts Tableau XI- 15: Charge appliqué sur la semelle Tableau XI- 16: Combinaisons de charge à l'ELU	129 130 132 132 134 135
Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage Tableau XI- 13: Résultats de calcul Tableau XI- 14 : Résultats de ferraillage des fûts Tableau XI- 15: Charge appliqué sur la semelle Tableau XI- 16: Combinaisons de charge à l'ELU Tableau XI- 17: Combinaisons de charge à l'ELS	129 130 132 132 132 134 135 135
Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage	129 130 132 132 132 135 135 135
 Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage	129 130 132 132 132 134 135 135 135
 Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage	129 130 132 132 134 135 135 135 136 137
 Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage	129 130 132 132 134 135 135 135 136 137 137
 Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage	129 130 132 132 132 134 135 135 135 136 137 137 138
 Tableau XI- 12: Récupératif des efforts obtenus pour calculer le ferraillage	129 130 132 132 132 132 135 135 135 135 136 137 137 138 138

Tableau XI- 25: Vérification au poinconnement à L'ELU	
Tableau XI- 26 : Vérification au poinconnement à L'ELS	139
Tableau XI- 27 : Vérification au poinconnement à L'ELA	140
Tableau XI- 28 : Contraintes nécessaires pour calcul de ferraillage de semelle	140
Tableau XI- 29 : Efforts verticaux et les moments appliqués sur la semelle	141
Tableau XI- 30: Résultats du ferraillage des semelles	142
Tableau XI- 31: Surcharges d'exploitations	148
Tableau XI- 32: Charges appliquées sur la semelle (cas normal)	148
Tableau XI- 33: Charges appliquées sur la semelle (cas sismique)	149
Tableau XI- 34: Surcharges appliquées sur la semelle	149
Tableau XI- 35: Combinaisons à l'ELU	149
Tableau XI- 36: Combinaisons à l'ELS	150
Tableau XI- 37: Combinaisons à l'ELA	150
Tableau XI- 38: Stabilité au renversement à l'ELU	151
Tableau XI- 39: Stabilité au renversement à l'ELS	151
Tableau XI- 40: Stabilité au renversement à l'ELA	151
Tableau XI- 41: Stabilité au glissement à l'ELU	152
Tableau XI- 42: Stabilité au glissement à l'ELS	152
Tableau XI- 43: Stabilité au glissement à l'ELA	152
Tableau XI- 44: Stabilité au poinçonnement à l'ELU	152
Tableau XI- 45: Stabilité au poinçonnement à l'ELS	153
Tableau XI- 46: Stabilité au poinçonnement à l 'ELA	153
Tableau XI- 47: Récupératif des contraintes utilisées	153
Tableau XI- 48: Efforts verticaux et moments appliqués sur le patin avant	154
Tableau XI- 49: Efforts verticaux et les moments appliqués sur le patin arrière	156
Tableau XI- 50: Sollicitations sur le mur garde-grève (C2)	159
Tableau XI- 51: Sollicitations sur la dalle de transition	160
Tableau XI- 52 : Combinaisons des charges	161
Tableau XI- 53 : Charges appliquées sur le mur frontal (cas normal)	164
Tableau XI- 54: Charges appliquées sur le mur frontal (cas sismique)	165
Tableau XI- 55: Surcharges appliquées sur le mur frontal	165
Tableau XI- 56: Combinaisons des charges à l'ELU	165
Tableau XI- 57: Combinaisons des charges à l'ELS	166
Tableau XI- 58: Combinaisons des charges à l'ELA	166
Tableau XI- 59: Sollicitations sur mur frontal à l'ELU, l'ELS et l'ELA	167

Liste des figures

Figure I-1 : Tracé en plan	19
Figure I- 2 : Profil en long	20
Figure I- 3 : Profil en travers	21
Figure I- 4: Carte de zonage (RPOA 2008)	22
Figure II- 1: Diagramme des contraintes-déformations du béton à l'E.L.U.	25
Figure II- 2: Diagramme représente la loi de comportement (contrainte-déformation) de l'acier pa	ussif
	27
Figure III- 1: Elément d'une poutre	30
Figure III- 2: Table de compression et hourdis (SETRA1996)	31
Figure III- 3: Gousset du talon	33
Figure III- 4: Gousset de la table de compression des poutres à mi-travée	33
Figure III- 5: Gousset de la table de compression des poutres d'about	33
Figure III- 6: Section de poutre à mi-travée	34
Figure III- 7: Poutres à mi-travée	35
Figure III- 8: Poutre médiane avec hourdis	36
Figure III- 9: Poutre intermédiaire avec hourdis	37
Figure III- 10: Section de poutre d'about	38
Figure III- 11: Poutre d'about avec hourdis	39
Figure III- 12: Largeur chargeable et largeur roulable (RCPR2008)	40
Figure IV- 1: Variation de la section de la poutre	43
Figure IV-2 : Système de charges Bc (RCPR 2008)	46
Figure IV- 3: Système de Br (RCPR 2008)	47
Figure IV- 4: Système de charge Bt (RCPR 2008)	47
Figure IV- 5: Système de charge Mc120 (RCPR2008)	49
Figure IV- 6: Convoi D240 (RCPR2008)	49
Figure IV- 7: Charge sur garde-corps (RCPR2008)	50
Figure IV- 8: Poutre sous le poids propre de tablier	50
Figure IV- 9: Poutre sous la Surcharge A(L)	51
Figure IV- 10: Poutre sous la surcharge Bc cas 1	51
Figure IV- 11: Surcharge Bc cas 2	52
Figure IV- 12 : Surcharge Bt	53
Figure IV- 13: Ligne d'influence sous-système militaire Mc120	53
Figure IV- 14 : Ligne d'influence sous charge exceptionnelle D240	54
Figure IV- 15: Poids propre de tablier	54
Figure IV- 16 : Surcharge A(L)	55
Figure IV- 17 : Surcharge Bc	55
Figure IV- 18 : Surcharge Bt	56
Figure IV- 19 : Surcharge Mc120	56
Figure IV- 20 : Surcharges D240	56
Figure V- 1:Définition des poutres, lignes de constructions, dalle, appui	59
Figure V- 2: Affectation des charges complémentaires permanentes (CCP)	59
Figure V- 3: Affectation des surcharges	60
Figure V- 4: Surcharge roulante	60

Figure V- 5: Moment fléchissant du au poids propre de la poutre + dalle	61
Figure V- 6: Effort tranchant du au poids propre de la poutre+ dalle	61
Figure V- 7: Diagramme du moment fléchissant sous la combinaison la plus défavorable à l'ELS.	61
Figure V- 8: Diagramme des efforts tranchants sous la combinaison la plus défavorable à l'ELS	61
Figure V- 9: Diagrammes des moments fléchissant sous la combinaison la plus défavorable à l'EL	U 62
Figure V- 10: Diagramme des efforts tranchant sous la combinaison la plus défavorable à l'ELU	62
Figure VI- 1: Etapes générales de réalisation de la précontrainte	64
Figure VI- 2:Disposition des câbles à l'about	68
Figure VI- 3: Disposition câbles à mi- travée	68
Figure VI- 4 : Tracé général du câble	70
Figure VI- 5: Diagramme des tensions du câble	71
Figure VII- 1. Diagramme des moments	83
Figure VII-2 : Diagramme des moments	05
Figure VII 2 : Diagramme des contrainte à mi travée	04
Figure VII-4 : Formaillage pageif de la poutre	05
Figure VII- 4 : Ferrainage passif de la poutre	88
Figure VIII- 1 : Section d'étude	90
Figure VIII- 2 : Moment Mxx sous la combinaison 1.35G+1.35D240	90
Figure VIII- 3 : Moment Mxx sous la combinaison G+D240	90
Figure VIII- 4: Section dalle avec ferraillage	91
Figure VIII- 5 : Moment Mvv sous la combinaison 1.35G+1.35D240	91
Figure VIII- 6 : Moment Mvv sous la combinaison G+D240	92
Figure VIII- 7: Section dalle avec ferraillage	92
Figure VIII- 8: Effort tranchant sous la combinaison (1.35G+1.6Bc)	92
Figure VIII- 9: Effort tranchant sous la combinaison (1.35G+1.35D240)	
Figure VIII- 10 : Ferraillage de l'hourdis	94
Figure IX- 1: Constitutions d'un appareil d'appui (S.E.T.R.A.2000)	96
Figure IX- 2: Dimensions de l'appareil d'appui	98
Figure IX- 3: Rotation angulaire de l'appareil d'appui	. 100
Figure IX- 4: Dimension de Dés d'appuis	. 103
Figure IX- 5 : Ferraillage de dés d'appui	. 104
Figure V. 1: Saisma longitudinal (PPOA 2008)	100
Figure X-1. Seisine foligitudinal (Kr OA2008)	112
Figure A-2. Section equivalence des volles evidees	116
Figure A- 5: Disposition des masses	. 110
Figure X- 4: Schema explicatif de la methode	. 116
Figure XI- 1: Dimensions des piles	. 120
Figure XI- 2: Méthode de console courte	. 123
Figure XI- 3: Moment à l'ELS	. 123
Figure XI- 4: Moment à l'ELU	. 123
Figure XI- 5: Moment à l'ELU	. 124
Figure XI- 6 : Moment à l'ELS	. 125
Figure XI- 7 : Section de chevêtre avec ferraillage	. 125
Figure XI- 8: Schéma de ferraillage de chevêtre de pile évidé	. 126
Figure XI- 9: Schéma de ferraillage de chevêtre de pile plein	. 126
Figure XI- 10 : Distribution des efforts sur le voile	. 127
-	

Figure XI- 11: Section de la pile avec ferraillage.	
Figure XI- 12: Longueur de flambement.	131
Figure XI- 13 : Ferraillage de fût de pile 11	
Figure XI- 14: Ferraillage de fût de pile 09	
Figure XI- 15 : Repère de calcul des moments	
Figure XI- 16: Modèle de Meyerhof	137
Figure XI- 17 : Méthode de console.	
Figure XI- 18: Distribution de contrainte à l'ELU, l'ELS et l'ELA	141
Figure XI- 19 : Schéma de ferraillage de semelle	143
Figure XI- 20: Eléments constitutifs de la culée	144
Figure XI- 21: Dimensions de la culée	144
Figure XI- 22 : Repère de calcul des moments	148
Figure XI- 23: Méthode de la console	154
Figure XI- 24: Distribution des contraintes à l'ELU, l'ELS et l'ELA	154
Figure XI- 25: Distribution de contraintes à l'ELU, l'ELS et l'ELA	155
Figure XI- 26: Ferraillage de la semelle	158
Figure XI- 27: Ferraillage de mur garde de grève	160
Figure XI- 28: Ferraillage de la dalle de transition	
Figure XI- 29: Ferraillage de corbeau	162
Figure XI- 30 : Ferraillage de mur en retour	164
Figure XI- 31: Repère de calcul des moments	164
Figure XI- 32 : Schéma de ferraillage d mur frontal	168
Figure XI- 33 : Joint de chaussé	168
Figure XI- 34: Souffle (SETRA1996)	168
Figure XI- 35: Domaine d'emploi des différentes familles de joint (SETRA1996)	169

Introduction générale

Le pont est généralement défini comme étant un ouvrage permettant de franchir un obstacle naturel constitué par une rivière ou une gorge profonde ou une autre voie de circulation.

Il est constitué de deux parties, qui sont :

- La superstructure : c'est la partie supérieure du pont, elle comprend le tablier et les appareils d'appuis.
- L'infrastructure : c'est la partie inferieur du pont, elle comprend les piles, les culées et les fondations.

On distingue plusieurs types d'ouvrage :

- Ponceau : Petit pont à une seule arche, une seule travée.
- Aqueduc : Pont supportant un canal, une conduite d'eau.
- Passerelle : Pont souvent étroit, réservé aux piétons.
- Viaduc : Pont de grande longueur, généralement à plusieurs arches, permettant le franchissement d'une vallée par une route ou une voie ferrée.

Le but principal de l'ingénieur en génie civil est d'étudier le projet en essayant de minimiser le cout et de maximiser la sécurité.

Notre travail consiste à l'étude d'un viaduc qui se trouve à l'ouest d'Annaba. Il fait partie de l'autoroute reliant Ras El Hamra (plage de Ain Achir) et Oued Begrat (Plage Djenen El Bey) Seraïdi.

Pour cette étude, nous avons structuré notre mémoire en onze chapitres.

- ✤ Le chapitre I s'intéresse à la présentation du projet.
- ✤ Le chapitre II présente les caractéristiques des matériaux utilisés.
- Le chapitre III est entièrement consacré au prédimensionnement des poutres et du tablier.
- Le chapitre IV porte sur la détermination des différentes charges et surcharges appliquées sur l'ouvrage.
- La modélisation de tablier faite à l'aide de logiciel ROBOT afin de déterminer les sollicitations appliquées aux poutres, nous avons. Ce travail figure dans le chapitre V.
- Quant à l'étude de la précontrainte, elle est détaillée dans le chapitre VI.
- ✤ Le calcul justificatif des poutres se trouve au chapitre VII.
- L'étude de hourdis et des appareils d'appuis figure respectivement dans les chapitres VIII et IX.
- ✤ Le chapitre X est dédié à l'étude dynamique.
- ✤ Le dernier chapitre est consacré à l'étude de l'infrastructure.

Enfin, une conclusion générale relatant les grandes lignes de notre étude clôture ce travail.

Chapitre I : Description de projet

Chapitre I : Description de projet

I.1 Introduction

Le présent travail a pour objectif l'étude d'un pont qui se trouve entre les points kilomètres PK1+513.119 à PK1+968.313 de l'itinéraire. Il fait partie de l'autoroute reliant Ras El Hamra (plage de Ain Achir) et Oued Begrat (Plage Djenen El Bey) à Seraïdi dans la wilaya d'Annaba.

Pour la conception de n'importe quel type d'ouvrage, nous avons besoin de connaitre les données fonctionnelles et naturelles.

I.2 Données fonctionnelles

I.2.1 Caractéristiques géométriques

a. Tracé en plan

Le tracé en plan représenté dans la FigureI-1 est défini comme étant la projection horizontale sur un repère cartésien topographique de l'ensemble des points définissant le tracé de la route D'après la figure, on voit que le pont est un pont droit.

b. Profil en long

Un profil en long de voie est une coupe longitudinale qui passe par l'axe de la route (Fig.I-2), l'ouvrage à étudier dans le cadre de ce travail est composé de 13 travées :

- 2 travées de rives (34.59 m vers Ras El Hamra et 34.55 m vers Oued Begrat).
- 11 travées courantes (35.10 m).

Figure I-1: Tracé en plan

Figure I- 2 : Profil en long

Chapitre I : Description de projet

c. Profil en travers

Par définition le profil en travers est une coupe transversale dans le plan perpendiculaire de l'axe de la route (Fig.I-3), il est constitué de :

- Un tablier (11m)
- Un dévers (2.5% vers l'extérieur).
- Deux corniches.
- Deux glissières de sécurité.
- Deux gardes corps.

Figure I- 3 : Profil en travers

I.2.2 Charges et surcharges

a. Charges permanentes

Ce sont des charges qui ne varient pas dans le temps, elles comprennent :

- Le poids des éléments porteurs : poutres et dalle.
- Le poids des éléments non porteurs dont l'existence est imposée par la fonction de l'ouvrage comme les trottoirs, les corniches, les garde-corps, les glissières, le revêtement et la tôle.

b. Charges variables

Ce sont des charges qui varient dans le temps et elles sont définies souvent par le règlement R.C.P.R 2008, elles comprennent :

- Charge d'exploitation : pour un pont routier, il s'agit du système de charge A, B, et le système de charge militaire et les convois exceptionnels.
- Charges climatiques comme la température.
- Actions accidentelles : les chocs d'un bateau ou d'un véhicule sur une pile de pont ou l'effet d'un séisme.

I.3 Données naturelles et climatiques

I.3.1 Température

Les principales données concernant la température sont :

- Variation de température (Annaba Nord d'Algérie) : ±35°C
- Retrait et fluage (exprimés en différence de température) : -20°C
- Coefficient de dilatation linéaire de poutre principale : 10⁻⁵

I.3.2 Géotechnique

Les données géotechniques sont nécessaires afin d'obtenir une implantation d'appuis plus raisonnable et stable et déterminent la portance du sol de fondation. Selon le rapport de sol établi par le bureau d'étude, les résultats obtenus résultent de sondages carottés, de forages et des essaies au laboratoire (Annexe 1). À partir de ces résultats, le choix s'est porté sur des fondations superficielle (site rocheux).

I.3.3 Sismologique

L'ouvrage est classé à la zone sismique IIa (sismicité moyenne) selon le règlement parasismique Algérien (RPOA 2008).

Figure I- 4: Carte de zonage (RPOA 2008)

I.4 Conclusion

Les données précédentes (fonctionnelles et naturelles) sont indispensables pour mener à bien n'importe quelle étude.

II.1 Introduction

Le dimensionnement des éléments composant la structure du pont est étroitement lié aux caractéristiques des matériaux utilisés. Pour cette étude, les caractéristiques des matériaux sont conformes aux prescriptions du règlement BAEL 91 modifie 99.

II.2 Béton

Le béton est un mélange du ciment, de sable, de gravier, d'eau et éventuellement des adjuvants ou d'autres ajout afin d'améliorer ou de modifier certaines caractéristiques.

La masse volumique du béton est de 25 kN $/m^3$.

II.2.1 Résistance caractéristique à la compression

La résistance du béton à la compression simple est mesurée par des éprouvettes cylindriques et cubiques âgées de 28 jours. Pour cette étude, les résistances à la compression à 28 jours f_{c28} sont représenté dans le Tab.II-1.

II.2.2 Résistance caractéristique à la traction

La résistance à la traction est liée à la résistance de compression par la relation suivante (Tab.II-1) :

$f_{t28} = 0.6 + 0.06 f_{c28}$

Tableau II-	1:	Résistances	caractéristiques
-------------	----	-------------	------------------

	fc28 (MPa)	ft28 (MPa)
Béton pour semelles et les élévations	27 MPa	2.22 MPa
Béton pour poutres et la dalle	40 MPa	3 MPa

II.2.3 Module de déformation longitudinale de béton E

On définit deux modules de déformation longitudinale (Tab.II-2) :

- Module de déformation instantanée (courte durée <24h) : $E_{i28} = 11000 \sqrt[3]{f_{c28}}$
- Module de déformation différée (longue durée) : $E_{v28} = \frac{11000}{2} \sqrt[3]{f_{c28}}$

rubicuu ir 2. modules des derormations fongradmates E					
	Ei28(MPa)	Ev28(MPa)			
Béton pour semelles et les élévations.	33000	11100			
Béton pour les poutres et la dalle.	37619.47	12539.82			

Tableau II- 2: Modules des déformations longitudinales E

II.2.4 Module de déformation transversale de béton G

Il est donné par la formule suivante (Tab.II-3) :

$$G = \frac{E_{i28}}{2(1+\nu)}$$

 ν : coefficient de poisson est le rapport de déformation transversale à la déformation longitudinal.

v = 0.2 à l'état limite de service.

v = 0 à l'état limite ultime.

Tableau II- 3: Module de déformation transversale G					
ELS (MPa) ELU (MPa)					
Béton pour semelles et les élévations	13750	16500			
Béton pour poutres et la dalle	15674.77	18809.735			

II.3 États limites

Les états limites sont les limites dans lequel les structures ne satisferont plus aux normes exigées par les règlements si elle dépasse ces limites.

Il existe 2 états de limites :

- Etat limite ultime ELU : borné par les limites de résistance du béton et des armatures.
- Etat limite de service ELS : borné par des limites de déformation ou de fissuration des éléments.

a. Etat limite ultime ELU

Les états limites ultimes sont les états associés à la ruine d'une structure par l'atteinte de la capacité portante maximale de la structure. Ils ultimes consistent à vérifier qu'elle ne subit pas de déformation irréversible sous la charge.

La contrainte limite de compression du béton à l'E.L.U est définie par la formule suivante :

$$f_{bu} = \frac{0.85 f_{c28}}{\gamma_b}$$

 $\gamma_b = 1.5$ dans le cas d'une situation durable.

 $\gamma_b = 1.15$ dans le cas d'une situation accidentelle.

La figure ci-dessous représente la loi de comportement du béton, c'est-à-dire la courbe contrainte de compression en fonction de la déformation.

Figure II- 1: Diagramme des contraintes-déformations du béton à l'E.L.U.

Dans le Tableau II-4 figure les contraintes limites de compression du béton :

Tableau II- 4: Contraintes limites de	e compression	h du béton à l'E.L.U	

	Υb	$f_{bu}(MPa)$
Béton pour les poutres et la dalle	1.5	22.67
Béton pour les semelles et les élévations	1.5	15.3

b. Etat limite de service ELS

Les états limites de service sont les états dans lequel la structure n'est plus satisfaite aux conditions d'exploitation et les conditions de durabilité.

Les états limites de service consistent à vérifier que leur déformation élastique reste compatible avec le fonctionnement et aussi l'ouverture des fissures.

La contrainte limite de compression du béton à l'E.L.S est définie par la formule:

 $\sigma_{bc} = 0.6 f_{c28}$ en construction (on prend dans les calcul). $\sigma_{bc} = 0.5 f_{c28}$ en service.

Tableau II-	5: (Contraintes	limites de	e compi	ression	du	béton	à 1	'E.L.S	3
I ubicuu II	5.0	Jonnanicos	minicos a	e compi	CODICIL	uu	occon	uı		^

	σ_{bc} (Service)	$\sigma_{bc}(contruction)$
Béton pour les poutres et la dalle	20 MPa	24 MPa
Béton pour les semelles et les élévations	13.5 MPa	16.2 MPa

II.4 Aciers

Les aciers sont principalement employés dans le cadre de la fabrication béton armé (armatures) ou béton précontraint (câbles, torons...). On utilise deux types d'acier dans les ouvrages en béton, les armatures dites passives représentant les armatures classiques du béton armé et les armatures dites actives qui sont les câbles de précontrainte.

- Les aciers passifs reprennent les efforts tranchants pour limiter la fissuration.
- Les aciers actifs concernent la maintenance de la précontrainte.

II.4.1 Aciers passifs

Les armatures passives sont des armatures utilisées dans le béton armé, elles ne sont mises en tension que par la déformation de l'élément. Elles sont nécessaires pour le montage, pour reprendre les efforts tranchants et pour limiter la fissuration.

Les aciers utilisés dans notre étude sont des armatures à haute adhérence de nuance FeE500 avec un module de Young égal 1.95×10^5 MPa.

II.4.2 Aciers actifs

Les aciers actifs sont des aciers a haute capacité qu'on utilise dans la construction en béton précontraint. Il peut être présent sous forme de fils, de torons, de câbles, ou même de barres.

- Les barres sont courtes et droites. Elles sont utiles pour des applications spéciales comme les ancrages dans le sol.
- Les fils (jusque 6 mm de diamètre) conviennent pour les mises en tension de « précontrainte » en atelier (tracé rectiligne). Ils peuvent être groupés par 6 à 8 et former des torons.
- Les câbles sont constitués de fils ou de torons. Leur mise en œuvre en post-contrainte permet de leur donner un tracé comportant des courbures (tracé non rectiligne). Ils sont utilisés lorsque des efforts importants sont requis.

La précontrainte est réalisée par post-tension.

Les câbles utilisés dans notre cas sont des T15.

II.4.3 Diagramme contrainte déformation

La loi de comportement (contrainte-déformation) de l'acier passif est représentée dans la figure ci-dessous :

Figure II- 2: Diagramme représente la loi de comportement (contrainte-déformation) de l'acier passif

II.4.4 Contrainte de l'acier a l'ELU

La contrainte limite de l'acier à l'état limite ultime est définie par :

$$f_{su} = \frac{f_e}{\gamma_s}$$

Tableau II- 6: Contrainte limite de compression d'acier a l'ELU

γ_s	f _{su}
1.15	434.75 MPa
1	500 MPa

 $\gamma_s = 1.15$ Pour les situations durables. $\gamma_s = 1$ Pour les situations accidentelles.

Figure II-3 : Diagramme contrainte-déformation (situation durable à gauche et situation accidentelles à droite).

II.4.5 Contrainte de l'acier à l'ELS

La contrainte limite de l'acier dépend de la nature des fissurations (Tab. II-7) :

Tableau II- 7: Contraintes limites de l'acier

Fissuration	Formule de vérification
Fissuration non préjudiciable	Pas de limitation
Fissuration préjudiciable	$\overline{\sigma_{st}} < Min\left(\frac{2}{3}f_e; 110\sqrt{\eta f_{t28}}\right)$
Fissuration très préjudiciable	$\overline{\sigma_{st}} < Min\left(\frac{1}{2}f_e; 90\sqrt{\eta f_{t28}}\right)$

 η : Coefficient de fissuration.

 $\eta = 1.6$ Pour les aciers HA.

 $\eta = 1$ Pour les aciers ronds lisses.

On prend pour tout :

 $\overline{\sigma_{st}} = 241 MPa$ pour les poutres (Fissuration préjudiciable et acier HA). $\overline{\sigma_{st}} = 228.63MPa$ pour la dalle et les élévations (Fissuration préjudiciable et acier HA). $\overline{\sigma_{st}} = 207.31MPa$ pour les semelles (Fissuration préjudiciable et acier HA). Les caractéristiques des armatures de précontrainte sont résumés dans le tableau suivant :

Contrainte caractéristique garantie	$f_{peg} = 1643 MPa$
La valeur max de la tension à l'origine $\sigma_{p0} \{ \sigma_{p0} \le Min (0.8 f_{prg}; 0.9 f_{peg}) \}$	1478 MPa
Contrainte de rupture garantie	$f_{prg} = 1860 \text{ MPa}$
Module d'élasticité	Ep = 195000 MPa
Section droite d'un toron	A _{p-toron} =140 mm ²
Section d'un câble	Ap= 1680mm ²
Diamètre de toron	15.2 mm
Poids d'un toron	1.18 kg/m
Coefficient pris pour l'armature TBR μ_0	$\mu_0 = 0.43$
Diamètre du gain	D int = 80 mm
Coefficient de relaxation des câbles à 1 000 heures	$\rho = 2.5\%$
Coefficient de recul d'encrage	g =6 mm
Coefficient de frottement en courbe	$f = 0.18 \text{ rd}^{-1}$
Coefficient de frottement en ligne (déviation parasitaire)	$\phi = 0.002 \text{ m}$

Tablacu II & Caractáristiques des câbles de

II.5 Conclusion

Les principales caractéristiques des matériaux utilisés pour cette ouvrage sont :

Pour la précontrainte : des câbles composés de torons (T15).

Pour le béton armé : des aciers à haute adhérence FeE500 et une résistance à la compression $f_{c_{28}} = 27$ MPa pour les semelles et les élévation. $f_{c28} = 40$ MPa pour la dalle et les poutres.

III.1 Introduction

Le prédimensionnement de la poutre est fait selon le règlement SETRA 1996 (VIPP) et pour les caractéristiques géométriques de tablier, on a utilisé le règlement RCPR 2008

III.2 Prédimensionnement de la poutre

Pour cette étude, on a choisi des poutres en section I avec un espacement entre les poutres très réduis pour éviter l'utilisation des dallettes à grandes largeurs et limiter l'épaisseur de la table de compression.

Figure III- 1: Elément d'une poutre

III.2.1 Hauteur de la poutre ht

La hauteur des poutres est un paramètre très important car si la hauteur des poutres préfabriquée est trop grande, elle risque de présenter une trop grande prise au vent. Dans le cas contraire, la réduction de la hauteur conduit rapidement à une augmentation considérable des quantités d'acier de précontrainte et même des sections de béton. C'est pourquoi, on considère généralement que l'élancement optimal L/ht se situe entre 17 et 20 (SETRA 1996) On a :

$$\frac{L}{20} \le h_t \le \frac{L}{17}$$

L= 35.1 m h_t= hauteur totale (poutre + hourdis)

La longueur maximale des poutres est de L=35.1 m.

Donc : 1.75 m \leq h t \leq 2.05 m => On prend : h t =2 m

III.2.2 Largeur de la table de compression b₀

La figure III.2 représente les dimensions de la table de compression et l'hourdis général.

Figure III- 2: Table de compression et hourdis (SETRA1996)

La largeur de la table doit être telle que :

 $0.6 h_t \le b_0$

Alors :

 $1.2 \text{ m} \le b_0 \Longrightarrow$ On prend : $b_0 = 1.2 \text{ m}$.

III.2.3 Epaisseur de la table de compression e

Elle doit être :

 $10cm \leq e \leq 15cm$

On fixe : e = 12cm.

III.2.4 Largeur de talon Lt

Le talon d'une poutre constitue la fibre inférieure de la structure, son dimensionnement se fait à la flexion et doit permettre de loger les câbles de précontrainte dans de bonnes conditions d'enrobage et d'espacement (SETRA1996).

Sa largeur L_t est généralement comprise entre 0.4 et 0.6 m, et son épaisseur e_t est habituellement comprise entre 0.1 et 0.2m, donc :

 $40 \text{ cm} \le L_t \le 60 \text{ cm}$

On fixe : $L_t = 60 \text{ cm}$

III.2.5 Epaisseur du talon et

Elle est comprise entre 10 cm et 20 cm

 $10 \text{ cm} \le e_t \le 20 \text{ cm}$

On fixe : $e_t = 20$ cm.

III.2.6 Epaisseur de l'âme en travée bt

En zone médiane où l'effort tranchant est faible, les âmes sont dimensionnées au minimum constructif dans le but d'alléger le plus possible les poutres. Ce minimum doit également respecter les dispositions réglementaires de BPEL91, notamment les conditions d'enrobage des armatures passives et des armatures de précontrainte dans les zones où les câbles remontent dans l'âme (minimum 3 fois le diamètre de la gaine de câble de précontrainte) (SETRA1996). On prend : $b_m = 20$ cm.

En zone intermédiaire, les âmes sont dimensionnées pour résister à l'effort tranchant, donc de préférence augmenter l'épaisseur d'âme, appelé blochet, sur une longueur qui peut atteindre le quart de la portée. On prend : $b_i = 30$ cm.

III.2.7 Epaisseur de l'âme aux abouts d'appuis ba

Pour les zones d'about, l'épaisseur de l'âme doit être grande à cause de :

- L'augmentation des efforts tranchants.
- Permettre de l'emplacement des encrages de câbles de précontrainte (SETRA). Cette épaisseur est généralement au voisinage de 50 cm.

Pour raison de sécurité et de résistance, on prend l'épaisseur de l'âme égale à la largeur de talon : b_a = 60cm.

III.2.8 Epaisseur de l'hourdis E_H

En général, l'épaisseur de la dalle varie selon l'espacement entre axes des poutres, plus l'entre axes est grand plus l'épaisseur de la dalle est grande pour répondre mieux aux efforts de flexions transversales, l'épaisseur de la dalle est comprise entre 0.20m et 0.30m. $20 \text{cm} \le \text{E}_{\text{H}} \le 30 \text{cm}.$

On prend une épaisseur E $_{\rm H}$ = 20 cm => h $_{\rm p}$ = 1.8 m

III.2.9 Entraxe entre deux poutres d

Il est compris entre 1.5m et 2.5m :

 $1.5 \leq d \leq 2.5 m$

On prend d = 1.6 m.

III.2.10 Nombre de poutres N_{poutre}

Le nombre de poutres est déterminé par le rapport entre la largeur et l'espacement entre les poutres.

$$N_{poutre} = E\left(\frac{L_a}{d}\right) + 1$$

Où,

 $L_a = L_T - b_0 = 11 - 1.2 = 9.8 m$ $L_a : \text{entraxe entre deux poutres de rive.}$ $L_T : \text{largeur de tablier}$

Soit :

$$N_{poutre} = E\left(\frac{9.8}{1.6}\right) + 1 = 7.125 => On prend N_{poutre} = 7$$

III.2.11 Goussets

Le gousset est l'angle disposé pour permettre d'améliorer la section et de placer les armatures d'acier et les câbles de précontrainte.

a. Gousset du talon

La tangente est généralement comprise entre 1 et 1.5, On prend tan (α) =1

L'angle du talon est :

 $\alpha_3 = 45^{\circ}$ $e_3 = 20$ cm. pour la poutre médiane $e_3 = 45^{\circ}$ $e_3 = 15$ cm. pour la poutre intermédiaire

La figure suivante représente ces dimensions :

Figure III- 3: Gousset du talon

b. Gousset de la table

• Pour la section médiane

Les angles de la table sont déterminés comme ce qui suit :

La tangente de α_2 est généralement comprise entre 1 et 1.5 et son épaisseur est au voisinage de 15 cm. Si on prend $e_2 = 15$ cm, la distance e_1 va être très petit pour cette raison on prend : tan (α) =1 et e_2 =10cm :

 $\alpha_2 = 45^{\circ}$ $e_2 = 10 \text{ cm}$ pour la poutre médiane $e_2 = 5 \text{ cm}$ pour la poutre intermédiaire

Par suite on trouve : $\alpha_1 = 7^\circ \Rightarrow e_1 = 5 cm$

La figure suivante représente ces dimensions :

Figure III- 4: Gousset de la table de compression des poutres à mi-travée

• Pour la section d'about

 $\alpha_4 = 7^{\circ} => e_4 = 3.5 cm$

La figure suivante représente ces dimensions :

Figure III- 5: Gousset de la table de compression des poutres d'about

III.3 Détermination des caractéristiques géométriques de la poutre

Un formulaire détaillé de la détermination des caractéristiques géométriques des sections étudiées se trouve dans l'annexe 2.

III.3.1 Caractéristiques géométriques de la poutre à mi- travée

Les caractéristiques sont déterminées en divisant la section de la poutre en sept sections qui sont mentionnées dans la figure III-6 :

Figure III- 6: Section de poutre à mi-travée

a. Poutre médiane sans hourdis

Les caractéristiques géométriques sont indiquées dans le tableau III-1 :

Section	$A_i(cm^2)$	Y _i (cm)	$S_{i\Delta}$ (cm ³)	I_{0i} (cm ⁴)	$I_{\Delta i}$ (cm ⁴)	
Section 1	1200	10	12000	40000	160000	
Section 2 (\times 2)	400	26.66	10664	8888.88	293191.12	
Section 3	2960	94	278240	5402986.667	31557546.67	
Section 4 $(\times 2)$	100	159.66	15966	555.55	2549687.11	
Section 5 $(\times 2)$	100	165.5	16550	208.33	2739233.33	
Section 6 $(\times 2)$	200	166.33	33266	277.77	5533411.55	
Section 7	1440	174	250560	17280	43614720	
$A_{(brute)}=6400 \text{ cm}^2$		S _(brute) =617246 cm ³		$I_{\Delta(brute)}$ =86447789.78 cm ⁴		
A(nette)=6080		$S_{(nette)} = 586323.7 \text{ cm}^3$		I Δ(nette)=77803010.8 cm ⁴		
v'=96.45 cm	'=96.45 cm v= 83.55 cm		I _G =26914413.08 cm ⁴			
			$I_{G(nette)} = 24222971.77 \text{ cm}^4$			
ρ=49.4%						
b. Poutre intermédiaire sans hourdis

Les caractéristiques géométriques sont indiquées dans le tableau III-2 :

Section	A _i (cm ²)	Y _i (cm)	$S_{i\Delta}$ (cm ³)	I_{0i} (cm ⁴)	$I_{\Delta i}(cm^4)$	
Section 1	1200	10	12000	40000	160000	
Section 2 (× 2)	225	15	3375	2812.5	53437.5	
Section 3	4440	84	372960	8104480	39433120	
Section 4 $(\times 2)$	25	159.66	3991.5	34.72	637317.6122	
Section 5 $(\times 2)$	50	165.5	8275	104.16	1369616.66	
Section 6 (× 2)	200	166.33	33266	277.77	5533411.55	
Section 7	1440	174	250560	17280	43614720	
$A_{(brute)} = 7580 \text{ cm}^2$ S(brut			427.5 cm^3	$I_{\Delta(brute)} = 90801623.32 \text{ cm}^4$		
$A_{(nette)}=7201 \text{ cm}^2$		S (nette)=650	206.13 cm^3	I Δ (nette)=81721460.99 cm ⁴		
v'=90.3 cm		v= 89.7 cm		$I_G=28997820.07 \text{ cm}^4$		
				I $_{G(nette)} = 2609$	8038.06 cm ⁴	
$\rho = 44.7 \%$				•		

Tableau III- 2: Caractéristiques géométriques de la poutre intermédiaire

Figure III- 7: Poutres à mi-travée

c. Poutre médiane avec hourdis

Les caractéristiques géométriques sont indiquées dans le tableau III-3 :

	A_i (cm ²)	Y _i (cm)	$S_{i\Delta}(cm^3)$	$I_{0i}(cm^4)$	$I_{\Delta i}(cm^4)$		
hourdis	3200	190	608000	106666.66	115626666.7		
Poutre	6400	96.45	617280	/	86447789.78		
$A_{(brute)}=9600 \text{ cm}^2$		S _(brute) =12252	280 cm ³	$I_{\Delta (brute)} = 202074456.5 \text{ cm}^4$			
$A_{(nette)} = 9120 \text{ cm}^2$		$S_{(nette)} = 1164016 cm^3$		$I_{\Delta (nette)} = 18867010.9 \text{ cm}^4$			
v'=127.633cm		v =72.367cm		$I_G = 45688294.26 \text{ cm}^4$			
				$I_{G(nette)} = 41119464.83 \text{ cm}^4$			
ρ=48.81%							

Tableau III- 3:Caractéristiques géométriques de la poutre médiane avec hourdis

d. Poutre intermédiaire avec hourdis

Les caractéristiques géométriques sont indiquées dans le tableau III-4 :

	$A_i(cm^2)$	$Y_i(cm)$	$S_{i\Delta}$ (cm ³)	$I_{0i}(cm^4)$	$I_{\Delta i}(cm^4)$	
Hourdis	3200	190	608000	106666.66	115626666.7	
Poutre	7580	90.3	684474	/	90801623.32	
$A_{(brute)}=10780 \text{cm}^2$		S _(brute) =1292474 cm ³		$I_{\Delta(brute)} = 206428290 \text{ cm}^4$		
$A_{(nette)} = 10241 \text{cm}^2$		$S_{(nette)} = 1227850.3 cm^3$		$I_{\Delta(nette)} = 185785461 cm^4$		
v'=119.9 cm		v=80.1cm		$I_G = 51460657.4 \text{ cm}^4$		
				$I_{G(nette)} = 46314591.66 \text{ cm}^4$		
ρ=47.1%						

Tableau III- 4: Caractéristiques géométriques de la poutre intermédiaire avec hourdis

Figure III- 9: Poutre intermédiaire avec hourdis

III.3.2 Caractéristiques géométriques de la poutre d'about

Les caractéristiques sont déterminées en divisant la section de la poutre en trois sections qui sont mentionnées dans la figure III-10 :

Figure III- 10: Section de poutre d'about

a. Poutre sans hourdis

Le tableau III-5 montre les caractéristiques de la poutre

	$A_i(cm^2)$	$Y_i(cm)$ $S_{i\Delta}(cm^3)$		$I_{0i}(cm^4)$	$I_{\Delta i}(cm^4)$	
Section 1	10080	84	846720	23708160	94832640	
Section 2 (× 2)	105	166.83	17517.15	71.458	2922457.593	
Section 3	1440	174	250560	17280	43614720	
A _(brute) =11625 cm ²		$S_{(brute)} = 1114797.15 \text{ cm}^3$		$I_{\Delta(brute)} = 141369817.6 cm^4$		
A (nette) = 11043.75 cm ²		$S_{(nette)} = 1059057.293 \text{ cm}^3$		$I_{\Delta \text{ (nette)}} = 127232835.8 \text{cm}^4$		
v'=95.90cm		v=84.1cm		$I_G=34460770.92 \text{ cm}^4$		
		I $_{G(nette)} = 31014$		14693.83 cm^4		
ρ=34.8%						

Tableau III- 5: Caractéristiques géométriques de la poutre d'about

b. Poutre d'about avec hourdis

Le tableau III-6 représente les caractéristiques de la poutre :

|--|

	$A_i(cm^2)$	Y _i (cm)	$S_{i\Delta}$ (cm ³)	I_{0i} (cm ⁴)	$I_{\Delta i}(cm^4)$	
Hourdis	3200	190	608000	106666.66	115626666.7	
Poutre	11625	95.9	1114837.5	/	141369817.6	
$A_{(brute)}=14825 \text{ cm}^2$		$S_{(brute)} = 1722837.5 \text{ cm}^3$		$I_{\Delta(brute)} = 256996484.3 \text{cm}^4$		
$A_{(nette)} = 14083.75 \text{ cm}^2$		$S_{(nette)} = 1636695.625 cm^3$		$I_{\Delta(nette)} = 231296835.9 \text{cm}^4$		
v'=116.21 cm		v=83.79cm		I_{G} =56785538.43 cm ⁴		
				$I_{G(nette)} = 51106984.59 \text{ cm}^4$		
ρ=37.27%						

Figure III- 11: Poutre d'about avec hourdis

III.4 Caractéristiques géométriques du tablier

Le tablier est la partie d'ouvrage qui porte directement la voie (route ou rail) et supporte les charges du trafic et les transmet aux appuis, en assurant la continuité parfaite. Les caractéristiques géométriques du tablier sont déterminées avec le règlement R.C.P.R 2008.

