Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11012
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorAbedou, Abdelhadi-
dc.contributor.authorBennacer, Amine Rami-
dc.contributor.otherTadjine, Mohamed, Directeur de thèse-
dc.date.accessioned2024-10-09T10:12:14Z-
dc.date.available2024-10-09T10:12:14Z-
dc.date.issued2024-
dc.identifier.otherEP00732-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11012-
dc.descriptionMémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2024fr_FR
dc.description.abstractMachine learning (ML), including deep learning and reinforcement learning, offers powerful tools for addressing complex problems. This thesis leverages ML to enhance state estimation, system identification, and optimization in non-linear systems, where traditional methods often fall short. Key focus areas include improving accuracy in capturing complex system dynamics, extracting system characteristics directly from data, and solving non-convex problems. The thesis demonstrates these methods through applications in aircraft dynamics and smart sensor networks for IoT technologies, highlighting the potential of ML to enhance the performance, reliability, and adaptability of control systems.fr_FR
dc.language.isoenfr_FR
dc.subjectUnmanned aerial vehiclefr_FR
dc.subjectIcingfr_FR
dc.subjectLMIfr_FR
dc.subjectNeural networksfr_FR
dc.subjectSparse identificationfr_FR
dc.subjectIoTfr_FR
dc.titleLearning algorithms based state estimation, optimization and control of nonlinear processesfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Automatique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2024.aut.ABEDOU.Abdelhadi_BENNACER.Amine-Rami.pdfPA004246.97 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.