Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/10623
Titre: Optimization of fuel distribution network using deep reinforcement learning : case of Naftal
Auteur(s): Khelifa Mahdjoubi, Nazih
Zouaghi, Iskander, Directeur de thèse
Mots-clés: Optimization
LoT Technologies
DRL
VRP
Petroleum logistics
Date de publication: 2022
Résumé: The goal of this work focuses on the study of real road transportattion problems by proposing models and solutions related to the improvment of performing the gas station distribution network. Inthis study, the focus is on the optimization of demands control and inventory management of station using loT technologies and forecasting tools, and improve the multi-compartment vehicule routing with time windows (MCVRPTW) problem arising in the petroleum products distibution and container tranfer industry, with three different approach using mathematical model, heuristic and deep reinforcement learning approaches.
Description: Mémoire de Projet de Fin d’Études : Génie Industriel. Management industriel : Alger, École Nationale Polytechnique : 2022.
URI/URL: http://repository.enp.edu.dz/jspui/handle/123456789/10623
Collection(s) :Département Génie industriel : Management Industriel

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
KHELIFA-MAHDJOUBI.Nazih .pdfPI0142217.12 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.