III.4.1 Largeur roulable Lr

La largeur roulable est définie comme étant la largeur comprise entre les dispositifs de retenue et les bordures. Elle comprend donc, outre la chaussée proprement dite, toutes les surlargeurs éventuelles telles que bande dérasée, bande d'arrêt, etc....

$$L_r = L_t - n \times L_g$$

Tel que :

$$\begin{split} &L_t = 11 \mbox{ m (largeur totale du pont).} \\ &L_g = 0.75 \mbox{ m (largeur du garde-corps).} \\ &n : nombre de garde-corps. \end{split}$$

On a 2 gardes corps donc : $L_r = 11 - 2 \times 0.75 = 9.5 m$

III.4.2 Largeur chargeable Lc

La largeur chargeable est obtenue en enlevant une bande de 0.50 m le long de chaque dispositif de retenue (glissière). Si une chaussée est encadrée par 2 bordures, la largeur chargeable est confondue avec la largeur rouable. Si la largeur roulable est bordée d'un côté par un dispositif de retenue, de l'autre par une bordure, cette dernière est une bande de 0.5 m qui doit être retranchée (voir figure III-12).

Figure III- 12: Largeur chargeable et largeur roulable (RCPR2008)

On a 2 glissières donc c'est le type 3 : $L_c = L_r - n \times L_G$ $L_c = 9.5 - 2 \times 0.5 = 8.5 m$

Tel que : $L_G: 0.5 \text{ m}$ (largeur de la glissière de sécurité). n : nombre de glissière de sécurité.

III.4.3 Nombre de voies N_{voies}

Par convention, les chaussées comportent un nombre des voies de circulation égal à la partie entière du quotient par 3 de leur largeur chargeable, exprimée en mètres. Et pour les chaussées dont la largeur chargeable est comprise entre 5 m inclus et 6m sont considérées comme comportant 2 voies de circulation.

Le nombre de voies N_{voies} est donné par la relation suivante :

$$N_{voies} = E\left(\frac{L_c}{3}\right) = 2$$

On a donc 2 voies.

III.4.4 Largeur des voies Lv

C'est le rapport entre la largeur chargeable et le nombre de voies :

$$L_v = \frac{L_c}{N_{voies}} = \frac{8.5}{2} = 4.25 \ m$$

III.4.5 Classe de pont

Il y a 3 classes en fonction de la largeur roulable et de leur destination.

• Pont de première classe

- > Tous les ponts supportant des chausses de largeur roulable supérieure ou égale à 7 m.
- > Tous les ponts supportant des bretelles d'accès à de telles chausses.
- > Les ponts urbains ou en zone industrielle quelle que soit leur largeur.

• Pont de deuxième classe

Les ponts supportant des chaussées à deux voies avec largeur roulable comprise entre 5.5 m et 7 m.

• Pont de troisième classe

Les ponts supportant des chausses à deux voies avec largeur roulable inferieur ou égale à 5.5 m.

Dans note cas : $L_r = 9.5 m > 7 m =>$ le pont est de classe 1.

III.5 Conclusion

Le tablier est constitué de 7 poutres en I en béton précontraint. Ces poutres ont une hauteur de 1.8 m et espacées de 1.6m avec une épaisseur d'âme de 20 cm pour la poutre médiane, 30 cm pour la poutre intermédiaire et 60 cm pour la poutre d'about, avec une largeur de 1.2 m et un hourdis général de 20 cm d'épaisseur.

Chapitre IV : Charges et Surcharges

Chapitre IV : Charges et surcharges

IV.1 Introduction

L'ouvrage d'art est soumis aux différentes charges :

- Permanentes : Poids propre des éléments constructifs
- Surcharges : les différentes systèmes de charges routières (A, Bc, Bt, Br), les charges militaires (Mc120), le convoi exceptionnel D240 et les surcharges de trottoir et garde-corps.

L'ouvrage doit résister en phase de service à toutes ces sollicitations.

IV.1.1 Poids propre des éléments porteurs CP

a. Poids propre de la poutre

La poutre est devisée en trois sections (Figure IV-1)

Figure IV- 1: Variation de la section de la poutre

Avec :

- Section d'about : $A_1=1.14m^2$
- Section médiane A₃=0.61m²
- Section intermédiaire : A₂= 0.72 m²

Poids propre par section $P_{Ai} = \rho_{beton} \times A_i \times L_i$ Poids propre total $P_p=2$ ($P_{A1}+P_{A2}+P_{A3}$).

Donc : $P_{A1} = 25 \times 1.1043 \times 3 = 82.8225 \ kN$ $P_{A2} = 25 \times 0.6080 \times 13.55 = 205.96 \ kN$ $P_{A3} = 25 \times 0.7201 \ \times 1 = 18.0025 \ kN$ $P_p = 2 \times (82.8225 + 205.96 + 18.0025) = 613.57 \ kN$

Poids linéaire de la poutre :

$$G_p = \frac{613.57}{35.1} = 17.48 \text{ kN/m}.$$

Le poids linéaire de toutes les poutres est : $G_{P(total)} = 17.48 \times 7 = 122.36 \ kN/m.$

b. Poids propre de la dalle

Largeur du tablier L=11m.

On a une dalle en béton armé d'épaisseur 20 cm

 $G_{dalle} = 25 \times 0.2 \times 11 = 55 \, kN/m.$

IV.2 Poids propre des éléments non porteurs CCP (charges complémentaires permanentes)

Les éléments non porteurs d'un pont sont : les trottoirs, corniches, garde-corps, glissières, revêtement et tôle.

a. Revêtement

Une couche de revêtement en béton bitumineux (BB) de 8 cm d'épaisseur de $\rho_{rev} = 24 \text{ kN/m}^3$, étalée sur la largeur roulable Lr =9.5 m, et une couche d'étanchéité de 1 cm que l'on négligera, nous avons donc :

 $P_{rev} = e_{rev} \times Lr \times \rho_{rev} = 0.08 \times 9.5 \times 24 = 18.24 \ kN/m.$

b. Trottoir

On a $\rho_b=25$ kN/m³ et la surface de trottoir est égale à 0.1325m². Le poids du trottoir est donné par la formule suivante : $P_{tr} = 2 \times \rho_b \times S_{tr} = 6.625$ kN /m.

c. Corniche

La surface de la corniche est 0.1 m². $P_{cor} = 2 \times \rho_b \times S_{cor} = 2 \times 25 \times 0.1 = 5 \ kN/m.$

d. Garde- corps

Le poids de garde-corps est 1 kN /m $P_{gc} = 2 \times 1 = 2 kN/m$.

e. Glissières

On a deux glissières de sécurité de poids égale : $P_{gli} = 2 \times 0.2 = 0.4 \ kN/m.$

f. Tôle inferieure

La tôle est une plaque métallique de faible épaisseur, utilisée pour que l'espace entre les poutres ne soit pas visible sous la demande de maitre d'ouvrage.

Le poids de la tôle est : $P_{tole} = n \times \rho_{tole} \times L_{tole} \times e_{tole} = 6 \times 78.5 \times 0.4 \times 0.03 = 3.768 \text{ kN/m}$

Les résultats sont résumés dans le Tableau IV-1.

	Elements	Poids par mètre linéaire (kN/m)					
СР	Poutres	122.36					
	Dalle	55					
CCP	Revêtement	18.24					
	Trottoir	6.625					
	Corniches	5					
	Gardes corps	2					
	Glissières	0.4					
	Tôle inferieure	3.768					
]	213.4						
G		7490.34 kN					

Tableau IV- 1:Récapitulatif du poids total du tablier

Chapitre IV : Charges et surcharges

IV.3 Actions dues au trafic

Les différents systèmes de charges qui évaluent les charges des ponts routiers sont : système de charge A, système de charge B, système de charges militaires et convois exceptionnels. Toutes ces charges sont déterminées à l'aide de règlement RCPR 2008.

IV.3.1 Système de charge A

Pour les ponts composants des portées unitaires atteignant au plus 200 m ; la chaussée supporte une charge uniforme dont l'intensité est égale au produit de la valeur A(L) par des coefficient a₁, a₂.

$$A = A(L) \times a_1 \times a_2 \times n \times Lv \text{ (kN/m2)}$$

Tel que : $A(L) = 2.3 + \frac{360}{12+L} (kN/m^2).$ D'où : $A (35.1) = 9.95 KN/m^2.$

• a₁ est déterminé selon la classe du pont comme indiqué dans le tableau (IV-2)

Nombre de voies	1	2	3	4	> 5				
Première classe	1	1	0.9	0.75	0.7				
Deuxième classe	1	0.9	-	-	-				
Troisième classe	0.9	0.9	-	-	-				

Tableau IV- 2: Valeur de a₁ (RCPR 2008)

• a_2 est déterminé à partir de la relation suivante : $a_2 = \frac{V0}{Lv}$

V₀ est déterminé selon la classe du pont (Tableau IV-3) :

Tableau	IV-	3:	Valeurs	de	$V_0(]$	RCPR	2008)
---------	-----	----	---------	----	---------	------	-------

Classe de pont	V ₀
1	3.5
2	3
3	2.75

Dans notre cas : $a_2=0.953$.

Les valeurs de la charge A sont données au tableau suivant :

Tableau IV- 4: Valeurs de A en fonction du nombre de voies chargées

	A(L) kN/m^2	a_1	a_2	A (kN/m²)	Lv	A (kN/m)
Une voie chargée	9.95	1	0.824	8.20	4.25	34.85
Deux voies chargées	9.95	1	0.824	8.20	8.5	69.7

IV.3.2 Coefficient de majoration dynamique

Il est déterminé par la formule suivante :

$$\delta = 1 + \frac{0.4}{1 + 0.2 \times L} + \frac{0.6}{1 + 4 \times \frac{G}{S}}$$

Avec :

- G : Charge permanente du pont.
- S : Charge maximale correspondante.
- L : Longueur de la travée, L=35m.

IV.3.3 Système de charge B

Le système de charges B comprend trois systèmes distincts dont il y a lieu d'examiner indépendamment les effets pour chaque élément des ponts :

- Le système B_c se compose de camions types.
- Le système B_r se compose d'une roue isolée (ne s'applique qu'aux ponts de première ou de deuxième classe2).
- Le système B_t se compose de groupes de deux essieux dénommés essieux-tandems (ne s'applique qu'aux ponts de première ou de deuxième classe2).

a. Système de charge Bc

Un camion type du système B_c comporte trois essieux ; tous à roues simples et munies de pneumatiques. Les caractéristiques de ce type sont clarifiées dans la figure ci-dessous :

Figure IV- 2 : Système de charges Bc (RCPR 2008)

Selon le RCPR 2008, la masse totale du camion est 300KN, le nombre de camion par fil est limité à deux.

La charge S est donnée par la formule suivante :

 $S = n \times 300 \times bc = n \times (2E_{av} + 4E_{ar})$

n : Nombre de camions.

300KN : Poids d'un camion.

bc : Coefficient fonction du nombre de voies (Tableau IV-5) :

Tableau IV- 5: Valeur de bc (RCPR 2008)

Nombre de voies	1	2	3	4	≥ 5
Classe n°01	1.2	1.1	0.95	0.8	0.7
Classe n°02	1	1	-	-	-
Classe n°03	1	0.8	-	-	-

Le coefficient de majoration de ce système :

$$\delta_{Bc} = 1 + \frac{0.4}{1 + 0.2 \times L} + \frac{0.6}{1 + 4 \times \frac{G}{5}}$$

Chapitre IV : Charges et surcharges

Le Tableau suivant montre les déférentes valeurs de la charge B_C :

		<u> </u>			
Nombre de voies chargées	bc	S (kN)	δ_{Bc}	Charge Bc par essieu (kN)	
une voie chargée	1.2	720	1.064	EAV	76.608
				EAR	153.216
deux voies chargées	1.1	1320	1.075	EAV	141.9
				EAR	283.8

Tableau IV- 6: Charge du système Bc par essieu

• EAV : Essieu avant.

• EAR : Essieu arrière.

b. Système de charge Br :

La roue isolée, qui constitue le système Br porte une charge de 100 kN. Sa surface d'impact sur la chaussée est un rectangle uniformément chargé dont le côté transversal mesure 0.60m et le côté longitudinal 0.30m.

Le rectangle d'impact de la roue Br, disposé normalement à l'axe longitudinal de la chaussée, peut être placé n'importe où sur la largeur roulable (figure IV.3).

Figure IV- 3: Système de Br (RCPR 2008)

Le coefficient de majoration de système Br est :

 $\delta_{Br} = 1 + \frac{0.4}{1+0.2 \times L} + \frac{0.6}{1+4 \times \frac{G}{S}} = 1.0519$ Donc : Br = 105.16 kN.

c. Système de charge Bt

Un tandem de système Bt comporte deux essieux tous deux à roues simples munies de pneumatique.

Figure IV- 4: Système de charge Bt (RCPR 2008)

Le coefficient de majoration de ce système :

$$\delta_{Bt} = 1 + \frac{0.4}{1 + 0.2 \times L} + \frac{0.6}{1 + 4 \times \frac{G}{S}}$$

Avec :

 $S = 320 \times b_t \times n$ n : Nombre des voie $b_t=1.2$ Pour un pont de première classe RCPR 2008.

Le tableau ci-dessous résume les charges de système Bt :

Tableau IV- 7: Charge de systeme Bt					
Nombre de voies chargées	bt	S (kN)	δ_{bt}	Charge Bt par essieu (kN)	
Une voie chargée	1.2	384	1.0575	203.04	
Deux voies chargées	1.2	768	1.065	408.96	

Tableau IV- 7: Charge de système Bt

d. Effort de freinage F

Les charges de chaussée des systèmes A et Bc, sont susceptibles de développer des réactions de freinage, efforts s'exerçant à la surface de la chaussée, dans l'un ou l'autre sens de circulation. La résultante de ces efforts peut être supposée centrée sur l'axe longitudinal de la chaussée.

Les efforts de freinage n'intéressent pas à la stabilité des tabliers. Il y a lieu de les considérer pour la stabilité des appuis (piles et culées) et la résistance des appareils d'appui.

L'effort de freinage correspondant à la charge A selon RCPR2008 est égal à :

$$F_A = \frac{A \times L \times L_c}{20 + 0.0035 \times L \times L_c}$$

Le tableau ci-dessous résume les efforts de freinage :

	Tableau IV- 8: Efforts de freinage				
	Voie	$S(m^2) = L \times L_c$	A (kN/m²)	F (kN)	
Travée seul	1 voie	149.175	8.20	59.61	
	2 voies	298.35	8.20	116.25	
Deux travée	1 voie	298.35	8.20	116.25	
	2 voie	596.7	8.20	221.52	

Tableau IV- 8: Efforts de freinage

L'effort de freinage correspondant à la charge Bc selon RCPR2008 est égal à : 300 kN.

e. Système militaire Mc120

Les ponts doivent être calculés d'une manière à supporter les véhicules militaires du type Mc120 (Figure IV-5). Les caractéristiques des véhicules sont :

- Les véhicules Mc120 peuvent circuler en convois.
- Dans le sens transversal, un seul convoi quel que soit la largeur de la chaussée.
- Dans le sens longitudinal : le nombre de convoi est illimité.
- Poids total : 1100 kN.
- Longueur d'une chenille : 6.10m.
- Largeur d'une chenille : 1.00m.

Chapitre IV : Charges et surcharges

Figure IV- 5: Système de charge Mc120 (RCPR2008)

La charge Mc120 est :

 $P_{MC120} = \frac{1100}{6.1} \times 1.07 = 192.95 \text{ kN/m.}$ Tel que : $\delta_{MC120} = 1 + \frac{0.4}{1 + 0.2 \times L} + \frac{0.6}{1 + 4 \times \frac{G}{\varsigma}} = 1.07$

f. Convoi exceptionnel D240

Ce convoi comporte une remorque de trois éléments de 4 lignes à 2 essieux de 2400 kN de poids total, ce poids est supposé réparti au niveau de la chaussée sur un rectangle uniformément chargé de 3.2m de large et 18.6m de long (Figure IV.6).

- Le poids par mètre linéaire égal à 129 kN/m.
- Le poids par mètre carré égal à 40.32 kN/m².

Figure IV- 6: Convoi D240 (RCPR2008)

IV.4 Autres Charges

Surcharge sur trottoir

Surcharge d'un trottoir égale à 1.5 kN/m² $b = Lt = 0.53 \mbox{ m}$

$$Q_{tr} = 2 \times 0.53 \times 1.5 = 1.59 \text{ kN/m}$$

g. Surcharge sur les garde-corps

Elle est donnée selon RCPR2008 par la relation :

 $Q_{gc} = 0.5(1+b) = 0.5(1+0.53) = 0.765 \, KN/m$

Chapitre IV : Charges et surcharges

La figure suivant represente la surcharge sur les garde corps

Figure IV- 7: Charge sur garde-corps (RCPR2008)

IV.5 Moments fléchissant dûs aux surcharges

IV.5.1 Utilisation des lignes d'influences

Les lignes d'influences d'une poutre sont les courbes représentatives de la variation d'un effet en un points donné en fonction de la position d'une charge unité mobile. Elles permettent de déterminer très simplement quelles sont les zones de chargement favorables (défavorable) qui minimisent (maximisent) une action en un point.

Pour obtenir les moments, on multiplie les ordonnées des lignes d'influences par la force P dans le cas où cette force est concentrée, si elle est repartie uniformément, c'est par l'aire de la ligne d'influence se trouvant sous cette charge uniforme.

IV.5.2 Utilisation de théorème de BARRE

Pour le système B nous utilisons le théorème de BARRE pour déterminer la section dangereuse de la poutre. Le théorème est défini comme suit :

Le moment fléchissant maximum dans une poutre au passage d'un convoi se produit au droit d'un essieu de telle façon que cet essieu soit symétrique à la résultante des forces engagées par rapport au milieu de la poutre.

a. Poids propres de poutre

La charge est uniformément répartie (figure IV.8) :

Figure IV- 8: Poutre sous le poids propre de tablier

 $M_{\text{max}} = M(\frac{L}{2}) = \frac{g \times L^2}{8} = 32863.87 KN/m.$

b. Surcharge A(L)

La charge est uniformément répartie (figure IV.9)

Figure IV- 9: Poutre sous la Surcharge A(L)

$$M_{max} = M(L/2) = \frac{QL^2}{8} = 302.7375 KN/m.$$

- c. Surcharge Bc
- 1^{ere} cas

Le moment fléchissant maximum est situé dans le côté gauche de l'essieu de P_2 qui est symétrique par rapport à l'axe de la poutre.

La résultante se trouve à droite de l'axe de la poutre (figure IV.10) :

Figure IV- 10: Poutre sous la surcharge Bc cas 1

 $\sum M/_0 = 0 \implies P_2 \times 4.5 + P_2 \times 6 + R \times x + P_1 \times 10.5 + P_2 \times 15 + P_2 \times 16.5 = R \times x$

Avec : $P_1 = 141.9 \text{ kN}$ et $P_2 = 283.8 \text{ kN}$

 $=> R \times x = P_2 \times 4.5 + P_2 \times 6 + P_1 \times 10.5 + P_2 \times 15 + P_2 \times 16.5 = 13423.74 \text{ kN. ml}$

 $R = \sum Pi = 1419 \ kN \implies x = \frac{13423.74}{1419} = 9.46m$ On a: $x = 2 \times a + 6 \implies a = 1.73 \ m.$

> Calcul des ordonnées

Y₃ est déterminé comme suit :

$$Y_3 = \frac{x_0 \times (L - x_0)}{L}$$
 tel que : $x_0 = \frac{L}{2} - a = 17.5 - 1.73 = 15.82m$

 $Y_3 = 8.69m$

Pour déterminer les autres ordonnées (Yi), On applique le théorème de Thalès (Tableau IV.9) :

Tableau IV-9: Calcul des ordonnées cas 1.						
Y1	Y1 Y2 Y3 Y4 Y5 Y6					
5.39	7.86	8.69	6.66	4.63	3.96	

T 11 W. 0. Coloul de 1 ,

 $M_{max} = \sum P_i Y_i = 8844.627 \ kN.m$

2ème cas

Le moment fléchissant maximum est situé dans le côté droit de l'essieu de P1 qui est symétrique par rapport à l'axe de la poutre.

La résultante se trouve à gauche de l'axe de la poutre (figure IV.11)

Figure IV- 11: Surcharge Bc cas 2

$$\sum M/_0 = 0 = P_2 \times 1.5 + P_1 \times 6 + P_2 \times 10.5 + P_2 \times 12 + P_1 \times 16.5 = R \times x$$

 $R \times x = 10003.95 \, kN.m$

$$R = \sum Pi = 1419 \, kN \implies x = \frac{10003.95}{1419} = 7.05m$$

On a

 $x = 2 \times a + 6 \implies a = 0.525 m.$

Calcul des ordonnées

Y₄ est déterminé comme suit : $Y_4 = \frac{x_0 \times (L - x_0)}{L}$ Tel que : $x_0 = 17.5 - 0.525 = 17.025 m$ Donc :

 $Y_4 = 8.77$

Pour déterminer les autres ordonnées (Yi), On applique le théorème de Thales (Tableau IV.10):

Y1	Y2	Y3	Y4	Y5	Y6
3.67	5.86	6.59	8.77	6.45	5.68

 $M_{max} = \sum P_i Y_i = 8735.36 \, kN. m$

Donc on voit que le cas le plus défavorable est celui du 1 ^{er} cas (résultante à gauche de l'axe de la poutre).

 $M_{max}(Bc) = 8844.627 \ kN.m$

d. Surcharge Bt

Dans ce cas, la résultante R est positionnée dans un seul côté par rapport l'axe de symétrie de la poutre (figure IV.12). On suit la même procédure de calcul (théorème de Barre).

Figure IV- 12 : Surcharge Bt

$$\sum M/p = 0 \implies P \times 1.35 = R \times 2a$$

$$P = 408.96 \, kN \quad \text{et} \quad 2P = R$$

$$2 \, a = 1.35 \times \frac{P}{R} \implies a = 0.3375m$$

$$x_0 = \frac{L}{2} - a = 17.2125$$

$$Y_1 = 8.77 \text{ et} \quad Y_2 = 8.1$$

$$M_{max} = \sum P_I Y_i = 6899.1552 \, kN.m$$

e. Système militaire Mc120

Ce système est représenté par la figure suivante :

Figure IV- 13: Ligne d'influence sous-système militaire Mc120

$$Y_0 = \frac{x_0 \times (L - x_0)}{L} \quad \text{avec } x_0 = \frac{L}{2}$$
$$Y_0 = \frac{L}{2} = 8.775 \quad =>Y_1 = Y_2 = \frac{Y_0 \times (\frac{L}{2} - 3.05)}{x_0} = 7.225 \text{ m}$$

Chapitre IV : Charges et surcharges

La surface $S = S_1 = S_2$

$$S = \frac{(Y_0 + Y_1) \times 3.05}{2} = \frac{(8.775 + 7.25) \times 3.05}{2} = 24.44 \ m^2$$

 $M_{max} = 2 \times S \times P = 9430.82 \ kN.m$

f. Charge exceptionnelle D240 :

Ce système est représenté par la figure ci-dessous :

Figure IV- 14 : Ligne d'influence sous charge exceptionnelle D240

$$Y_0 = \frac{a^2}{L} = 8.775 \implies Y_1 = Y_2 = \frac{Y_0 \times (\frac{L}{2} - 9.3)}{\frac{L}{2}} = 4.125$$
$$S = S1 = S2 = \frac{(Y_0 + Y_1) \times 9.3}{2} = 59.985m^2$$

 $M_{max} = 2 \times S \times P = 15476.13 \ kN.$

Le tableau suivant donne les valeurs des moments fléchissant M_{max} :

Charges	Moments maximum (KN.m)	M _{max} /poutre(KN.m)
Poids propre de tablier	32863.87	/
Surcharge A(l)	302.7375	43.25
Surcharge B _c	8844.627	126.37
Surcharge B _t	6899.1552	985.59
Système militaire M c 120	9430.82	1347.26
Charge exceptionnelle D240	15476.13	2210.87

IV.6 Calcul des efforts tranchants

IV.6.1 Effort tranchant dû au poids propre

Le poids propre est considéré comme une charge uniformément répartie (Figure IV.15).

Figure IV- 15: Poids propre de tablier

 $R_A = R_B = \frac{QL}{2}.$ $R_A = 3745.17 \ kN/m \implies T_{max} = R_A = 3745.17 \ kN/m$

IV.6.2 Effort tranchant dû aux surcharges

a. Surcharges A (L)

Elle uniformément répartie sur le tablier (Figure IV.16).

Figure IV- 16 : Surcharge A(L)

$$R_A = R_B = \frac{QL}{2}$$

 $R_A = 3745.17 \ kN/m => T_{max} = R_A = 1223.235 \ kN/m$

b. Surcharges Bc

La répartition de Bc est representée dans la figure IV.17.

 $\sum M/B = 0$

 $R_A \times 35.1 = P_2 \times 35.1 + P_2 \times 33.6 + P_1 \times 29.1 + P_2 \times 24.6 + P_2 \times 23.1 + P_1 \times 18.6$ => P_1= 141.9 kN et P_2 = 283.8 kN $R_A = 1133.99 \ kN \quad R_B = -285.01 \ kN => T_{max} = R_A = 1133.99 \ kN$

c. Surcharges Bt

La répartition est représentée dans la figure IV.18 :

Figure IV- 18 : Surcharge Bt

$$\sum M/B = 0 \implies 35.1 \times R_A - P \times 35.1 - P \times 33.75 = 0$$

$$R_A = 802.19 \, kN \qquad R_B = -15.73 \, kN$$

 $T_{max} = R_A = 802.19 \text{ kN}$

d. Surcharges Mc120

La répartition est montrée dans la figure IV.19:

Figure IV- 19 : Surcharge Mc120

$$\sum M/B = 0$$

=> 35.1 × R_A - 192.9 × 6.10 × (35.1 - $\frac{6.01}{2}$)
R_A = 1074.44 kN , R_B = 102.25 kN =>T_{max} = R_A= 1074.44 kN

e. Surcharges D240 :

La figure IV.20 représenté la répartition de ce type de charge :

Figure IV- 20 : Surcharges D240

 $\sum M/B = 0 \implies 35.1 \times R_A - 129 \times 18.60 \times (35 - \frac{18.6}{2}) = 0$ $R_A = 1763.66 \, kN$, $R_B = 635.74 \, kN$ $T_{max} = R_A = 1763.66 \, kN$ Le tableau suivant donne les valeurs des efforts tranchants maximums :

Charges	Efforts tranchants maximum (kN)	T _{max} /poutre(kN)		
Poids propre du tablier	3745.15	/		
Surcharge A(l)	1223.235	174.74		
Surcharge B _c	1133.99	161.99		
Surcharge Bt	802.14	114.59		
Système militaire M _c 120	1074.44	15.34		
Charge exceptionnelle D240	1763.66	251.95		

Tableau IV- 12 : Efforts tranchants maximums

IV.7 Conclusion

Le calcul des charges et surcharges permet d'évaluer les sollicitations appliquées sur l'ouvrage sous les différentes combinaisons à l'E.L.U et L'E.L.S. Ce dernier nous a permet d'étudier la précontrainte et de calculer ferraillage des poutres.

V.1 Introduction

Ce chapitre est consacré à la modélisation du pont avec « Autodesk Robot structure 2021 » avec les différentes charges aux états limites (ELU et ELS) pour obtenir les sollicitations sous forme des diagrammes des moments et des efforts tranchants.

V.2 Étapes de modélisation

La modélisation se fait comme suit :

V.2.1 Définition et affectation des éléments

- Choix des unités (kN, m), normes (BAEL91) et matériaux utilisés (Béton f_{c28}=40MPa).
- Définition des lignes de construction.
- Importation des différentes sections de la poutre de l'AUTOCAD.
- Définition des poutres comme élément barre.
- Définition de la dalle comme élément panneau.
- Définition des nœuds et des appuis.

La figure suivante représente les éléments affectés :

Figure V- 1:Définition des poutres, lignes de constructions, dalle, appui

V.2.2 Affectation des charges et surcharges

a. Affectation des charges complémentaires permanentes

Poids des revêtements, Poids des corniches, Poids du garde-corps, de la glissière de sécurité et la tôle inferieure.

Figure V- 2: Affectation des charges complémentaires permanentes (CCP)

b. Affectation des surcharges

Les surcharges dû au trottoir sont représentées dans la figure ci-dessous :

Figure V- 3: Affectation des surcharges

c. Affectation des surcharges roulables

L'affectation des surcharges roulantes (Figure V-4).

Figure V- 4: Surcharge roulante

V.2.3 Définition des combinaisons de charges

Le tableau suivant résume les différentes combinaisons de charges susceptibles de solliciter l'ouvrage :

Tableau v - 1.Combinaisons de charge.		
Etats	Combinaisons	
	1.35G + 1.6 (A + St)	
	1.35G + 1.6 (Bc+ St)	
ELU	1.35G + 1.35D240	
	1.35G + 1.35Mc120	
	G + 1.2 (A + St)	
	G + 1.2 (Bc + St)	
ELS	G + D240	
	G + Mc120	

V.3 Résultats numériques obtenus par le logiciel ROBOT

a. Moment et effort tranchant dus au poids propre de la poutre+dalle

La figure V.5 présente le diagramme du moment fléchissant dû au poids propre de la poutre+dalle. Le moment max est : M_{poids_poutre} = 3.74MN.m

Figure V- 5: Moment fléchissant du au poids propre de la poutre + dalle

La figure V.6 représente le diagramme de l'effort tranchant dû au poids propre de la poutre+dalle. L'effort tranchant max est : $T_{poids poutre} = 0.453MN$

Figure V- 6: Effort tranchant du au poids propre de la poutre+ dalle

b. Moment et effort tranchant à L'ELS

Le moment fléchissant et l'effort tranchant maximaux obtenus par la combinaison la plus défavorable à l'état limite service (G+D240).

La figure V.7 représente le diagramme de moment fléchissant. Le moment maximum est : $M_{EIS_{Max}}=7.230 \text{ MN.m}$

Figure V- 7: Diagramme du moment fléchissant sous la combinaison la plus défavorable à l'ELS

La figure V.8 représente le diagramme de l'effort tranchant. L'effort tranchant max est : T $_{EIS_Max}$ =0.965 MN

Figure V- 8: Diagramme des efforts tranchants sous la combinaison la plus défavorable à l'ELS

c. Moment et effort tranchant à l'ELU

Le moment fléchissant et l'effort tranchant maximaux obtenus par la combinaison la plus défavorable à l'état limite ultime (1.35 G + 1.35 D240):

La figure V.9 représente le diagramme de moment fléchissant à l'ELU. Le moment max est : M $_{Elu_{Max}}$ =9.76 MN.m

Figure V- 9:Diagrammes des moments fléchissant sous la combinaison la plus défavorable à l'ELU

La figure suivante représente le diagramme de l'effort tranchant. L'effort tranchant max est : T $_{Elu_Max}$ =1.302 MN

Figure V- 10: Diagramme des efforts tranchant sous la combinaison la plus défavorable à l'ELU

V.4 Conclusion

Après la définition des différentes charges et surcharges à l'aide de logiciel Robot Structural Analysis Professional 2021, nous avons obtenues les moments et efforts tranchant maximaux aux états limites. Ces efforts sont :

A l'état limite ultime :

• $M_{max} = 9.76 \text{ MN.m}, T_{max} = 1.302 \text{ MN}$

A l'état limite de service :

- M_{max} =7.230 MN.m, T_{max}=0.965 MN
- M_{min} =3.74 MN.m, T_{min}=0.453 MN

Ceci nous permettra de calculer la précontrainte par la suite.

Chapitre VI : Etude de la précontrainte

VI.1 Introduction

La précontrainte est une technique mécanique qui permet de réaliser des ouvrages à grandes portées. Elle est appliquée au béton grâce à des câbles de précontrainte en acier. Ces câbles sont tendus par des vérins de précontrainte. Lorsqu'on tend les câbles, ils vont, par réaction, appliquer un effort de compression au béton. L'intensité de la précontrainte à mettre en œuvre dépend évidemment des tractions auxquelles il faudra s'opposer et des raccourcissements instantanés et différés du béton.

En effet, la précontrainte a pour but de soumettre le béton, lors de sa fabrication, à des contraintes préalables permanentes de compression. Une fois l'ouvrage est mis en service, ce gain en compression va s'opposer aux contraintes de traction créées par les charges appliquées à l'ouvrage. On distingue deux modes de précontrainte :

- Précontrainte par post-tension.
- Précontrainte par pré-tension.

Dans notre étude, le mode utilisé est la précontrainte par post-tension car la portée de l'ouvrage est supérieure à 30m (SETRA 1996).

VI.2 Précontrainte par post-tension

La précontrainte par post-tension est réalisée par des armatures actives (câbles ou torons) mises en tension après coulage et durcissement du béton. Ce dernier doit avoir une résistance mécanique à la compression suffisante, pour lui permettre de supporter les efforts de précontrainte auxquels il sera soumis. Dans ce procédé de précontrainte, le câble logé dans sa gaine, et sous l'action du vérin auquel il est attaché, s'allonge et se tend à l'effort P. Le vérin qui prend appui le béton de la pièce à précontrainte, exerce sur elle un effort de compression égal à P (P est donc l'effort de précontrainte développé par le câble). Une fois tendu, ce dernier est ancré sur le béton, ce qui assure une permanence de la compression.

VI.3 Etapes de la précontrainte par post-tension

La mise en précontrainte par post-tension est réalisée par la succession des étapes suivantes (Fig.VI-1) :

- Positionnement des gains dans le coffrage avant le bétonnage.
- Introduction des câbles dans les gaines après le durcissement de béton.
- Mise en tension des câbles par des vérins.
- Ancrage des câbles par des systèmes d'ancrages.
- Remplissage des gaines par le coulis d'injection.

Figure VI- 1: Etapes générales de réalisation de la précontrainte

VI.4 Classe de la précontrainte

Compte tenu du fait que la précontrainte peut compenser partiellement ou totalement les charges d'exploitation, on peut parler de classes de précontrainte. Le classement prend en compte les probabilités de fissuration et d'ouverture des fissures. Pour les justifications des seules contraintes normales vis-à-vis des ELS, les sections sont rattachées à l'une de ces classes, telles que :

- En classe I : pas contrainte de traction ni de contrainte de compression minimale. Cette classe concerne les pièces soumises à la traction simple (tirants, parois de réservoir contenant des fluides) et les pièces sollicitées à la fatigue.
- En classe II : cette classe admet les contraintes de traction dans le béton, mais pas la formation des fissures. Elle est particulièrement destinée aux éléments exposés aux intempéries ou à une ambiance agressive (ponts, bâtiments industriels) et à ceux qui comportent de nombreux joints.
- En classe III : cette classe, contrairement à la précédente, admet une ouverture limitée des fissures dans le béton sous sollicitations extrêmes. Cependant, on ne doit pas dépasser un certain état limite d'ouverture des fissures définit pour l'ensemble de la section sous les différentes combinaisons. La vérification des contraintes en classe III intéresse essentiellement les pièces en atmosphère peu agressive (Bâtiments courants). A partir de cette classification on peut en déduire que notre pont appartient à la classe II

VI.5 Dimensionnement de la précontrainte

VI.5.1 Caractéristiques des matériaux

a. Béton

Les caractéristiques de béton sont :

• Résistances

 $f_{c28} = 40 \mbox{ MPa} \qquad \mbox{en compression} \qquad ; \qquad f_{t28} = 3 \mbox{ MPa} \qquad \mbox{en traction}$

Contraintes admissibles

➢ En compression

 $\begin{array}{ll} En \ construction: & \sigma_{bc1} = (0.6 \times f_{cj}) \\ En \ service: & \sigma_{bc2} = (0.5 \times f_{cj}) \end{array}$

> En traction

En construction :	$\sigma_{tc1} = -f_{tj} = $ (fibre inferieure) et $-1.5 \times f_{tj} = $ (fibre supérieure)
En service :	$\sigma_{tc2} = -f_{tj} = (fibre inferieure) et -1.5 \times f_{tj} = (fibre supérieure)$

b. Acier :

Dans cette étude, nous avons choisi des aciers de type 12T15 TBR (très basse relaxation) dont les caractéristiques sont : Câble : 12T15. Section de 12T15=1680mm². f_{peg} : Contrainte limite conventionnelle d'élasticité = 1643 *MPa*. f_{prg} : Contrainte maximale de rupture garantie =1860 *MPa*. D : Diamètre de la gaine = 80 *mm*.

> Tension à l'origine

 σ_{p0} = Min (0.8 f_{prg} ; 0.9 f_{peg}) = Min (1488; 1478) = 1478 MPa

La force exercée sur un seul câble : $P_0 = \sigma_{P0} \times A_p = 1478 \times 1680 \times 10^{-6} = 2.48 MN.$

VI.5.2 Détermination du nombre de câbles

a. A mi-travée

La précontrainte est calculée pour la section de la poutre avec hourdis à mi travée où les caractéristiques sont déjà définies dans le chapitre III.

Le tableau suivant résume les caractéristiques géométriques de la section à mi- travée

Tableau VI- 1: Caracteristiques geometriques de la section à mi- travee						
	A(cm ²) V(cm) V'(cm) I(cm ⁴) ρ (%					
Poutre	6080	83.55	96.45	24222971.77	49.4%	
Poutre +hourdis	9120	72,367	127 633	41119464 83	48 81%	

Les moments à utiliser sont

M max : Moment maximum à l'ELS (en charge) = 7.23 MN.m M min : Moment sous le poids propre = 4.96 MN.m ΔM = M max - M min=2.27 MN.m

La précontrainte minimale doit respecter la condition suivante : $P_{min} = Sup (P_I; P_{II})$

Les valeurs de P_I et P_{II} sont :

$$P_{I} = \frac{\Delta M + \frac{I \times \sigma_{bt1}}{v'} + \frac{I \times \sigma_{bt2}}{v}}{\rho \times h}$$
Section sous – critique
$$P_{II} = \frac{M_{max} + \frac{I \times \sigma_{bt2}}{v'}}{v' + (\rho \times v) - d'}$$
Section sur – critique

Avec :

P_I : Précontrainte minimale (section sous critique) P_{II} : Précontrainte minimale (section sur –critique) d': Enrobage = 24cm h : 200cm

Les contraintes limites à la traction sont données par : $\sigma_{bt1} = -1.5 f_{t28} = -4.5 \text{ MPa}$; $\sigma_{bt2} = -f_{t28} = -3 \text{ MPa}$

On trouve :

 $P_{I} = -1.6MN \qquad et \qquad P_{II} = 4.34MN$

On a : $P_I < P_{II} =>$ section sur-critique. P _{min} = Sup (P _I; P_{II}) =4.34MN

> Détermination du nombre de câbles N :

La section est sur-critique, l'estimation des pertes à 30% donne : $P_{min} \leq N. \; P(x,t)$

Avec : $P(x,t)=P_0 - \Delta P_0 \qquad => P_{min} \leq N \ x \ 0.70 \ P_0$

D'où : $N \ge 2.5$

Donc : On prend N=3 => 3 câbles 12T15.

b. A l'about

Les caractéristiques géométriques prises en compte sont celles de la poutre médiane sans hourdis.

L'excentricité est donnée par : $e_0=-(v'-d')=-0.7245 \text{ cm}$

Nous devons vérifier les contraintes sur les deux fibres supérieure et inférieure.

$$\sigma_{inf} = \frac{P}{A} - \frac{V}{I_G} (P \times e_0 + M_g) \le \sigma_{ci} = 24 \text{ MPa} \dots (1)$$

$$\sigma_{sup} = \frac{P}{A} + \frac{v}{I_G} (P \times e_0 + M_g) \ge \sigma_{ts} = -4.5 \text{ MPa} \dots (2)$$

De l'équation (1) et (2) on trouve que : $P \leq 7.62 \text{ et } P \leq 16.2$

D'autre : $P \le 0.70 \times N \times P_0$

D'où :

Fibre supérieure : $N \le 9.33$ et Fibre inférieure : $N \le 4.39$ On prend trois câbles à l'about (N =3).

VI.5.3 Disposition des câbles

a. Dispositions des câbles à l'about

On prend un espacement de 40cm (e₁) entre deux câbles successifs, et on détermine e₂ et e₃ de telle sorte que le point d'application de la résultante des forces de précontrainte sortantes sur la face d'about doit coïncider avec le centre de gravité de la section (moment nul à l'appui).

Alors : $M_{p/about} = 0 \implies 3 \times P \times v' = P.e_3 + P(e_3 + e_1) + P(2e_1 + e_3) = 0$ Ce qui donne : $e_3 = v' - e_1 = 95.9 - 40 = 55.9 \ cm$ Et $e_2 = v - e_1 = 84.1 - 40 = 44.1 \ cm$

La disposition des câbles à l'about est donnée dans la figure suivante :

Chapitre VI : Etude de la précontrainte

Figure VI- 2: Disposition des câbles à l'about

b. Position des câbles à mi- travée

La distance entre deux câbles est fixée selon les recommandations du BPEL91, a une valeur égale ou supérieure au diamètre de la gaine. Nous prenons l'espacement égal aux diamètres de la gaine qui est de 8cm (FigVI-3) : On a:

Figure VI- 3: Disposition câbles à mi- travée

VI.5.4 Tracé des câbles

a. Angles de relevages

A l'about les contraintes de cisaillements sont généralement élevées, donc le choix de l'angle de relevage dépend de celui qui minimise l'intensité de ces contraintes.

Les conditions liées à l'effort tranchant imposent sur appui :

$$V \leq \overline{V} \leq V$$

Avec :

V: Effort tranchant limite que peut supporter la section d'appui. V Estimé égal à $\tau \times b_n \times 0.8 \times h$

 $\overline{V} = T_m - P \times \sin \alpha$: sous l'effet minimal des charges. $\overline{V} = T_M - P \times \sin \alpha$: sous l'effet maximal des charges.

$$T_M = 0.965 \, MN$$
 $T_m = 0.306 MN$

 α : Angle de relevage du câble moyen au niveau de l'appui.

