Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/10943
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorDerdour, Abdeslem-
dc.contributor.otherTadjine, M., Directeur de thèse-
dc.date.accessioned2023-10-30T08:05:53Z-
dc.date.available2023-10-30T08:05:53Z-
dc.date.issued2023-
dc.identifier.otherEP00697-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/10943-
dc.descriptionMémoire de Projet de Fin d’Études : Automatique: Alger, École Nationale Polytechnique : 2023fr_FR
dc.description.abstractThe study focused on optimizing technical trading systems using metaheuristic techniques, such as Particle Swarm Optimization and Multi-Objective Evolutionary Algorithms. The results indicate that these methods significantly enhance the performance and robustness of the trading systems. Traditional training approaches were found to be susceptible to overfitting, a concern that was mitigated through WalkForward Optimization. The choice of the objective function was highlighted as crucial in improving system robustness. It is recommended that practitioners carefully select the objective functionand optimization method for designing and evaluating technical trading systems.fr_FR
dc.language.isoenfr_FR
dc.subjectLow Frequency Technical Trading Systems (LFTTS)fr_FR
dc.subjectWalk Forward Optimization (WFO)fr_FR
dc.subjectCrypto-currenciesfr_FR
dc.subjectParticle Swarm Optimizer (PSO)fr_FR
dc.subjectMulti-Objective Evolutionary Algorithm based on Decomposition (MOEA/D)fr_FR
dc.titleMetaheuristics optimization of financial trading strategies for single asset tradingfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Automatique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
DERDOUR Abdeslem.pdfPA032236.23 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.