Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/10989
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorChaalal, Mohamed- Elmondhir-
dc.contributor.otherArki, Oussama, Directeur de thèse-
dc.date.accessioned2024-06-13T08:32:02Z-
dc.date.available2024-06-13T08:32:02Z-
dc.date.issued2023-
dc.identifier.otherEP00717-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/10989-
dc.descriptionProjet de Fin d'Etude : Génie Industriel. Data Science et Intelligence Artificielle : Alger, Ecole Nationale Polytechniquefr_FR
dc.description.abstractThis Master thesis explores author name disambiguation in Large extensive bibliographic databases. It tackles the challenge of accurately identifying and distinguishing authors who share an ambiguous name within a vast and diverse dataset. The approach proposes following a 6 phases model involving the use of machine learning and network analysis techniques to improve disambiguation accuracy. Practical considerations for implementing these solutions in large databases are also discussed. This work contributes to more reliable and efficient scholarly information management.fr_FR
dc.language.isoenfr_FR
dc.subjectEntity resolutionfr_FR
dc.subjectAuthor name disambiguationfr_FR
dc.subjectMachine learningfr_FR
dc.subjectSparkfr_FR
dc.subjectNeo4jfr_FR
dc.titleEntity resolution in large bibliographic databases : case of author name disambiguationfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2023.dsia.CHAALAL.Mohamed_Elmondhir.pdf..pdfPI027234.69 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.