Donc on peut agir sur α de façon à ne pas créer de cisaillement excessif tel que : τ : Contrainte tangentielle limite à l'E.L. S = $\sqrt{0.4 \times f_{tj} \times (f_{tj} + \sigma_x)}$

 $f_{t28} = 3$ Mpa.

$$\sigma_x = \frac{P}{A}$$

Avec : $P = 0.7 \times N \times P_0 = 0.7 \times 3 \times 2.48 = 5.2MN$

 $A = A_{brutte} - N \times \pi \times \frac{D^2}{4} = 1.15m^2$; La section utilisée est celle d'about avec hourdis.

$$\sigma_x = \frac{5.2}{1.15} = 4.52 MPa.$$

Donc :

$$\tau = \sqrt{0.4 \times f_{tj} \times (f_{tj} + \sigma_x)} = 3.005 MPa.$$

$$b_n = b_0 - m.k.D = 0.56m$$

Tel que :

 $b_0 = 0.6m.$ m = 1: nombre de gaine par lit. $D = 8 \ cm$: diamètre de la gaine. $V = \tau \ h$

$$V = \tau . b_n . 0.8h = 2.69MN.$$

D'après les conditions imposées sur appui on a :

$$\sin^{-1}(\frac{T_M - V}{P}) \le \alpha \le \sin^{-1}(\frac{T_m + V}{P})$$

Donc : $-19.37^{\circ} \le \alpha \le 35.18^{\circ}$

La valeur optimale de α est donnée par :

$$\alpha_0 = sin^{-1}(\frac{T_M + T_m}{P}) = sin^{-1}(\frac{0.965 + 0.306}{5.2}) = 14.26^{\circ}$$

b. Tracé individuel des câbles

Chaque câble a un tracé parabolique avec une partie courbe et une partie rectiligne (Figure VI-4).

L'équation de la parabole de chaque câble est y=ax², où les calculs sont effectués dans l'Annexe 3 Avec :

$$\frac{dy}{dx} = tan(\alpha) \implies tan(\alpha) = 2 \times a$$

La figure suivante représente les caractéristiques de la position des câbles

Chapitre VI : Etude de la précontrainte

Figure VI- 4 : Tracé général du câble

Les caractéristiques de la position des câbles sont données au tableau VI.3

rableau vi- 2 : Trace general du cable										
	А	tan α	y k	Xk	Xd	a				
Câble 1	10	0.18	0.319	3.62	13.93	0.024				
Câble 2	15.28	0.27	0.719	5.178	12.37	0.026				
Câble 3	20	0.36	0.959	5.27	12.28	0.034				
Câble 1 : $Y = 0.024 x^2$, Câble 2 : Y=0.026 x^2 , Câble 3 : Y=0.034 x^2									

Tableau	VI-	2:	Tracé	général	du	câble
1 ubicuu			ITucc	gonorai	uu	cuoic

VI.6 Calcul des pertes de tension des câbles de précontrainte

Les contrainte (ou forces) de précontrainte appliquées à une structure sont variables selon les diverses sections et en fonction du temps. Ces variations qui vont généralement dans le sens d'une réduction des forces sont appelées pertes de précontrainte (Pertes de charge). On les classe en deux types :

- Les pertes instantanées qui se produisent dans un temps relativement court au moment de la mise en tension et de la mise en précontrainte. Elles sont appelées aussi pertes à la mise en œuvre. Elles sont dues à :
- Frottement du câble dans sa gaine.
- Tassement des organes d'ancrage (ou recul d'ancrage).
- Non simultanéité des mises en tension des différents câbles.
 - Les pertes différées qui se produisent pendant un temps plus ou moins long après que la structure ait été mise en précontrainte. Elles proviennent de l'évolution dans le temps des caractères des matériaux lorsqu'ils sont soumis à des actions permanentes. Elles sont dues :
 - Retrait et fluage du béton.
 - Relaxation des aciers.

VI.6.1 Pertes dues au frottement de l'acier dans la gaine

Ces pertes se produisent par frottement du câble dans la gaine lors de la mise en tension du câble, dans les zones où le câble rentre au contact de la gaine et plus particulièrement, dans les parties courbes et aux points où le tracé du câble présente des irrégularités.

Elles sont données par la formule suivante :

$$\Delta \sigma_{f0}(x) = \sigma_{p0} \times (1 - e^{-(f \theta + \phi x)})$$

Tel que :

f : coefficient de frottement en courbe, f=0.18 rd⁻¹.

 Φ : coefficient de perte de tension par unité de longueur, ϕ =0,002m. σ_{P0} : tension à l'origine, σ_{P0} =1478MPa.
Chapitre VI : Etude de la précontrainte

X : abscisse de la section considérée à partir de l'ancrage.

 θ : déviation angulaire totale du câble sur la distance x, indépendamment de leur direction et de leur signe, on considère son tracé dans l'espace. : $\theta = \alpha$ en rad

Les valeurs de θ sont indiquées sur le tableau suivant :

Tableau VI-3: Valeurs de l'angle θ							
	α°	θ (rad)					
Câble 1	10	0.17					
Câble 2	15.28	0.27					
Câble 3	20	0.34					

Donc :

$$\Delta \sigma_{f0}(x) = 1478 \times (1 - e^{-(0.18 \,\theta + 0.002 \,x)})$$

Les résultats du calcul des pertes dues au frottement pour chaque câble sont donnés dans le tableau suivant :

Tubledu VI-4. Tertes par frottement									
x(m)		0	L/10	L/8	L/6	L /4	L/2		
$\Delta \sigma_{\rm f0}({ m Mpa})$	Câble 1	44.54	54.56	57.06	61.22	69.47	93.98		
	Câble 2	70.11	79.96	82.41	86.48	94.60	118.67		
	Câble 3	87.74	97.46	99.89	103.91	111.92	135.69		
$\sum \sigma_{f0}$ (Mpa)		202.39	231.98	239.36	251.61	275.99	348.34		
$\sigma_{f0 moy}$ (MPa)		67.46	77.32	79.78	83.87	91.99	116.11		

Tableau VI-4 : Pertes par frottement

VI.6.2 Pertes par recul d'ancrage

Cette perte de tension résulte du recul (glissement) des torons ou fils dans les clavettes et dans les plaques d'ancrages lors de la détensions du vérin et du blocage des clavettes.

Figure VI- 5: Diagramme des tensions du câble

Avec :

 σ_{P0} : Contrainte initiale.

 σ_{P0} ': Contrainte après recul d'ancrage.

 $\Delta \sigma_{P0}$: Perte de tension.

g : Intensité du recul d'encrage, g=6mm.

 λ : Longueur sur laquelle s'effectue le recul d'ancrage.

Ep=195000 MPa

$$\lambda = \sqrt{\frac{g.E_P}{\sigma_{po}.\psi}}$$
 Et $\psi = f\left(\frac{\alpha}{L}\right) + \phi$

Les valeurs de λ sont données dans le tableau suivant :

		1	1
	α (rd)	Ψ.10 ⁻³ (m)	λ (m)
Câble 1	0.17	2.87	16.61
Câble 2	0.27	3.38	15.30
Câble 3	0.34	3.74	14.55

Tableau VI- 5: Valeur de λ pour chaque câble

Les pertes dues au recul d'ancrage sont données par :

 $\Delta \sigma_{rec} = (\sigma_{p0} - \sigma_{p0}')(\lambda - x)/\lambda = 2 \sigma_{p0} \times \Psi \times (\lambda - x)$

Les résultats du calcul des pertes dues au recul d'ancrage pour chaque câble sont donnés dans le tableau suivant :

Tableau VI- 6. Tertes par recur a anerage								
x(m)		0	L/10	L/8	L/6	L/4	L/2	
	Câble 1	140.91	111.13	103.69	91.28	66.46	0	
$\Delta \sigma_{rec}$ (MPa)	Câble 2	152.86	117.79	109.02	94.41	65.19	0	
	Câble 3	160.85	122.05	112.35	96.18	63.84	0	
$\sum \Delta \sigma_{rec}$ (N	/IPa)	454.62	350.97	325.06	281.87	195.49	0	
Moy		151.54	116.99	108.35	93.9	65.16	0	

Tableau VI- 6: Pertes par recul d'ancrage

VI.6.3 Pertes de non-simultanéité

Le raccourcissement élastique du béton est principalement dûe à la non simultanéité de la mise en tension des câbles de précontrainte.

Les règles du béton précontraint aux états limites (BPEL91) proposent la formule simplifiée suivante :

$$\Delta \sigma_{rb}(x) = \sigma_b(x) \frac{E_p}{2E_{ij}}$$

Tel que :

E_{ij} : Module du Young instantanée de béton à 28jours.

$$\begin{split} \mathrm{E}_{i28} &= 11000 \times \sqrt[3]{40} = 37619.47 \text{ MPa.} \\ \mathrm{E}_{P} : \text{Module d'élasticité des armatures. } \mathrm{E}_{p} &= 195000 \text{ MPa.} \\ \sigma_{\mathrm{b}(\mathrm{x})} : \text{Contrainte normale du béton. } \sigma_{b}(x) &= \frac{P}{A} + \frac{M(x).e}{I_{G}} + \frac{P.e}{I_{G}} \\ P &= n \times A_{p} \times (\sigma_{po} - \Delta \sigma_{recul} - \Delta \sigma_{f\theta}) \text{.} \\ M(x) &= 0.5 \times G \times x \times (L - x) \text{: moment fléchissant dû au poids propre.} \end{split}$$

Le tableau suivant représente excentricité des câbles

rableau vi- 7. Excentricité des cables										
	0	L/10	L/8	L/6	L/4	L/2				
Cable 1	0.559	0.269	0.24	0.24	0.24	0.24				
Cable 2	0.959	0.709	0.24	0.24	0.24	0.24				
Cable 3	1.359	0.939	0.4	0.4	0.4	0.4				
e ₁	-0.4	-0.69	-0.719	-0.719	-0.719	-0.719				
e ₂	0	-0.25	-0.719	-0.719	-0.719	-0.719				
e ₃	0.4	-0.02	-0.559	-0.559	-0.559	-0.559				
e _{moy}	0	-0.32	-0.665	-0.665	-0.665	-0.665				

Tableau VI- 7: Excentricité des câbles

emoy : Excentricité de câble moyenne .

Les calculs des pertes dues au raccourcissement élastique du béton sont mentionnés dans le tableau suivant :

Tubleau 11 011 entes aues au fueeoureissement enastique au seton								
x(m)	0	L/10	L/8	L/6	L/4	L/2		
Р	6.34	6.46	6.5	6.55	6.65	6.86		
$P.e^2$	0	0.66	2.87	2.89	2.94	3.03		
M(x).e	0	-0.62	-0.78	-0.99	-1.34	-1.79		
σ_{b} (MPa)	5.74	10.79	19.31	18.61	17.54	16.4		
$\Delta \sigma_{\rm rb}$ (MPa)	14.87	27.96	50.04	48.23	45.45	42.5		

Tableau VI-8 : Pertes dues au raccourcissement élastique du béton

Récapitulatif des pertes instantanées (Tableau VI.9)

Les pertes totales dues aux pertes instantanées sont égales à :

 $\Delta \sigma_{inst} = \Delta \sigma_{frot} + \Delta \sigma_{recul} + \Delta \sigma_{rb}$

X(m)	0	L/10	L/8	L/6	L/4	L/2
$\Delta \sigma_{\rm inst}$ (MPa)	233.87	222.27	238.17	226	202.6	158.61
$1 \sim 2\sigma_{ m inst}$	15.8	15	16.11	15.29	13.7	10.7

VI.7 Pertes différées

Ce sont les pertes qui apparaissent dans le temps (retrait et fluage du béton, relaxation des aciers), ce qui entraîne une diminution progressive de la précontrainte dans le câble.

VI.7.1 Pertes dues au retrait du béton

Le retrait est la déformation par raccourcissement spontané du béton, au cours de son durcissement. Cette déformation est principalement due à l'évaporation progressive de l'eau non fixée dans la réaction d'hydratation du ciment. Le raccourcissement de retrait provoque une diminution progressive de la tension dans les armatures de précontrainte. C'est la perte de tension due au retrait $\Delta \sigma_{ret}$, dont la valeur finale est donnée par la formule :

 $\Delta \sigma_{ret} = E_P \times \varepsilon_r$

Avec : E_p : Module d'élasticité de l'acier de précontrainte, E_p =195000 MPa. ε_r : Retrait total du béton, $\varepsilon_r = 1.5 \times 10^{-4}$

Alors : $\Delta \sigma_{ret} = 29.25 MPa$

VI.7.2 Pertes par relaxation des aciers

L'acier fortement tendu sous longueur constante voit sa tension décroître progressivement. Ce phénomène, appelé relaxation, est corrélatif du fluage (variation de longueur sous contrainte constante). Son importance dépend très sensiblement de la température. Le BPEL propose pour le calcul de la perte finale par relaxation la formule ci-dessous :

$$\Delta \sigma_{relax} = \frac{6}{100} \times \rho_{1000} \times (\mu(x) - \mu 0). \sigma_{pi}(x)$$

Tel que : $\rho_{1000} = 2.5\%$ (la relaxation à 1000h). $\mu(x) = \frac{\sigma_{pi}(x)}{f_{prg}}$ $\sigma_{pi}(x)$: Contrainte initiale, c'est-à-dire après les pertes instantanées. $\sigma_{pi}(x) = \sigma_{p0} - \Delta \sigma_{inst}$ f_{prg} : Contrainte limite de rupture garantie, f_{prg} =1860 MPa.

 μ_0 : Coefficient pris pour l'armature TBR , $\mu_0{=}0.43$ (BPEL91)

Les calculs des pertes sont mentionnés dans le tableau suivant :

rableau vi- 10. Feites par relaxation des acters										
X(m)	0	L/10	L/8	L/6	L/4	L/2				
$\sigma_{\rm pi}({ m x})$	1244.13	1255.73	1239.83	1252	1275.4	1319.39				
μ(x)	0.66	0.67	0.66	0.67	0.68	0.7				
$\Delta \sigma_{\rm relax}({ m MPa})$	42.92	45.2	42.77	45.07	47.82	53.43				

Tableau VI- 10: Pertes par relaxation des aciers

VI.7.3 Pertes par fluage

Sous l'action d'une contrainte de compression, le béton subit des déformations au cours du temps. Les câbles étant ancrés dans le béton vont subir les mêmes déformations. Selon le BPEL la perte finale de tension due au fluage est définie par :

$$\Delta \sigma_{fl} = K_{fluage} \times \sigma_{bc} \times \frac{E_p}{E_i}$$

Où :

$$K_{fluage} = \frac{E_i - E_v}{E_v} \times (1 - 0.3) = \frac{3E_v - E_v}{E_v} = 2 \times 0.7 = 1.4$$

 σ_b : Contrainte normale du béton. $\sigma_b(x) = \frac{P}{A} + \frac{M(x).e}{I_G} + \frac{P.e}{I_G}$

 $M(x) = 0.5 \times G \times x \times (L - x)$: Moment fléchissant dû au poids propre.

E_P: Module d'élasticité de l'acier.

Ei28 : Module de déformation instantanée du béton à 28 jours.

E_v : Module de déformation différée du béton à 28 jours.

Les câbles sont tires à 28 jours avec une dissipation du fluage du béton estimée à 30 %.

Les résultats sont représentés dans le tableau ci-dessous :

Tuoteuu (T TTTTTTTTTTTTT									
X(m)	0	L/10	L/8	L/6	L/4	L/2			
Р	5.9	5.95	5.88	5.93	6.03	6.23			
e	0	-0.32	-0.665	-0.665	-0.665	-0.665			
$P.e^2$	0	0.6	2.6	2.62	2.66	2.775			
Mg.e	0	-0.62	-0.78	-0.99	-1.34	-1.79			
$\sigma_{ m bc}$	5.34	9.7	17.18	16.48	15.1	14.29			
$\Delta \sigma_{\rm fl}({ m MPa})$	38.75	70.39	124.6	119.59	109.557	103.7			

Tableau VI- 11: Pertes par fluage

Les pertes totales dues aux pertes différées sont égales à :

$$\Sigma \sigma_{diff} = \Delta \sigma_{ret} + \Delta \sigma_{relax} + \frac{5}{6} \times \Delta \sigma_{fl}$$

Chapitre VI : Etude de la précontrainte

Les résultats sont résumés au tableau suivant :

X(m)	0	L/10	L/8	L/6	L/4	L/2
$\sum \sigma_{\text{diff}}$ (MPa)	104.46	133.1	175.85	173.97	168.32	169.09
$\%\Sigma\sigma_{ m diff}$	7	9	11.8	11.7	11.38	11.4

Tableau VI- 12 : Pertes totales dues aux pertes différées

Le résultat final des pertes de tension est représenté dans le tableau suivant :

Tableau VI- 13 : Pertes totales											
X(m)	0	L/10	L/8	L/6	L/4	L/2					
$\Sigma \sigma$ Final	338.33	355.37	414.02	399.97	370.92	354.7					
$\% \Sigma \sigma$ Final	22.8	24.04	28.1	27.06	25.09	23.9					

VI.8 Conclusion

Dans cette étude, le nombre des câbles est égal à trois et le pourcentage maximal des pertes est égal 28.1%. Ce pourcentage est inférieur à l'estimation préconisée précédemment (30%). Par conséquent, les trois câbles sont suffisants pour reprendre la totalité des efforts auxquels ils seront soumis.

Chapitre VII : Calcul justificatif des poutres et calcul des déformations

VII.1 Introduction

Dans ce chapitre, on doit vérifier les contraintes normales et tangentielles conformément aux normes utilisées (BAEL91), et calculer les déformations.

On distingue différents types de sections, à savoir :

- Section brute : c'est la section du béton seul sans prendre en considération les trous des gaines et les aciers.
- Section nette : c'est la section comprenant la section brute et les trous des gaines.
- Section homogène : c'est la section comprenant la section nette et la section des armatures longitudinales de précontrainte multipliée par un coefficient d'équivalence.

VII.2 Caractéristiques nettes et homogènes de la section médiane

VII.2.1 Calcul des caractéristiques nettes

Le calcul des caractéristiques nettes de la section médiane est donné par les expressions suivantes :

$$A_n = A_b - N \times A_g$$

$$I_{n} = (v'_{n} - v'_{b})^{2} \times A_{b} - N \times I_{g} - A_{g} \times \sum (v'_{n} - y_{i})^{2} + I_{b}$$
$$v'_{n} = \frac{A_{b} \times v'_{b} - \sum A_{g} \times y_{i}}{A_{n}}$$

Tel que :

 A_n : Section nette.

N : Nombre de câbles.

 A_b : Section brute.

Ag : Section de la gaine, égale à 5. 10^{-3} .

 v'_n : Distance entre le centre de gravité de la section nette et sa fibre inférieure.

 v'_{h} : Distance entre le centre de gravité de la section brute et sa fibre inférieure.

y_i: Distance entre le câble i et la fibre inférieure qui est égale :

$$y_1 = 0.24$$
 ; $y_2 = 0.24$; $y_3 = 0.4$

I_n : Inertie de la section nette.

 $I_g = 2.01 \times 10^{-6}$: Inertie de la gaine.

 $I_{b:}$ Inertie de la section brute.

Les caractéristiques brutes et nettes de la section médiane (poutre seule) sont données dans le tableau ci-dessous (voir chapitre III) :

1 abreau v II- 1. Caracteristiques brate et nette de la section incurane sans nourais

rubleau vii 1. Caracteristiques brate et nette de la section médiane sans nourais					
	$A(m^2)$	I (m ⁴)	v' (m)	v (m)	
Section brute	0.64	0.26	0.9645	0.8355	
Section nette	0.62	0.25	0.9885	0.8115	

Les caractéristiques brute et nette de la section médiane (avec hourdis) sont données dans le tableau suivant :

Tableau VII- 2: Caractéristiques brute et nette de la section médiane avec hourdis

	$A(m^2)$	I (m ⁴)	v'(m)	v (m)
Section brute	0.96	0.5	1.27	0.72
Section nette	0.945	0.495	1.285	0.715

VII.2.2 Calcul des caractéristiques homogènes (poutre +hourdis)

Le calcul des caractéristiques homogènes est donné par les formules suivantes : $A_h = A_n + n \times N \times A_p$

Tel que :

A_h: Aire de la section homogène.

 v'_h : Distance entre le centre de gravité de la section homogène et sa fibre inférieure.

$$v'_{h} = \frac{A_{n} \times v'_{n} + N \times A_{p} \times \sum y_{i}}{A_{n}}$$

 I_h : Inertie de la section homogène.

$$I_{h} = I_{n} + A_{n} \times (v'_{h} - v'_{n})^{2} + N \times A_{p} \times \sum (y_{i} - y_{h})^{2}$$

 A_p : Section de câble de précontrainte = 1680 mm².

n : Coefficient d'équivalence acier-béton =5.18 (rapport entre le module de déformation longitudinale E_p et le module d'élasticité instantanée de béton E_{ij}). N : Nombre de câbles.

Les caractéristiques sont présentées dans le tableau VII.3 :

Tableau VII- 3: Caractéristiques homogènes de la section médiane (poutre + hourdis)						
$A_h(m^2)$	v' _h (m)	v _h (m)	$I_h(m^4)$			
0.97	1 29	0.71	0.54			

VII.3 Phases de construction

La vérification se fait suivant les phases suivantes :

	Phase 1	Phase 2	Phase 3	Phase 4
Aprés j	7 jours	28 jours	A vide	En service
Mise en tension	50%	100%	100%	100%
Section résistante	Section nette	Section nette	Section	Section homogène de la
	de la poutre	de la poutre	homogène de	poutre plus hourdis
	seul	seul	la poutre plus	
			hourdis	
K coeficient de mise	0.5	1	1	1
en tension				
Pertes	10%	20%	30%	30%
Moment considéré	Poids propre	Poids propre	Poids propre	Combinaison la plus
	de la poutre	de la poutre	de tablier	défavorable(G+D240)
	seul	seul		

Tableau VII- 4 : Phases	de ve	érification	des	contraintes
-------------------------	-------	-------------	-----	-------------

VII.4 Vérification des contraintes aux états limites de service (ELS)

La vérification se fait à la classe II, selon le règlement BPEL91.

VII.4.1 Contraintes admissibles en service

Les contraintes limites à l'état limite de service sont données comme suit :

Contraintes admissibles en construction :

 $J = 7 jours: \begin{cases} f_{c7} = 26.49 MPa \rightarrow \sigma_{ci} = 0.6 f_{c7} = 15.89 MPa \\ f_{t7} = 2.18 MPa \rightarrow \sigma_{ts} = -1.5 f_{t7} = -3.27 MPa \end{cases}$

$$J \ge 28 jours: \begin{cases} f_{c28} = 40MPa \rightarrow \sigma_{ci} = 0, 6f_{c28} = 24MPa \\ f_{t28} = 3MPa \rightarrow \sigma_{ts} = -1.5f_{t28} = -4.5 MPa \end{cases}$$

Sous combinaison (G +D240) : $\begin{cases} \sigma_{cs} = 0.5 f_{c28} = 20MPa \\ \sigma_{ti} = -f_{t28} = -3MPa \end{cases}$

VII.4.2 Vérification de la contrainte normale

La précontrainte est représentée à un instant *t* par deux valeurs caractéristiques : $P_1 = 1.02 \times k \times P_0 - 0.8 \times k \times \Delta P(x, t) =>$ en phase de construction $P_2 = 0.98 \times P_0 - 1.2 \times \Delta P(x, t) =>$ en phase de service

Avec :

 P_0 : Précontrainte à l'origine. $\Delta P(x; t)$: Perte de la précontrainte à l'abscisse x et l'instant t. K : Coefficient de mise en tension

La vérification se fait sur les contraintes σ_{sup} , σ_{inf} Tel que :

> Etat à vide

Fibre supérieure :
$$\sigma_{sup} = \frac{n \times P}{A} + \frac{v}{I}(M_p + M_i) \ge \sigma_{ts}$$

Fibre inférieure : $\sigma_{inf} = \frac{n \times P}{A} - \frac{V'}{I}(M_p + M_i) \le \sigma_{ci}$

> Etat en charge

Fibre supérieure :
$$\sigma_{sup} = \frac{n \times P}{A} + \frac{v}{l}(M_p + M_i) \le \sigma_{cs}$$

Fibre inférieure : $\sigma_{inf} = \frac{n \times P}{A} - \frac{v'}{l}(M_p + M_i) \ge \sigma_{ti}$

Avec :

Mi : Moment considéré pour chaque phase

Tel que : Mg : Moment de la poutre pour la phase 1 et 2 M_t : Moment de tablier M_{G+D240} : Moment due à la combinaison la plus défavorable

$\sigma_{\rm c}$: Contrainte de compression.

- σ_t : Contrainte de traction.
- P: Effort de la précontrainte.
- A : Section considérée
- I : Moment d'inertie par rapport au centre de gravité de la section.
- $\overline{\sigma_i}$: Contrainte admissible.
- *M_p*: Moment de la précontrainte

$$M_p = -P_i \times \sum (\nu' - Y_i)$$

Moment due au poids propre de la poutre (phase 1 et 2) : $M_{poutre} = \frac{q_{poutre} \times L^2}{8} = \frac{0.01748 \times 35.1^2}{8} = 2.69MN.m$

Chapitre VII : Calcul justificatif des poutres et calcul des déformations

Contrainte due au poids propre de tablier (phase 3) :
$$1^{2}$$

 $M_{Tablier} = \frac{q_{tablier} \times L^2}{8} = \frac{0.03214 \times 35.1^2}{8} = 4.96MN.m$

Application numérique (Tableau VII-5) :

Tableau VII- 5: Vérification des contraintes normales

	Pertes (%)	P _i (MN)	$M_p(MN.m)$	M (MN.m)	Contraintes	vérification
					(MPa)	
Phase 1	10	1.16	-2.41	2.69	$\sigma_{sup}=6.52$	Vérifiée
					$\sigma_{\rm inf}=4.5$	
Phase 2	20	2.13	-4.45	2.69	$\sigma_{sup} = 4.59$	Vérifiée
					$\sigma_{\text{inf}} = 17.26$	
Phase 3	30	1.93	-5.77	4.96	σ_{sup} =4.90	Vérifiée
					$\sigma_{\rm inf}=7.90$	
Phase 4	30	1.54	-4.60	7.23	$\sigma_{\rm sup} = 8.22$	Vérifiée
					$\sigma_{\rm inf} = -1.52$	

VII.5 Vérification des contraintes tangentielles

La vérification des contraintes tangentielles s'effectue suivant les cinq étapes citées plus haut.

Pour cela, on doit vérifier les inégalités suivantes :

$$\begin{cases} \tau^2 \le 0.4 f_{tj} (f_{tj} + \frac{2}{3}\sigma x) = \overline{\tau_1}^2 \\ \tau^2 \le \frac{2f_{tj}}{f_{cj}} (0.6f_{cj} - \sigma_x) (f_{tj} + \frac{2}{3}\sigma_x) = \overline{\tau_2}^2 \end{cases}$$

Avec :

 τ : Contrainte tangentielle qui est donnée par la formule suivante :

$$\tau(y) = \frac{V_{red}(y) \times S(y)}{b_n(y) \times I_n}$$

Avec :

τ: Contrainte de cisaillement qui s'exerce sur une fibre d'ordonnée (y).

 $V_{red}(y)$: Effort tranchant réduit.

S(y) : Moment statique par rapport à l'axe G_z de la partie de section située au-dessus de l'ordonnée y.

 I_n : Moment d'inertie net par rapport à l'axe G_z

b(y): Largeur nette de l'âme de la poutre.

On donne :

$$S(y) = \frac{I_n}{0.8 \times h} \to \tau(y) = \frac{V_{red}}{0.8 \times b_n \times h}$$

Les tableaux suivants représentent les caractéristiques brute, nette et homogène de la section d'about :

Tableau VII- 6: Caractéristiques brute et nette de la section d'about sans hourdis

	$A(m^2)$	I (m ⁴)	v' (m)	v (m)		
Section brute	1.1625	0.34	0.959	0.841		
Section nette	1.1475	0.333	0.967	0.833		

Chapitre VII : Calcul justificatif des poutres et calcul des déformations

Tableau VII- / : Caracteristiques brute et nette de la section d'about avec hourdis					
	$A(m^2)$	Ι	v'	V	
Section brute	1.4825	0.57	1.1621	0.8379	
Section nette	1.4675	0.558	1,171	0.829	

Tableau VII-7: Car	actéristiques brute et	nette de la section	d'about avec hourdis
--------------------	------------------------	---------------------	----------------------

Tableau VII- 8: Caractéristiques homo	gènes de la section d'about (j	poutre + hourdis)
---------------------------------------	--------------------------------	-------------------

$A_h(m^2)$	v' _h (m)	v _h (m)	$I_h(m^4)$
1.4936	1.174	0.826	0.602

Tel que : $\begin{cases} V_{red} = V_{ser} - \sum P_i \sin \alpha_i \\ V_{ser} = \frac{g \times L}{2} \\ b_n = b_0 - m \times K \times D \end{cases}$

Avec :

b_n : Largeur nette de la section au niveau y (déduction de largeur de gaine).

b₀ : Largeur brute de l'âme.

m : Nombre de gaines par lit.

K=0.5 (phase 1).

K=1 (autres phases) dans le cas des câbles injectés au coulis de ciment.

D=80mm : Diamètre de gaine.

 σ_x : Contrainte normale longitudinale au centre de gravité qui est donnée par la formule :

$$\sigma_x = \frac{\sum P_i \cos \alpha_i}{A_n}$$

Avec :

P : Force de précontrainte.

 α_i : Angle de relevage du câble de la précontrainte.

Vérification des inégalités

$$\tau^{2} \leq 0.4 f_{tj} (f_{tj} + \frac{2}{3}\sigma_{x}) = \overline{\tau_{1}}^{2}$$

$$\tau^{2} = 0.488 MPa^{2} \leq \frac{2f_{tj}}{f_{cj}} (0.6f_{cj} - \sigma_{x}) \times (f_{tj} + \frac{2}{3}\sigma_{x}) = \overline{\tau}_{2}^{2}$$

De la même manière, on fait le calcul pour les autres phases.

Les résultats sont indiqués dans le tableau ci-dessous :

 Tableau VII- 9 : Résultats du calcul de la vérification des contraintes tangentielles

Phase	P (MN)	$V_{red}(MN)$	S(y)	σ_x (MPa)	$\boldsymbol{\tau}$ (MPa)	$\overline{\tau_1}^2$ (MPa ²)	$\overline{\tau}_{2}^{2}$ (MPa ²)	Vérification
1	1.16	-0.597	0.23	2.92	-0.74	3.6	8.81	Vérifiée.
2	2.13	-1.3537	0.23	5.36	-1.8	7.88	18.38	Vérifiée
3	1.93	-0.8	0.376	3.73	-0.96	6.58	16.68	Vérifiée
4	1.54	-0.235	0.376	2.98	-0.282	5.98	15.72	Vérifiée

VII.6 Calcul des flèches et contre flèches

VII.6.1 Flèche due au poids propre

Le poids propre est supposé comme étant une charge uniformément repartie (q/m). La flèche est donnée par la formule suivante :

$$f_G = \frac{5 \times q \times L^4}{384 \times E_v \times I_G} = \frac{5 \times M_G \times L^2}{48 \times E_v \times I_G}$$

Avec : L=35.1m. $M_G = 4.96 \text{ MN.m}$ $E_v = \text{Module de déformation longitudinale différée : <math>E_v = 12539.82 \text{ MPa}$ $I_G : \text{Moment d'inertie (poutre+ hourdis)} = 0.5 \text{ m}^4.$

Donc : $f_G = 10.12 \ cm.$

VII.6.2 Flèche due aux surcharges

Pour simplifier les calculs, on considère que les charges sont uniformément réparties :

$$f_s = \frac{5 \times M_s \times L^2}{48 \times E_v \times I_G}$$
$$M_s = M_{max} - M_{min} = 2.27 \text{ MN. } m$$

Donc : $fs = 4.64 \ cm$.

VII.6.3 Contre-flèche

Pour une poutre de portée (L), soumise à un moment dont le diagramme est symétrique par rapport à l'axe de la poutre, la contre-flèche est calculée par l'intégrale de Maxwell-Mohr :

$$f = \int_0^l \frac{M_p \cdot \overline{M}}{E_v \times I_G} dx$$

Le moment dû à la précontrainte est donné par :

$$M_{p} = \sum_{i} P_{i} \times e_{i}$$
$$P_{i} = A_{p} \times (\sigma_{p0} - \sigma_{final}) \times cos(\alpha)$$

a. A l'about (x=0L)

On a: $P_1 = 1680 \times 10^{-6} \times (1478 - 338.33) \times cos(10) = 1.88MN$ $P_2 = 1680 \times 10^{-6} \times (1478 - 338.33) \times cos(15.28) = 1.84MN$ $P_3 = 1680 \times 10^{-6} (1478 - 338.33) \times cos(20) = 1.80MN$

b. A mi- travée

$$P_1 = P_2 = P_3 = 1680 \times 10^{-6} \times (1478 - 354.7) = 1.88MN$$

Le tableau suivant représente le calcul de moment de la précontrainte moyenne :

Chapitre VII : Calcul justificatif des poutres et calcul des déformations

	•		
Section	Cable		M _p
	e (m)	P _i (MN)	
About	-0.425	1.88	-0.17
	-0.025	1.84	
	0.375	1.80	
Mi-Travée	-0.719	1.88	-3.75
	-0.719	1.88	
	-0.559	1.88	

Tableau VII- 10: Calcul du moment de précontrainte moyenne

Les diagrammes de M et \overline{M} sont montrés dans les figures suivantes :

Diagramme de \overline{M}

Figure VII- 1: Diagramme des moments

Donc: $\int_{0}^{L/2} M \cdot \overline{M} \, dx = \frac{1}{6} (8.775)(17.55)(-0.17 + 2 \times (-3.75)) = -196.86$ $f_p = \frac{2 \times (-196.86)}{0.26 \times 12539.82} = -0.1207 \, m$ fa = 12.07cm (flèche dirigée vers la beut)

f_p =-12.07cm (flèche dirigée vers le haut)

VII.6.4 Flèche totale

a. Flèche en construction

La flèche en construction est donnée par

$$f_c = \frac{3}{4} \times (|f_p| - f_G) = 1.4625 \ cm$$

b. Flèche en service

La flèche en service est donnée par :

- ▶ A vide : $f = f_G + f_p + f_c = -0.4875$ cm
- En charge : $f = f_G + f_p + f_s + f_c = 4.1525$ cm

La flèche calculée en charge : f = 4.1525 cm.

La flèche admissible : (L/500 = 7.02 cm) doit être supérieure à la flèche calculée (4.1525 cm), d'où la condition est vérifiée.

VII.7 Calcul des rotations au niveau des appuis

Rotation sous le poids propre VII.7.1

La rotation à l'appui est donnée par l'expression suivante :

$$\theta_G = \frac{q.L^3}{24.E_{\nu}.I_G} = \frac{M_G.L}{3.E_{\nu}.I_G}$$

Chapitre VII : Calcul justificatif des poutres et calcul des déformations

Avec : L=35.1m. M_G =4.96 MN.m E_v : Module de déformation longitudinale différée E_v = 3700 × $\sqrt[3]{f_{c28}}$ = 12539.82 MPa. I_G : Moment d'inertie (poutre+ hourdis) = 0.5 m⁴

D'où : $\theta_G = 9.258 \times 10^{-3} rad.$

VII.7.2 Rotation sous les surcharges

L'expression de θ_s est donnée par : $\theta_s = \frac{q.L^3}{24.E_v.I_G} = \frac{M_s.L}{3.E_v.I_G} = 4.23 \times 10^{-3} rad$

VII.7.3 Rotation d'appui sous l'effet de la précontrainte

L'expression de θ_P est donnée par :

$$\theta_P = -\frac{1}{EI} \int M \cdot \overline{M} \cdot dx$$

M et \overline{M} sont montrés dans les figures suivants :

Diagramme de M

 $\int M.\overline{M} \, dx = I.I' + II.II' = \frac{17.55}{6} (1 \times (2 \times 0.17 + 3.75) + \frac{1}{2}(0.17 + 2 \times 3.75)) + \frac{1}{6} \times \frac{1}{2} \times 17.55(0.17 + 2 \times 3.75))$

$$\int M.\,\overline{M}\,dx = 55.99$$

Donc :

 $\theta_P = -8.93.10^{-3} \text{ rad}$

VII.7.4 Rotation totale

- ▶ A vide : $\theta = \theta_p + \theta_G = 0.328 \times 10^{-3} rad$
- En charge : $\theta = \theta_p + \theta_G + \theta_S = 4.558 \times 10^{-3} rad$

VII.8 Ferraillage des poutres

VII.8.1 Ferraillage passif longitudinal

On distingue deux types d'armatures passives :

- Les armatures longitudinales de peau.
- Les armatures longitudinales dans les zones tendues.

a. Armatures longitudinales de peau

Ces armatures limitent la fissuration du béton avant l'application de la force de précontrainte.

La section de l'armature de peau est donnée par la relation suivante :

 $A_{S\min} = max (0.1 \times A_n; 3\frac{cm^2}{m} \times \Omega(m)) = max (6.2; 19.06) = 19.06 cm^2$

Soit 20HA12 (22.61 cm²).

Tel que :

 Ω : Périmètre de la section à mi- travée =6.35 m

b. Armatures longitudinales dans les zones tendues

Il est nécessaire de disposer des sections d'armatures minimales As dans la partie de la section ou le béton est tendu. Cette section est égale à :

$$A_s = \frac{B_t}{1000} + \left(\frac{N_B}{f_e} \times \frac{f_{ti}}{\sigma_B}\right)$$

 B_t : Aire de la section du béton en traction :

$$B_t = 0.16 - 0.0125 = 0.1475 m^2$$

 f_e : Limite élastique d'acier (500 MPa).

 f_{ti} : Contrainte admissible de traction (3MPa)

 σ_B : Valeur absolue de la contrainte maximale de traction (FigVII-5) $\sigma_B = 1.52$

 N_B : Résultante des contraintes de traction correspondantes.

$$N_B = \frac{\sigma_B \times B_t}{2} = 0.1121 MN.$$

Figure VII- 3 : Diagramme des contrainte à mi-travée

 $A_s = \frac{B_t}{1000} + \left(\frac{N_B}{f_e} \times \frac{f_{ti}}{\sigma_B}\right) = \frac{0.1475}{1000} + \left(\frac{0.1121}{500} \times \frac{3}{1.52}\right) = 7.05 \ cm^2$

Soit 6HA14 (A=9.23 cm²) espacées 10 cm

VII.8.2 Armatures transversales

a. Armatures transversales de peau

La section des armatures de peau serve à maintenir les armatures passives. Ces armatures sont disposées parallèlement à la section transversale d'une poutre qui doit être d'au moins 3 cm² par mètre de largeur de parement. Ceci correspond à environ un cadre HA12 espacées de 20 cm.

b. Armatures passives transversales

Pour éviter une rupture fragile par effort tranchant, un minimum d'armature est nécessaire qui doit vérifier la condition suivante :

$$\frac{A_t}{b_n \times S_t} \times \frac{f_e}{\gamma_s} \ge 0.6 \text{ MPa}$$

 A_t : Section des armatures transversales.

S_t: Espacement entre les armatures.

b_n: Largueur nette.

$$b_n = b_0 - m \times k \times \varphi = 0.52m$$

 $f_e:$ Limite élastique d'acier. (500MPa) $\gamma_s:$ 1.15

Donc :

$$\frac{A_t}{S_t} \ge 0.6 \frac{\gamma_s \times b_n}{f_e} = \frac{0.6 \times 1.15 \times 0.52}{500}$$
$$\frac{A_t}{S_t} \ge 7.176 \times 10^{-4}$$

On fixe $A_t = 2.26 \ cm (2HA12) => S_t \le 0.32 \ m$

Ces armatures sont caractérisées par leurs sections A_t incluant les armatures de peau. Leur espacement S_t est tel que :

St= $0.32 \text{ m} < \min(0.8\text{h}; 3b_{ame}; 1\text{m}) = \min(1.6; 0.6; 1) = 0.6 \text{ m}.$

VII.9 Vérification à l'ELU

Les justifications des éléments d'une poutre vis-à-vis de l'état-limite ultime comportent les vérifications suivantes :

VII.9.1 Justification des armatures transversales

Pour la justification des armatures transversales, on doit vérifier l'inégalité suivante :

$$\tau_{\text{red},u}(y) \le \frac{A_t}{b_n \times S_t} \times \frac{f_e}{\gamma_s} \times \frac{1}{tg(\beta)} + \frac{f_{tj}}{3} = \overline{\tau}$$

Avec :

$$\tau_{red,u}(y) = \frac{V_{red,u}}{0.8 \times h \times b_n} = \frac{0.462}{0.8 \times 2 \times 0.52} = 0.56 \text{ MPa}$$
$$V_{red,u} = V_{max;u} - \% \text{ Perte } \times P \sum \sin \alpha_i$$

Avec :

P force de la précontrainte en phase 4 : P = 1.54

Donc :

$$V_{red,u} = 1.302 - 0.7 \times 1.54 \times (sin(10) + sin(15.28) + sin(20))$$
$$V_{red,u} = 0.462 MN$$

Chapitre VII : Calcul justificatif des poutres et calcul des déformations

Soit β l'angle de l'inclinaison de bielle de béton, tel que :

$$tg(2\beta) = \frac{\tau_{red,u}(y) \times 2}{\sigma_x} = \frac{2 \times 0.56 \times 0.97}{1.54 \times 2.89} = 0.2441 \implies \beta = 6.86^{\circ} < 30^{\circ}$$

pour $\beta = 30^{\circ}$:

$$\overline{\tau} = \frac{2.26 \times 10^{-4}}{0.52 \times 0.32} \times \frac{500}{1.15} \times \frac{1}{\text{tg30}} + \frac{3}{3} = 2.02 \text{ MPa}$$

D'où :

 $\tau_{red.u}(y) = 0.56 \text{ MPa} < \overline{\tau} = 2.02 \text{ MPa} => vérifié$

VII.9.2 Justification de la rupture par l'effort tranchant

Il faut vérifier l'inégalité suivante :

$$\tau_{red,u} \le \frac{f_{c28}}{4 \times \gamma_s} = \frac{40}{6} = 6.66 \text{ MPa}$$

Donc :

 $\tau_{red,u} = 0.59 MPa \le 6.66 MPa$ vérifiée

VII.9.3 Sécurité à la rupture en flexion

La combinaison à L'ELU doit vérifier les inégalités suivantes :

- Sécurité par rapport aux aciers actifs : $M_u=1.35M_G+1.5M_Q \le M_{RA}$
- Sécurité par rapport au béton : $M_u=1.35M_G+1.5M_Q \le M_{RB \ ame} + M_{RB \ hourdis}$

Avec :

 M_u : Moment ultime à l'ELU. M_{RA} : Moment résistant à la rupture des aciers actifs. M_{RB} : Moment résistant à la rupture du béton.

