Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/10989
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Chaalal, Mohamed- Elmondhir | - |
dc.contributor.other | Arki, Oussama, Directeur de thèse | - |
dc.date.accessioned | 2024-06-13T08:32:02Z | - |
dc.date.available | 2024-06-13T08:32:02Z | - |
dc.date.issued | 2023 | - |
dc.identifier.other | EP00717 | - |
dc.identifier.uri | http://repository.enp.edu.dz/jspui/handle/123456789/10989 | - |
dc.description | Projet de Fin d'Etude : Génie Industriel. Data Science et Intelligence Artificielle : Alger, Ecole Nationale Polytechnique | fr_FR |
dc.description.abstract | This Master thesis explores author name disambiguation in Large extensive bibliographic databases. It tackles the challenge of accurately identifying and distinguishing authors who share an ambiguous name within a vast and diverse dataset. The approach proposes following a 6 phases model involving the use of machine learning and network analysis techniques to improve disambiguation accuracy. Practical considerations for implementing these solutions in large databases are also discussed. This work contributes to more reliable and efficient scholarly information management. | fr_FR |
dc.language.iso | en | fr_FR |
dc.subject | Entity resolution | fr_FR |
dc.subject | Author name disambiguation | fr_FR |
dc.subject | Machine learning | fr_FR |
dc.subject | Spark | fr_FR |
dc.subject | Neo4j | fr_FR |
dc.title | Entity resolution in large bibliographic databases : case of author name disambiguation | fr_FR |
dc.type | Thesis | fr_FR |
Collection(s) : | Département Génie industriel : Data Science_Intelligence Artificielle |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
pfe.2023.dsia.CHAALAL.Mohamed_Elmondhir.pdf..pdf | PI02723 | 4.69 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.