Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/10852
Titre: | Mapping flood susceptibility areas and assessing influential factors : case of the Chellif basin |
Auteur(s): | Chagroune, Abdessamed Halfaoui, Mustapha Tachi, Salah Eddine, Directeur de thèse Hasnaoui, Yacine, Directeur de thèse |
Mots-clés: | Flood susceptibility Flash floods Machine learning AdaBoost |
Date de publication: | 2023 |
Résumé: | Floods are considered one of the most destructive catastrophic phenomena.Flood susceptibility is defined as the tendency to suffer damage caused by this phenomenon. However, accurately predicting flash floods remains challenging due to the complexity of the phenomenon. In this study, we adopted an approach based on geographic information systems (GIS), remote sensing techniques (RS), and machine learning classification models such as LGBM, AdaBoost, and the new machine learning technique called Stacking, to create a flood susceptibility map in the Chellif watershed. Fifteen hydrological and topographic factors were used as inputs for the flood susceptibility models. The results showed that Stacking was the most optimal model, with an AUC value of 0.99, followed by LGBM with 0.98 and AdaBoost with 0.96. The findings of this study are used for planning and implementing flood mitigation strategies in the region. |
Description: | Mémoire de Projet de Fin d’Études : Hydraulique : Alger, École Nationale Polytechnique : 2023 |
URI/URL: | http://repository.enp.edu.dz/jspui/handle/123456789/10852 |
Collection(s) : | Département Hydraulique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
CHAGROUNE.Abdessamed_HALFAOUI.Mustapha.pdf | PH00123 | 11.77 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.