On a:

$$\begin{split} M_{u} &= 1.35 \; (4.96) + 1.5 \; (2.86) = 10.98 \; \text{MN.m} \\ M_{RA} &= (h_{t} - e_{H}) \; \times N \; \times A_{P} \times f_{prg} \\ M_{RA} &= (2 - 0.2) \times 3 \times 1680 \times 10^{-6} \times 1860 = 16.9 \; \text{MN.m} \geq 10.98 \; \text{MN.m} = \text{>vérifié} \\ M_{RB} &= 0.8 \times e \times (h - d) \, ^{2} \times f_{bu} = 0.8 \times 0.2 \; \times (2 - 0.2) \, ^{2} \times 22.66 = 11.75 \; \text{MN.m} \end{split}$$

Pour l'hourdis, on a :

$$M_{\text{hourdis}} = \min \begin{cases} 0.8 \times (b_0 - b_t)(\frac{h_t - h_0}{2})h_0 f_{c28} \\ 0.35(b_0 - b_t)h_t^2 f_{c28} \end{cases} = \min \begin{cases} 8.6 \text{ MN. m} \\ 56 \text{ MN. m} \end{cases}$$

 b_0 : Largeur de table de compression

b_t : Epaisseur d'âme.

 h_t : Hauteur totale.

h₀ : Epaisseur de table de compression plus l'épaisseur d'hourdis.

Donc :

$$\begin{split} M_{RB} + M_{hourdis} &= 11.75 + 8.6 = 20.35 \text{ MN.m} \\ M_{RB} + M_{hourdis} &\geq M_u \! = \! > v \acute{e}rifi\acute{e}. \end{split}$$

Chapitre VII : Calcul justificatif des poutres et calcul des déformations

Figure VII- 4 : Ferraillage passif de la poutre

VII.10 Conclusion

Après vérification, le ferraillage passif de la poutre est : 5HA14 pour les armatures de traction, 20HA12 pour les armatures longitudinales de peau, et pour les armatures transversales, on a opté des cadres de 2HA12 espacés de 32 cm en travée et 15 cm à l'about.

Chapitre VIII : Etude de l'hourdis.

VIII.1 Introduction

La dalle ou l'hourdi sert d'élément de couverture, c'est elle qui reçoit la couche de roulement de la chaussée et les surcharges des véhicules, elle permet aussi de répartir les charges permanentes et les surcharges sur les poutres avec un épaisseur usuelle de 16 à 25cm. L'étude de l'hourdis général se fait conformément au BAEL91. Le calcul revient d'étudier une section rectangulaire (20x100 cm) en flexion simple (figure VIII.1).

Figure VIII- 1 : Section d'étude

VIII.2 Etude de la flexion transversale

VIII.2.1 Moments

Les moments fléchissant maximum et minimum sont obtenus par la combinaison (1.35G+1.35 D240) (figure VIII.2).

Figure VIII- 2 : Moment Mxx sous la combinaison 1.35G+1.35D240

Les moments fléchissant maximum et minimum sont obtenus par la combinaison (G+D240) (figure VIII.3) :

Figure VIII- 3 : Moment Mxx sous la combinaison G+D240

Donc :

Moment fléchissant max à mi- travée : M_{ELU}= 48.19 kN.m

M_{ELS}=35.7 kN.m

Chapitre VIII : Etude de l'hourdis

Moment fléchissant min sur appuis :

 M_{ELU} = -85.39 kN.m

 M_{ELS} = -63.26 kN.m

VIII.2.2 Ferraillage

Le ferraillage et la vérification se font à l'aide du logiciel EXPERT 2010.Les résultats obtenus sont :

 $A_{s1}=7.5 \text{ cm}^2 \text{ soit 7HA12 (7.91 cm}^2) \text{ espacées de 15 cm} A_{s2}=13.9 \text{cm}^2 \text{ soit 10HA14 (15.39 cm}^2) \text{ espacées de 10 cm}$

Condition de non fragilité :

Elle est donnée par la relation suivante :

Figure VIII- 4: Section dalle avec ferraillage

$$A_{min} \ge 0.23 \times b \times d \times \frac{f_{tj}}{f_e}$$
$$A_{min} \ge 0.23 \times 1 \times 0.15 \times \frac{3}{500} = 2.07 \ cm^2$$
$$7.91 > 2.07 => \text{ condition vérifiée.}$$

VIII.3 Etude de flexion longitudinal (sens des poutres)

VIII.3.1 Moments

Les moments fléchissant maximum et minimum sont obtenus par la combinaison (1.35G+1.35D240) (figure VIII.5) :

Figure VIII- 5 : Moment Myy sous la combinaison 1.35G+1.35D240

Les moments fléchissant maximum et minimum sont obtenus par la combinaison (G+D240) (figure VIII.6) :

Chapitre VIII : Etude de l'hourdis

Figure VIII- 6 : Moment Myy sous la combinaison G+D240

Donc :

Moment fléchissant max à mi- travée :

M_{ELU} = 9.33 kN.m M_{ELS} = 6.91 kN.m ➤ Moment fléchissant min sur appuis : M_{ELU} = -37.44 kN.m M_{ELS} = -28.01 kN.m

VIII.3.2 Ferraillage

Le ferraillage et la vérification se font à l'aide du logiciel EXPERT 2010 (flexion simple). Les résultats obtenus sont :

 $A_{s1}=3cm^2$ soit 4HA12 (3.39 cm²) espacées de 25 cm. $A_{s2}=5.2cm^2$ soit 4HA14 (6.15 cm²) espacées de 25 cm.

Condition de non fragilité

Elle est donnée par la relation suivante :

 $A_{min} \geq 0.23 \times b \times d \times \frac{f_{tj}}{f_e}$ $A_{min} \geq 0.23 \times 1 \times 0.15 \times \frac{3}{500} = 2.07 \ cm^2$ 3 > 2.07 => condition vérifiée.

Figure VIII- 7: Section dalle avec ferraillage

VIII.4 Vérification de contrainte de cisaillement

VIII.4.1 Suivant X-X

D'après les résultats obtenus par le logiciel Robot 2010, l'effort tranchant max est obtenu sur appui par la combinaison (1.35G+1.6Bc) (figure VIII.8) :

Figure VIII- 8: Effort tranchant sous la combinaison (1.35G+1.6Bc)

Donc : $V_u = 151.57 \ kN$

$$\tau_u = \frac{V_u}{b \times d} = 1.01 \, MPa$$

Dans le cas d'une fissuration préjudiciable $\tau_u \leq Min \ [0.15 \frac{f_{cj}}{\gamma_h}, 4MPa].$

Avec :
$$\label{eq:fc28} \begin{split} f_{c28} &= 40 \mbox{ MPa} \\ \gamma_b &= 1.5 \mbox{ en situation durable}. \end{split}$$

 $\tau_u \leq Min (4MPa; 4MPa) = 4 MPa.$

Donc :

 $\tau_u \leq \overline{\tau}_u$ La condition est vérifiée.

VIII.4.2 Suivant Y-Y

D'après les résultats obtenus par le logiciel Robot 2010, l'effort tranchant max est obtenu sur appui par la combinaison (1.35G+1.35D240) (figure VIII.9) :

Figure VIII- 9: Effort tranchant sous la combinaison (1.35G+1.35D240)

$$V_u = 69.97 \ kN$$

$$\tau_u = \frac{V_u}{b \times d} = 0.466 \ MPa$$

Dans le cas d'une fissuration préjudiciable $\tau_u \leq Min [0.15 \frac{f_{cj}}{\gamma_h}, 4 MPa].$

Avec : $f_{c28} = 40 \text{ MPa}$ $\gamma_b = 1.5 \text{ en situation durable.}$

$$\tau_u \leq Min (4MPa; 4MPa) = 4 MPa.$$

Donc : $\tau_u \leq \overline{\tau}_u$ La condition est vérifiée.

Chapitre VIII : Etude de l'hourdis

VIII.5 Schéma de ferraillage

Figure VIII- 10 : Ferraillage de l'hourdis

VIII.6 Conclusion

Ce chapitre nous a permis de déterminer le ferraillage de l'hourdis, qui est : ➤ Armature longitudinale

 $\begin{array}{lll} A_{s1} = 3 cm^2 & \text{soit 4HA12 (3.39 cm}^2) \text{ espacées de 25 cm.} \\ A_{s2} = 5.2 cm^2 & \text{soit} & 4 HA14 \ (6.15 cm}^2) \text{ espacées de 25 cm.} \\ & \blacktriangleright & \text{Armature transversale} \end{array}$

 $A_{s1}=7.5 \text{ cm}^2 \text{ soit 7HA12 (7.91 cm}^2) \text{ espacées de 15 cm} A_{s2}=13.9 \text{cm}^2 \text{ soit 10HA14 (15.39 cm}^2) \text{ espacées de 10 cm}$

IX.1 Introduction

Ce chapitre est consacré à l'étude des appareils d'appuis et des dés d'appui.

Les appareils d'appui ont pour but d'assurer la liaison entre la superstructure et l'infrastructure. Ils permettent d'absorber les déformations et les translations de la structure. Par ailleurs ils participent à la stabilité du pont, compte tenu de leur capacité à se déformer vis-à-vis des efforts qui les sollicitent.

IX.2 Appareils d'appui en élastomère fretté de type B

Ils sont constitués de feuillets d'élastomère (en général de néoprène) empilés avec interposition de tôles d'acier jouant le rôle de frettes (appui semi-fixe). Ils ne sont donc ni parfaitement fixes, ni parfaitement mobiles.

L'élastomère est un matériau macromoléculaire qui reprend approximativement sa forme et ses dimensions initiales après avoir subi une importante déformation sous l'effet d'une faible variation de contrainte.

Ce type d'appareil d'appui est plus couramment employé pour tous les ouvrages en béton à cause des avantages qu'ils présentent, à savoir :

- ➢ Facilité de mise en œuvre.
- > Facilité de réglage, de contrôle, et pratiquement aucun entretien.
- Bonne répartition des efforts horizontaux entre plusieurs appuis.
- Coût relativement modéré.

Le principal intérêt de ces appareils réside dans leur déformabilité vis-à-vis des efforts qui les sollicitent. Ils reprennent élastiquement les charges verticales, les charges horizontales et les rotations.

La géométrie de l'appareil d'appui de type B est donnée par la norme N-F EN 1337-3.

La figure IX.1 donne les éléments constituant un appareil d'appui où a, b, a', b' représentent les dimensions d'une forme rectangulaire, et D et D'les dimensions d'une forme circulaire.

Figure IX-1: Constitutions d'un appareil d'appui (S.E.T.R.A.2000)

IX.3 Prédimensionnement de l'appareil d'appui

Le prédimensionnement se fait à l'état limite ultime selon la norme NF EN 1337-3 de règlement SETRA 2000.

IX.3.1 Surface de l'appareil d'appui

a. Surface totale en plan de l'appareil

L'aire des appareils d'appui est déterminée à partir de la relation suivante :

$$\frac{N_{max}}{a \times b \times \overline{\sigma_m}}$$

Tel que :

 N_{max} : Effort normal maximum agissant sur l'appareil d'appui =1.5702 MN. a : Côte parallèle à l'axe longitudinal de l'ouvrage.

b : Côte perpendiculaire à l'axe longitudinal de l'ouvrage.

 $\overline{\sigma}_m$: Contrainte limite de compression de l'appareil d'appui = 15 MPa.

Alors : $\frac{1.5702}{a \times b} \le 15 \text{ MPa} \rightarrow a \times b \ge 1046.8 \text{ cm}^2$

On prend :

a = b = 35cm

La surface totale en plan de l'appareil est : $A = a \times b = 35 \times 35 = 1225 cm^2$

b. Surface réduite en plan de l'appareil

La surface réduite est donnée par l'expression suivante :

$$A_r = a' \times b'$$

Tel que :

a' et b' sont les caractéristiques géométriques des frettes.

Où :

 $a \ge a' + 4mm \rightarrow a' \le 346mm \rightarrow a' = 340 mm = 34 cm$ La surface réduite en plan de l'appareil est : $A_r = 34 \times 34 = 1156 cm^2$

IX.3.2 Épaisseur nominale totale de l'élastomère Te

L'épaisseur nominale totale est déterminée à partir de la condition de non flambement :

$$\frac{a}{10} \le Te \le \frac{a}{5}$$

Ce qui donne : $3.5cm \le Te \le 7cm$

On prend : Te = 6 cm

IX.4 Épaisseur des frettes

L'épaisseur des frettes d'un appareil d'appuis doit vérifier la condition suivante :

$$t_s \ge \frac{2.6 \times F_z \times t_i \times \gamma_m}{A_r \times f_y}$$

Tel que :

 F_z : Effort vertical =1.5702 MN t₁ et t₂: Epaisseurs normalisées de la frette : $t_1 = t_2 = 1.2mm$ γ_m : Coefficient de sécurité=1. A_r : Surface réduite =1156cm² f_y : Nuance de l'acier =235 MPa (S235).

Alors :

$$t_s \geq \frac{2.6 \times 1.5702 \times (0.0012) \times 1}{0.1156 \times 235} = 0.18 \ mm$$

On prend $t_s = 3mm$.

Les dimensions de l'appareil d'appui sont :

Cela veut dire :

- 4 feuillets d'élastomères intermédiaires d'épaisseur ti = 12 mm.
- 2 feuillets d'élastomères extérieurs d'épaisseur $e = \frac{ti}{2} = 6$ mm.
- 5 frettes intermédiaires d'épaisseur $t_s = 3$ mm. Donc : $T_b=75$ mm

La figure suivante résume les dimensions de l'appareil d'appui :

Figure IX- 2: Dimensions de l'appareil d'appui

IX.5 Détermination des efforts horizontaux et leur répartition

IX.5.1 Actions statiques

Les actions statiques sont les actions dues aux différentes déformations. L'effort correspondant à la déformation est donné par la formule suivante :

$$S_x = \frac{\bar{G}_0 \times a \times b \times \Delta x}{Te}$$

Où :

G₀: Module de déformation transversale de l'appareil d'appui =0.9MPa.

 Δx : Déformation horizontale.

a=0.35m; b=0.35m; Te=0.06m.

On distingue 03 types de déformations :

• Déformation due au retrait dans l'appareil d'appui Δ_r .

- Déformation due à la variation de la température Δ_{T} .
- Déformation due au fluage $\Delta_{\rm f}$.

a. Déplacement dû au retrait

Le déplacement dû au retrait est donné par la formule :

$$\Delta_r = \frac{\varepsilon_r \times L}{2} = 2.6325 \times 10^{-3} \, m.$$

Avec :

 $\varepsilon_r = 1.5 \times 10^{-4}$

b. Déplacement dû au fluage

Il est donné par l'expression :

$$\Delta_f = \frac{\sigma_{b_m} \times L}{E_i \times 2}$$

Avec :

 σ_{b_m} : Valeur moyenne des contraintes au niveau de l'axe neutre sous « P » à $x = \frac{L}{2}$ est : 103.7 MPa.

Donc :

 $\Delta_f = 9.33 \times 10^{-3} m.$

c. Déplacement dû à la variation de température

Le déplacement dû à la température est donné par l'expression :

$$\Delta_T = E_{tem} \times \frac{L}{2}$$

Avec : $E_{tem} = 3 \times 10^{-4}$: le coefficient dépendant de la température court terme.

Alors :

 $\Delta T = 3 \times 10^{-4} \times \frac{L}{2} = 5.265 \times 10^{-3} m$

Les valeurs des efforts statiques sont dans le tableau suivant :

Déformation (mm)	Effort correspondant (KN)			
2.6325	$S_{retrait} = 4.83$			
5.265	$S_{température} = 9.66$			
9.33	$S_{fluage} = 17.15$			

Tableau IX-1: Efforts statiques des appareils d'appui

IX.5.2 Actions dynamiques

Les efforts de freinage sont produits à partir des chargements A et Bc.

a. Chargement A

L'effort de freinage correspondant au chargement A est déterminé par la formule suivante :

$$S_A = \frac{F_A}{n}$$

Avec :

 F_A : Force de freinage due à la charge A =116.25 kN. n : Nombre d'appui dans une travée =14.

Alors :
$$S_A = \frac{116.25}{14} = 8.3$$

b. Chargement B_c

kΝ

L'effort de freinage correspondant au chargement Bc est déterminé par la formule suivante :

$$S_{Bc} = bc \times \frac{F_{Bc}}{n}$$

Avec :

 F_{Bc} : Force de freinage due à la charge Bc = 300KN.

bc : Coefficient de majoration dynamique pour une seule travée = 1.2.

Alors : $F_{Bc} = 1.2 \times \frac{300}{14} = 25.7 \ kN$

IX.6 Critères de stabilité

IX.6.1 Stabilité à la rotation

La stabilité à la rotation vérifie la condition suivante :

$$V_z = \sum \frac{F_z \times t_i}{A_r} \times \left(\frac{1}{5 \times G_0 \times {S_i}^2} + \frac{1}{E_b}\right) \ge \frac{a' \times \alpha_a + b' \times \alpha_b}{K_r}$$

Avec :

V_z : Déformation due à l'effort vertical F_z

 G_0 : Module de cisaillement conventionnel = 0.9 MPa.

ti : Epaisseur d'un feuillet individuel d'élastomère dans un appareil d'appui fretté.

 E_b : Module d'élasticité volumique = 2000 MPa.

S : Coefficient de forme de chaque feuillet d'élastomère.

 k_r : Coefficient de rotation = 3 .

 α_a et α_b : rotations angulaires de l'appareil d'appui dont les valeurs théoriques valent (Fig IX.3) :

 $\alpha_a = 0.005$ rad et $\alpha_b = 0.014$ rad.

	UX (mm)	UY (mm)	UZ (mm)	RX (Rad)	RY (Rad)	RZ (Rad)
MAX	0.0	0.0	8	0.005	0.014	0.0
Node	1	1	271	174	261	1
Case	1	1	24 (C)	ELUD240/10	24 (C)	1
MIN	0.0	0.0	-152	-0.007	-0.014	0.0
Node	1	1	7	79	9	1
Case	1	1	ELUD240/9	ELUD240/9	ELUD240/12	1

Figure IX- 3: Rotation angulaire de l'appareil d'appui

On a deux types de feuillets :

• Feuillet intermédiaire :

$$S_{int} = \frac{a' \times b'}{2 \times t_i \times (a' + b')} = \frac{0.34 \times 0.34}{2 \times 0.012 \times (0.34 + 0.34)} = 7.08$$

• Feuillet extérieure :

$$S_{ext} = \frac{a' \times b'}{1.4 \times t_i \times (a' + b')} = \frac{0.34 \times 0.34}{2 \times 1.4 \times 0.012 \times (0.34 + 0.34)} = 10.12$$

Alors : $V_z = 3.65 \times 10^{-3} MN$

On a aussi :

$$\frac{a' \times \alpha_a + b' \times \alpha_b}{K_r} = \frac{0.34 \times 0.005 + 0.34 \times 0.014}{3} = 2.15 \times 10^{-3} MN$$

D'où : $V_z = 3.65 \times 10^{-3} MN \ge 2.15 \times 10^{-3} MN \rightarrow$ Condition vérifiée.

IX.6.2 Stabilité au flambement

La stabilité au flambement vérifie la condition suivante :

$$\frac{F_z}{A'_r} \le \frac{2 \times a' \times G \times S_{int}}{3 \times Te}$$

On a :

$$\frac{F_z}{A'_r} = \frac{1.5702}{0.113} = 13.89MPa$$

Et :

$$\frac{2 \times a' \times G \times S}{3 \times Te} = \frac{2 \times 0.34 \times 0.9 \times 7.08}{3 \times 0.06} = 24.072 MPa$$

$$A'_r = A' \times (1 - \frac{V_x}{a'}) = 1156 \times (1 - \frac{2.6325 + 5.265}{0.34}) = 0.113$$

 V_x : déplacement due au retrait plus la température

Alors : 13.89 MPa ≤ 24.072 MPa

D'où la condition de non flambement est vérifiée.

IX.6.3 Stabilité au glissement

La stabilité au glissement vérifie les conditions suivantes :

$$F_{xy} = \frac{V_x \times G \times a' \times b'}{T_e} \le \mu_e \times F_z$$

Avec :

 F_{xy} : Résultante de tous les efforts horizontaux.

$$F_z = 1.57 \ MN => \frac{F_z}{A_r} = 13.58 \ge 3 \ MPa$$

V_x : Déplacement horizontal donné par formule suivante : $V_x = V_1 + V_2$

Tel que :

 V_1 : Déplacement du au retrait et à la température : $V_1 = \Delta_r + \Delta_T = 7.9 \times 10^{-3} m$

 V_2 : Déplacement du au freinage :

$$V_2 = \frac{H_x \times T_e}{8 \times G \times a' \times b'}$$

Avec : H_x : Effort de freinage $F_A + F_{Bc} = 8.3 + 25.7 = 0.034MN$

Alors :

$$V_2 = \frac{0.034 \times 0.06}{8 \times 0.9 \times 0.34 \times 0.34} = 2.45 \times 10^{-3} m$$

D'où : $V_r = 7.9 \times 10^{-3} + 2.45 \times 10^{-3} = 10.35 \times 10^{-3} m$

 μ_e : Coefficient de frottement déterminé à partir de la formule suivante :

$$\mu_e = 0.1 + \frac{1.5 \times k_f}{\sigma_m}$$

Avec :

$$k_f$$
 : Coefficient lié au béton = 0.6.
 $\sigma_m = \frac{F_z}{A_r} = \frac{1.5702}{0.1156} = 13.58MPa$
 $\mu_e = 0.1 + \frac{1.5 \times 0.6}{13.58} = 0.17$

Alors :

$$F_{xy} = \frac{0.01035 \times 0.9 \times 0.34 \times 0.34}{0.06} = 0.0179MN \le \mu_e \times F_z = 0.267MN$$

D'où la condition de non glissement est vérifiée.

IX.7 Étude des dès d'appuis

Le dé d'appui matérialise l'emplacement des appareils d'appuis, permet de réaliser facilement une surface plane et bien rigide et d'assurer la mise hors d'eau des appareils d'appui.

IX.7.1 Dimensionnement des dés d'appuis

Le dimensionnement se fait selon le document SETRA (Guide technique : appareil d'appui en élastomère fretté).

Les conditions suivantes doivent être vérifiées :

- La hauteur du dé d'appui supérieure $\geq 2cm$. •
- La hauteur du dé d'appui inférieure $\geq 6cm$. •
- Débordement de 5cm par rapport à l'appareil d'appui. •

Figure IX- 4: Dimension de Dés d'appuis

$$H_{D\acute{e}} \ge \frac{a \times b}{(a+b)} = 0.175m$$

$$a_1 \ge a + 2 \times \frac{H_{D\acute{e}}}{2}$$
 Et $b_1 \ge b + 2 \times \frac{H_{D\acute{e}}}{2}$

On prend : $H_{D\acute{e}} = 20 \ cm.$

Les dimensions des dés d'appui figurent au tableau suivant :

	Tableau IX- 2 : Dimensionnement des des d'appur					
	Longueur (cm)	Largeur (cm)	Hauteur (cm)			
Dé supérieur	35+20=55	35+20=55	20			
Dé inférieur	35+20=55	35+20=55	20			

Tableau IV 2 : Dimensionnement des dés d'annui

IX.8 Ferraillage des appuis

Les déférentes sections d'armatures sont évaluées suivant le guide S.E.T.R.A.

IX.8.1 Armatures de chainage

La section d'armatures de chainage peut être déterminée par des règles analogues à la méthode des bielles ou la méthode de reprise des efforts d'équilibre général.

$$A_c = \frac{0.25 \times N_{max}}{\sigma_s} = \frac{0.25 \times 1.5702}{434.78} = 9.03 \text{ cm}^2$$

Choix : 6HA14 (A_c = 9.24 cm²) espacées de 9 cm.

IX.8.2 Armatures horizontales

Pour limiter la propagation d'éventuelles fissures, l'ensemble des armatures horizontales placées sous le chainage doit reprendre un effort égal à 12.5 % de la même descente de charge.

$$A_h = \frac{0.125 \times N}{\sigma_{\rm s}} = \frac{0.125 \times 1.5702}{434.78} = 4.51 \,\rm{cm}^2$$

Choix : $6HA10 (A_h = 4.71 \text{ cm}^2)$ espacées de 22.5 cm

IX.8.3 Frettes supérieures

Elles sont placées le plus près possible de la face supérieure de l'appui, il s'agit d'armatures croisées.

$$A_s = \frac{0.04 \times N}{\sigma_s} = \frac{0.04 \times 1.5702}{434.78} = 1.44 \text{ cm}^2$$

Choix : $3HA8 (A_s = 1.5 cm^2)$

IX.8.4 Frettes inférieures

Elles sont placées le plus près possible de la face inférieure de l'appui, il s'agit d'armatures croisées.

$$A_i = \frac{0.1 \times N}{\sigma_{\rm s}} = \frac{0.1 \times 1.5702}{434.78} = 3.61 \,{\rm cm}^2.$$

Choix : $5HA10 (A_i = 3.92 \text{ cm}^2)$.

IX.8.5 Schéma de ferraillage

Figure IX- 5 : Ferraillage de dés d'appui

IX.9 Conclusion

Les appareils d'appui utilisés dans cette étude sont en élastomère fretté de type B, de dimensions $(350 \times 350 \times 75)$ mm. Ces appareils vérifient tous les critères de stabilité exigé par le SETRA (stabilité au flambement, au glissement et au rotation). Ils reposent sur des dés d'appuis de dimensions $(550 \times 550 \times 200)$ mm.

Chapitre X : Etude dynamique

X.1 Introduction

Ce chapitre est consacré à l'étude dynamique de l'infrastructure de l'ouvrage qui consiste à étudier les piles, les culées ainsi que leurs fondations.

L'étude sismique a pour objectif la détermination de la réponse d'un ouvrage à un mouvement sollicitant ses fondations. On entend par réponse le calcul des sollicitations, des déplacements, des vitesses et des accélérations subis par l'ouvrage.

Cette partie est nécessaire pour étudier l'instabilité des constructions lors d'un séisme majeur qui est causée par les sous-dimensionnements des fondations. Qui doivent par la suite transmettre au sol, les charges verticales et les charges sismiques horizontales.

X.2 Coefficient d'accélération de zone

Le coefficient d'accélération de zone A est défini en fonction de la zone sismique et de l'importance du pont. Cette classification est décrite dans RPOA et repris dans le tableau cidessous :

Crours de rort	Zone sismique					
Groupe de pont	Ι	IIa	IIb	III		
1	0.15	0.25	0.30	0.40		
2	0.12	0.20	0.25	0.30		
3	0.10	0.15	0.20	0.20		

Tableau X-1: Coefficient d'accélération de zone

L'ouvrage est un pont stratégique (groupe 1) situé dans la wilaya de Annaba, qui s'inscrit entièrement dans la zone IIa (zone de sismicité moyenne) selon le R.P.O. A 2008 qui donne le coefficient d'accélération de la zone A = 0.25.

X.3 Classification du sol

Le RPOA présente une classification des sites (§ RPOA 3.1.3) en fonction des propriétés mécaniques des couches de sols qui les constituent. Les sols sont alors classés en quatre catégories :

Catégorie S1 : site rocheux.

Catégorie S2 : site ferme.

Catégorie S3 : site meuble.

Catégorie S4 : site très meuble.

La classification de sol de l'ouvrage est de catégorie S1 : site rocheux

X.4 Facteur de correction d'amortissement

Le spectre de réponse élastique dépend de la catégorie du site de l'ouvrage(S), du coefficient d'accélération de zone(A) et du taux d'amortissement critique (ξ). Ce dernier est estimé par le biais du facteur de correction d'amortissement.

Taux d'amortissement : $\eta = \sqrt{\frac{7}{(2+\xi)}}$
Matériaux	Taux d'amortissement ξ (en %).
Acier soudé	2
Acier boulonné	4
Béton précontraint	2
Béton armé	5
Béton non armé	3
Elastomère fretté	7

Tableau X- 2: Taux d'amortissement en fonction du matériau

Dans notre cas :

 $\xi = 5 \longrightarrow \eta = 1$ (étude longitudinale+ transversale). $\xi = 2 \longrightarrow \eta = 1.323$ (étude verticale).

X.5 Etude dynamique

La vérification des ouvrages vis-à-vis des actions sismiques consiste à limiter le risque d'effondrement sous séisme. Car on ne peut pas protéger absolument l'ouvrage.

Les efforts verticaux d'un séisme ne causent pratiquement aucun dégât, car les ouvrages sont construits d'une manière à reprendre les charges verticales (le poids propre et les surcharges d'exploitations), mais contrairement pour les efforts horizontaux d'un séisme, qui peuvent causer des dégâts plus importants.

Il existe plusieurs méthodes d'analyse sismique d'un pont, elles dépendent de la zone sismique, de la géométrie et de l'importance de l'ouvrage. Parmi les méthodes indiquées dans le guide RPOA, on trouve :

- Analyse spectrale monomodale (mode fondamentale)
- Méthode multimodale spectrale

Pour l'étude de l'ouvrage, on a utilisé la méthode "monomodale spectrale" puisque l'ouvrage dispose d'une géométrie simple.

X.5.1 Analyse monomodale spectrale

La très grande majorité des ouvrages d'art utilise cette méthode. Dans cette méthode simplifiée, on fait l'hypothèse que la charge sismique peut être considérée comme une force statique équivalente horizontale ou verticale appliquée au tablier dans une des trois directions (longitudinale, transversale ou verticale).

X.5.2 Principe de la méthode

C'est une méthode simplifiée où les mouvements de la structure sont à tout instant proportionnel à un mode fondamental. Les caractéristiques du mode fondamental dans chaque direction sont déterminées à l'aide d'une analyse modale dans la direction considérée à condition de remplacer, pour le calcul des efforts, la masse du mode fondamental par la masse totale du système.

X.5.3 Critères de la méthode

Pour appliquer cette méthode, on doit vérifier les critères suivant du guide RPOA :

a. Critère n°1 : Masse modale

La masse en mouvement doit être supérieure à 70% de la masse totale. Cette condition est considérée comme vérifiée si la masse de la pile est inférieure à 0.43 de la masse du tablier.

 $M_{pile} = M_{chev} + M_{f\hat{u}t} = 191.947 + 825.6 = 1017.547 \ t$

Le poids propre total de tablier du pont est :

 $G = 11 \times M_{tablier} = 10189.73233 t \implies 0.43 \times M_{tablier} = 4381.5849 t$

 $1017.547 < 4381.5849 \Longrightarrow M_{pile} < 0.43 \times M_{tablier} \dots v\acute{erifiee}$

b. Critère n°2 : Angle de biais

L'ouvrage étudié ne présente aucun angle biais, le tablier de notre ouvrage est bien droit (tablier perpendiculaire aux appuis).

c. Critère n°3 : Angle de courbure

L'ouvrage étudié ne présente aucune courbure, il n'y a pas de vérification vis-à-vis de cette condition.

d. Critère n°4 : La symétrie transversale

La distance entre le centre de masse et le centre élastique des appuis ne doit pas excéder 5% de la distance entre extrémités du tablier, L'ouvrage étant symétrique aussi bien géométriquement que mécaniquement. L'excentricité est donc nulle d'où la condition est vérifiée.

X.5.4 Evaluation des efforts sismiques

Pour évaluer l'effort sismique on prend en compte l'action sismique résulte d'une translation d'ensemble (tous les Points du sol se déplacent en phase) dans chacune des trois directions du mouvement sismique. Cette action sismique est en fonction aussi bien de l'accélération de la zone d'implantation de l'ouvrage que de sa nature (groupe d'usage). A cet effet un spectre de réponse pour les deux composantes horizontales et verticales du mouvement sismique est utilisé pour l'estimation de la réponse maximale de l'ouvrage

X.5.5 Séisme longitudinal

Dans la direction longitudinale des ponts sensiblement rectilignes à tablier continu, la déformation du tablier dans le plan horizontal est négligeable par rapport au déplacement de la tête des piles sous l'effet de l'action sismique. Les effets sismiques doivent être déterminés en utilisant le modèle à tablier rigide.

La figure suivante représente le séisme longitudinal :

Figure X-1: Séisme longitudinal (RPOA2008)

a. Détermination des sollicitations sismiques

La détermination des sollicitations que subit l'ouvrage sous l'action sismique longitudinale se fait de la manière suivante. On applique au tablier une force horizontale statique équivalente F donnée par l'expression :

$$F = M \times Sa(T)$$

M : Masse effective totale de la structure, égale à la masse du tablier Sa (T) : Accélération spectrale du spectre de calcul correspondant à la période fondamentale T.

 $S_a(T) = S_{ae}(T)$ pour un calcul élastique (q=1)

b. Composante horizontale du séisme

Le spectre de réponse élastique (Sae) pour les deux composantes horizontales est donné en fonction de la période élastique (T) et du taux d'amortissement (ξ) de l'ouvrage par :

$$\boldsymbol{S_{ae}^{v}(T,\xi)(m/s^2)} \begin{cases} A \times g \times S\left(1 + \frac{T}{T_1}(2.5\eta - 1)\right) & 0 \leq T \leq T_1 \\ 2.5 \times \eta \times a \times g \times S & T_1 \leq T \leq T_2 \\ 2.5 \times \eta \times A \times g \times S\left(\frac{T_2}{T}\right) & T_2 \leq T \leq 3s \\ 2.5 \times \eta \times A \times g \times S\left(\frac{3T_2}{T^2}\right) & T \geq 3s \end{cases}$$

Avec :

g: Accélération de la pesanteur (=9.81m/s²).

T₁, T₂ : Périodes caractéristiques associées à la catégorie du site.

S : Coefficient de site.

 $\boldsymbol{\eta}$: Facteur de correction de l'amortissement.

ξ: Taux d'amortissement.

Pour un site (S1) on a : $T_1 = 0.15 \text{ sec}$; $T_2 = 0.3 \text{ sec}$; S = 1

La période fondamentale T a pour expression :

$$T = 2 \times \pi \sqrt{\frac{M}{K}}$$

 $K = \sum K_i$;

K : Raideur du système, égale à la somme des raideurs des éléments résistants dans le sens du séisme.

Le déplacement a pour expression :

$$d = \left(\frac{T}{2 \times \pi}\right)^2 Sa$$

La force horizontale se répartit sur chaque appui (i) au prorata des raideurs :

$$F_{\rm i} = \frac{K_{\rm i}}{K} \times F_{\rm tot}$$

c. Calcul de la raideur de la structure

La raideur du système comprend la raideur du fût et la raideur des appareils d'appuis (pour les ouvrages courants, on néglige la souplesse des fondations).

• Pour les fûts :

$$K_{f\hat{u}t} = \frac{3 \times E \times I}{H^3}$$

Avec :

E : Module de déformation instantanée du béton.

I : Inertie longitudinale du mur.

H: Hauteur du mur.

• Pour les appareils d'appuis :

$$K_{appareil} = n \frac{G \times a \times b}{e}$$

Avec :

n : Nombre des appareils d'appuis élément porteur, 7 pour les culées et 14 pour les piles G : Module de cisaillement de l'appareil. G= 1.2 MPa

a, b : Dimensions en plan de l'appareil.

e : Epaisseur totale de l'élastomère de l'appareil.

• Raideur des piles (culée) est :

$$K_{\text{pile (culée)}} = \frac{1}{\frac{1}{K_{\text{fût}}} + \frac{1}{K_{\text{appareil}}}}}$$
$$K_{\text{culée (c2)}} = \frac{1}{\frac{1}{\frac{1}{K_{\text{appareil}}}}} \qquad ; \frac{1}{K \text{ culée}} \approx 0 \text{ (Considérée comme étant infiniment rigide)}$$

• Raideur du système

L'ouvrage est divisé en 5 systèmes selon l'emplacement des joints de chaussée, ces derniers sont placés pour limiter les déplacements.

$$K_{\text{système}} = \sum K_i$$

K_i : les raideurs des piles (culée) pour chaque système.

d. Calcul la période propre de système

La période propre est définie comme suit :

$$T=2\pi \sqrt{\frac{M}{K}}$$

e. Calcul des forces sismique

• Réponse sismique

La période du système se situe entre T_2 et 3sec, donc nous utilisons la troisième équation du spectre qui est :

$$S_{ae}(T,\xi)_{[m/s^2]} = 2.5 \times A \times \eta \times g \times S\left(\frac{T_2}{T}\right)$$
 $T_2 < T < 3s$

• Effort total longitudinal:

$$F_{\text{longitudinal}} = M \times S_a(T)$$

• Effort par élément porteur :

$$F_{long}^{pile(culée)} = \frac{K_{pile(culée)}}{K_{svs}} F_{long_total}$$

• Calcul du déplacement du tablier par rapport au sol :

$$d_{long}^{tablier} = \frac{T^2}{4 \times \pi^2} \times S_a(T)$$

• Calcul du déplacement de la tête de pile par rapport au sol :

$$d_{long}^{pile\,(cul\acute{e})} = \frac{F_{long}^{pile(cul\acute{e})}}{K_{piles(cul\acute{e})}}$$

X.5.6 Séisme transversal

Selon les caractéristiques particulières du pont, cette méthode peut être appliquée en utilisant pour le modèle deux approches différentes, à savoir :

- Modèle à tablier rigide.
- Modèle à tablier flexible.

Le tablier peut être considéré rigide si : $\frac{L}{B} \le 5$

Dans notre cas on a : $\frac{L}{B} = \frac{35.1}{11} = 3.19 < 5$ La condition est vérifiée.

Donc, on utilise les mêmes étapes utilisées dans le sens longitudinal

a. Calcul de la raideur de la structure

La raideur du système comprend la raideur du voile et la raideur des appareils d'appuis (pour les ouvrages courants, on néglige la souplesse des fondations).

• Pour le fût :

$$K_{F\hat{u}t} = 3 \times \frac{E \times I}{L^3}$$

• Pour les appareils d'appuis :

$$K_{appareil} = n \times \frac{G \times a \times b}{Te}$$

n : Nombre des appareils d'appuis élément porteur, 7 pour les culé et 14 pour les piles.

G : Module de cisaillement de l'appareil. G=1.2 MPa

a, b : Dimensions en plan de l'appareil.

Te : Epaisseur totale de l'élastomère de l'appareil.

m : Nombre des fûts par pile ou culée

• Donc la raideur des piles (culée) :

K_{pil}

$$e(\text{culée}) = \frac{1}{\frac{1}{K_{\text{fût}} + \frac{1}{K_{\text{appareil}}}}}$$

 $K_{\text{culée}(c2)} = \frac{1}{\frac{1}{K_{\text{appareil}}}}$ $\frac{1}{K \text{ culée}} \approx 0$ (Considérée comme étant infiniment rigide)

• Donc la raideur du système :

$$K_{\text{système}} = \sum K_i$$

K_i: Raideurs des piles (culée) pour chaque système.

b. Calcul de la période propre du système :

La période propre est définie comme suit :

$$T = 2\pi \sqrt{\frac{M}{K}}$$

c. Calcul des forces sismiques

• Réponse sismique

La période du système se situe entre T_2 et 3s, donc nous utilisons la troisième équation du spectre qui est :

$$S_{ae}(T,\xi)_{[m/s^2]} = 2.5 \times A \times \eta \times g \times S \times \left(\frac{T_2}{T}\right)$$
 $T_2 < T < 3s$

• Effort total transversal:

$$F_{transversale} = M \times S_a(T)$$

• Effort par élément porteur :

$$F_{\text{trans}}^{\text{pile}(\text{culée})} = \frac{K_{\text{pile}(\text{culée})}}{K_{\text{sys}}} \times F_{\text{trans}}^{\text{T}}$$

Calcul du déplacement du tablier par rapport au sol :

$$d_{trans}^{tablier} = \frac{T^2}{4 \times \pi^2} \times S_a(T)$$

• Calcul du déplacement de la tête de pile par rapport au sol :

Figure X- 2: Section équivalente des voiles évidées.

