Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/10538
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorSadoun, Maria Sara Nour-
dc.contributor.otherLaleg, Taous Meriem, Directeur de thèse-
dc.contributor.otherAdnane, Mourad, Directeur de thèse-
dc.date.accessioned2022-09-13T10:36:24Z-
dc.date.available2022-09-13T10:36:24Z-
dc.date.issued2022-
dc.identifier.otherEP00418-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/10538-
dc.descriptionMémoire de Projet de Fin d’Études : Électronique : Alger, École Nationale Polytechnique : 2022fr_FR
dc.description.abstractEpileptic seizure Detection is a challenging problem which consists in identifying a seizure among normal brain activity using electroencephalogram (EEG) signals, either by an experienced neurologist or automatically engineered frameworks. In this work, we aim to contribute to the latter to help experts in medical facilities and improve the safety and autonomy of patients. We will strive to understand the effects and contribution of each and all features. We include two types of features: SCSA and nonlinear dynamical features. We will exploit the frequency diversity of EEG and contribute to the optimization of time-embedding hyper-parameters for the dynamical features. Later on, we tackle imbalanced data by introducing 2D-Generative Adversarial Networks for Data Augmentation. Experimental results demonstrate the reliability of the workflow and performance enhancement compared to state-of-the-art accuracy, sensitivity and specificity. The three metrics approach consist scores of 0.99. This is due to two main parts: the introduction, for the first time of the SCSA to characterize epileptic seizures and the careful optimization of the time-embedding hyper-parameters for the nonlinear features.fr_FR
dc.language.isoenfr_FR
dc.subjectEEGfr_FR
dc.subjectEpileptic seizure detectionfr_FR
dc.subjectFeature engineeringfr_FR
dc.subjectSCSAfr_FR
dc.subjectNon linear dynamicsfr_FR
dc.subjectOptimizationfr_FR
dc.subjectGANfr_FR
dc.titleContribution to the characterization of EEG data for epileptic seizures detectionfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
SADOUN.Maria-Sara-Nour.pdfPN0072219.57 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.