Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/10853
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBoulkout, Amina-
dc.contributor.otherLarbes, Chérif, Directeur de thèse-
dc.date.accessioned2023-10-10T10:04:36Z-
dc.date.available2023-10-10T10:04:36Z-
dc.date.issued2023-
dc.identifier.otherEP00545-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/10853-
dc.descriptionMémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2023.fr_FR
dc.description.abstractn recent years, the significance of human-drone interaction in scientific research has grown substantially. When engaging with drones, humans undertake various responsibilities, which are contingent upon the drone’s application and level of autonomy. This study aims to regulate the movements of unmanned aerial vehicles (UAVs) by utilizing a keyword spotting system. To achieve this, a deep neural network (DNN) is trained to comprehend user speech in both noisy and noiseless environments and generate the desired control commands accordingly. The hardware implementation of the developed system demonstrates both high accuracy in speech recognition and ease of control.fr_FR
dc.language.isoenfr_FR
dc.subjectSpeech recognitionfr_FR
dc.subjectSEGANfr_FR
dc.subjectDNNfr_FR
dc.subjectUAVfr_FR
dc.subjectControlfr_FR
dc.subjectHuman-Drone Interactionfr_FR
dc.titleUAV speech control for human drone interactionfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
BOULKOUT.Amina.pdfPN0082311.48 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.