	Elément	GAP	n	a [m]	b [m]	Te [m]	m	A [m]	B [m]	Hauteur de la pile [m]	E[MPa]
Système viaduc	P _{CU} 1	1.2	7	0.35	0.35	0.06	4	3.3	1	13	33000
(P _{CU} 1, P1, P2)	P1	1.2	14	0.35	0.35	0.06	1	1.80	6.00	12.50	33000
	P2- inter	1.2	7	0.35	0.35	0.06	1	1.80	6.00	17.50	33000
Système viaduc	P2- inter	1.2	7	0.35	0.35	0.06	1	1.80	6.00	17.50	33000
(P2, P3, P4)	P3	1.2	14	0.35	0.35	0.06	1	2.23	4.47	19.50	33000
	-P4- inter	1.2	7	0.35	0.35	0.06	1	2.23	4.47	21.00	33000
	-P4- inter	1.2	7	0.35	0.35	0.06	1	2.23	4.47	21.00	33000
Système viaduc	P5	1.2	14	0.35	0.35	0.06	1	1.80	6.00	16.00	33000
(P4, P5, P6, P7)	P6	1.2	14	0.35	0.35	0.06	1	1.80	6.00	7.50	33000
	-P7- inter	1.2	7	0.35	0.35	0.06	1	1.80	6.00	11.00	33000
Système viaduc	-P7- inter	1.2	7	0.35	0.35	0.06	1	1.80	6.00	11.00	33000
(P7, P8, P9,	P8	1.2	14	0.35	0.35	0.06	1	1.80	6.00	15.00	33000
P10)	P9	1.2	14	0.35	0.35	0.06	1	1.80	6.00	16.00	33000
	-P10- inter	1.2	7	0.35	0.35	0.06	1	2.23	4.47	24.00	33000
Court and a set of the set	-P10- inter	1.2	7	0.35	0.35	0.06	1	2.23	4.47	24.00	33000
Systeme viaduc	P11	1.2	14	0.35	0.35	0.06	1	2.23	4.47	34.50	33000
$(110, 111, 112, C^2)$	P12	1.2	14	0.35	0.35	0.06	1	2.23	4.47	24.00	33000
(2)	C2	1.2	7	0.35	0.35	0.06	/	/	/	/	/

Le tableau suivant les caractéristiques géométriques et les donnes nécessaires pour le calcul des rigidités :

Tableau X- 3: Caractéristiques des sections

Le tableau suivant donne les rigidités longitudinales et transversales des piles (culée).

	Elément	$I_{F\hat{U}TLONG}$ [m ⁴]	I _{FÛT TRANS} [m ⁴]	K ^{l ou t} appreil	$K^{L}_{F\hat{U}T}$	K ^T _{FÛTS}	K ^L _{PILE} [MN/m]	K ^T _{PILE} [MN/m]
	P _{CU1}	141.339	1.1	17.15	6368.9	49.56759	17.10	12.74
(Paul P1 P2)	P1	2.916	32.400	34.3	147.81	1642.291	27.84	33.60
$(1 \ (0 \ 1, 1 \ 1, 1 \ 2))$	-P2- inter	1.458	16.200	17.15	26.93	299.251	10.48	16.22
	-P2- inter	1.458	16.200	17.15	26.93	299.251	10.48	16.22
Systeme viaduc $(P2 P3 P4)$	P3	16.571	41.803	34.3	221.24	558.137	29.7	32.31
(12, 13, 14)	-P4- inter	8.285	20.902	17.15	88.57	223.438	14.37	15.9
Système viaduc	-P4- inter	8.285	20.902	17.15	88.57	223.438	14.37	15.93
(P4, P5, P6,	P5	2.916	32.400	34.3	70.48	783.105	23.072	32.861
P7)	P6	2.916	32.400	34.3	684.29	7603.200	32.66	34.15
	-P7- inter	1.458	16.200	17.15	108.45	1204.959	14.81	16.91
	-P7- inter	1.458	16.200	17.15	108.45	1204.959	14.81	16.91
Système viaduc	P8	2.916	32.400	34.3	85.54	950.400	24.48	33.11
$(\mathbf{r}, \mathbf{r}, r$	P9	2.916	32.400	34.3	70.48	783.105	23.072	32.86
110)	-P10- inter	8.285	20.902	17.15	59.34	149.686	13.305	15.39
Système viaduc (P10, P11, P12,	-P10- inter	8.285	20.902	17.15	59.34	149.686	13.305	15.39
	P11	16.571	41.803	34.3	39.95	100.783	18.46	25.59
(2)	P12	16.571	41.803	34.3	118.67	299.372	26.61	30.77
	C2	/	/	17.15	0	0	17.15	17.15

Tableau X- 4: Rigidités longitudinales et transversales des piles (culée)

Le tableau suivant donne les rigidités longitudinales et transversales des différents systèmes.

	K _{LSYS} [MN/m]	K _{TSYS} [MN/m]
Système viaduc (P _{CU} 1, P1, P2)	55.42	62.56
Système viaduc (P2, P3, P4)	54.55	64.46
Système viaduc (P4, P5, P6, P7)	84.912	99.851
Système viaduc (P7, P8, P9, P10)	75.67	98.27
Système viaduc (P10, P11, P12, C2)	75.525	88.9

Tableau X- 5: Rigidités longitudinales et transversales des différents systèmes

Le tableau suivant résume les données nécessaires pour le calcul de la période propre, spectre de réponse, la force longitudinale et le déplacement de chaque système.

	Tubleud X 0. Donnees des Tuldeurs longitudinale et polas de	b by bieffield	
Eléments	Désignation	Valeurs	Unité
g	Accélération de pesenteur	9.81	[m/s ²]
K _L sys1	Raideur longitudinale du système (1) [Pcu1 ; P1 ; P2]	55.42	[MN/m]
K _L sys2	Raideur longitudinale du système (2) [P2; P3; P4]	54.55	[MN/m]
K _L sys3	Raideur longitudinale du système (3) [P4 ; P5 ; P6 ; P7]	84.912	[MN/m]
K _L sys4	Raideur longitudinale du système (4) [P7 ; P8 ; P9 ; P10]	75.67	[MN/m]
K _L sys5	Raideur longitudinale du système (5) [P10 ; P11 ; P12 ; C2]	75.525	[MN/m]
Gtabliersys(1)	Poids total du tablier mis en mouvement système (1)	15268.94	[kN]
Gtabliersys(2)	Poids total du tablier mis en mouvement système (2)	15380.68	[kN]
Gtabliersys(3)	Poids total du tablier mis en mouvement système (3)	23071.02	[kN]
Gtabliersys(4)	Poids total du tablier mis en mouvement système (4)	23071.02	[kN]
Gtabliersys(5)	Poids total du tablier mis en mouvement système (5)	22950.52	[kN]

Tableau X- 6: Données des raideurs longitudinale et poids des systèmes

La période propre, spectre de réponse, la force longitudinale et le déplacement de chaque système sont mentionnés dans le tableau suivant :

Tableau X- 7: Période propre, spectre de réponse, force longitudinale et déplacement de chaque système

	T [s]	Sae(T, ξ) [m/s ²]	F _{LONG} [kN]	d _{L(tablier)} [cm]
Système viaduc (P _{CU} 1, P1, P2)	1.053	1.75	2723.81	4.91
Système viaduc (P2, P3, P4)	1.065	1.73	2712.3931	4.97
Système viaduc (P4, P5, P6, P7)	1.0457	1.76	4139.143242	4.875
Système viaduc (P7, P8, P9, P10)	1.1077	1.661	3906.316434	5.16
Système viaduc (P10, P11, P12, C2)	1.1059	1.663	3890.593	5.152

Le tableau suivant résume les données nécessaires pour le calcul de la période propre, spectre de réponse, la force transversale et le déplacement de chaque système.

Eléments	Désignation	Valeurs	Unité
g	Accélération de pesenteur	9.81	[m/s ²]
K _T sys1	Raideur transversale du système (1) [Pcu1 ; P1 ; P2]	62.56	[MN/m]
K _T sys2	Raideur transversale du système (2) [P2; P3; P4]	64.46	[MN/m]
K _T sys3	Raideur transversale du système (3) [P4 ; P5 ; P6 ; P7]	99.851	[MN/m]
K _T sys4	Raideur transversale du système (4) [P7 ; P8 ; P9 ; P10]	98.27	[MN/m]
K _T sys5	Raideur transversale du système (5) [P10; P11; P12; C2]	88.9	[MN/m]
Gtabliersys(1)	Poids total du tablier mis en mouvement système (1)	15268.94	[kN]
Gtabliersys(2)	Poids total du tablier mis en mouvement système (2)	15380.68	[kN]
Gtabliersys(3)	Poids total du tablier mis en mouvement système (3)	23071.02	[kN]
Gtabliersys(4)	Poids total du tablier mis en mouvement système (4)	23071.02	[kN]
Gtabliersys(5)	Poids total du tablier mis en mouvement système (5)	22950.52	[kN]

La période propre, spectre de réponse, la force transversale et le déplacement de chaque système sont mentionnés dans le tableau suivant :

Tableau X- 9: Période propre, spectre de réponse, force transversale et déplacement de chaque système

	T [s]	Sae(T, ξ) [m/s ²]	F _{transv} [kN]	$d_{T(tablier)} [cm]$
Système viaduc (P _{CU} 1, P1, P2)	0.991	1.86	2888.926606	4.5
Système viaduc (P2, P3, P4)	0.98	1.88	2942.732141	4.44
Système viaduc (P4, P5, P6, P7)	0.9643	1.91	4487.361264	4.37
Système viaduc (P7, P8, P9, P10)	0.972	1.89	4450.728236	4.41
Système viaduc (P10, P11, P12, C2)	1.02	1.80	4218.845056	4.62

X.5.7 Composante verticale du séisme

a. Méthode d'analyse pour la composante verticale du séisme

Pour l'analyse des effets de la composante verticale du séisme, on approxime le premier mode à partir de la déformée sous charges permanentes, la période de ce mode est calculée par la formule de RAYLEIGH :

$$T = 2 \times \pi \times \sqrt{\frac{\sum m_i \times u_i^2}{\sum g \times m_i \times u_i}}$$

Avec :

m_i : Masse du tronçon considéré.

g : Accélération de la pesanteur.

u_i : Déplacement du point i considéré sous charges permanentes.

Pour le calcul des déplacements, on considère le tablier chargé par des masses concentrées mi = 111.98 t. Par superposition on calcule le déplacement à une section donnée sous une seule charge ensuite on fait la somme.

L'inertie de l'ensemble des poutres : $I = 3.78m^4$ (Section homogène). Le module d'élasticité longitudinale : $E_b=33000$ MPa.

b. Calcul de la Période fondamentale

Les déplacements (x_i) sont calculés avec la méthode de Rayleigh afin de déduire la pulsation pour arriver à la période.

$$U_i = \sum U_{ij} \qquad 1 \le j \le 5$$

Tel que :

U_{ij} : Flèche pour poutre simplement appuie.

Figure X- 4: Schéma explicatif de la méthode.

$$U_{ij} = \frac{\left[\frac{-(L-a)x^3}{6L} - \left(\frac{a^2}{2} - \frac{a^3}{6L} - \frac{aL}{3}\right)x\right]}{EI} \qquad 0 \le x \le a$$
$$U_{ij} = \frac{\left[\frac{ax^3}{6L} - \frac{ax^2}{2} + \left(\frac{a^3}{6L} + \frac{aL}{3}\right)x - \frac{a^3}{6}\right]}{EI} \qquad a \le x \le L$$

Avec :

- a : Distance jusqu'au point d'application de la force.
- x : Distance jusqu'au point de calcul de flèche.
- E : Module d'élasticité.

I : Inertie de la poutre.

c. Détermination du spectre vertical

Le spectre de réponse élastique pour la composante verticale est défini par un taux d'amortissement de (2% (Béton précontrainte) $\Rightarrow \eta = 1.323$) par :

$$\mathbf{S_{ae}^{v}}(T,\xi)(m/s^{2}) \begin{cases} \alpha \times A \times g \times \left(1 + \frac{T}{T_{1}}(2.5\eta - 1)\right) & 0 \leq T \leq T_{1} \\ 2.5 \times \alpha \times A \times g \times \eta & T_{1} \leq T \leq T_{2} \\ 2.5 \times \alpha \times A \times g \times \eta \left(\frac{T_{2}}{T}\right) & T_{2} \leq T \leq 3s \\ 2.5 \times \alpha \times A \times g \times \eta \left(\frac{3T_{2}}{T^{2}}\right) & T \geq 3s \end{cases}$$

g : Accélération de la pesanteur (g= 9.81 m/s^2).

T₁, T₂ : Périodes caractéristiques associées à la catégorie du site.

- η : Facteur de correction de l'amortissement.
- ξ : Taux d'amortissement.

 α : Coefficient qui tient compte de l'importance de la composante verticale en zone de forte sismicité. $\alpha = 0.7$ pour les zones sismiques I, IIa, IIb, et 1 pour la zone sismique III.

 $\begin{array}{l} \text{Pour un site ferme } (S_1) \text{ on a :} & \begin{cases} T_1 = 0.15 \text{ s} \\ T_2 = 0.30 \text{ s} \end{cases} \\ S_{ae}^v(T,\xi) = 2.5 \times \alpha \times A \times g \times \eta = 5.67 \text{m/s}^2 \end{cases}$

d. Force verticale

$$F_i = \frac{4 \times \pi^2 \times S_{ae}^v}{T^2 \times g} \times u_i \times m_i$$

La période propre, spectre de réponse et la force verticale sont mentionnés dans le tableau suivant :

m _i [t]	f _i [kN]	a (m)	u _i [m]	$m_i \times u_i^2$	$f_i \times u_i$	T [s]	Fi [t]
111.98	1098.62	3.4	0.0072111	0.00582296	7.9222587		26.369
111.98	1098.62	10.2	0.0186334	0.03887986	20.471026		68.137
111.98	1098.62	17	0.0229	0.05872343	25.158398	0.267	83.747
111.98	1098.62	23.8	0.0186334	0.03887986	20.471026		68.137
111.98	1098.62	30.6	0.0072111	0.00582296	7.9222587		26.369
			0.074589	0.14812906	81.944967		272.759

Tableau X- 10: Période propre, spectre de réponse et force verticale

Les forces verticales de la pile et la culée sont calculés de la manière suivante :

$$F_{vert-pile} = g \times \sum Fi$$
; $F_{vert-cul\acute{e}} = g \times \frac{\sum Fi}{2}$

Le tableau suivant est un récupératif des forces de séisme avec leur déplacements (longitudinales et transversales) pour chaque pile (culée).

	F _{LONG} [kN]	F _{TRANSV} [kN]	F _{VER} [kN]	$d_L(cm)$	d _T (cm)
C1	840.44	588.314	1337.88	0.013	1.12
P1	1368.297655	1551.6	2675.754	0.93	0.094
P2	515.0776758	749.01		1.91	0.25
P2	521.09788593	740.476	2675.754	1.94	0.247
P3	1476.774984	1474.82	2675.754	0.67	0.26
P4	714.5203874	727.24		0.81	0.33
P4	700.483894	715.9	2675.754	0.79	0.32
P5	1124.673932	1476.79	2675.754	1.6	0.19
P6	1592.053164	1534.721	2675.754	0.23	0.02
P7	721.9322528	759.95		0.67	0.06
P7	764.5374108	765.815	2675.754	0.70	0.06
P8	1263.732341	1499.478	2675.754	1.48	0.16
P9	1191.047095	1488.16	2675.754	1.69	0.19
P10	686.8450	696.98		1.16	0.46
P10	685.393476	730.35	2675.754	1.15	0.48
P11	950.9480122	1214.4	2675.754	2.38	1.2
P12	1370.786952	1460.22	2675.754	1.16	0.48
C2	883.4638124	813.872	1337.88	5.1	4.8

TT 1 1	X7 1	1 1		. 1	1/1
Tableau	X- 1.	I: Forces	sismiques	et leur	deplacement

X.6 Conclusion

Dans ce chapitre, on a évalué les différents efforts sismiques, qui serviront au dimensionnement de l'infrastructure.

XI.1 Introduction

On désigne par pile, un appui intermédiaire d'un pont composé de plusieurs travées. Une pile courante est composée d'un fût, d'un chevêtre et d'une fondation. Le fût peut être en béton armé, en béton précontraint ou tout autre matériau. Un sommier ou chevêtre, généralement en béton armé, est réalisé sur la partie supérieure du fût. Sur ce dernier repose le tablier par l'intermédiaire d'appareil d'appui. Le sommier ou chevêtre peut être distinct ou non du fût.

On appelle culée un appui d'extrémité d'un ouvrage. Elle joue un double rôle : assurer l'appui du tablier d'une part et le soutènement des terres d'autre part. Une culée courante est composée d'un groupe de murs (garde de grève, mur frontal et mur en retour).

XI.2 Etude de la pile

Les dimensions des éléments de la pile de notre pont sont fixées par le bureau d'étude SAPTA. La conception des piles dépend du milieu d'implantation, du mode de construction du tablier, et de la nature du site.

Le choix s'est porté sur deux types de fût (voile plein et évidé) pour les raisons suivantes :

- Voiles évidés pour des fûts où la hauteur dépasse les 20m.
- Voiles pleins pour des fûts où la hauteur est inférieure à 20m.

Figure XI-1: Dimensions des piles

Le tableau suivant illustre les dimensions de la pile de type voile évidé.

		Chevêtre			Fût		Semelle			
	Longueur	Largeur	Hauteur	Longueur	Largeur	Hauteur	Epaisseur	Longueur	Largeur	
	(B1)	(A1)	(H1)	(B2)	(A2)	(H2)	(E)	(B)	(A)	
Pile P3	10.76	3.5	2	4.47	2.23	19.5	2	11	9	
Pile P4	10.76	3.5	2	4.47	2.23	20.1	2	11	9	
Pile	10.76	3.5	2	4.47	2.23	24	2	10	9	
P10-12										
Pile	10.76	3.5	2	4.47	2.23	34.5	2.5	12	11	
P11										

Tableau XI- 1: Dimension des piles type voile évidé

Le tableau suivant illustre les dimensions de la pile de type voile plein.

		Chevêtre			Fût		Semelle			
	Longueur	Largeur	Hauteur	Longueur	Largeur	Hauteur	Epaisseur	Longueur	Largeur	
	(B1)	(A1)	(H1)	(B2)	(A2)	(H2)	(E)	(B)	(A)	
Pile P1	10.76	2.8	2	6	1.8	12.5	2	10	8	
Pile P2	10.76	2.8	2	6	1.8	17.5	2	10	8	
Pile	10.76	2.8	2	6	1.8	16	2	10	8	
P5-P9										
Pile P6	10.76	2.8	2	6	1.8	7.5	2	10	8	
Pile P7	10.76	2.8	2	6	1.8	11	2	10	8	
Pile P8	10.76	2.8	2	6	1.8	15	2	10	8	

radicad in 2. Dimension des pries type vone prem
--

XI.3 Ferraillage des chevêtres

Pour le ferraillage, il faut d'abord définir les charges appliquées sur le chevêtre.

XI.3.1 Charges et surcharges

Les charges sont :

a. Charges permanentes

Les charges permanentes sont :

• Poids propre du chevêtre de voile évidé :

 $P_{ch} = V_{ch} \times \rho_{\textit{béton}} = 10.76 \times 3.50 \times 2 \times 25 = 1883 \text{ kN}$

• Poids propre du chevêtre des voile plein :

 $P_{ch} = V_{ch} \times \rho_{\textit{béton}} = 10.76 \times 2.8 \times 2 \times 25 = 1506.4 \text{ kN}$

b. Surcharges d'exploitations

Les surcharges d'exploitations sont résumées dans le tableau suivant :

Pour les surcharges deux travées chargées voir l'annexe 5.1 :

Tableau AI	5. Suicharges d'exploitations
Surcharges	Deux travées chargées
	N (kN)
A(L)	1481.81
Bc	1295.64
Mc120	1126.28
D240	2071.76

Tableau XI- 3: Surcharges d'exploitations	s d'exploitations
---	-------------------

c. Charges appliquées sur les chevêtres

Le tableau représente les charges appliquées sur le chevêtre :

	es appliquées sur le elleveue				
Charges	Efforts normales (kN)				
Poids propre du tablier	7690.34				
Poids propre du chevêtre	Voile évidé	Voile plein			
	1883	1506.4			
Système A(L)	1481.81				
trottoir	72	.68			
Système Bc	1295.64				
Convoi Mc120	1126.28				
Convoi D240	2071.76				

Tableau XI- 4: Charges appliquées sur le chevêtre

Les tableaux ci-dessous résume les différentes combinaisons à l'ELU et L'ELS :

> A l'ELU :

Tableau XI- 5: Combinaison des charges à l'ELU								
Combinaison à l'ELU	N(kN)							
	Voile évidé	Voile plein						
1.35G+1.6(A(L)+St)	15411.193	14902.784						
1.35G+1.6 (B _c +St)	15113.324	14604.911						
1.35G+1.35 Mc120	14444.49	13936.08						
1.35G+1.35 D240	15720.885	15212.475						
Max	15720.885	15212.475						

\succ A l'ELS :

Tableau XI- 6: Combinaison des charges à l'ELS

1461.05

1413.80

Combinaison à l'ELS	N(kN)				
	Voile évidé	Voile plein			
G + 1.2 (A(L)+St)	11438.728	11062.128			
G+1.2 (B _c +St)	11215.464	10838.724			
G + Mc120	10699.62	10323.02			
G + D240	11645.1	11268.5			
Max	11645.1	11268.5			
Max (KN/m)	1082.26	1047.26			

XI.3.2 Ferraillage du chevêtre du voile plein

Max (KN/m)

Pour la détermination des moments, on utilise la méthode de la console courte à l'aide du logiciel ROBOT 2021.

La figure suivante représente l'emplacement des charges :

Figure XI- 2: Méthode de console courte

 $\hat{\mathbf{A}} \; \hat{\mathbf{P}} \text{ELS}:$ $P_{ch} = S_{ch} \times \rho_{b\acute{e}ton} = 2.80 \times 2 \times 25 = 140 \, kN \, /m$ $R_{poutre} = R_{tablier/poutre} + R_{D240/poutre} = \frac{7690.34}{7} + \frac{2071.76}{7} = 1394.58 \, kN$

La figure ci-dessous donne les résultats des moments à l'ELS obtenus à l'aide du logiciel ROBOT 2021. Le moment max est : M_{els} = -7692.87 kN.m

Figure XI- 3: Moment à l'ELS

$\hat{\mathbf{A}} \quad \hat{\mathbf{I}} \stackrel{*}{\mathbf{ELU}} :$ $1.35 \times P_{ch} = 189 \ kN/m$

 $1.35 \times R_{tablier/poutre} + 1.35 \times R_{D240/poutre} = 1882.69 \ kN$

La figure ci-dessous donne les résultats des moments à l'ELU obtenus à l'aide du logiciel ROBOT 2021. Le moment max est : M_{elu} = -10385.07 kN.m

-103	<mark>85.0</mark>	7	· ·		-3512	2.50			-46.3	33	-0.() 0	
_													

Figure XI- 4: Moment à l'ELU

a. Armatures longitudinales

Le ferraillage est déterminé à l'aide du logiciel ROBOT EXPERT 2010 (flexion simple b=2.8m, h=2m).

 $\begin{array}{ll} A_{s1}=173.1\ cm^2 & \rightarrow \mbox{ une double nappe 12HA32 (A_s=193.01\ cm^2) espacées de 25\ cm.} \\ A_{s2}=57.7\ cm^2 \rightarrow 12HA25\ (A_s=58.9\ cm^2)\ espacées de 25\ cm.} \end{array}$

b. Armatures transversales

Pour éviter l'écrasement des bielles de béton, il faut vérifier :

$$\frac{A_{t} \times f_{e}}{b \times S_{t}} \ge \max\left(\frac{\tau_{u}}{2} \text{ ; } 0.4 \text{ MPa}\right) = 0.4 \text{ MPa}$$

Avec :

 τ_u : contrainte limite à la traction donnée par :

$$\tau_u = \frac{Vu}{b \times d} = \frac{4.49913}{2.8 \times 1.95} = 0.824 MPa$$

 $\begin{array}{l} A_t: Armatures \ transversales.\\ f_e: Limite \ \acute{e}lastique \ d'acier, \ f_e = 500 \ MPa\\ b: Largeur \ du \ chev \ \acute{e}tre \ (2.8m).\\ d: Hauteur \ utile \ 1.95m.\\ Vu: Effort \ tranchant \ maximal \ \grave{a} \ l'ELU: 4499.13kN \ (ROBOT \ 2021).\\ S_t: Espacement \ donné \ par: \ S_t \le Min \ (0.9d; \ 40 \ cm) = 40 \ cm \end{array}$

On utilise des armature droites (α =90°).

Donc : $S_t = 30 \text{ cm}$

D'où :

 $A_t \ge 6.9216$ cm² => (4) cadres de HA16 = 8.04 cm².

• Vérification des contrainte de cisaillement

Dans le cas d'une fissuration préjudiciable $\tau_u \leq \text{Min} [0.15 \frac{f_{cj}}{\gamma_b}, 4 MPa].$

Avec : $f_{c28}=27$ MPa $\gamma_b = 1.5$ en situation durable.

 $\tau_u \le Min (2.7 MPa ; 4 MPa) = 2.7 MPa.$

Donc :

 $\tau_u \leq \overline{\tau}_u$ La condition est vérifiée.

XI.3.3 Chevêtre voile évidé

➢ À l'ELU:

La figure ci-dessous représente le résultat de moment à l'ELU après le calcul avec ROBOT 2021 :

≻ À l'ELS :

La figure ci-dessous représente le résultat de moment à l'ELS après le calcul avec ROBOT 2021 :

Figure XI- 6 : Moment à l'ELS

a. Armatures longitudinales

On utilise ROBOT EXPERT 2010 (flexion simple b=3.5m, h=2 m) pour déterminer le ferraillage

A_{S1}=68.3 cm² →double nappe 11 HA20 A_{S1}=69.11cm² espacées de 34 cm.

 $A_{s2}=84 \text{ cm}^2 \rightarrow 11\text{HA32} A_{s2}=88.46\text{cm}^2 \text{ espacées de 34 cm}.$

Figure XI-7 : Section de chevêtre avec ferraillage.

b. Armatures transversales

Pour éviter l'écrasement des bielles de béton, il faut vérifier :

$$\frac{A_{t} \times f_{e}}{b \times S_{t}} \ge \max\left(\frac{\tau_{u}}{2} \text{ ; } 0.4 \text{ MPa}\right) = 0.4 \text{ MPa}$$

Avec :

 τ_u : contrainte limite à la traction donnée par :

$$\tau_u = \frac{Vu}{b \times d} = \frac{3.94513}{3.5 \times 1.95} = 0.578 MPa$$

 A_t : armatures transversales.

 f_{e} : limite élastique d'acier, $f_{e}=500\ \text{MPa}$

b : largeur du chevêtre (3.5m).

d : hauteur utile 1.95.

Vu : effort tranchant maximal à l'ELU : 3945.13.13 kN (ROBOT 2021).

S_t : espacement donné par :

 $S_t \le \min(0.9d; 40 \text{ cm}) = 40 \text{ cm}$

On utilise des armature droites (α =90°)

Donc: $S_t = 30 \text{ cm}$

D'où :

 $A_t \ge 8.4 \text{cm}^2 => (5 \text{ cadres de HA16} = 10.05 \text{ cm}^2).$

Vérification des contrainte de cisaillement

Dans le cas d'une fissuration préjudiciable $\tau_u \leq \text{Min} [0.15 \frac{f_{cj}}{\gamma_L}, 4 MPa].$

Avec : fc28=27 MPa $\gamma_b = 1.5$ en situation durable. $\tau_u \leq \text{Min} (2.7\text{MPa} \text{ ; } 4\text{MPa}) = 2.7 \text{ MPa}.$

Donc :

 $\tau_u \leq \overline{\tau}_u =>$ La condition est vérifiée.

XI.3.4 Schéma de ferraillage

Les figures suivantes représentent les schémas de ferraillage des chevêtres :

Figure XI- 8: Schéma de ferraillage de chevêtre de pile évidé

XI.4 Ferraillage de Fût

XI.4.1 Evaluation des efforts

Les efforts à prendre en compte sont les efforts sismiques dans les trois directions et les efforts de service qui comprennent les charges permanentes et les surcharges ferroviaires, tous les efforts sont transmis directement au mur voile, qui sera sollicité en flexion déviée composée, les sollicitations considérées sont l'effort normal et les moments fléchissant en pied de la pile.

Figure XI- 10 : Distribution des efforts sur le voile

Avec :

 $\begin{array}{l} R: Réaction d'appui verticale sur la pile.\\ F_{fr}: \ Force de freinage reprise par la pile.\\ E: Action sismique au niveau de la pile.\\ \end{array}$

XI.4.2 Efforts sismiques

Les effets dûs aux efforts sismiques calculés précédemment sont découplés suivant les trois directions, et seront combinés comme préconisé dans le **RPOA** (§ 4.3.2.5).

$$\begin{split} E &= E_L \pm 0.3 \ E_T \pm 0.3 \ E_V \\ E &= E_T \pm 0.3 \ E_L \pm 0.3 \ E_V \\ E &= E_V \pm 0.3 \ E_L \pm 0.3 \ E_T \end{split}$$

Remarque

Pour l'étude de fût on va étudier la pile 11.

XI.4.3 Charges supplémentaires

- Poids de fût
 - $P_{f\hat{u}t} = V_{f\hat{u}t} \times \rho_{b\acute{e}ton} = 25 \times 4.47 \times 2.23 \times 32.5 = 8099.08 \, kN$
- La composante dynamique horizontale

$$P_{comp_Long} = K_h \times P$$

• La composante dynamique vertical

$$P_{comp_verti} = K_v \times P$$

 $K_h = 0.25 \\ K_v = 0.3 \\ K_h = 0.075 \\ P : poids propre d'élément.$

XI.4.4 Surcharge

Le tableau suivant représente les forces de freinage :

Tableau AI- 7. Force de fremage.								
Surcharges	Force de freinage (kN)							
A(L)	221.52							
Bc	150							
Mc120	0							
D240	0							

Tableau XI- 7: Force de freinage.

XI.4.5 Charge et surcharges

Le tableau suivant résume les charges appliquées sur la pile (Le repère de calcul le moment est motionne dans la figure XI-1)

Tableau XI- 8 : Charge appliquée sur la pile

Charge (kN)	N(kN)	H _L (kN)	HT (kN)	Z _h (m)	ML (kN.m)	M _T (kN.m)
Poids propre du tablier	7690.34	/	/	/	/	/
Système A(L) + STR	1554.49	/	/	/	/	/
Système Bc + STR	1368.32	/	/	/	/	/
Convoi Mc120	1126.28	/	/	/	/	/
Convoi D240	2071.76	/	/	/	/	/
Poids propre du chevêtre	1883	/	/	/	/	/
Poids propre du fût	8099.08	/	/	/	/	/
Force de freinage du système A(l)	/	221.52	/	34.7	7686.744	/
Force de freinage du système Bc	/	150	/	34.7	5205	/
Composante longitudinale du séisme due au tablier	/	1370.78	/	34.7	47566.066	/
Composante transversale du séisme due au tablier	/	/	1214.4	34.7	/	42139.68
Composante verticale du séisme due au tablier	2675.754	/	/	/	/	/
Composante horizontale du séisme due au poids du chevêtre	/	470.75	/	33.5	15770.125	/
Composante verticale du séisme due au poids du chevêtre	141.225	/	/	/	/	/
Composante horizontale du séisme due au poids du fût	/	2024.77	/	16.25	32902.513	/
Composante verticale du séisme due au poids du fût	607.431	/	/	/	/	/

N : Effort vertical.

H_L : Effort longitudinal.

 H_T : Effort transversal.

Z_h: Hauteur entre centre de gravite d'élément et le repère d'origine.

 M_L : Moment longitudinal : $M_L = H_L \times Z_h$.

M_T: Moment transversal : $M_T = H_T \times Z_h$

XI.4.6 Combinaison des charges

Les tableaux suivants représentent les combinaisons des charges à l'ELU, à L'ELS et à l'ELA :

Tableau XI- 7. Combinations des charges à El ELO									
Combinaisons à l'ELU	N (kN)	H _L (kN)	M _L (kN.m)						
1.35 G+1.6 (A(l)+STR)	26344.951	/	/						
1.6 A(l)	/	354.432	12298.7904						
1.35 G+1.6(Bc+STR)	26047.079	/	/						
1.6 Fr(Bc)	/	240	8328						
1.35 G+1.35Mc120	25378.245	/	/						
1.35 G+1.35D240	26654.643	/	/						

Tableau XI- 9: Combinaisons des charges à L'ELU

Tableau XI-	10:	Combinais	sons des	charges à	L'ELS
	-			0	

Combinaisons à l'ELS	N (kN)	$H_L(kN)$	$M_L(kN.m)$
G+1.2 (A(l)+STR)	19537.808	/	/
1.2 Fr A(l)	/	265.824	9224.093
G+1.2 (Bc+STR)	19314.404	/	/
1.2 Fr(Bc)	/	180	6246
G+ Mc120	18798.7	/	/
G+ D240	19744.18	/	/

Tableau XI- 11: Combinaisons des charges à L'ELA

$E = E_L + 0.3 E_V + 0.3 E_T$									
Combinaisons à l'ELA	N(kN)	H _L (kN)	H _T (kN)	M _L (kN.m)	M _T (kN.m)				
G+E+0.2(A(l)+STR)	19010.65	/	/	/	/				
H+E+0.2 Freinage A(l)	/	3910.61	364.32	97776.4	12641.904				
G+E+0.2 (Bc+STR)	18973.41	/	/	/	/				
H+E+0.2 Freinage Bc	/	3896.31	364.32	97280.05	12641.904				
G+E+0.2 Mc120	18925	/	/	/	/				
Е	/	3866.31	364.32	96239.05	12641.904				
G+E+0.2 D240	19114.1	/	/	/	/				
E	/	3866.31	364.32	96239.05	12641.904				

	E = Ev + 0.3EL + 0.3ET									
Combinaisons à l'ELA	N (kN)	H _L (kN)	H _T (kN)	M _L (kN.m)	M _T (kN.m)					
G+E+0.2 A(l)+STR	21407.728	/	/	/	/					
H+E+0.2 Freinage A(l)	/	1204.194	364.32	30408.96	12641.904					
G+E+0.2 Bc+STR	21370.494	/	/	/	/					
H+E+0.2 Freinage Bc	/	1189.89	364.32	29912.611	1037967.6					
G+E+0.2 Mc120	21322.086	/	/	/	/					
Ε	/	1159.89	364.32	28871.611	12641.904					
G+E+0.2 D240	21511.182	/	/	/	/					
Ε	/	1159.89	364.32	28871.611	12641.904					

$\mathbf{E} = \mathbf{ET} + \mathbf{0.3Ev} + \mathbf{0.3EL}$									
Combinaisons à l'ELA	N (kN)	H _L (kN)	H _T (kN)	M _L (kN.m)	M _T (kN.m)				
G+E+0.2(A(l)+STR)	19010.641	/	/	/	/				
H+E+0.2 Freinage A(l)	/	1204.194	1214.4	30408.96	42139.68				
G+E+0.2(Bc+STR)	18973.407	/	/	/	/				
H+E+0.2 Freinage Bc	/	1189.89	1214.4	29912.611	42139.68				
G+E+0.2Mc120	18924.999	/	/	/	/				
Ε	/	1159.89	1214.4	28871.611	42139.68				
G+E+0.2 D240	19114.095	/	/	/	/				
Ε	/	1159.89	1214.4	28871.611	42139.68				

Le tableau suivant résume les efforts appliqués sur le fût

Tableau XI- 12: Récupératif des effor	rts obtenus pour calculer le ferraillage
---------------------------------------	--

Combinaion	M_L (kN.m)	$M_T(kN.m)$	N (kN)
ELU	12298.790	0	26344.951
ELS	9224.093	0	19537.808
ELA	97776.400	12641.904	19010.650

XI.4.7 Ferraillage

a. Armatures longitudinales

On utilise ROBOT EXPERT 2010 (flexion composée dévie b=4.47m, h=2.23 m) pour déterminer le ferraillage : $A_{s1} = 733.9 \text{ cm}^2 =>$ Choix deux nappe 46HA32 espacées de 13 cm. $A_{s2} = 28.1 \text{ cm}^2 =>$ Choix 11HA 20 espacées de 30 cm.

Figure XI- 11: Section de la pile avec ferraillage.

b. Armatures transversales

Pour éviter l'écrasement des bielles de béton, il faut vérifier :

$$A_{t} \ge \frac{\tau_{u} - 0.3 \times f_{t28} \times K}{0.9 \times f_{e} \times (\cos \alpha + \sin \alpha)} \times b \times S_{t} \times \gamma_{s} = 0.4 \text{ MPa}$$

Avec :

 τ_u : contrainte limite à la traction donnée par :

$$\tau_u = \frac{Vu}{b \times d} = \frac{3.91}{4.47 \times 2.18} = 0.568 \text{ MPa}$$

A_t : Armatures transversales.

 f_e : Limite élastique d'acier, $f_e = 500 \text{ MPa}$

b : Largeur du chevêtre (3.5m).

d : Hauteur utile 1.95 m.

Vu : Effort tranchant maximal à l'ELU : 3910 kN (ROBOT 2021).

K=0 cas de reprise de bétonnage

$$\begin{split} S_t : \text{espacement donné par}: \\ S_t \leq \min \left(0.9 d \text{ ; } 40 \text{ cm} \right) = 40 \text{ cm} \end{split}$$

On utilise des armature droites (α =90°).

Donc :

 $S_t = 15 cm$

D'où :

 $A_t \ge 8.4 \text{cm}^2 => (6)$ cadres de HA16 = 12 cm²

Vérification de contrainte de cisaillement :

Dans le cas d'une fissuration préjudiciable $\tau_u \leq \text{Min} [0.15 \frac{f_{cj}}{v}, 4 MPa].$

Avec : fc28=27 MPa. $\gamma_b = 1.5$ en situation durable.

 $\tau_u \le Min (2.7 MPa; 4 MPa) = 2.7 MPa.$

Donc:

 $\tau_u \leq \overline{\tau}_u$ La condition est vérifiée.

Selon le RPOA 2008, l'espacement maximum des armatures transversales doit satisfaire les conditions suivantes :

Min $(12\emptyset_l; b; 200 \text{ mm})$

Avec : b: largeur de la section; ϕ_l : Plus gros diamètres des armatures longitudinales.

```
Min (384 ; 447 ; 200) = 200 mm
```

On prend : $e_t=15 \text{ cm}.$

XI.4.8 Vérification de flambement fût (P11) :

Le flambement est un phénomène qui affecte les barres travaillant en compression simple, il se manifeste par une déformation latérale de cette barre.

La figure suivante représente les longueurs de flambement :

Figure XI- 12: Longueur de flambement.

Avec :

l_f : Longueur de flambement.

i : Rayon de giration mini de section défini par la formule suivante : $i = \sqrt{\frac{I}{R}}$

Imin: Moment quadratique mini de la section.

- B : Aire de la section transversale de béton.
- B_r : Section réduite de béton :

$$B_r = (b - 0.02) \times (h - 0.02) = (4.47 - 0.02) \times (2.23 - 0.02) = 9.834 m^2$$

A : Section d'acier

 λ : Elancement selon la formule $\lambda = \frac{l_f}{i}$

$$\beta = 1 + 0.2 \times \left(\frac{\lambda}{35}\right)^2 \quad Si \quad \lambda \le 50$$

$$\beta = \frac{0.85 \,\lambda^2}{1500} \qquad Si \quad 50 \le \lambda \le 70$$

Le tableau ci-dessous résume les résultats obtenus :

Tableau XI- 13: Résultats de calcul

l (m)	$l_f(m)$	I (m ⁴)	B(m ²)	$B_r(m^2)$	A(cm ²)	i(m)	λ	β	N_u (MPa)
32.5	16.25	1.685	9.968	9.834	739.9	0.44	36.93	1.22	26.655

$$N_u \leq N_{u \ lim} = \frac{0.85}{\beta} \times \left(\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + A \times \frac{f_e}{\gamma_s}\right)$$

 $26.655 MPa \le 160.19 MPa =>$ vérifiée.

Les résultats de ferraillages des fûts sont résumés dans le tableau ci-dessous : Tableau XI- 14 : Résultats de ferraillage des fûts

	Ferraillage							
Pile	A_{s1} (cm ²)	$A_{s2}(cm^2)$	Choix de ferraillag	St (cm)	At(cm ²)	Choix		
P1/P7	178.2	7	23HA32	6HA14	15	8.07	5HA16	
P2/P9 /P5/P8	246.5	9.5	34HA32	7HA14	15	8.8	5HA16	
P6	104	4	HA32	4HA14	15	9.12	5HA16	
P3/P4	332.4	17.15	42HA32	12HA14	15	7.54	5HA16	
P10/P12	405.2	21.1	51HA32	14HA14	15	8.01	5HA16	

XI.4.9 Schéma de ferraillage

La figure suivante représente le schéma de ferraillage du fût de pile 11 et de pile 09 :

Figure XI- 13 : Ferraillage de fût de pile 11

Figure XI- 14: Ferraillage de fût de pile 09

XI.5 Ferraillage des semelles

Pour le ferraillage des semelles, on va étudier la semelle de pile 11.

XI.5.1 Charges supplémentaires

• Poids propre de semelle :

 $P_{semelle} = V_{semelle} \times \rho_{b\acute{e}ton} = 25 \times 2 \times 12 \times 11 = 8250 \, KN.$

• Poids de terre :

 $P_{semelle} = S_{semelle} \times h_{terre} \times \rho_{b\acute{e}ton} = 12 \times 11 \times 2.23 \times 18 = 5297 \text{ KN}.$

• La composante dynamique horizontale :

 $P_{comp_Long \ semelle} = K_h \times P$

• La composante dynamique vertical :

 $P_{comp_verti \, semelle} = K_v \times P$

 $K_{h}\!\!=A\!\!=0.25 \quad ; \quad K_{v}\!\!=0.3K_{h}\!=\!0.075$

P : Poids propre d'élément.

