Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/10844
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorAbi, Chaimaa-
dc.contributor.otherBerrani, Sid-Ahmed, Directeur de thèse-
dc.contributor.otherBoudjellal, Abdelouahab, Directeur de thèse-
dc.date.accessioned2023-10-10T09:09:17Z-
dc.date.available2023-10-10T09:09:17Z-
dc.date.issued2023-
dc.identifier.otherEP00640-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/10844-
dc.descriptionMémoire de Projet de Fin d’Études : Génie Industriel. Data Science et Intelligence Artificielle : Alger, École Nationale Polytechnique : 2023fr_FR
dc.description.abstractThe rapid proliferation of malware presents a significant threat to computer systems and data security. The ability to detect and accurately classify malware is crucial for mitigating cyber threats and preventing potential damages. However, traditional methods for malware classification and analysis have shown some limitations in keeping pace with the with the ever-changing landscape of malware. In this thesis, we propose a novel approach that harnesses the power of machine and deep learning techniques for efficient malware classification and offers real-time and automated data-driven solution, enabling proactive measures to efficiently prevent and mitigate cyber threats.fr_FR
dc.language.isoenfr_FR
dc.subjectMalware analysisfr_FR
dc.subjectMalware classificationfr_FR
dc.subjectMalware visualizationfr_FR
dc.subjectFeature extractionfr_FR
dc.subjectDeep learningfr_FR
dc.subjectMultimodalfr_FR
dc.subjectConvolutional neural networksfr_FR
dc.subjectMachine learningfr_FR
dc.titleAutomation in cybersecurity : deep learning-based approaches for malware family identificationfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ABI.chaimaa.pdfPI026234.02 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.