Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/10546
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorFerhat, Hiba-El-Batoul-
dc.contributor.otherBerrani, Sid-Ahmed, Directeur de thèse-
dc.contributor.otherEshaghian, Jason, Directeur de thèse-
dc.date.accessioned2022-09-13T14:15:36Z-
dc.date.available2022-09-13T14:15:36Z-
dc.date.issued2022-
dc.identifier.otherEP00413-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/10546-
dc.descriptionMémoire de Projet de Fin d’Études : Électronique : Alger, École Nationale Polytechnique : 2022fr_FR
dc.description.abstractSpiking Neural Networks offer a new approach to tackle the efficiency issues of conventional artificial intelligence (AI), but there is a big performance gap between Spiking Neural Networks and Artificial Neural Networks. This work contributes to the optimization of Spiking Neural Networks in order to reduce this gap. The proposed methods are focused on architecture optimization and the development of a new spike-based loss functions, to prevent the dead neuron issue. The proposed techniques are implemented using PyTorch and SnnTorch frameworks, and benchmarked using two different data sets. The evaluation of the three approaches has been done on two different data sets, using six different loss functions, and using accuracy as a main metric. Hence, new horizons of applications are opened up, as well as many possible optimization techniques.fr_FR
dc.language.isoenfr_FR
dc.subjectSpiking neural networksfr_FR
dc.subjectBackpropagationfr_FR
dc.subjectGradient descentfr_FR
dc.subjectNeuromorphic computingfr_FR
dc.titleSpiking neural networks optimizationfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
FERHAT.hiba-el-batoul.pdfPN002226.53 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.