XI.5.2 Charges et surcharge

Le tableau suivant résume les charges appliquées sur la semelle :

Tubleau XI 15. Charge apprelae sur la semene								
Charge (kN)	N(kN)	H _L (kN)	H _T (kN)	$\mathbf{Z}_{h}\left(\mathbf{m} ight)$	ML (kN.m)	M _T (kN.m)		
Poids propre du tablier	7690.34	/	/	/	/	/		
Système A(L) + STR	1554.49	/	/	/	/	/		
Système Bc + STR	1368.32	/	/	/	/	/		
Convoi Mc120	1126.28	/	/	/	/	/		
Convoi D240	2071.76	/	/	/	/	/		
Poids propre du chevêtre	1883	/	/	/	/	/		
Poids propre du fût	8099.08	/	/	/	/	/		
Poids propre de la semelle	8250	/	/	/	/	/		
Poids des terres	5297	/	/	/	/	/		
Force de freinage du système A(l)	/	221.52	/	-37.2	-8240.544	/		
Force de freinage du système Bc	/	150	/	-37.2	-5580	/		
Composante longitudinale du séisme due au tablier	/	1370.78	/	-37.2	-50993.02	/		
Composante transversale du séisme due au tablier	/	/	1214.4	-37.2	/	45175.7		
Composante verticale du séisme due au tablier	2675.754	/	/	/	/	/		
Composante horizontale du séisme due au poids du chevêtre	/	470.75	/	-36	-16947	/		
Composante verticale du séisme due au poids du chevêtre	141.225	/	/	/	/	/		
Composante horizontale du séisme due au poids du fût	/	2024.77	/	-17.5	-35433.48	/		
Composante verticale du séisme due au poids du fût	607.431	/	/	/	/	/		
Composante horizontale du séisme due au poids du semelle	/	2062.5	/	-1	-2062.5	/		
Composante verticale du séisme due au poids du semelle	618.75	/	/	/	/	/		

Tableau XI- 15: Charge appliqué sur la semelle

XI.5.3 Combinaison des charges

La figure ci-dessous représente le repère de calcule des moments :

Figure XI-15 : Repère de calcul des moments

Les tableaux suivants représentent les combinaisons de charge à l'ELU, à l'ELS et à l'ELA :

Combinaisons à l'ELU	N (kN)	H _L (kN)	$M_L(kN.m)$	Mn (kN.m)	M _H (kN.m)
1.35 G+1.6 (A(l)+STR)	44633.94	/	/	245486.68	-13184.87
1.6 Fr A(l)	/	354.43	-13184.87	/	
1.35 G+1.6(Bc+STR)	44336.07	/	/	243848.3795	-8928
1.6 Fr(Bc)	/	240	-8928	/	
1,35G+1.35Mc120	43667.24	0.00	0.00	240169.8	0
1.35G+1.35D240	44943.63	0.00	0.00	247189.9812	

Tableau XI- 16: Combinaisons de charge à l'ELU

Tableau XI- 17: Combinaisons de charge à l'ELS

Combinaisons à l'ELS	N (kN)	$H_{L}\left(kN ight)$	$M_L(kN.m)$	Mn (kN.m)	M _H (kN.m)
G+1.2 (A(l)+STR)	333085.21	/	/	1831968.644	-9888.653
1.6 Fr A(l)	/	265.83	-9888.653	/	
G+1.2 (Bc+STR)	32861.804	/	/	180739.922	-6696
1.6 Fr(Bc)	/	180	-6696	/	
G+ Mc120	32346.1	0.00	0.00	177903.55	0
G+ D240	33291.58	0.00	0.00	183103.7	

Tableau XI- 18 : Combinaisons de charge à l'ELA

Combinaisons à l'ELA (0.3Ev+0.3E _T +E _L)											
Combinaisons à l'ELA	N(kN)	H _L (kN)	H _T (kN)	M _L (kN.m)	$M_T(kN.m)$	Mn (kN.m)	M _H (kN.m)				
G+E+0.2 (A(l)+STR)	32743	/	/	/	/	180086.5	-107084.844				
H+E+0.2 Freinage A(l)	/	5973.110952	364.32	-107084.844	13552.704	/					
G+E+0.2 (Bc+STR)	32706.4358	/	/	/	/	179885.39	-106552.74				
H+E+0.2 Freinage Bc	/	5958.806952	364.32	-106552.74	13552.704	/					
G+E+0.2 Mc120	32658.0278	/	/	/	/	179619.153	-105436.74				
Е	/	5928.806952	364.32	-105436.74	13552.704	/					
G+E+0.2 D240	32847.1238	/	/	/	/	18059.1809	-105436.74				
Е	/	5928.806952	364.32	-105436.74	13552.704	/					

$E = E_v + 0.3E_L + 0.3E_T$										
Combinaisons à l'ELA	N (kN)	H _L (kN)	H _T (kN)	M _n (kN.m)	M _L (kN.m)	M _T (kN.m)	M _H (kN.m)			
G+E+0.2 (A(l)+STR)	35573.478	/	/	195654.129	/	/	-33278.906			
H+E+0.2 Freinage A(l)	/	1822.944	364.32	/	-33278.906	13552.704				
G+E+(0.2 Bc+STR)	35536.244	/	/	195449.342	/	/	-32746.797			
H+E+0.2 Freinage Bc	/	1808.64	364.32	/	-32746.797	13552.704				
G+E+0.2 Mc120	35487.836	/	/	195183.098	/	/	-31630.797			
E	/	1778.64	364.32	/	-31630.797	13552.704				
G+E+0.2 D240	35676.932	/	/	196223.12	/	/	-31630.797			
E	/	1778.64	364.32	/	-31630.797	13552.704				

	$\mathbf{E} = \mathbf{ET} + \mathbf{0.3EV} + \mathbf{0.3EL}$											
Combinaisons à l'ELA	N (kN)	H _L (kN)	H _T (kN)	M _N (kN.m)	M _L (kN.m)	M _T (kN.m)	M _H (kN.m)					
G+E+0.2 (A(l)+STR)	32743.266	/	/	180087.963	/	/	-33278.906					
H+E+0.2 Freinage A(l)	/	1822.944	1214.4	/	-33278.906	45175.68						
G+E+0.2 (Bc+STR)	32706.032	/	/	179883.176	/	/	-32746.797					
H+E+0.2 Freinage Bc	/	1808.64	1214.4	/	-32746.797	45175.68						
G+E+0.2 Mc120	32657.624	/	/	179616.932	/	/	-31630.797					
Е	/	1778.64	1214.4	/	-31630.797	45175.68						
G+E+0.2 D240	32846.72	/	/	180656.96	/	/	-31630.797					
E	/	1778.64	1214.4	/	-31630.797	45175.68						

N : Effort normal.

H_L : Effort longitudinal

 H_T : Effort transversal

 M_N : Moment stabilisant due à l'effort normal par rapport à A, tel que : $M_N = N \times \frac{A}{2}$

 M_L : Moment renversant due à l'effort longitudinal par rapport à A, tel que : $M_L = H_L \times Z_h$

 M_T : Moment due à l'effort transversal par rapport à O, tel que : $M_T = H_T \times |Z_h|$

M_H: Moment total par rapport à O, tel que : $M_H = M_N + M_L - N \times \frac{A}{2}$

XI.5.4 Vérification des fondations

Selon RPOA, la fondation superficielle doit être vérifiée vis-à-vis :

- La stabilité au renversement
- La stabilité au glissement
- Le poinçonnement de la semelle

a. Stabilité au renversement

On vérifie l'inégalité suivante :

$$e = \frac{M_N + M_L}{N} \ge \frac{B}{3}$$

Les tableaux suivants représentent les vérifications de la semelle au renversement à L'ELU, à l'ELS :

			L' E L U		
	Combinaison		e (m)	B/3 (m)	vérification
	N _{Max}	44943.093			
1	MNCorr	247187.0115	5.5	4	ok
	MLCorr	0			
	N _{Min}	43666.695			
2	MNCorr	240166.8225	5.5	4	ok
	MLCorr	0			
	M _{Nmax}	245483.7055			
3	MLMAX	-13184.8704	5.5	4	ok
	N _{Corr}	44633.401			

Tableau XI- 19: Vérification au renversement à L'ELU

			L'ELS			
Combinaison			e (m)	B/3 (m)	vérification	
	N _{Max}	33291.18				
1	MNCorre	183101.49	5.5	4	ok	
1	MLCorre	0				
	N _{Min}	32345.7				
2	MNCorre	177901.35	5.5	4	ok	
4	MLCorre	0				
	M _{Nmax}	181966.444				
3	MLMAX	-9888.6528	5.5	4	ok	
3	NCorre	33084.808]			

Tableau XI- 20 : Vérification au renversement à L'El	erification au renversement à L'ELS
--	-------------------------------------

On vérifie la stabilité avec un modèle de Meyerhof (Fascicul62 Titre V B.2.2.1)

Figure XI- 16: Modèle de Meyerhof.

Pour chaque combinaison, on calcul e, e' :

$$e = \frac{M_L}{N}$$
; $e' = \frac{M_T}{N}$

La surface comprimée est alors $:S_{comp} = (B - (2 \times e)) \times (A - (2 \times e'))$

On doit vérifier qu'au moins 10% de la fondation reste comprimée.

Le tableau suivant représente la vérification de la semelle au renversement à l'ELA.

Tableau XI-21:	Vérification au renversement	à L'ELA
----------------	------------------------------	---------

	L'E L A									
	Comb	inaisons	e (m) e' (m) S _{comp} (m ²)			%comp	vérification			
	N _{Max}	35676.932								
1	MLCorr	31630.7973	0.8865896	0.379873023	103.7118087	78.56955206	ok			
1	MTCorr	13552.704								
	N _{Min}	32657.624								
2	MLCorr	105435.991	3.2285261	0.414993571	50.74478565	38.44301943	ok			
4	M _{TCorr}	13552.704								
	MLMax	107084.1								
3	N _{Corres}	32743.266	3.270416	0.41390813	49.81864506	37.74139777	ok			
3	M _{TCorr}	13552.704								
	M _{Tmax}	45175.68								
4	Ncorr	32706.032	1.0012464	1.381264471	83.11421206	62.96531217	ok			
+	MLCorr	32746.7973								

b. Stabilité au glissement

Pour chaque combinaison d'actions, on vérifie que :

$$H \le \frac{N \times \tan \varphi}{\gamma_{g1}} + \frac{C \times A}{\gamma_{g2}}$$

Avec :

N : composante de calcul verticale de l'effort appliqué à la fondation.

H : Composante de calcul horizontale de l'effort appliqué a la fondation.

A : surface comprimée de la fondation.

 φ : angle de frottement interne du sol 30°

C : cohésion (pour plus de sécurité en prend la cohésion égale à 0)

 γ_{q1} : Est pris égal à 1.2 ; γ_{q2} : Est pris égal à 1.5

Donc on vérifie l'inégalité suivante : $H \le 0.481N$

Les tableaux suivants représentent les vérifications de la semelle au glissement à L'ELU, à l'ELS

L' E L U										
Combinaison			0.481N(kN)	H ≤0.481N						
1	N _{Max}	44943.093	21617 62772	OV						
1	H _{LCorres}	0	21017.02775	UK						
2	N _{Min}	43666.695	21002 6802							
2	HLCorres	0	21005.0805	ОК						
3	H _{LMax}	354.432	21469 66599							
3	NCorres	44633.401	21400.00388	OK						

Tableau XI- 22: Vérification au glissement à L'ELU

Tableau XI- 23 : Vérification au glissement à L'ELS

L'ELS									
	Combinaison		0.481N(kN)	H ≤0.481N					
1	N _{Max}	33291.18	16012 05759	alt					
1	HLCorres	0	10015.05758	OK					
2	N _{Min}	32345.7	15550 2017						
2	HLCorres	0	13538.2817	ok					
2	H _{LMax}	265.824	15012 70265						
3	NCorres	33084.808	13913.79203	ok					

Pour L'ELA on cumule les efforts concomitants dans les deux directions de manière quadratique : $H = \sqrt{H_L^2 + H_T^2}$

Le tableau suivant représente la vérification de la semelle au glissement à l'ELA :

	L'ELA									
	Combinais	son	S (m ²)	H(kN)	0.481N(kN)	$\mathbf{H} \le 0.481 \mathrm{N}$				
	N _{Max}	35676.932								
1	HLCorr	1778.64	103.71181	1815.568592	17160.60429	ok				
	HTCorr	364.32								
	N _{Min}	32657.624								
2	HLCorr	5928.8	50.744786	5939.983039	15708.31714	ok				
	HTCorr	364.32								
	HLMax	5973.104				ok				
3	Ncorr	32743.266	49.818645	5984.204246	15749.51095					
	HTCorr	364.32								
	HTMax	1214.4								
4	Ncorr	32743.266	83.114212	2190.409137	15749.51095	ok				
	HLCorr	1822.944								

Tableau XI- 24 : Vérification au glissement à L'ELA

c. Vérification du poinçonnement

Pour la vérification du poinçonnement de la semelle, on suppose qu'elle est infiniment rigide est on calcul les contraintes. On vérifie que $\sigma_m < \sigma_{sol}$ (pas de poinçonnement) Avec :

$$\sigma_{max} = \frac{N}{S} \left(1 + 6 \times \frac{M_H}{B \times N} \right) \quad \sigma_{min} = \frac{N}{S} \left(1 - 6 \times \frac{M_H}{B \times N} \right) \quad \sigma_m = \frac{3 \times \sigma_{max} + \sigma_{min}}{4}$$

Les tableaux suivants représentent les vérifications de la semelle au poinçonnement à L'ELU, à l'ELS et à l'ELA :

	L'ELU										
	Combinaiso	n	σ_{max} (kN/m ²)	σ_{min} (kN/m ²)	σ_{moy} (kN/m ²)	σ_{sol} (kN/m ²)	$\sigma_{moy} < \sigma_{sol}$				
1	N _{Max}	44943.093	240 4770772	240 4770772	240 479	11465	alt				
1	M _{HCorre}	0	540.4779775	540.4779775	340.478	1140.5	OK				
2	N _{Min}	43666.695	220 202055	220 202055	220.000	11465	alt				
2	MCorre	0	550.8082955	550.8082955	550.808	1140.3	OK				
2	M _{Hmax}	13184.8704	299 0745167	200 1001240	262.1	1146 5	alt				
3	NCorre	44633.401	300.0/4310/	200.1091348	303.1	1140.5	OK				

Tableau XI- 25: Vérification au poinçonnement à L'ELU

Tableau XI- 26 : Vérification au poinçonnement à L'ELS

	L' E L S							
Combinaison		σ_{max} (kN/m ²)	σ_{min} (kN/m ²)	σ_{moy} (kN/m ²)	σ_{sol} (kN/m ²)	$\sigma_{moy} < \sigma_{sol}$		
1	N _{Max}	33291.18	252 2050001	252.2059091	252.206	771.4	ok	
	MHCorr	0	232.2039091					
2	N _{Min}	32345.7	245.0431818	245.0431818	245.043	771.4	ok	
2	MHCorr	0						
3	M _{HMax}	9888.6528	288.099503	213.1854667	269.37	771.4	ok	
	N _{Corr}	33084.808						

			L' E L A		
	Combinaison		σ_{ELA} (kN/m ²)	σ_{sol} (kN/m ²)	$\sigma_{ELA} < \sigma_{sol}$
1	N _{Max}	35676.932	344.000673	1230.7	ok
I	S (m ²)	103.7118087			
2	N _{Min}	32657.624	643.5661041	1230.7	ok
2	S (m ²)	50.74478565			
3	Ncorr	32743.266	657.2492279	1230.7	alt
3	S (m ²)	49.81864506			OK
4	NCORR	32743.266	393.9550792	1230.7	ok
4	S (m ²)	83.11421206			UK

XI.5.5 Méthode utilisée

Pour la détermination des moments, on utilise la méthode de console où les paramètres nécessaires sont les suivants :

Tableau XI- 28 : Contraintes nécessaires pour calcul de ferraillage de semelle

Combinaisons	σ_{max}	σ_{min}
ELU	388.074	324.78
ELS	288.099	241.88
ELA	657.2492279	657.2492279

$$D = A_1 + \frac{b}{4} ; \sigma_d = \sigma_{max} - \frac{(\sigma_{max} - \sigma_{min}) \times D}{B} ; R = \frac{(\sigma_{max} + \sigma_d) \times D}{2} ; d = \frac{\sigma_d + 2 \times \sigma_{max}}{\sigma_d + \sigma_{max}} \times \frac{D}{3}$$

La figure ci-dessous résume la configuration de la méthode :

Figure XI- 17 : Méthode de console.

Les tableaux suivants représentent les efforts verticaux et les moments appliqués sur la semelle :

	ELU	ELS		ELA
D (m)	4.625	4.625	D (m)	4.625
$\sigma_d (kN/m^2)$	363.7	270.29	$\sigma_{d ELA} ({\rm kN/m^2})$	657.25
R (kN)	1738.48	1291.28	R (kN)	3039.778
d (m)	2.34	2.34	d (m)	2.3125
M (kN.m)	4068.0432	3017.83	M (kN.m)	7029.48

Tableau XI- 29 : Efforts verticaux et les moments appliqués sur la semelle

La distribution de contrainte à l'ELU, l'ELS et l'ELA est représenté dans la figure suivantes :

Figure XI- 18: Distribution de contrainte à l'ELU, l'ELS et l'ELA

a. Ferraillage

Le ferraillage est déterminé à l'aide du logiciel ROBOT EXPERT (flexion simple h=2.5 m b=1m).

- Nappe inferieure
- Armature longitudinale

 $A_{s \text{ long inf}} = 59.2 \text{ cm}^2/\text{ml} \rightarrow 1$ double nappe de 7HA25 ($A_s = 68.72 \text{cm}^2/\text{ml}$) espacées de 15 cm

• Armature de répartition

 $A_r = \frac{A_{s \text{ long inf}}}{3} = 22.9 \text{ } cm^2/ml \rightarrow 8\text{HA20} \text{ (A}_r = 25.13 \text{ cm}^2/\text{ml}) \text{ espacées de } 12.5 \text{ cm}.$

- Nappe supérieure
- Armature longitudinale

 $A_s = \frac{A_{s \text{ long inf}}}{3} = 22.9 \text{ } cm^2/ml \rightarrow \text{double nappe de 6HA20 (A_r=37.7 \text{ cm}^2/\text{ml}) espacées de 18 \text{ cm}.}$

- Armature de répartition $A_r = \frac{A_{s \text{ long sup}}}{3} = 12.56 \text{ } cm^2/ml \rightarrow 8\text{HA16} (A_r = 16.08 \text{ cm}^2/\text{ml}) \text{ espacées de } 12.5 \text{ cm}.$
 - Armature latérale

 $A_{latérale} = \frac{A_{s \text{ long inf}}}{10} = 6.872 \text{ } cm^2/ml \rightarrow 3\text{HA20} (9.42 \text{ cm}^2) \text{ espacées de 45 cm}$

Condition de non fragilité

Elle est donnée par la relation suivante :

$$A_{min} \geq 0.23 \times b \times d \times \frac{f_{tj}}{f_e}$$
$$A_{min} \geq 0.23 \times 1 \times 2.45 \times \frac{2.22}{500} = 25.02 \ cm^2$$

37.7 > 25.02

Selon RPOA, la section minimale dans la zone IIa est : $0.15 \% \times S \le A_{min} \le 1.5\% \times S \implies 37.5 \ cm^2 \le A_{min} \le 375 \ cm^2$

Les deux conditions précédentes sont vérifiées.

Vérification des contrainte de cisaillement

 $V_{max} = 3039.778KN$

$$\tau_{max} = \frac{V_{max}}{b \times d} = 1.24 MPa$$

Dans le cas d'une fissuration préjudiciable :

 $\tau_{max} \leq Min \ [0.15 rac{f_{cj}}{\gamma_b}, 4MPa].$

Avec :
$$\label{eq:fc28} \begin{split} f_{c28} &= 27 \ MPa \\ \gamma_b &= 1.5 \ en \ situation \ durable. \end{split}$$

 $\tau_{max} \leq Min (2.7 MPa; 4 MPa) = 2.7 MPa.$

Donc : $\tau_{max} \leq \overline{\tau}_u \rightarrow \text{Condition vérifiée}$

Le ferraillage des semelles est mentionné dans le tableau suivant :

Pile		Armautre	Choix	Armature de	Choix
		Principal(cm ²)		répartition (cm ²)	
	Nappe inferieure	42.6	10HA25	14.2	5HA20
P1/P2/P7/P5/P8/P9	Nappe supérieure	14.2	5HA20	4.73	4HA16
P3/P4	Nappe inferieure	35.9	8HA25	11.97	5HA20
	Nappe supérieure	11.97	5HA20	3.99	4HA14
P10/P12	Nappe inferieure	45.1	10HA25	15.03	6HA20
	Nappe supérieure	15.03	6HA20	5.01	4HA16

Tableau XI- 30: Résultats du ferraillage des semelles
b. Schéma de ferraillage

La figure ci-dessous représente le schéma de ferraillage de la semelle :

Figure XI- 19 : Schéma de ferraillage de semelle

XI.6 Etude de la culée

Les éléments constructifs de la culée sont mentionnés dans la figure ci-dessous :

Figure XI- 20: Eléments constitutifs de la culée

XI.6.1 Dimensionnement de la culée

Le dimensionnement de la culée est fait selon le règlement S.E.T.R.A.

Remarque :

Dans l'étude de culée, on s'intéresse à la culée C2

La figure suivante représente les dimensions de la culée

Figure XI- 21: Dimensions de la culée

a. Mur garde grève :

Hauteur : $H_2 = 2.47 \text{ m}$

Epaisseur :

$$A_2 \ge Max \ (0.3 \ m; \frac{H}{8}) = Max \ (0.3 \ m; \ 0.31 \ m)$$

Donc : $A_2 = 0.4 \text{ m}$

Longueur : $B_1 = 10.76 \text{ m}$

b. Mur en retour

L'épaisseur du mur en retour est supérieure à 20 cm (S.E.T.R.A).

Epaisseur : $e_3 = 0.8 \text{ m}$; Hauteur : $H_3 = 10.47 \text{ m}$; Longueur : $L_3 = 9.8 \text{ m}$

c. Dalle de transition

La dalle de transition présente la même dimension transversale que le mur garde grève.

Longueur : $L \le Min [6m, max (4m, 0.6H)] = 6m$

On prend : L=5m

On a :

$$\frac{L}{20} \le e \le \frac{L}{17}$$

 $0.25 \leq e \leq 0.3$

Epaisseur : e = 0.3 m. Largeur : $L_r = 9.5$ m.

d. Corbeau

Le corbeau sert d'appuis pour la dalle de transition. Il a une forme de trapèze ayant une grande hauteur de 0.5 m, une petite hauteur de 0.24 m et une base de 0.28 m.

e. Mur frontal

Ces dimensions doivent être suffisantes pour recevoir les appareils d'appuis et l'espace réservé à l'entretien à travers le temps. Ces dimensions sont :

 $Longueur: B_1 = 10.76 \text{ m} \quad ; \quad Largeur: A_1 = 1.6 \text{ m} \quad ; \quad Hauteur: H_1 = 8 \text{ m}$

f. Semelle

Les dimensions de la semelle sont telles que :

A=10m ; B = 12 m

La hauteur de la semelle : E = 2 m

XI.6.2 Etude de semelle

La semelle est une semelle superficielle

a. Charges appliquées sur la semelle

Les charges sont :

• Charges permanentes

> Poids propre du mur garde-grève

 $P_{MMG} = \rho_{b\acute{e}ton} \times e \times H \times L = 25 \times 0.4 \times 2.47 \times 10.76 = 263.62 \, kN$

Poids de mur frontal

 $P_{MF} = \rho_{b\acute{e}ton} \times H \times l \times L = 25 \times 8 \times 1.6 \times 10.76 = 3443.2 \, kN$

> Poids propre du mur en retour

 $P_{MR} = 2 \times \rho_{b\acute{e}ton} \times e \times S = 2 \times 25 \times \left(4.1 \times \frac{2.73 + 2 \times 1.5}{2} + 5.7 \times 10.47\right) \times 0.8 = 2879.78 \, kN$

> Poids de la dalle de transition

 $P_{DDT} = \rho_{b\acute{e}ton} \times e \times l \times L = 25 \times 0.3 \times 9.5 \times 5 = 356.25 \, kN$

> Poids du corbeau :

 $P_{corbeau} = \rho_{b\acute{e}ton} \times L \times S = 25 \times 9.5 \times \left(\frac{0.5 + 0.24}{2}\right) \times 0.28 = 24.67 \ kN$

> Poids de la semelle

 $P_{semelle} = \rho_{b\acute{e}ton} \times e \times A \times B = 25 \times 2 \times 10 \times 12 = 6000 \, kN$

> Poids des terres

$$\begin{split} P_{terre\ arrière} &= \rho_{terre} \times h \times l \times L = 18 \times 8.8632 \times 5.8 \times 12 = 11103.8 \, kN \\ P_{terre\ avant} &= \rho_{terre} \times h \times l \times L = 18 \times 5.522 \times 2.6 \times 12 = 3101.3 \, kN \end{split}$$

Avec :

 $\begin{array}{l} \rho_{terre} : \text{Poids volumique de remblai } (\gamma = 18 \text{ kN/m}^3).\\ l = 2.6 \text{ m (largeur de patin avant).}\\ l = 5.8 \text{ m (largeur de patin arrière).}\\ L = 12 \text{ m (longueur de la semelle).}\\ H = 8.8632 \text{ m (hauteur du remblai du patin arrière).}\\ H = 5.522 \text{ m (hauteur du remblai du patin avant).} \end{array}$

Poussée des terres statiques

La charge due aux poussées des terres est appliquée à H/3 du hauteur totale de la culée, elle est donnée par :

$$Fa = \frac{1}{2} \times \rho_{terre} \times H^2 \times L \times Ka = \frac{1}{2} \times 18 \times 12.47^2 \times 10.76 \times 0.334 = 5029.61 \, kN$$

Tel que :

 $K_a = \left(tang\left(\frac{\pi}{4} + \frac{\varphi}{2}\right)\right)^2 = 0.334$ $\varphi = 30^\circ$: Angle de frottement interne du remblai

• Charge dynamique

Poussée des terres dynamiques

La charge due aux poussées des terres est appliquée à H/2 du hauteur totale de la culée, elle est donnée par :

$$F_{ad} = \frac{1}{2} \rho_{terre} (1 \pm kv) H^2 \times L \times K_{ad}$$

On a les coefficients sismiques :

 K_v : Coefficient sismique vertical ($K_v = 0.075$)

Dans les conditions sismiques, Le coefficient de poussée sera déterminé par la formule de Mononobé-Okabé (R.P.O.A) :

$$K_{ad} = \frac{\cos^{2}(\varphi - \theta)}{\cos^{2}\theta + \left[1 + \sqrt{\frac{\sin\varphi\sin(\varphi - \beta - \theta)}{\cos\theta\cos\beta}}\right]^{2}}$$

Avec :

H : Hauteur du mur.

 $\rho_{terre} = 18 \text{ kN/m}^3$: Poids des terres.

 φ = 30° : Angle de frottement interne du remblai.

$$\beta = 0 : \text{Angle de talus avec l'horizontale.}$$

$$\theta = \operatorname{arctg}\left(\frac{K_h}{1 \pm K_v}\right) \quad \rightarrow \quad \theta = \begin{cases} +13.03 \rightarrow K_{ad} = 0.502\\ -15.12 \rightarrow K_{ad} = 0.538 \end{cases}$$

$$F_{ad} = \frac{1}{2} \times 18 \times (1 + 0.075) \times 12.47^2 \times 10.76 \times 0.538 = 8709.2 \text{ kN}$$

> La composante dynamique horizontale :

$$P_{comp_Long} = K_h \times P$$

> La composante dynamique vertical

 $P_{comp_verti} = K_v \times P$

P : Poids propre d'élément

• Surcharge des terres

Poids des surcharges de remblai

La surcharge additionnelle sur le remblai vaut 10 kN/m². Donc, la poussée due aux surcharges de remblais est donnée par : Fa = $10 \times l \times L = 10 \times 5 \times 9.5 = 475 \ kN$

Avec :

l : Longueur de la dalle de transition l=5m. L : Largeur de la dalle de transition L= 9.5m

Poussée des surcharges remblai

Fa = $10 \times L \times h \times K_a = 10 \times 9.5 \times 12.47 \times 0.334 = 395.7 \ kN$

Avec

Ka : coefficient de poussée des terres statiques (Ka = 0.334).

h : Hauteur de la culée (h = 12.47 m).

L : Largeur de dalle de transition

Surcharge d'exploitation

Le tableau suivant résume les charges d'exploitations (voire chapitre 4)

Tableau XI- 31: Surcharges d'exploitations								
Surcharges	Une travée chargée							
	N(kN) Force de freinage							
A(L)	1223.235	116.25						
Bc	1133.99	150						
Mc120	Mc120 1074.44							
D240	0							

La figure ci-dessous montre les repères de calcul des efforts :

Figure XI- 22 : Repère de calcul des moments

Le tableau suivant résume les charges appliquées sur la semelle (cas normal)

I ableau 2	Tableau XI- 52. Charges appriquees sur la semene (eas normal)								
Désignation	N(kN)	Xv(m)	H _L (kN)	$Z_h(m)$	$M_N(kN.m)$	$M_L(kN.m)$			
Poids propre du tablier	3845.17	3.20	/	-10.2	12304.544	/			
Mur G grève	263.62	4.00	/	-11.23	1054.48	/			
Mur frontal	3443.2	3.40	/	-6.00	11706.88	/			
Mur en retour	2879.78	7.81	/	-7.83	22491.0818	/			
Semelle	6000	5.00	/	-1.00	30000	/			
Poids de la dalle de transition	356.25	4.33	/	-11.45	1542.5625	/			
Corbeau	24.67	4.37	/	-11.39	107.8	/			
Poids des terres P arrière	11103.8	7.10	/	/	78836.98	/			
Poids des terres P avant	3101.3	1.30	/	/	4037	/			
Poussée des terres	/	/	5029.6	-4.15	/	-20872.8734			

Tableau XI- 32:	Charges appliqu	uées sur la semelle	(cas normal)
-----------------	-----------------	---------------------	--------------

Le tableau suivant résume les charges appliquées (composante verticale, horizontale, poussé dynamique) sur la semelle (cas sismique)

Désignation	N (kN)	H _L (k N)	Xv (m)	H _T (kN)	Z _h (m)	M _N (kN.m)	ML (kN.m)	M _T (kN.m)
Poids propre du tablier	1337.88	883.46	3.20	813.872	-10.2	4281.216	-9011.29	8301.5
Mur G grève	19.77	65.9	4.00	/	-11.23	79.08	-740.057	/
Mur frontal	258.24	860.8	3.40	/	-6.00	878.016	-5164.8	/
Mur en retour	215.97	719.9	7.81	/	-7.83	1686.72	5636.817	/
Semelle	450	1500	5.00	/	-1.00	2250	-1500	/
Poids de la dalle de transition	26.72	89.1	4.33	/	-11.45	115.7	-1020.2	/
Corbeau	1.85	6.167	4.37	/	-11.39	8.0845	-70.24	/
Poids des terres P arrière	832.8	/	7.10	/	/	5912.88		/
Poids des terres P avant	232.6	/	1.30	/	/	302.38		/
Poussée des terres dynamique	/	8709.2	/	/	-6.225	/	-54214.8	/

Tableau XI- 33: Charges appliquées sur la semelle (cas sismique)

Le tableau suivant résume les surcharges appliquées sur la semelle

Tableau	XI-	34:	Surcharges	appliquées	sur la	semelle
1 aoreaa		···	Saronargos	appingaces	541 14	bennente

DÉSIGNATION	N (kN)	H _L (kN)	Xv(m)	$Z_{h}(m)$	M _N (kN.m)	M _L (kN.m)
Surcharge A(l)	1223.235	116.25	3.20	-10.2	3914.352	-1185.75
Surcharge Bc	1133.99	150	3.20	-10.2	3628.76	-1530
Surcharge Mc120	1074.44	0.00	3.20	0.00	3438.208	0.00
Surcharge D240	1763.66	0.00	3.20	0.00	5643.712	0.00
Poids des surcharges sur remblais	475	/	4.33	/	2056.75	/
Poussée des surcharges		395.7		-6.225		-2463.2325
Surcharge STR	36.34	0.00	3.20	0.00	232.576	0,00

b. Combinaison des charges

Les tableaux suivants résument les combinaisons à l'ELU, l'ELS et l'ELA

Tableau XI- 35: Combinaisons à l'ELU

Combinaison à l'ELU pour la culée C2	N (kN)	H _L (kN)	$M_{N}(kN.m)$	M _L (kN.m)	M ₀ (kN.m)	
1.35 N + 1.6 (A(l)+S.rem+str)	44649.3365	/	228735.678	/	20527 75620	
1.35 H + 1.6 (Fr A(l)+S.rem)	/	7609.08	/	-34016.75189	-28521.15058	
1.35 N + 1.6 (Bc+S.rem+Str)	44506.5445	/	228278.731	/	20021 54250	
1.35 H + 1.6 (Fr Bc+ S.rem)	/	9237.464	/	-34567.55189	-20021.34330	
1.35 N + 1.35 (Mc120)	43324.5105	/	223451.374	/	21240 55929	
1.35 H (pousse de terre)	/	6789.96	/	-28178.37989	-21349.55838	
1.35 N + 1.35 (D 240)	44695.8725	/	226428.804	/	25228 02708	
1.35 H(pousse de terre)		6789.96	9.96 / -28178.38		-23228.93798	

Combinaison à l'ELS pour la culée C2	N (kN)	H _L (kN)	M _N (kN.m)	$M_L(kN.m)$	Mo (kN.m)
N + 1.2 (A(l)+S.rem+str)	33099.28	/	169525.742	/	21222.21
H + 1.2 (Fr A(l)+S.rem)	/	5643.94	/	-25251.65	-21222.31
N + 1.2 (Bc+S.rem+Str)	32992.186	/	169183.032	/	21442 65
H + 1.2 (Fr Bc+ S.rem)	/	6865.228	/	-25664.75	-21442.03
N + Mc120	32092.23	/	165519.536	/	15914 40
H (pousse de terre)	/	5029.6	/	-20872.87	-13814.49
N + (D 240)	32781.45	/	167725.04	/	17055.08
H (pousse de terre)	/	5029.6	/	-20872.874	-17033.08

Tableau XI- 36: Combinaisons à l'ELS

Tableau XI- 37: Combinaisons à l'ELA

$E = (E_L + 0.3 E_V + 0.3 E_T)$	N (kN)	H _L (kN)	H _T (kN)	M _N (kN.m)	ML (kN.m)	Mo (kN.m)	M _T (kN.m)
G+E+0.2A(l)	32377.6	/	/	167976.3	/	91509 22	2400.45
H+E+0.2 Freinage A(l)	/	17134.33	244.16	/	-87687.24	-81598.25	2490.45
G+E+0.2. Bc	32359.61	/	/	167919.17	/	81634.05	2400.45
H+0.2. Freinage Bc	/	17065.48	244.16	/	-87756.09	-01034.95	2490.43
G+E+0.2 Mc120	32245.43	/	/	167423.20	/	80761 20	2400.45
H+E	/	17864.13	244.16	/	-86957.46	-80/01.39	2490.43
G+E+0.2 D240	32383.27	/	/	167864.3	/	81000 51	2400.45
H+E	/	17864.13	244.16	/	-86957.45	-01009.51	2490.43

$E = (E_V + 0.3 E_L + 0.3 E_T)$	N (kN)	H _L (kN)	H _T (kN)	M _N (kN.m)	ML (kN.m)	Mo (kN.m)	M _T (kN.m)
G+E+0.2 A(l)	34740.535	/	/	178836.14	/	26204 59	2400 45
H+E+0.2Freinage A(l)	/	8150.16	244.16	/	-41428.04	-30294.58	2490.45
G+E+0.2 Bc	34722.686	/	/	178779.02	/	26221.2	2400.45
H+0.2 Freinage Bc	/	8081.32	244.16	/	-41496.89	-30331.3	2490.45
G+E+0.2 Mc120	34608.508	/	/	178283.05	/	35457 74	2400.45
H+E	/	8879.96	244.16	/	-40698.25	-35457.74	2490.45
G+E+0.2 D240	34746.352	/	/	178724.15	/	25705.86	2400 45
H+E	/	8879.96	244.16	/	-40698.25	-35/05.80	2490.45

$E = (ET + 0.3 E_L + 0.3 E_V)$	N (kN)	H _L (kN)	H _T (kN)	M _N (kN.m)	ML (kN.m)	M ₀ (kN.m)	M _T (kN.m)
G+E+0.2 A(l)	32377.45	/	/	167976.29	/	25220.02	9201 5
H+E+0.2 Freinage A(l)	/	8150.16	813.87	/	-41428.04	-35359.05	8301.5
G+E+0.2 Bc	32359.61	/	/	167919.17	/	25275 75	9201 5
H+0.2Freinage Bc	/	8081.31	813.87	/	-41496.89	-353/5./5	8301.5
G+E+0.2 Mc120	32245.43	/	/	167423.2	/	34502 10	8201 5
H+E	/	8879.96	813.87	/	-40698.25	-34302.19	0301.5
G+E+0.2 D240	32383.27	/	/	167864.3	/	24750 21	8301 5
H+E	/	8879.96	813.87	/	-40698.25	-34/50.31	0301.5

X_V : Distance horizontale entre le centre de gravité de l'élément et le repère A M_o : Moment total par rapport à O, tel que : $M_o = M_N + M_L - N \times \frac{A}{2}$

c. Vérification des semelles

Selon RPOA, la fondation superficielle doit être vérifiée vis-à-vis du renversement, du glissement et du poinçonnement voire détails du calcul plus haut.

• Stabilité au renversement

Les tableaux suivants représentent les vérifications de la semelle au renversement à L'ELU, à l'ELS et à l'ELA :

		L'ELU				
	C	Combinaison	e (m)	B/3 (m)	vérification	
	N _{Max} 44695.8725					
1	MNCorr	226428.8044	4.435542108	4	ok	
1	MLCorr	-28178.37989				
	N _{Min}	43324.5105				
2	MNCorr	223451.374	4.507217551	4	ok	
4	MLCorr	-28178.37989				
	M _{Nmax}	228735.678				
3	M _{Lmax}	-34016.75189	4.36107099	4	ok	
3	NCorr	44649.3365				

Tableau XI- 38: Stabilité au renversement à l'ELU

Tableau XI- 39: Stabilité au renversement à l'ELS

L' E L S						
	C	ombinaison	e (m)	B/3 (m)	vérification	
	N _{Max}	33099.28				
1	MNCorre	169525.7419	4.358828618	4	ok	
	MLCorre	-25251.65				
	N _{Min}	32092.23			ok	
2	MNCorre	165519.5363	4.507217551	4		
	MLCorre	20872.87				
	M _{Nmax}	169525.7419				
3	MLMAX	-25251.65	4.358828618	4	ok	
	Ncorre	33099.28				

Tableau XI- 40: Stabilité au renversement à l'ELA

	L'E L A							
	Combina	aisons	e (m)	e' (m)	S (m ²)	comp (%)	vérification	
	N _{Max}	34746.352						
1	MoCorr	-35705.86	1.027614594	0.07167515	98.02212224	81.69	ok	
	MTCorr	2490.45						
	N _{Min}	32245.427						
2	MoCorr	-80761.39	2.504584236	0.077234208	68.82845262	57.36	ok	
	MTCorr	2490.45						
	MoMax	-86957.45						
3	Ncorres	32383.271	2.685258262	0.076905449	65.27514796	54.40	ok	
	MTCorr	2490.45						
	MTmax	8301.5						
4	Ncorr	32359.605	1.09320706	0.256538978	93.10072422	22 77.58	ok	
	MoCorr	35375.75						

• Stabilité au glissement

Les tableaux suivants représentent les vérifications de la semelle au glissement à L'ELU, à l'ELS et l'ELA :

	L'ELU							
	Combinaison		0.481N(kN)	H ≤0.481N				
1	N _{Max}	44695.8725	21408 71467	ok				
1	HLCorres	6789.96	21496./1407	OK				
2	N _{Min}	43324.5105	20820 08055					
2	HLCorres	6789.96	20839.08933	ok				
2	HLMax	9237.464	21407 6470					
3	N _{Corres}	44506.5445	21407.0479	ok				

Tableau XI- 41: Stabilité au glissement à l'ELU

Tableau XI- 42: Stabilité au glissement à l'ELS

	L'ELS							
Combinaison			0.481N(kN)	H ≤0.481N				
1	N _{Max}	33099.28	15020 75269	alt				
1	HLCorres	5643.94	13920.73308	OK				
2	N _{Min}	32092.23	15426 26262	ok				
2	H _{LCorres}	5029.6	15450.50205	UK				
2	HLMax	6865.228	15860 24147	ok				
3	NCorres	32992.186	13009.24147	ÜK				

Tableau XI- 43: Stabilité au glissement à l'ELA

	L'ELA							
	Coml	oinaison	S (m ²)	H(kN)	0.481N(kN)	H ≤0.481N		
	N _{Max}	34746.352						
1	HLCorr	8879.9581	98.02212224	8883.314176	16712.99531	ok		
	H _{TCorr}	244.1616						
	N _{Min}	32245.427						
2	HLCorr	8879.9581	68.8284526	8883.314176	15510.05039	ok		
	HTCorr	244.1616						
	HLMax	17864.127						
3	Ncorr	32383.271	65.27514796	17865.79549	15576.35335	ok		
3	HTCorr	244.1616						
	H _{TMax}	8301.5						
4	Ncorr	32359.605	93.10072422	11585.44343	15564.97001	ok		
	HLCorr	8081.3116						

• Vérification du poinçonnement

E.

