Veuillez utiliser cette adresse pour citer ce document :
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMoussaoui, Younes-
dc.contributor.authorLatreche, Mahdi-
dc.contributor.otherTadjine, Mohamed, Directeur de thèse-
dc.contributor.otherChakir, Messaoud, Directeur de thèse-
dc.contributor.otherGuiatni, Mohamed, Directeur de thèse-
dc.descriptionMémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2021fr_FR
dc.description.abstractIn the last decade, the rapid development of complex methods for recording brain signals and the exponential rise of available computing power as well as the increased awareness of brain dysfunctions and mental disorders, have led researchers to use large-scale neurophysiological recordings for abnormal behaviours detection, diseases diagnosis, and motor control. Electroencephalograms (EEG) are a very popular measurement for brain activities because of their non-invasive nature and their wide spectrum of possible applications. In this context, two applications have been developed in this project, the first aims to design a novel Brain Computer Interface (BCI) architecture based on Motor Imagery (MI) for real time control of a mobile robot. Spectral power computing, multi-class Common Spatial Pattern (CSP), and Machine Learning (ML) have been used to reach this aim. The second involves the proposal of an approach for fatigue detection using machine Learning (ML), Deep Learning (DL), and Genetic Algorithms (GA).fr_FR
dc.subjectMotor imageryfr_FR
dc.subjectFeature extractionfr_FR
dc.subjectMachine learningfr_FR
dc.subjectGenetic algorithmfr_FR
dc.titleMobile robot control via brain computer interface and fatigue detection based on EEG signalsfr_FR
Collection(s) :Département Automatique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
MOUSSAOUI.Younes_LATRECHE.Mahdi.pdfPA0222110.2 MBAdobe PDFVoir/Ouvrir

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.