Les tableaux suivants représentent les vérifications de la semelle au poinçonnement à L'ELU, à l'ELS et à l'ELA :

Tableau XI- 44: Stabilité au poinçonnement à l'ELU

Combinaison		σ_{max} (kN/m^2)	$\sigma_{min}~(kN\!/\!m^2)$	σ_{moy} (kN/m^2)	$\frac{\sigma_{sol}}{(kN/m^2)}$	$\sigma_{moy} < \sigma_{sol}$		
1	N _{Max}	44695.8725	401 2212559	252 500052	421 20242	740.9	alı	
1	MCorre	-28527.7564	491.5512558	255.599955	431.09043	/40.0	OK	
2	N _{Min}	43324.5105	272 0810042	449.99408	316.55934	740.9	alı	
2	MCorre	-21349.55838	272.0810942			/40.0	OK	
2	M _{Max}	-28821.54358	400 0776258	250 708106	420 02275	740.9	alı	
5	NCorre	44506.5445	490.9770558	250.798106	430.93273	/40.0	OK	

	L'ELS							
Combinaison		$\sigma_{max} (kN/m^2)$	$\sigma_{min}~(kN/m^2)$	σ_{moy} (kN/m^2)	$\sigma_{sol} \ (kN/m^2)$	$\sigma_{moy} < \sigma_{sol}$		
1	N _{Max}	33099.28	264 2526205	197 401027	220 040481	5047	ak	
I	M _{Corr}	-21222.312	364.2536295	187.401057	520.040461	304.7	UK	
2	N _{Min}	32092.23	256 7706212	178.090869	312.107441	504.7	ak	
2	Mcorr	-21442.6515	550.7790512				UK	
2	M _{Max}	-21442.652	264 2702645	195 500502	210 607074	504.7	alt	
3	NCorr	32992.19	304.2792045	185.590502	519.00/0/4		OK	

Tableau XI- 45: Stabilité au poinçonnement à l'ELS

Tableau XI- 46: Stabilité au poinçonnement à l'ELA

	L' E L A						
	Combi	inaison	$\sigma_{ELA} (kN/m^2)$	$\sigma_{sol} (kN/m^2)$	$\sigma_{\rm ELA} < \sigma_{\rm sol}$		
1	N _{Max}	34746.352	254	976 1	várifiáo		
1	S (m ²)	98.02212224	554	870.1	vermee		
2	N _{Min}	32245.427	469	076 1	várifiáo		
2	S (m ²)	68.82845262	400	870.1	vermee		
2	NCORR	32383.271	406	0761	várifiáa		
3	S (m ²)	65.27514796	490	870.1	vermee		
4	Ncorr 32359.605 249	219	976 1	várifiáo			
4	S (m ²)	93.10072422	548	0/0.1	vermee		

d. Méthode utilisée

Pour la détermination des moments, on utilise la méthode de la console courte. Dans cette méthode les paramètres nécessaires sont regroupés dans le tableau suivant :

Combinaisons	$\sigma_{max}(KPa)$		σ_{min} (KPa)	
	Patin avant	Patin arrière	Patin avant	Patin arrière
ELU	491.3312558	400.99	420.011	253.6
ELS	364.2536295	297.047	311.195	187.4
ELA	496	496	496	496

Tableau XI- 47: Récupératif des contraintes utilisées

Les lois utilisées sont :

$$D = A_1 + \frac{b}{4} \ ; \ \sigma_d = \sigma_{max} - \frac{(\sigma_{max} - \sigma_{min}) \times D}{B} \ ; R = \frac{(\sigma_{max} + \sigma_d) \times D}{2} \ ; \ d = \frac{\sigma_d + 2 \times \sigma_{max}}{\sigma_d + \sigma_{max}} \times \frac{D}{3}$$

La figure ci-dessous résume la configuration de la méthode :

Figure XI- 23: Méthode de la console

• Patin avant (pour le ferraillage de la nappe inférieure de semelle)

La figure suivante représente la distribution des contraintes à l'ELU, l'ELS et l'ELA.

Figure XI- 24: Distribution des contraintes à l'ELU, l'ELS et l'ELA

Dans le tableau suivant figure les efforts verticaux et les moments appliqués sur le patin avant.

	Tubleau III 10. Elloris vertieuax et moments appriques sur le pauli avait				
_	ELU	ELS		ELA	
D (m)	3	3	D (m)	3	
$\sigma_d (kN/m^2)$	473.5	350.99	σ_{ELA} (kN/m ²)	496	
R (kN)	1447.24	1072.86	R (kN)	1488	
d (m)	1.51	1.51	d (m)	1.5	
M (kN.m)	2185.334	1620.186	M (kN.m)	2232	

 Tableau XI- 48: Efforts verticaux et moments appliqués sur le patin avant

• Patin arrière (ferraillage de la nappe supérieure de semelle)

Pour ferrailler la nappe supérieure, il faut trouver la sollicitation la plus défavorable. Celle-ci consiste à retrancher les efforts suivants :

> ELU

$$1.35 \times P_{remblai} + 1.6 \times P_{surcharge\ remblai} = \frac{1.35 \times 11103.8 + 1.6 \times 475}{6.2 \times 12} = 211.69\ MPa$$

 $1.35 \times P_{mur\ de\ retour} = \frac{1.35 \times 2879.78}{6.2 \times 12} = 52.25\ MPa$

 $1.35 \times P_{semelle} = 1.35 \times 25 \times 2 = 67.5 MPa$

> ELS

 $P_{remblai} + 1.2 \times P_{surcharge\ remblai} = \frac{11103.8 + 1.2 \times 475}{6.2 \times 12} = 156.9\ MPa$

 $P_{mur\ de\ retour} = \frac{2879.78}{6.2 \times 12} = 38.7\ MPa$

 $P_{semelle} = 25 \times 2 = 50 MPa$

> ELA

 $P_{remblai} + 0.2 \times P_{surcharge\ remblai} + 0.3\ E_{V\ remblai} = \frac{11103.8 + 0.2 \times 475 + 0.3 \times 832.8}{6.2 \times 12} = 161.72\ MPa$

 $P_{mur\ de\ retour} + 0.3\ E_{V\ mur\ de\ retour} = \frac{2879.78}{6.2 \times 12} + 0.3 \times \frac{215.97}{6.2 \times 12} = 39.57\ MPa$

 $P_{semelle} + 0.3 E_{Vsemelle} = 50 + \frac{0.3 \times 450}{6.2 \times 12} = 51.81 MPa$

La figure suivante représente la distribution des contraintes à l'ELU, l'ELS et l'ELA.

Figure XI- 25: Distribution de contraintes à l'ELU, l'ELS et l'ELA

Le tableau suivant regroupe les efforts verticaux et les moments appliqués sur le patin arrière :

	ELU	ELS		ELA
D (m)	6.2	6.2	D (m)	6.2
$\sigma_d (kN/m^2)$	51.89	34.3	$\sigma_{d ELA} (kN/m^2)$	242.9
R (kN)	170.0199	127.652	R (kN)	1505.98
d (m)	5.1	5.11	d (m)	3.1
M (kN.m)	868.01	652.30172	M (kN.m)	4668.538

Tableau XI- 49: Efforts verticaux et les moments appliqués sur le patin arrière

e. Ferraillage

Le ferraillage est déterminé à l'aide du logiciel ROBOT EXPERT (flexion simple h=2 m b=1m).

• Nappe inferieure

Armature longitudinale

 $A_{s \text{ long inf}} = 35.7 \text{ cm}^2/\text{ml} \rightarrow \text{Double nappe 7 HA20} (A_s = 43.98 \text{cm}^2/\text{ml}) \text{ tous les 15 cm}$

Armature de répartition

 $A_r = \frac{A_{s \text{ long inf}}}{3} = 16.36 \text{ cm}^2/\text{ml} \rightarrow 7\text{HA20} \text{ (A}_r = 22 \text{ cm}^2/\text{ml}) \text{ tous les 15 cm}$

- Nappe supérieure
- Armature longitudinale

 $A_{s \text{ long sup}} = 49.5 \text{ cm}^2/\text{ml} \rightarrow \text{Double nappe 7HA25} + 7\text{HA20} (A_s = 56.35 \text{ cm}^2/\text{ml}) \text{ espacées de 15 cm}$

Armature de répartition

$$A_r = \frac{A_{s \text{ long sup}}}{3} = 22.9 \text{ cm}^2/\text{ml} \rightarrow 8\text{HA20} \text{ (A}_r = 25.13 \text{ cm}^2/\text{ml}) \text{ espacées de } 12.5 \text{ cm}^2/\text{ml}$$

Armatures latérales

$$A_{\text{latérales}} = \frac{A_{\text{s} \text{long sup}}}{10} = \frac{56.35}{10} = 5.635 \text{ cm}^2/\text{ml} \rightarrow \text{Choix} : 2\text{HA20} \text{ (A}_{\text{latérales}} = 6.28 \text{ cm}^2/\text{ml})$$

• Condition de non fragilité

Elle est donnée par la relation suivante :

$$A_{min} \ge 0.23 \times b \times d \times \frac{f_{tj}}{f_e}$$

 $A_{min} \ge 0.23 \times 1 \times 1.95 \times \frac{2.22}{500} = 25.9 \ cm^2$ 35.7 > 25.9

Selon RPOA, la section minimale dans la zone IIa est donnée par l'expression suivante :

 $0.15 \% \times S \le A_{min} \le 1.5\% \times S => 30 \ cm^2 \le A_{min} \le 300 \ cm^2$

Les deux conditions précédentes sont vérifiées.

• Vérification de contrainte de cisaillement

 $V_{max} = 1505.98 \text{ kN}$

 $\tau_{max} = \frac{V_{max}}{b \times d} = \frac{1.50598}{1 \times 1.95} = 0.77 \; MPa$

Dans le cas d'une fissuration préjudiciable, il faut : $\tau_{max} \leq Min \ [0.15 \frac{f_{cj}}{\gamma_b}, 4MPa].$

Avec : $f_{c28} = 27$ MPa $\gamma_b = 1.5$ (en situation durable)

 $\tau_{max} \leq Min (2.7 MPa; 4 MPa) = 2.7 MPa.$

Donc : $\tau_{max} \leq \overline{\tau}_u \rightarrow \text{Condition vérifiée}$

f. Schéma de ferraillage

La figure ci-dessous représente le schéma de ferraillage de la semelle.

Figure XI- 26: Ferraillage de la semelle

XI.6.3 Etude et ferraillage du mur garde-grève (C2)

Le mur garde-grève est soumis aux efforts suivants :

a. Poussée due aux surcharges sur le remblai

 $P_{surcharge} = 10 \times K_a \times h = 10 \times 0.334 \times 2.47 = 8.25 \text{ KN/ml}$

$$M_p = \frac{1}{3} \times h \times P_{surcharge}$$

b. Poussée des terres

$$P_{remblai} = \frac{1}{2} \times K_a \times h^2 \times \rho_{terre} = \frac{1}{2} \times 0.334 \times 2.47^2 \times 18 = 18.34 \, KN/ml$$

$$M_t = \frac{1}{3} \times h \times P_{remblai}$$

c. Effort de freinage

$$M_F = \frac{\mu \times P \times h}{0.25 + (2 \times h)} = \begin{cases} 34.26 \\ 45.69 \end{cases} \quad \stackrel{\text{a ELS}}{\text{a ELU}}$$

μ: 1.2 pour l'ELS et 1.6 pour l'ELUP: est égale à 60 kNH : hauteur de mur de garde-grève

	Tableau AI- 50: Somenations sur le mur garde-greve (C2)					
	Combinaison	M(kN.m)				
ELU	$1.35M_{p}+1.6(M_{t}+M_{F})$	76.94				
ELS	$M_{p}+1.2(M_{t}+M_{F})$	57.521				

Tableau XI- 50: Sollicitations sur le mur garde-grève (C2)

d. Ferraillage

A l'aide de logiciel ROBOT EXPERT (flexion simple h=40 cm, b=100 cm), on détermine le ferraillage comme ci-dessous :

> Armature longitudinale :

 $A_{s \text{ longitudinal}} = 7.1 \text{ cm}^2/\text{ml} \rightarrow (6\text{HA16 } 12.06 \text{ cm}^2) \text{ espacées de 18 cm}$

> Armature verticale :

 $A_{s vertical} = \frac{A_s}{3} = 4.02 \ cm^2 \rightarrow (4\text{HA}14 \ \text{cm}^2) \text{ espacées de 30 cm}$

e. Vérification des contraintes de cisaillement

 $V_{max} = 99.67 \text{ kN}$

$$\tau_{max} = \frac{V_{max}}{b \times d} = \frac{0.09967}{1 \times 0.35} = 0.284 MPa$$

Dans le cas d'une fissuration préjudiciable, on a :

$$\tau_{max} \leq Min \ [0.15 \frac{f_{cj}}{\gamma_b}, 4MPa].$$

Avec : $f_{c28} = 27 \text{ MPa}$ $\gamma_b = 1.5 \text{ (en situation durable)}$

$$\tau_{max} \leq Min (2.7 MPa; 4 MPa) = 2.7 MPa.$$

Donc :

 $\tau_{max} \leq \overline{\tau}_u \rightarrow \text{Condition vérifiée}$

f. Schéma de ferraillage de mur garde de grève

La figure suivante représente le ferraillage du mur garde de grève :

Figure XI- 27: Ferraillage de mur garde de grève

XI.6.4 Etude et ferraillage de la dalle de transition (C2)

La dalle de transition est soumise aux efforts suivants :

a. Charges permanentes

> Poids de la dalle de transition

 $Poids_{propre} = \rho_{beton} \times e \times 1 = 25 \times 0.3 \times 1 = 7.5 \ KN/m$

> Poids du remblai

 $P_{rem} = \rho_{terre} \times h_{remblai} \times 1 = 18 \times 1.05 \times 1 = 18.9 \, KN/m$

Poids de revêtement

 $P_{rev} = \rho_{BB} \times e_{rec} \times 1 = 24 \times 0.08 \times 1 = 1.92 KN/ml$

b. Surcharge

Surcharge répartie, 10 kN/ml

Le tableau suivant représente les sollicitations sur la dalle de transition.

rubbuu mi bii bomonunono bui iu duno do munsmon									
	Charge	T (kN)	M (kN.m)						
Poids de la dalle de transition	7.5	18.75	23.44						
Poids de remblai	1.92	4.8	6						
Poids de revêtment	18.9	47.25	59.06						
Surcharge	10	25	31.25						

Tableau XI- 51: Sollicitations sur la dalle de transition

Le tableau suivant représente les combinaisons des charges.

Tubleuu III 22. Combinationis des charges								
ELS (C	G + 1.2 Q)	ELU (1.35 G+ 1.6 Q)						
T (kN)	M (kN.m)	T (kN)	M (kN.m)					
100.8	126	135.58	169.47					

Tableau XI- 52 : Combinaisons des charges

c. Ferraillage

A l'aide de logiciel ROBOT EXPERT (flexion simple b=100 cm, h=30 cm) on détermine le ferraillage comme ci-après :

• Nappe inferieure

Armature longitudinale

 $A_{s \text{ long, inf}} = 23.3 \text{ cm}^2/\text{ml} \rightarrow 8 \text{ HA20} (A_s = 25.13 \text{ cm}^2/\text{ml}) \text{ espacées de } 12.5 \text{ cm}$

Armature de répartition

$$A_r = \frac{A_{s \text{ long,inf}}}{3} = 8.38 \text{ } cm^2/ml \rightarrow 7\text{HA14} (A_r = 10.77 \text{ } cm^2/ml) \text{ espacées de 15 cm}$$

- Nappe supérieure
- Armature longitudinale

$$A_{s \log sup} = \frac{A_{s \log, inf}}{3} = 8.38 \text{ cm}^2/\text{ml} \rightarrow 7\text{HA14} \text{ (A}_r = 10.77 \text{ cm}^2/\text{ml}) \text{ espacées de 15 cm}$$

Armature de répartition

$$A_r = \frac{A_{s \text{ long,sup}}}{3} = 3.59 \text{ cm}^2/\text{ml} \rightarrow 5\text{HA12} (A_r = 4.52 \text{ cm}^2/\text{ml}) \text{ espacées de } 22.5 \text{ cm}^2/\text{ml}$$

d. Vérification de contrainte des cisaillements

 $V_{max} = 135.58 \text{ kN}$ $\tau_{max} = \frac{V_{max}}{b \times d} = \frac{0.1358}{1 \times 0.25} = 0.54 \text{ MPa}$

Dans le cas d'une fissuration préjudiciable, on a :

$$\tau_{max} \leq Min \ [0.15 rac{\gamma_{cj}}{\gamma_b}, 4MPa].$$

Avec : $f_{c28} = 27 \text{ MPa}$ $\gamma_b = 1.5$ (en situation durable)

 $\tau_{max} \leq Min (2.7 MPa ; 4 MPa) = 2.7 MPa.$

Donc : $\tau_{max} \leq \overline{\tau}_u \rightarrow$ Condition vérifiée

e. Condition de non fragilité

Elle est donnée par la relation suivante :

$$A_{min} \ge 0.23 \times b \times d \times \frac{f_{tj}}{f_e}$$

 $A_{min} \ge 0.23 \times 1 \times 0.25 \times \frac{2.22}{500} = 2.553 \ cm^2$

8.38 > 2.553 => Condition vérifiée

f. Schéma de ferraillage de dalle de transition

La figure suivante représente le ferraillage de dalle de transition :

XI.6.5 Corbeau d'appui

D'après les documents de (S.E.T.R.A), son rôle est d'assurer le support de la dalle de transition. Le ferraillage du corbeau d'appui est réalisé par des armatures de HA10 espacées de 15 cm, et des goujons de HA25 tous les 2 m.

La figure suivante représente le ferraillage de corbeau :

Figure XI- 29: Ferraillage de corbeau

XI.6.6 Mur en retour

a. Charges appliquées sur le mur en retour

Le mur en retour a pour rôle d'assurer le soutènement des terres du remblai d'accès au pont. Il est soumis aux charges :

- Poids propre du mur.
- Poussées horizontales réparties :

> Poussée due aux surcharges sur le remblai

 $P_{surcharge} = 10 \times K_a = 10 \times 0.334 = 33.4 \, kPa$

> Poussée des terres

$$\begin{split} P_{terre_Statique} &= \frac{1}{2} \times K_a \times h \times \rho_{terre} = \frac{1}{2} \times 0.334 \times 10.47 \times 18 = 31.47 \ \text{KPa} \\ P_{terre_Dynamique} &= \frac{1}{2} \times K_{ad} \times h \times \rho_{terre} = \frac{1}{2} \times 0.538 \times 10.47 \times 18 = 50.7 \ \text{KPa} \end{split}$$

• Les charges concentrées sont appliquées à 1 m de l'extrémité théorique du mur et comprennent une charge verticale de 40 kN et une charge horizontale de 20 kN.

b. Combinaisons des charges :

 $\begin{array}{l} ELU : 1.35 \ G + 1.6 \ Q \\ ELS : G + 1.2 \ Q \\ ELA : G + E + 0.2 \ Q \end{array}$

c. Ferraillage

La détermination des moments et ferraillage sont faite à l'aide de logiciel ROBOT 2021 et ROBOT EXPERT (flexion simple b=100 cm, h=80 cm).

• Armature horizontale

La modélisation du mur se trouve à l'annexe 6.4. Les moments M_{x-x} sont :

 $M_{ELU} = 2195.69 \text{ kN}$; $M_{ELS} = 1641.33 \text{ kN}$; $M_{ELA} = 1262.35 \text{ kN}$.

 $A_{s \text{ horizontal}}=103.9 \text{ cm}^2 => \text{Choix}$: Deux nappe 7HA32 ($A_s=112.59 \text{ cm}^2$) espacées de 15 cm.

• Armature verticale

La modélisation du mur se trouve à l'annexe 6.4. Les moments M_{y-y} sont :

 $M_{ELU} = 1675.97 \text{ kN}$; $M_{ELS} = 1256.98 \text{ kN}$; $M_{ELA} = 975.81 \text{ kN}$

 $A_{s \text{ vertical}}{=}84.6 \text{ cm}^2 \rightarrow 11 \text{HA32 cm}^2 \text{ (A}_{s}{=}88.47 \text{ cm}^2\text{) espacées de 9 cm}$

• Condition de non fragilité

Elle est donnée par la relation suivante :

$$A_{min} \ge 0.23 \times b \times d \times \frac{f_{tj}}{f_e}$$

 $A_{min} \ge 0.23 \times 1 \times 0.75 \times \frac{2.22}{500} = 7.66 cm^2$ 103.9 > 7.66 Selon RPOA la section minimale dans la zone IIa : $0.15 \% \times S \le A_{min} \le 1.5\% \times S \implies 12 \ cm^2 \le A_{min} \le 120 \ cm^2$

Les deux conditions sont vérifiées.

• Schéma de ferraillage

La figure ci-dessous représente le schéma de ferraillage de mur en retour

Figure XI- 30 : Ferraillage de mur en retour.

XI.6.7 Mur frontal

a. Charges et surcharges

La figure suivante présente le repère de calcul des moments

Figure XI- 31: Repère de calcul des moments

Le tableau suivant résume les charges appliquées sur le mue frontal (cas normal)

Désignation	N(L-N)	$\mathbf{V}_{\mathbf{v}}(\mathbf{m})$	$\mathbf{H}_{\mathbf{r}}$ ($\mathbf{k}_{\mathbf{N}}$)	$Z_h(m)$	MN	ML	
	IN(KIN)	Av(III)			(kN.m)	(kN.m)	
Poids propre du tablier	3845.17	-0.2	/	-8.5	-769.034	/	
Mur G grève	263.62	0.6	/	-9.23	158.172	/	
Mur frontal	3443.2	0	/	-4	0	/	
Poids de la dalle de transition	356.25	0.93	/	-9.45	331.3125	/	
Corbeau	24.67	0.97	/	-9.39	23.9299	/	
Poussée des terres sur mur frontal	/	/	3545.63	-2.15	/	-7623.105	

Tableau XI- 53 : Charges appliquées sur le mur frontal (cas normal)

Le tableau suivant résume les charges appliquées (composante verticale, horizontale, poussé dynamique) sur le mur frontal (cas sismique)

Désignation	N(kN)	H _L (kN)	Xv (m)	H _T (kN)	Z _h (m)	M _N (kN.m)	ML (kN.m)	MT kN.m
Poids propre du tablier	1337.88	883.46	-0.2	813.872	-8.2	-267.576	-7244.372	0
Mur G grève	19.77	65.9	0.6	/	-9.23	11.862	-608.257	/
Mur frontal	258.24	860.8	0	/	-4	0	-3443.2	/
Poids de la dalle de transition	26.72	89.1	0.93	/	-9.45	24.8496	-841.995	/
Corbeau	1.85	6.167	0.97	/	-9.39	1.7945	-9.1083	/
Poussée des terres sur mur frontal	/	6139.58	/	/	-4.23	/	-25970.42	/

Tableau XI- 54: Charges appliquées sur le mur frontal (cas sismique)

Le tableau suivant résume les surcharges appliquées sur le mur frontal

DÉSIGNATION	N (kN)	H (kN)	Xv(m)	$Z_{h}\left(m ight)$	M _N (kN.m)	M _L (kN.m)
Surcharge A(l)	1223.235	116.25	-0.2	-8.2	-244.647	-953.25
Surcharge Bc	1133.99	150	-0.2	-8.2	-226.798	-1230
Surcharge Mc120	1074.44	0.00	-0.2	0,00	-214.888	0.00
Surcharge D240	1763.66	0.00	-0.2	0,00	-352.732	0,00
Poids des surcharges sur remblais	475	/	0.93	/	441.75	/
Poussée des surcharges	/	332.21	/	-4	/	-1405.25
Surcharge STR	36.34	0.00	-0.2	0,00	232.576	0.00

Tableau XI- 55: Surcharges appliquées sur le mur frontal

b. Combinaison des charges

Le tableau représente les combinaisons des charges à l'ELU, l'ELS et l'ELA :

Combinaison à l'ELU	N (kN)	H _L (kN)	M _N (kN.m)	ML (kN.m)	M_{0} (kN.m)
1.35 N + 1.6 (A(l)+S.rem+str)	13484.75	/	342.4	/	12722 20
1.35 H + 1.6 (Fr A(l)+S.rem)	/	5504.14	/	-14064.79	-13722.39
1.35 N + 1.6 (Bc+S.rem+Str)	13341.96	/	370.96	/	14126 62
1.35 H + 1.6 (Fr Bc+ S.rem)	/	7132.52	/	-14507.59	-14130.03
1.35 N + 1.35 (Mc120)	12159.92	/	-635.19	/	10026.28
1.35 H	/	4786.60	/	-10291.19	-10920.38
1.35 N + 1.35 (D 240)	13531.28	/	-821.27	/	11112 47
1.35 H(poussée)		4786.60	/	-10291.19	-11112.47

Tableau XI- 56: Combinaisons des charges à l'ELU

Combinaison à l'ELS pour la culée C2	N (kN)	H (kN)	M _N (kN.m)	M _L (kN.m)	M_0 (kN.m)			
N + 1.2 (A(l)+S.rem+str)	10014.4	/	259.99	/	10102 21			
H + 1.2 (Fr A(l)+S.rem)	/	4083.78	/	-10453.3	-10195.51			
N + 1.2 (Bc+S.rem+Str)	9907.31	/	281.41	/	10502.00			
H + 1.2 (Fr Bc+ S.rem)	/	5305.07	/	-10785.4	-10305.99			
N + Mc120	9007.35	/	-470.51	/	8002 61			
Н	/	3545.63	/	-7623.10	-8095.01			
1 N + (D 240)	9696.57	/	-608.35	/	9221 46			
Н	/	3545.63	/	-7623.10	-8231.40			

Tableau XI- 57: Combinaisons des charges à l'ELS

Tableau XI- 58: Combinaisons des charges à l'ELA

$E = (E_L + 0.3 E_V + 0.3 E_T)$	N (kN)	H _L (kN)	H _T (kN)	M _N (kN.m)	ML (kN.m)	M_{0} (kN.m)
G+E+0.2 A(l)	8773.16	/	/	-238.40	/	16150 56
H+E+0.2. Freinage A(l)	/	13338.84	244.16	/	-46212.16	-40450.50
G+E+0.2 Bc	8755.31	/	/	-234.84	/	46502.24
H+0.2Freinage Bc	/	13283.49	244.16		-46267.51	-40502.54
G+E+0.2 Mc120	8641.14	/	/	-367.32	/	46107 78
H+E	/	13810.54	244.16	/	-45740.46	-40107.78
G+E+0.2 D240	8778.98	/	/	-394.89	/	16125 25
H+E	/	13810.54	244.16	/	-45740.46	-40135.35

$E = (E_V + 0.3 E_L + 0.3 E_T)$	N (kN)	H _L (kN)	H _T (kN)	M _N (kN.m)	ML (kN.m)	M_0 (kN.m)
G+E+0.2. A(l)	9924.285	/	/	-398.75	/	10029 76
H+E+0,2. Freinage A(l)	/	6153.40	244.16	/	-19530.01	-19928.70
G+E+0.2Bc	9906.436	/	/	-395.18	/	10080 54
H+0.2 Freinage Bc	/	6098.05	244.16	/	19585.36	-19980.54
G+E+0.2 Mc120	9792.258	/	/	-527.67	/	10595 09
H+E	/	6625.10	244.16	/	19058.31	-19585.98
G+E+0.2 D240	9930.102	/	/	-555.24	/	10612 55
H+E	/	6625.10	244.16	/	19058.31	-19013.55

$E = (ET + 0.3 E_L + 0.3 Ev)$	N (kN)	H _L (kN)	H _T (kN)	M _N (kN.m)	M _L (kN.m)	M _o (kN.m)
G+E+0.2 A(l)	8773.16	/	/	-238.40	/	10768 42
H+E+0.2 Freinage A(l)	/	6153.40	813.87	/	19530.01	-19/00.42
G+E+0.2. Bc	8755.31	/	/	-234.83	/	10920.20
H+0.2 Freinage Bc	/	6098.05	813.87	/	19585.36	-19820.20
G+E+0.2. Mc120	8641.14	/	/	-367.32	/	10425 63
H+E	/	6625.10	813.87	/	19058.31	-19425.05
G+E+0.2 D240	8778.98	/	/	-394.89	/	10453 20
H+E	/	6625.10	813.87	/	19058.31	-19455.20

Mo : Moment total : $M_o = M_N + M_L$

Le tableau suivant résume les sollicitations sur mur frontal à l'ELU, l'ELS et l'ELA :

rubledd XI 57. Somenations sur mur nontar a'r EES, i EES er i EEX										
ELU	ELS		ELS							
N (kN)	M(kN.m)	N(kN)	M (kN.m)	N(kN)	M (kN.m)					
1239.96	1313.81	920.75	976.21	813.69	4321.78					

Tableau XI- 59: Sollicitations sur mur	frontal à l'ELU, l'H	ELS et l'ELA
--	----------------------	--------------

c. Ferraillage de mur frontal

• Armature verticale

A l'aide de logiciel ROBOT EXPERT (flexion composé b= 100 cm, h=160 cm), on calcule le ferraillage :

 $A_{s \text{ vertical}}=51 \text{ cm}^2 \rightarrow 7\text{HA32}$ (As =56.29 cm²) espacées de 15 cm.

• Armature horizontale

À l'aide de logiciel ROBOT EXPERT (flexion simple b= 100cm, h=160 cm), on calcule le ferraillage

 $A_{s \text{ horizontal}}=58.5 \text{ cm}^2 \rightarrow 8\text{HA32} \text{ (As}=64.23 \text{ cm}^2\text{) espacées de 12.5 cm}.$

d. Condition de non fragilité

Elle est donnée par la relation suivante :

$$A_{min} \geq 0.23 \times b \times d \times \frac{f_{tj}}{f_e}$$
$$A_{min} \geq 0.23 \times 1 \times 1.55 \times \frac{2.22}{500} = 15.8 cm^2$$
$$56.29 > 15.8$$

Selon RPOA, la section minimale dans la zone IIa :

 $0.15 \% \times S \le A_{min} \le 1.5\% \times S \implies 24 cm^2 \le A_{min} \le 240 \ cm^2$

Les deux conditions sont vérifiées.

e. Schéma de ferraillage de mur frontal

La figure ci-dessous représente le schéma de ferraillage de mur frontal :

XI.7 Joint de chaussée

Un joint est nécessaire sur un pont où il y a possibilité de mouvements relatifs entre deux éléments de structure de l'ouvrage due aux température, retrait, fluage et séisme.

Les joints de chaussée ont pour objectifs :

- D'assurer la continuité de la surface de roulement entre l'ouvrage et les accès, en maintenant la libre dilatation du tablier à ses extrémités,
- D'atténuer ou de supprimer le bruit et les vibrations lors du passage sur le joint des usagers.
 - Le paramètre essentiel pour le choix d'un modèle de joint est le "souffle".

XI.7.1 Souffle

On appelle " souffle " (ou parfois " jeu") d'un joint le déplacement relatif maximal prévisible des deux éléments en regard, mesuré entre leurs deux positions extrêmes (Figure XI-34) et non par rapport à la position moyenne ou de réglage.

Figure XI- 34: Souffle (SETRA1996)

XI.7.2 Calcul du souffle des joints

Les principaux éléments entrant dans les composantes du souffle sont :

 $\begin{array}{l} Température : \Delta L_T = 5.265 \mbox{ mm} \\ Fluage : \Delta L_{flu} = 9.33 \mbox{mm}. \\ Retrait : \Delta L_{ret} = 2.6325 \mbox{ mm}. \\ Séisme : \Delta L_{seisme} = 5.16 \mbox{ cm} \end{array}$

Figure XI-33 : Joint de chaussé

Le souffle selon RPOA est défini par cette relation :

$$W = \Delta L_{flu} + \Delta L_{ret} + 0.4 \ \Delta L_T + \frac{1}{3} \times \Delta L_{séisme} = 31.27 \ mm$$

Donc :

Le souffle total sous les phénomènes précédents est égal à : W = 31.27mm

Puisque on a un pont à poutre en béton précontraint, isostatique on va disposer les joints de chaussée sur les extrémités de chaque travée.

XI.7.3 Choix de type de joint

Le type de joint de chaussée est choisi selon le souffle total calculé précédemment, on constate que pour un souffle de 31.27 mm, il faut considérer la famille des joints à lèvres (tout en s'assurant que le vide entre maçonnerie permet de reprendre l'allongement ELU sans mise en contact). (Figure XI-33).

Figure XI- 35: Domaine d'emploi des différentes familles de joint (SETRA1996)

XI.8 Conclusion

Ce chapitre est dédié à l'étude l'infrastructure en tenant compte de l'environnement, de la nature du sol et des charges sismiques.

Pour le ferraillage des éléments constructifs, nous avons essayé d'utiliser différentes méthodes de calcul des combinaisons comme l'EXCEL et le ROBOT Autodesk. Pour la quantité d'acier, on a utilisé le ROBOT Expert.

Conclusion générale

Nous nous sommes intéressés dans le cadre de notre projet de fin d'étude, au dimensionnement d'un pont à poutres en béton précontraint par post-tension.

Pour mener à bien cette tâche, nous avons structuré notre travail en onze chapitres qui nous ont permis de faire un cadrage progressif du sujet traité.

Dans le premier chapitre, *Description de projet*, nous avons présenté l'emplacement de l'ouvrage ainsi que toutes les données nécessaires à l'élaboration de ce dernier. En qui concerne l'emplacement de site, nous n'avons pas réussi à nous procurer une vue de ce dernier. Cet inconvénient peut s'expliquer par le fait que Google Earth ne peut mettre à la disposition des utilisateurs de telle vue (vue de site) tant que le site n'est pas mis à jour.

Le chapitre II, *Caractéristiques des matériaux*, est consacré à la présentation des caractéristiques des matériaux utilisés pour l'élaboration du projet. Notre choix s'est porté sur :

Acier : Passif : FeE500

Actif : 12T15

Béton : $f_{c28} = 27$ MPa pour l'infrastructure. $f_{c28} = 40$ MPa pour la superstructure.

Le chapitre III, *Prédimensionnement et caractéristiques géométriques de tablier*, comporte :

- Prédimensionnement des poutres et de la dalle.
- Caractéristiques géométriques du tablier (largeur chargeable, largeur roulable, largeur d'une voie,...)

A titre d'exemple, les résultats obtenus pour la section à mi-travée sont :

$h_p=1.8m$	$b_0 = 1.2m$	$E_{H}=0.2m$	bt=0.6 m
1			

Le chapitre IV, *Charges et surcharges*, aborde la question des charges appliquées sur le pont (poids propre et surcharge roulable)

Les résultats obtenus sont :

G= 7490.34 kN	A(l) = 69.7 kN / m	Bc=1320 kN
$D_{240} = 129 \text{ kN/m}$	M _{C120} =192.95 kN/m	Strottoir: 1.59 kN/m

Chapitre V, *Modélisation*, nous a permis de déterminer les moments et les efforts tranchants dues aux combinaisons les plus défavorables aux états limites. Les résultats obtenus sont :

$M_{ELU max} = 9.76 MN.m$	$T_{ELU max} = 1.302 MN$
$M_{ELS max} = 7.23 MN.m$	$T_{ELS max} = 0.965 MN$

Dans le sixième chapitre, *Etude de la précontrainte*, nous avons déterminé le nombre de câbles, leur traçage et les pertes totales. Les principaux résultats sont :

- Force exercée sur un seul câble : 2.48 MN
- Nombre des câblés : 3
- Perte totale maximale : 414.020MPa (28.1 %)

Le chapitre VII, *Calcul justificatif des poutres et calcul des déformations*, porte sur la vérification des contraintes, le calcul des déformations et le ferraillage des poutres. Les résultats obtenus sont :

- Flèche maximale totale en charge : f = 4.1525 cm
- Rotation : $\theta = 4.558 \times 10^{-3}$ rad.

Ferraillage :

- Armature longitudinale de la zone tendue : 6HA14.
- Armature transversale de peau : Cadre HA12.
- Armature passive transversale : 2HA12.

Le chapitre VIII, Etude de l'hourdis, nous a permis d'attendre le ferraillage suivant :

Ferraillage transversal : A_{s_inf} : 7HA12

As_sup: 10HA 14

 $\label{eq:approx_signal} Ferraillage \ longitudinal: \\ A_{s_inf} \colon 4HA12.$

 $A_{s_sup}: 4HA14$

Quant au chapitre IX, *Etude d'appareil d'appui*, il nous a permis de dimensionner l'appareil d'appui et le dé d'appui ainsi que le ferraillage de ce dernier. Les résultats sont :

- Appareil d'appui : (350x350x75) mm
- Dé d'appui : (550x550x200) mm

Ferraillage :

- Armature de chainage : 6HA14
- Armature horizontale : 6HA10
- Armature de frette supérieure : 3HA8
- Armature de frette inferieure : 5HA10

Le chapitre X, *Etude dynamique*, s'est intéressé particulièrement au calcul des forces sismiques et des déplacements engendrés par celles-ci.

Enfin, dans le chapitre XI, *Etude de l'infrastructure*, nous avons déterminé le ferraillage des piles et des culées en plus du choix du type de joint de chaussée. Ce dernier appartient à la famille à lèvres.

La préparation de ce mémoire de fin d'étude a été pour nous un complément d'information venant d'enrichir notre formation d'Ingénieur d'Etat en Génie Civil. Elle nous a permis de mettre en exergue les connaissances théoriques et pratiques acquises durant ces trois dernières années passées au sein du département Génie Civil du l'Ecole Nationale Polytechnique. Par allieur, elle nous a permis de nous familiariser avec beaucoup de logiciels comme ROBOT Autodesk, AUTOCAD et ROBOT Expert.

Pour conclure, on peut recommander quelques propositions pour des futurs projets :

- Reprendre le projet en utilisant la pré-tension qui est moins couteuse mais moins résistante que la post-tension.
- Utiliser des poutres hyperstatiques.
- Utiliser les poutres mixtes. Ces dernières permettent de gagner plus de 50 m en portée.

Références

• <u>Cours :</u>

1-Cours Béton Armé, Béton Précontraint, 4éme année Génie Civil. Mr BOUTEMEUR.

2-Cours Pont, 5éme année Génie Civil. Mme. D. CHERID.

3-Cours et application Béton Précontraint, Dr. SILINE Mohammed.

• Ouvrages :

4-CHAUSSIN, Robert. Béton précontraint. Technique de l'ingénieur, C 2360, 1990.

• <u>Projets de fin d'études :</u>

5-Etude d'un pont et d'un tronçon routier : Evitement de la Ville d'oued el Alleug, juin 2019, AOUIZ Mahdi et BOUDAHDIR Abderaouf.

6-Etude d'un pont à poutres en béton précontraint par post-tension, juin 2019, SELLOU Hicham et ZAITER Moussa.

7- Etude d'un Viaduc en béton précontraint par post tension, juin 2020, HABBICHE Zakaria Abderrahim et REGUIEG Ouail.

• <u>Règlements :</u>

8-BAEL 91. (1991) : Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites.

9-BPEL 91. (Révisé 99) : Règles techniques de conception de calcul des ouvrages de construction en béton précontraint suivant la méthode des états limites Fascicule n°62 titres 1.

10-Fascicule 62 titre V : Règle technique de conception et de calcul des fondations des ouvrages en génie civil-CET.

11-RCPR (2008) : Règles définissant les charges à appliquer pour le calcul et les épreuves des ponts routes.

12-RPOA (2008) : Règles parasismiques applicables au domaine des ouvrages d'art.

13-SETRA. (Février 1996) : Ponts à poutres préfabriquées précontraintes par post-tension : guide de conception. 46, avenue Aristide Briand-B.P. 100-92223 Bagneux Cedex-France.

14-SETRA 2000 : Appareil d'appui en élastomère frette.

Annexes

Annexe 1 : Données géotechniques

Investigation :

<u>In situ :</u>

Les investigation in-situ ont été réalisée en faisant 3 sondages carottés de 20m de profondeur selon les normes de **D.T.R.B.E 1.1**.

Au laboratoire :

Les échantillons prélever ont subi les essais suivants :

Densité sèche γ_d t/m ³	(NF P 94-064)
Teneur en eau W %	(NF P 94-050)
Densité humide γ_h t/m ³	(NF P 94-050)
Analyse granulométrique	(NF P 18-560)

Analyse chimique : Insoluble , Carbonates et Chlorure **Description lithologique du site :**

Sondage :

La réalisation des sondages carottés a fait apparaître la nature du sol suivante :

Log descriptif du Sondage carotté SC01							
	CULEE 01 X=389067.5160 et Y=4090638.8615						
Profondeur	Nature du sol	Echenillant	Echenillant S.P.T				
(m)		Paraffiné	Profondeur	N1	N2	N3	Récupération
		(m)	(m)				
0.0-0.5	Terre végétale.	/			/	•	90 %
0.5-1.40	Limon, argile et graves de						80%
	couleur noirâtre.						
1.40-11.80	Génisse schisteux très altéré,	1.5-1.8	4.5-4.95	6		16	70%
	oxydé et décompose.	9.3-9.6	6.5-6.95	8	3	19	65%
			8.5-8.95	30	50	refus	80%
11.80-	Génisse schisteux très altéré,	/		/			80%
16.00	oxydé et très fracturé.						
16-20	Génisse schisteux altéré et	/		/			85%
	fracturé.						

T 11	A 1	1	•	1
Tableau	Couches	de	nremier	condage
raultau.	Coucies	uc	premier	sonuage.
				0

Tableau : Couches de deuxième sondage.

	6						
Log descriptif du Sondage carotté SC 02							
	PILE 05 X= 388887.2261 et Y=4090655.2733						
Profondeur	Nature du sol	S.P.T Récupéra					
(m)		Profondeur(m)					
0.0 - 0.10	Terre végétale.	/	/	60%			
0.1 - 1.0 0	Limon, argile et graves de couleur noirâtre.	/	/	80%			
1.0 - 9.70	Génisse schisteuse très altéré, oxydé et	4.5-4.95	Refus	85%			
	décompose.	6.5-6.95	Refus				
		8.5-8.95	Refus				
9.70 - 13.00	Génisse schisteux oxydé et très fracturé.	/	/	85%			
13.00-20.00	Génisse schisteux oxydé et très fracturé	/	/	90%			

Log descriptif du Sondage carotté SC 03				
	CULEE 02 X= 388618.2352 et Y=	=4090678.595	3	
Profondeur (m)	Nature du sol	S.P.T	1	Récupération
		Profondeur		
		(m)		
0-0.1	Terre végétale.	/	/	60%
0.1-0.2	Génisse schisteux altéré, oxydé et	/	/	80%
	décompose.			
2.0-20.0	Génisse schisteux oxydé et fracturé.	4.5-4.95	Refus	85%
		6.5-6.95	Refus	
		8.5-8.95	Refus	

Tableau : Couches de troisième sondage.

Au laboratoire :

L'interprétation des essais de Laboratoire est regroupée dans le tableau ci-joints.

	SONDAGES N ^O	01	01	01	02	02
	Prof. (m)	3.0/4.0	9.2/9.6	13.5/14.0	5.0/5.6	9.0/9.8
	W%	/	14.5	/	17.7	15.5
Tonour on agu 1 dongitá	$\gamma_d t/m^3$	/	1.84	/	1.82	1.88
Teneur en eau + densite	Sr %	/	100	/	99	96
	$\gamma_h t/m^3$	/	2.1	/	2.14	2.18
	2 mm	69.64	90.94	52.76	99.11	98.45
	0.080mm	40.04	61.78	32.38	72.86	70.4
Anaryse granutometriques	20μ	24	33	17.5	/	/
	2 μ	6.37	13.46	05	/	/
Analyses chimique INSOLUBLE		91.17	90.54	87.19	89.04	88.65
	Carbonates CaC03	/	/	/	10.04	5.74
	Gypse CaS04, 2H20	Traces	Traces	Traces	Traces	Traces
	Chlorure NaCl	0.00	0.00	0.00	0.00	0.00

Contrainte de sol :

	$\sigma_{sol}~({ m kN/m^2})$					
	ELU	ELS	ELA			
C1	952.9	647.1	807.6			
C2	740.8	504.7	876.1			
P1	786.4	530.4	845.5			
P2	703.2	485.5	775.7			
Р3	699.8	480.5	740.7			
P4	700.1	480.6	745.2			
Р5	885.3	485.5	775.7			
P6	882.6	595.4	965.5			
P7	1085	728.9	1187.1			
P8	1116.8	751.2	1240.5			
Р9	1116.8	1150.8	774.7			
P10	1141.9	769.5	1249.1			
P11	1146.5	771.4	1230.7			
P12	955	643.9	1039.9			

Annexe 02 : Détermination des caractéristiques géométriques de la poutre

Notations :

 (Δ) : Axe pris au niveau de la fibre inférieur extrême.

 Y_i : Position du centre de gravité de la section (i) par rapport à l'axe (Δ).

A : Section de la poutre.

 S_{Δ} : Moment statique par rapport à l'axe (Δ).

 I_{Δ} : Moment d'inertie par rapport à l'axe(Δ).

Io : Moment d'inertie par rapport au centre de gravité :

Pour une section triangulaire : $I_0 = \frac{b \times h^3}{36}$. Pour une section rectangulaire : $I_0 = \frac{b \times h^3}{12}$.

 I_{Δ} : Moment d'inertie par rapport à l'axe Δ :

$$I_{/\Delta} = I_0 + A_i \times y_i$$

I/G : Moment d'inertie de la section par rapport au centre de gravité tel que :

$$I_{/G} = I_{/\Delta (brute)} - S_{/\Delta (brute)} \times v'.$$

v' : Distance entre le centre de gravité et la fibre inférieure :

$$v' = \frac{S_{/\Delta}}{A}$$

v : Distance entre le centre de gravité et la fibre supérieure :

$$v = h_t - v'.$$

ρ : Rendement géométrique de la section :

$$\rho = \frac{I_{G_nette}}{(v \times v' \times A_{nette})}$$

Le calcul des contraintes se fait pour sections nettes, donc il ne faut pas tenir compte des sections de câbles de précontrainte qui ne participe pas à la résistance.

Avant de connaître le nombre exact des câbles, cette déduction peut en première approximation d'avant projet se faire de façon forfaitaire pour environ 5% sur la section et 10% sur le moment statique.

Donc :

$$\begin{aligned} A_{(nette)} &= A_{(brute)} - 5\% \times A_{(brute)} = 0.95 \times A_{(brute)} \\ S_{/\Delta(nette)} &= S_{/\Delta(brute)} - 5\% \times S_{/\Delta(brute)} = 0.95 \times S_{/\Delta(brute)} \\ I_{(nette)} &= I_{(brute)} - 10\% \times I_{(brute)} = 0.9 \times I_{(brute)} \end{aligned}$$

Annexe 3 : Equations des câbles précontraints

Principe

L'allure paraboliques des câbles est illustrée dans la figure suivante

Allure parabolique des câbles

On a l'équation de la parabole s'écrit : $Y = ax^2$

Donc :

 $\tan \alpha = \frac{dx}{dy} = 2ax$ Posant : x=x_k et y=y_k On aura : a= $\frac{y_k}{x_k^2}$ donc tg $\alpha = 2ax_k = 2\frac{y_k}{x_k^2} \times x_k = 2\frac{y_k}{x_k}$

Câble 1 :

La figure suivante présente les positions du câble 1 dans l'about et dans la section médiane avec : $\alpha_1 = 10^\circ$.

Position du câble 1 dans la poutre. $y_{k} = 0.319 m$ $x_{k} = \frac{(2 \times y_{k})}{\tan \alpha} = \frac{2 \times 0.319}{\text{tg}(10)} = 3.62 \text{ m}$ $x_{d} = \frac{L}{2} - x_{k} = \frac{35.1}{2} - 3.618 = 17.55 - 3.62 = 13.93$ $a = \frac{y_{k}}{x_{k}^{2}} = 0.024 m^{-1} \implies \mathbf{Y} = 0.024 x^{2}$

Câble 2 :

On doit déterminer α_2 de telle manière que l'angle de relevage du câble moye (α_{opt}) soit respecté, La figure suivante présente les positions du câble 2 dans l'about et dans la section médiane.

Position du câble 2 dans la poutre.

 α_2 = (2 \times aopt) - α_2 = (2 \times 14.26) - 13 = 15.28 $^\circ$

$$y_{k} = 0.719 m \qquad ; \qquad x_{k} = \frac{(2 \times y_{k})}{\tan \alpha} \frac{2 \times 0.719}{\text{tg}(15.28)} = 5.178 \text{ m}$$
$$x_{d} = \frac{L}{2} - x_{k} = \frac{35.1}{2} - 3.618 = 17.55 - 5.178 = 12.37 \text{ m}$$
$$a = \frac{y_{k}}{x_{k}^{2}} = 0.026 m^{-1} \quad => Y = 0.026 x^{2}$$

Câble 3 :

La figure suivante présente les positions du câble 3 dans l'about et dans la section médiane avec : $\alpha_3 = 20^{\circ}$.

Position du câble 3 dans la poutre.

$$y_{k} = 0.959 m \qquad ; \qquad x_{k} = \frac{(2 \times y_{k})}{\tan \alpha} = \frac{2 \times 0.959}{\text{tg}(20)} = 5.27 \text{ m}$$
$$x_{d} = \frac{L}{2} - x_{k} = \frac{35.1}{2} - 3.618 = 17.55 - 5.27 = 12.28 \text{ m}$$
$$a = \frac{y_{k}}{x_{k}^{2}} = 0.034 \text{ m}^{-1} \implies Y = 0.034 \text{ x}^{2}$$
Annexe 4 : Ferraillage d'hourdis

• Armature longitudinale :

Calcul de Section en Flexion Simple

1. Hypothèses :

Béton : fc28 = 40.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration non préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section :

b = 100.0 (cm) h = 20.0 (cm) $d_1 = 5.0 \text{ (cm)}$ $d_2 = 5.0 \text{ (cm)}$

3. Moments appliqués :

		M _{max} (kN*m)	Mmin(kN*m)
Etat Limite Ultime (for	damental)	9.33	-37.44
Etat Limite de Service	aidantal)	6.91	-27.73
	sidenter)	0.00	0.00
4. <u>Résultats :</u>			
Sections d'Acier :			
Section théorique	A _{S1} = 3.0 (cm2)	Section the	néorique A _{S2} = 5.2 (cm2)
Section minimum	$A_{s min} = 3.0 (cm2)$	1	
Théorique	$\rho = 0.54$ (%)		
Minimum	$\rho_{min} = 0.20$ (%)		
Analyse par Cas :			
Cas ELU M _{max} =	9.33 (kN*m)	M _{min} = -37.44	(kN*m)
Coefficient de sécurité	: 1.00	Pivot : A	
Position de l'axe neutre	e: $y = 2.0$ (cm)	<i>(</i>)	
Bras de levier : Déformation du béton	Z = 14.2	(CM) (%)	
Déformation de l'acion	$\epsilon_{\rm D} = 1.30$	(700)	
Controinto do l'opior to	$\varepsilon_{\rm S} = 10.00$	(//0) 24.9 (MDo)	
	$0_{S} = 4$	34.0 (IVIF a)	
Cas ELS M _{max} =	: 6.91 (kN*m)	M _{min} = -27.73 (kN*	m)
Coefficient de sécurité	: 1.29		
Position de l'axe neutre	e: $y = 4.2$ (cm)		
Bras de levier :	Z = 13.6 (cm)	\	
Contrainte maxi du bei	$con : \sigma_b = 10.0 (MPa)$	() (MD-)	
Contrainte limite :	0.6 ICJ = 24.0	(IVIFd) 388 9 (MPa)	
Contrainte limite de l'adel le	cier $\sigma_{\rm s}$ i = 500.04	(MDa)	
	$\cos \cos \sin \theta = 200.0$ (ivir a)	

• Armature transversale :

Calcul de Section en Flexion Simple

1. Hypothèses :

Béton : fc28 = 40.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration non préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section :

b = 100.0 (cm)h = 20.0 (cm) $d_1 = 5.0 (cm)$ $d_2 = 5.0 (cm)$

3. Moments appliqués :

	M _{max} (kN*m)	Mmin (kN*m)
Etat Limite Ultime (fondamental)	48.19	-85.40
Etat Limite de Service	35.70	-63.26
Etat Limite Ultime (Accidentel)	0.00	0.00

4. <u>Résultats :</u>

Sections d'Acier :

Section théorique	A _{s1} = 7.5 (cm2)	Section théorique	A _{S2} = 13.9 (cm2)
Section minimum	A _{s min} = 3.0 (cm2)		
Théorique	ρ = 1.43 (%)		
Minimum	ρ _{min} = 0.20 (%)		

Cas ELU	$M_{max} = 48.19$	9	(kN*m))	M _{min} = -85.40	(kN*m)
Coefficient de	sécurité :	1.00		Pivot :	В	
Position de l'a	xe neutre :	y = 4.0	(cm)			
Bras de levier	:	Z = 13.	.4	(cm)		
Déformation o	lu béton :	ε _b = 3.	50	(‰)		
Déformation c	le l'acier :	$\varepsilon_{\rm S} = 9.8$	51	(‰)		
Contrainte de	l'acier tendue	:	σ _S = 43	34.8	(MPa)	
Cas ELS	M _{max} = 35.7	1	(kN*m))	M _{min} = -63.26 (kN*m	ו)
Coefficient de	sécurité :	1.41				
Position de l'a	xe neutre :	y = 6.0	(cm)			
Bras de levier	:	Z = 13.	.0 (cm)			
Contrainte ma	ixi du béton :σ	b = 15.6	6 (MPa)		
Contrainte lim	ite :	0,6 fcj :	= 24.0	(MPa)		
Contrainte de	l'acier					
Tendue :	σ _S = 353.4 (M	Pa)				
Comprimée :	σ _S '= 37.8 (MP	'a)				
Contrainte lim	ite de l'acier :	σs lim :	= 500.0	MPa		

Annexe 5 : Etude de la pile

Annexe 5.1 : Calcul des charge roulable à deux travées :

A(l) :

La réaction est déterminée en utilisant l'équation des 3 moment :

-	Tableau : réaction de charge A(l)					
	q	69.7	kN/ml			
	R _{A(l)}	1481.81	kN			

D240:

$$R = \delta_{D240} \times \Omega \times q$$

Tableau : réaction de charge D240

у	0.726	-
у	0.726	-
Ω	16.056	
S	2400	kN
q	129.03	kN/ml
RD240	2071.76	kN

Figure : charge D240

Mc120 :

$$R = \delta_{Mc120} \times \Omega \times q$$

Tableau : réaction de charge Mc120

y1	0.91	-
y ₂	0.91	-
Ω	5.83	-
δm	1.07	-
q	192.9	kN/ml
RMc120	1126.8	kN

Figure : charge Mc120

Figure : charge Bc

Bc:

$$R = n \times b_c \times \delta_{Mc120} \times \Sigma(P_iY_i)$$

Tableau : réaction de charge Mc120

bc	1.10	-
S	1320	kN
δbc	1.08	-
R _{Bc}	129.564	[kN]

Annexe 5.2 : Ferraillage de chevêtre

• Chevêtre de voile plein :

Calcul de Section en Flexion Simple

1. Hypothèses :

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section:

b = 280.00 (cm) h = 200.00 (cm) $d_1 = 5.00 \text{ (cm)}$ $d_2 = 5.00 \text{ (cm)}$

3. <u>Moments appliqués :</u> M _{max} (kN*m)	Mmin (kN*m)	
Etat Limite Ultime (fondamental)	0.000	-10385.070
Etat Limite de Service	0.000	-7692.870
Etat Limite Ultime (Accidentel)	0.000	0.000

4. Résultats :

Sections d'Acier :			
Section théorique	$A_{s1} = 0.0 \text{ (cm2)}$	Section théorique	A _{s2} = 173.1 (cm2)
Section minimum	$A_{s min} = 0.0 (cm2)$		
Théorique	ρ = 0.32 (%)		
Minimum	ρ _{min} = 0.10 (%)		

Cas ELU	M _{max} = 0.00	D ((kN*m))	M _{min} = -10385.070	(kN*m)
Coefficient de	sécurité :	1.35		Pivot :	A	
Position de l'a	axe neutre :	y = 21.9	96	(cm)		
Bras de levier	·:	Z = 186	5.22	(cm)		
Déformation o	du béton :	ε _b = 1.2	27	(‰)		
Déformation o	de l'acier :	ε _S = 10.	.00	(‰)		
Contrainte de	l'acier tendue	: 0	o _s = 43	34.8	(MPa)	

Cas ELS	$M_{max} = 0.000$	(kN*m)	M _{min} = -7692.870 (kN*m)
Coefficient de	sécurité :	1.00	
Position de l'a	ixe neutre :	y = 51.57 (cm)	
Bras de levier	:	Z = 177.81 (cm)	
Contrainte ma	axi du béton :σ	_o = 6.0 (MPa)	

• Chevêtre de voile évidé :

Calcul de Section en Flexion Simple

1. Hypothèses :

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section :

b = 350.00 (cm)h = 200.00 (cm) d₁ = 5.00 (cm) d₂ = 5.00 (cm)

3. Moments appliqués :

	M _{max} (kN*m)	M_{min (k} №m)
Etat Limite Ultime (fondamental)	78.610	-5247.320
Etat Limite de Service	58.230	-3887.010
Etat Limite Ultime (Accidentel)	0.000	0.000

4. <u>Résultats :</u>

Sections d'Acier :

Section théorique	A _{S1} = 68.3 (cm2)	Section théorique	A _{S2} = 84.0 (cm2)
Section minimum	A _{s min} = 68.3 (cm2)		
Théorique	ρ = 0.22 (%)		
Minimum	ρ _{min} = 0.10 (%)		

Cas ELU	M _{max} = 78.6	10 (kN*m)	M _{min} = -5247.320	(kN*m)
Coefficient de	sécurité :	1.33	Pivot :	A	
Position de l'a	ixe neutre :	y = 8.02	(cm)		
Bras de levier	·:	Z = 191.79	(cm)		
Déformation o	du béton :	ε _b = 0.43	(‰)		
Déformation o	de l'acier :	ε _s = 10.00	(‰)		
Contrainte de	l'acier :				
Tendue :	$\sigma_{\rm S} = 434.8$	(MPa)			

Comprimée : σ_{s} '= 32.3 (MPa)

Cas ELS $M_{max} = 58.230$ (kN*m) $M_{min} = -3887.010$ (kN*m)Coefficient de sécurité :1.00Position de l'axe neutre :y = 31.90 (cm)Bras de levier :Z = 184.37 (cm)Contrainte maxi du béton : $\sigma_b = 1.5$ (MPa)Contrainte limite :0,6 fcj = 16.2 (MPa)

Contrainte limite de l'acier : $\sigma_{S \text{ lim}}$ = 250.0 (MPa)

Annexe 5.3 : Ferraillage de fût

Calcul de Section en Flexion Déviée Composée

1. Hypothèses :

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section :

 $\begin{array}{ll} b = 447.00 & (cm) \\ h = 223.00 & (cm) \\ d = 5.00 & (cm) \end{array}$

3. Efforts appliqués :

Cas N ^O	Туре	N (kN)	M_y (kN*m)	M_z (kN*m)
1.	ELU	26344.951	12298.790	0.000
2.	ELS	19537.808	9224.093	0.000
3.	ELA	19010.650	97776.400	12641.904

4. Résultats :

Sections d'Acier :

Section théorique	A _{S1} = 733.9 (cm2)	Section théorique	A _{S2} = 28.1 (cm2)
Section minimum	A _{s min} = 199.4 (cm2)	Section maximum	A _{s max} = 4984.0 (cm2)
Théorique	ρ = 1.53 (%)		
Minimum	ρ _{min} = 0.10 (%)	maximum	ρ _{max} = 5.00 (%)

Cas N ^O 1: Type ELU	N = 26344.95	1 (kN)	M y = 1	12298.790 (kN	l*m)	M _Z = 0.000 (kN*m)
Coefficient de sécurité : Position de l'axe neutre : Bras de levier : Déformation du béton : Déformation de l'acier :	5.55 y = 209.51 Z = 134.20 ε_{b} = 3.50 ε_{s} = 0.14	Pivot : (cm) (cm) (‰) (‰)	В			
Contrainte de l'acier tendue	:	σ _S =28	.4	(MPa)		
Comprimée : σ_{s} '= 434.8	(MPa)	-				
Cas N [°] 2 : Type ELS	N = 19537.80	8 (kN)	My = 9)224.093 (kN*	m)	M _Z = 0.000 (kN*m)
Coefficient de sécurité : Position de l'axe neutre : Bras de levier : Contrainte maxi du béton : o	5.16 y = 226.35 (cr Z = 142.58 (cr h = 3.1 (MPa)	m) m)				
Contrainte limite : Contrainte de l'acier :	0,6 fcj = 16.2	(MPa)				
Comprimée :	σ _S '= 46.1 (MF	Pa)				
Contrainte limite de l'acier :						
	σs lim = 250.0) (MPa)				
Cas N [°] 3: Type ELA N = 19	010.650 (kN)	M _y = 9	7776.4	100 (kN*m)	M _z = 1	2641.904 (kN*m)

Coefficient de sécurité :	1.00	Pivot : A
Position de l'axe neutre :	y = 51.41	(cm)
Bras de levier :	Z = 210.05	(cm)
Déformation du béton :	ε _b = 2.81	(‰)
Déformation de l'acier :	ε _S = 10.00	(‰)
Contrainte de l'acier :		
Tendue : $\sigma_{S} = 50$	00.0 (MPa)	
Comprimée : σ _S '= 500.0	(MPa)	

Annexe 5.4 : Ferraillage de semelle

Calcul de Section en Flexion Simple

1. <u>Hypothèses :</u>

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section :

3. Moments appliqués :

	M _{max} (kN*m)	Mmin (kN*m)
Etat Limite Ultime (fondamental)	4068.043	0.000
Etat Limite de Service	3017.830	0.000
Etat Limite Ultime (Accidentel)	7029.480	0.000

4. <u>Résultats :</u>

Sections d'Acier :

Section théorique	A _{S1} = 59.2 (cm2)	Section théorique	$A_{s2} = 0.0 \text{ (cm2)}$
Section minimum	A _{s min} = 24.5 (cm2)		
Théorique	ρ = 0.24 (%)		
Minimum	ρ _{min} = 0.10 (%)		

Analyse par Cas :

Cas ELU	$M_{max} = 4068$.043	(kN*m))	$M_{min} = 0.000(kN*m)$
Coefficient de	sécurité :	1.50		Pivot :	A
Position de l'a	xe neutre :	y = 21	.02	(cm)	
Bras de levier	:	Z = 23	6.59	(cm)	
Déformation d	u béton :	$\varepsilon_b = 0$.94	(‰)	
Déformation d	e l'acier :	ε _S = 1	0.00	(‰)	
Contrainte de	l'acier tendue	:	$\sigma_{S} = 43$	34.8	(MPa)

Cas ELS $M_{max} = 3017.830$ (kN*m) $M_{min} = 0.000$ (kN*m)Coefficient de sécurité :1.11Position de l'axe neutre :y = 57.67 (cm)Bras de levier :Z = 225.78 (cm)Contrainte maxi du béton : $\sigma_b = 4.6$ (MPa)Contrainte limite :0,6 fcj = 16.2 (MPa)Contrainte de l'acier tendue : $\sigma_S = 225.9$ (MPa)Captreinte limite de l'acier :=z = 250.0 (MPa)

Contrainte lir	nite de l'acie	er :o _s lim = 2	50.0 (MPa)

Cas ELA	M _{max} = 7029	.480	(kN*m))	$M_{\min} = 0.000 (kN^*m)$
Coefficient de	sécurité :	1.00		Pivot:A	١
Position de l'a	xe neutre :	y = 18	.53	(cm)	
Bras de levier	:	Z = 23	87.59	(cm)	
Déformation o	lu béton :	$\varepsilon_b = 0$.82	(‰)	
Déformation o	le l'acier :	ε _s = 1	0.00	(‰)	
Contrainte de	l'acier tendue	:	$\sigma_{S} = 50$	0.00	(MPa)

Annexe 6 : Ferraillage de culée

Annexe 6.1 : Ferraillage de semelle

Patin avant :

Calcul de Section en Flexion Simple

1. Hypothèses :

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

b = 100.00 (cm) h = 200.00 (cm) $d_1 = 5.00 \text{ (cm)}$ $d_2 = 5.00 \text{ (cm)}$

3. Moments appliqués :

	M _{max} (kN*m)	Mmin (kN*m)
Etat Limite Ultime (fondamental)	2185.334	0.000
Etat Limite de Service	1620.019	0.000
Etat Limite Ultime (Accidentel)	2232.000	0.000

4. Résultats :

Sections d'Acier :

Section théorique	A _{S1} = 35.7 (cm2)	Section théorique	$A_{s2} = 0.0 \text{ (cm2)}$
Section minimum	A _{s min} = 19.5 (cm2)		
Théorique	ρ = 0.18 (%)		
Minimum	ρ _{min} = 0.10 (%)		

Cas ELU	M _{max} = 2185	.334	(kN*m))	M _{min} = 0.000(kN*m)
Coefficient de	sécurité :	1.35		Pivot :	A
Position de l'a	xe neutre :	y = 12	.69	(cm)	
Bras de levier	:	Z = 18	9.93	(cm)	
Déformation d	lu béton :	$\varepsilon_b = 0$.70	(‰)	
Déformation d	le l'acier :	ε _s = 1	0.00	(‰)	
Contrainte de	l'acier tendue	:	σ _S = 43	34.8	(MPa)

Cas ELS Mr	nax = 1620.019	(kN*m)	M _{min} = 0.000 (kN*m)
------------	----------------	--------	---------------------------------

Cas ELA	M _{max} = 2232	.000	(kN*m))	M _{min} = 0.000(kN*m)
Coefficient de	sécurité :	1.52		Pivot :	A
Position de l'a	xe neutre :	y = 11.	.19	(cm)	
Bras de levier	:	Z = 19	0.53	(cm)	
Déformation d	u béton :	ε _b = 0.	61	(‰)	
Déformation d	e l'acier :	ε _S = 10	0.00	(‰)	
Contrainte de	l'acier tendue	:	$\sigma_{\rm S} = 50$	0.00	(MPa)

Patin arrière :

Calcul de Section en Flexion Simple

1. <u>Hypothèses :</u>

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section :

b = 100.00 (cm) h = 200.00 (cm) $d_1 = 5.00 \text{ (cm)}$ $d_2 = 5.00 \text{ (cm)}$

3. Moments appliqués :

	M _{max} (kN*m)	Mmin (kN*m)
Etat Limite Ultime (fondamental)	868.010	0.000
Etat Limite de Service	652.302	0.000
Etat Limite Ultime (Accidentel)	4668.538	0.000

4. Résultats :

Sections d'Acier :

Section théorique	A _{S1} = 49.5 (cm2)	Section théorique	A _{S2} = 0.0 (cm2)
Section minimum	A _{s min} = 19.5 (cm2)		
Théorique	ρ = 0.25 (%)		
Minimum	ρmin = 0.10 (%)		

Analyse par Cas :						
Cas ELU Mm	ax = 868.0	010	(kN*m))	M _{min} = 0.000(kN*m)	
Coefficient de séc	urité :	4.66		Pivot :	A	
Position de l'axe n	eutre :	y = 17	57	(cm)		
Bras de levier :		Z = 18	7.97	(cm)		
Déformation du bé	éton :	ε <mark>b</mark> = 0.	99	(‰)		
Déformation de l'a	icier :	ε _S = 10	0.00	(‰)		
Contrainte de l'aci	er tendue :	:	$\sigma_{S} = 43$	34.8	(MPa)	

Cas ELS	M _{max} = 652.	302	(kN*m)	M _{min} = 0.000 (kN*m)
Coefficient de	e sécurité :	3.40		
Position de l'a	axe neutre :	y = 46.	.88 (cm)	
Bras de levier	r:	Z = 17	9.37 (cm)	
Contrainte ma	axi du béton :σ	b = 0.9	(MPa)	
Contrainte lim	nite :	0,6 f _{cj} =	= 16.2 (MPa)	
Contrainte de	l'acier tendue	:	σ_{S} = 12.2 (MF	Pa)
Contrainte lim	nite de l'acier :			
		σs lim	= 250.0 (MPa)

Cas ELA	M _{max} = 4668	.538	(kN*m))	$M_{min} = 0.000(kN*m)$
Coefficient de	sécurité :	1.00		Pivot:A	١
Position de l'a	xe neutre :	y = 15	.49	(cm)	
Bras de levier	:	Z = 18	8.80	(cm)	
Déformation d	lu béton :	ε _b = 0.	.86	(‰)	
Déformation d	le l'acier :	$\varepsilon_{S} = 10$	0.00	(‰)	
Contrainte de	l'acier tendue	:	$\sigma_{\rm S} = 50$	0.00	(MPa)

Annexe 6.2 : Ferraillage de mur garde de grève

Calcul de Section en Flexion Simple

1. Hypothèses :

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section:

 $\begin{array}{l} b = 100.00 \; (cm) \\ h = 40.00 \; (cm) \\ d_1 = 5.00 \; (cm) \\ d_2 = 5.00 \; (cm) \end{array}$

3. <u>Moments appliqués :</u>		
	M _{max} (kN*m)	Mmin (kN*m)
Etat Limite Ultime (fondamental)	76.940	0.000
Etat Limite de Service	57.521	0.000
Etat Limite Ultime (Accidentel)	0.000	0.000

4. <u>Résultats :</u>

Sections d'Acier :

Section théorique	A _{S1} = 7.1 (cm2)	Section théorique	$A_{S2} = 0.0 \text{ (cm2)}$
Section minimum	A _{s min} = 3.8 (cm2)		
Théorique	ρ = 0.20 (%)		
Minimum	ρmin = 0.11 (%)		

Analyse par Cas :

Cas ELU	$M_{max} = 76.94$	40	(kN*m))	M _{min} = 0.000(kN*m)
Coefficient de	sécurité :	1.36		Pivot :	A
Position de l'a	xe neutre :	y = 2.5	52	(cm)	
Bras de levier	:	Z = 33	.99	(cm)	
Déformation c	lu béton :	$\varepsilon_b = 0.$	78	(‰)	
Déformation c	le l'acier :	ε _S = 10	0.00	(‰)	
Contrainte de	l'acier tendue	:	σ _S = 43	34.8	(MPa)

Cas ELS	M _{max} = 57.5	21	(kN*m)	M _{min} = 0.000 (kN*m)
Coefficient de	e sécurité :	1.00		
Position de l'	axe neutre :	y = 7.6	63 (cm)	
Bras de levie	er:	Z = 32	.46 (cm)	
Contrainte m	axi du béton :o	_b = 2.1	(MPa)	
Contrainte lir	nite :	0,6 fcj	= 16.2 (MPa)	
Contrainte de	e l'acier tendue	:σ _S = 2	2.6 (MPa)	
Contrainte lir	nite de l'acier :	σs lim =	250.0 (MPa)	

Annexe 6.3 : Ferraillage de dalle de transition

Calcul de Section en Flexion Simple

1. Hypothèses :

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section :

b = 100.00 (cm) h = 30.00 (cm) $d_1 = 5.00 \text{ (cm)}$ $d_2 = 5.00 \text{ (cm)}$

3. Moments appliqués :

	M _{max} (kN*m)	M _{min} (kN*m)
Etat Limite Ultime (fondamental)	169.470	0.000
Etat Limite de Service	126.000	0.000
Etat Limite Ultime (Accidentel)	0.000	0.000

4. <u>Résultats :</u>

Sections d'Acier :

Section théorique	A _{S1} = 23.3 (cm2)	Section théorique	$A_{s2} = 0.0 \text{ (cm2)}$
Section minimum	A _{s min} = 3.0 (cm2)		
Théorique	ρ = 0.93 (%)		
Minimum	ρ _{min} = 0.12 (%)		

Cas ELU	M _{max} = 169.	470	(kN*m)	M _{min} = 0.000(kN*m)
Coefficient de	sécurité :	1.30		Pivot :	В
Position de l'a	xe neutre :	y = 8.2	9	(cm)	
Bras de levier	:	Z = 21	.69	(cm)	
Déformation d	lu béton :	ε _b = 3.	50	(‰)	
Déformation d	le l'acier :	$\varepsilon_{S} = 7.$	06	(‰)	
Contrainte de	l'acier tendue	:	$\sigma_{S} = 43$	34.8	(MPa)

Cas ELS	M _{max} = 126.	000	(kN*m)	M _{min} = 0.000 (kN*m)
Coefficient de	e sécurité :	1.00		
Position de l'a	axe neutre :	y = 10	.18 (cm)	
Bras de levie	r :	Z = 21	.61 (cm)	
Contrainte ma	axi du béton :c	_b = 11.	5 (MPa)	
Contrainte lin	nite :	0,6 fcj	= 16.2 (MPa)
Contrainte de	e l'acier tendue	:	σ _S = 250.0 (MPa)
Contrainte lin	nite de l'acier :	σs lim =	= 250.0 (MPa)

Annexe 6.4 : Modélisation et ferraillage de mur en retour

Modélisation :

Figure : Moment M_{xx} pour calculer les armatures horizontales

Figure : Moment M_{yy} pour calculer les armatures verticales.

Ferraillage

• Armature horizontale

Calcul de Section en Flexion Simple

1. Hypothèses :

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section:

b = 100.00 (cm) h = 80.00 (cm) $d_1 = 5.00 \text{ (cm)}$ $d_2 = 5.00 \text{ (cm)}$

3. Moments appliqués :

	M _{max} (kN*m)	Mmin (kN*m)
Etat Limite Ultime (fondamental)	2195.690	0.000
Etat Limite de Service	1641.330	0.000
Etat Limite Ultime (Accidentel)	1262.350	0.000

4. Résultats :

Sections d'Acier :

Section théorique	A _{S1} = 103.9 (cm2)	Section théorique	$A_{s2} = 0.0 \text{ (cm2)}$
Section minimum	A _{s min} = 7.5 (cm2)		
Théorique	ρ = 1.38 (%)		
Minimum	ρ _{min} = 0.10 (%)		

Cas ELU	M _{max} = 2195	.690	(kN*m))	M _{min} = 0.000(kN*m)
Coefficient de	sécurité :	1.24		Pivot :	В
Position de l'a	xe neutre :	y = 36	.89	(cm)	
Bras de levier	:	Z = 60	.24	(cm)	
Déformation d	lu béton :	ε <mark>b</mark> = 3	.50	(‰)	
Déformation d	le l'acier :	ε _S = 3.	62	(‰)	
Contrainte de	l'acier tendue	:	σ _S = 43	34.8	(MPa)

Cas ELA M_{max} = 1262.350 (kN*m) M_{min} = 0.000(kN*m) Coefficient de sécurité : 2.55 Pivot:B Position de l'axe neutre : y = 32.53(cm) Bras de levier : Z = 61.99 (cm) Déformation du béton : ε_b = 3.50 (‰) Déformation de l'acier : $\varepsilon_{\rm S} = 4.57$ (‰) Contrainte de l'acier tendue : $\sigma_{\rm S} = 500.0$ (MPa)

• Armatures verticales :

Calcul de Section en Flexion Simple

1. Hypothèses :

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section :

b = 100.00 (cm) h = 80.00 (cm) $d_1 = 5.00 \text{ (cm)}$ $d_2 = 5.00 \text{ (cm)}$

3. Moments appliqués :

	M _{max} (kN*m)	Mmin (kN*m)
Etat Limite Ultime (fondamental)	1675.970	0.000
Etat Limite de Service	1256.980	0.000
Etat Limite Ultime (Accidentel)	975.810	0.000

4. Résultats :

Sections d'Acier :

Section théorique	A _{S1} = 78.1 (cm2)	Section théorique	$A_{S2} = 0.0 \text{ (cm2)}$
Section minimum	A _{s min} = 7.5 (cm2)		
Théorique	ρ = 1.04 (%)		
Minimum	ρ _{min} = 0.10 (%		
Analyse par Cas :			

Cas ELU	M _{max} = 167	75.970	(kN*m)	M _{min} = 0.000(kN*m)
Coefficient d	e sécurité :	1.29	Pivo	ot : B

Position de l'axe neutre :	y = 27.73	(cm)
Bras de levier :	Z = 63.91	(cm)
Déformation du béton :	ε _b = 3.50	(‰)
Déformation de l'acier :	$\varepsilon_{\rm S} = 5.96$	(‰)
Contrainte de l'acier tendue	: σ _S = 4	34.8 (MPa)

Cas ELS	M _{max} = 1256	6.980	(kN*m)	M _{min} = 0.000 (kN*m)
Coefficient de	e sécurité :	1.00		
Position de l'a	axe neutre :	y = 31	.81 (cm)	
Bras de levier	r:	Z = 64	1.40 (cm)	
Contrainte ma	axi du béton :σ	b = 12	.3 (MPa)	
Contrainte lim	nite :	0,6 fcj	= 16.2 (MPa)
Contrainte de	l'acier tendue	:	σ _S = 250.0 (MPa)
Contrainte lim	nite de l'acier :	⁵ s lim ⁼	= 250.0 (MPa))

Cas ELA M _{max} = 975	.810	(kN*m)	M _{min} = 0.000(kN*m)
Coefficient de sécurité :	2.61		Pivot :	В
Position de l'axe neutre :	y = 24	.45	(cm)	
Bras de levier :	Z = 65	.22	(cm)	
Déformation du béton :	ε _b = 3	.50	(‰)	
Déformation de l'acier :	ε _S = 7.	24	(‰)	
Contrainte de l'acier tendue	е:	$\sigma_{S} = 5$	00.0	(MPa)

Annexe 6.5 : Ferraillage de mur frontal

Calcul de Section en Flexion Simple

1. Hypothèses :

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Prise en compte des armatures comprimées
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

2. Section :

b = 100.00 (cm)h = 160.00 (cm) d₁ = 5.00 (cm)

 $d_2 = 5.00 \text{ (cm)}$

3. Moments appliqués :

	M _{max} (kN*m)	M_{min} (kN*m)
Etat Limite Ultime (fondamental)	1313.810	0.000
Etat Limite de Service	976.210	0.000
Etat Limite Ultime (Accidentel)	4321.780	0.000

4. <u>Résultats :</u>

Sections d'Acier :

Section théorique	A _{S1} = 58.5 (cm2)	Section théorique	A _{S2} = 0.0 (cm2)
Section minimum	A _{s min} = 15.5 (cm2)		
Théorique	ρ = 0.38 (%)		
Minimum	ρmin = 0.10 (%)		

Analyse par Cas :

Cas ELU	$M_{max} = 1$	313.810	(kN*m)	$M_{\min} = 0.000 (kN^*m)$
Coefficient de	sécurité :	2.84		Pivot :	A
Position de l'a	xe neutre :	: y = 20.	79	(cm)	
Bras de levier	:	Z = 14	6.68	(cm)	
Déformation d	lu béton :	ε _b = 1.	55	(‰)	
Déformation d	le l'acier :	ε _S = 10	0.00	(‰)	
Contrainte de	l'acier : ter	ndue :	σ _S = 4	34.8	(MPa)

Cas ELS	M _{max} = 976.	210	(kN*m)	M _{min} = 0.000 (kN*m)
Coefficient de	e sécurité :	2.10		
Position de l'	axe neutre :	y = 44.	12 (cm)	
Bras de levie	r:	Z = 14	0.29 (cm)	
Contrainte m	axi du béton :σ	b = 3.2	(MPa)	
Contrainte lin	nite :	0,6 fcj	= 16.2 (MPa)	
Contrainte de	e l'acier tendue	:	$\sigma_{\rm S} = 118.9 \; ({\sf N}$	IPa)
Contrainte lin	nite de l'acier :			
		σs lim	= 250.0 (MPa)	

Cas ELA	M _{max} = 4321	.780	(kN*m))	M _{min} = 0.000(kN*m)
Coefficient de	sécurité :	1.00		Pivot :	A
Position de l'a	xe neutre :	y = 18.	.33	(cm)	
Bras de levier	:	Z = 14	7.67	(cm)	
Déformation d	u béton :	ε _b = 1.	34	(‰)	
Déformation d	e l'acier :	ε _S = 10	0.00	(‰)	
Contrainte de	l'acier tendue	:	$\sigma_{S} = 50$	0.00	(MPa)

• Armatures verticales :

Calcul de Section en Flexion Composée

1. Hypothèses :

Béton : fc28 = 27.0 (MPa)

Acier : fe = 500.0 (MPa)

- Fissuration préjudiciable
- Pas de prise en compte des dispositions sismiques
- Calcul en poutre
- Calcul suivant BAEL 91 mod. 99

2. -ଟା	Section :	
F	A _{s2}	
	y z	£
†	A _{s1}	
৵	<u> </u>	<u> </u>

b = 100.00	(cm)
h = 160.00	(cm)
d ₁ = 5.00	(cm)
$d_2 = 5.00$	(cm)

3. Efforts appliqués :

Cas N ^O	Туре	N (kN)	M (kN*m)
1.	ELU	1239.960	1313.810
2.	ELS	920.750	976.210
3.	ELA	813.690	4321.780

4. <u>Résultats :</u>

Sections d'Acier :			
Section théorique	A _{S1} = 51.0 (cm2)	Section théorique	A _{S2} = 0.0 (cm2)
Section minimum	A _{s min} = 15.5 (cm2)		
Théorique	ρ = 0.33 (%)		
Minimum	ρ _{min} = 0.10 (%)		
Analyse par Cas :			

Cas N^{O} 1 : Type ELU N = 1239.960 (kN) M = 1313.810 (kN*m)

Coefficient de sécurité :	4.50	Pivot : B
Position de l'axe neutre :	y = 63.75	(cm)
Bras de levier :	Z = 129.50	(cm)
Déformation de l'acier :	ε _S = 5.01	(‰)
Déformation du béton :	ε _b = 3.50	(‰)
Contrainte de l'acier tendue	: σ _S = 43	34.8 (MPa)

Cas N^O 2: Type ELS N = 920.750 (kN) M = 976.210 (kN*m)

Coefficient de sécurité :	3.72		
Position de l'axe neutre :	y = 69.44 (cm)		
Bras de levier :	Z = 131.85 (cm)		
Contrainte max du béton : $\sigma_b = 2$	2.6 (MPa)		
Contrainte limite :	0,6 f _{cj} = 16.2 (MPa)		
Contrainte de l'acier tendue :	σ _S = 18.1 (MPa)		
Contrainte limite de l'acier : $\sigma_{s \text{ lim}}$ = 250.0 (MPa)			

Cas N ^O 3 : Type ELA	N = 813.690	(kN)	M = 4321.780	(kN*m)
Coefficient de sécurité :	1.00	Pivot : A		
Position de l'axe neutre :	y = 21.08	(cm)		
Bras de levier :	Z = 146.57	(cm)		
Déformation de l'acier :	ε _S = 10.00	(‰)		
Déformation du béton :	ε _b = 1.57	(‰)		
Contrainte de l'acier tendu	ie: σ _s = 500	0.0	(MPa)	