Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11021
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorAchour, Wissal-
dc.contributor.authorBoudjatit, Feriel-
dc.contributor.otherBenalia, Nour El Houda, Directeur de thèse-
dc.date.accessioned2024-10-16T10:06:02Z-
dc.date.available2024-10-16T10:06:02Z-
dc.date.issued2024-
dc.identifier.otherEP00748-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11021-
dc.descriptionMémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2024fr_FR
dc.description.abstractCancer remains a significant global health challenge, affecting individuals of all ages. Early detection and personalized treatment are crucial as they significantly improve prognosis and treatment outcomes. Recent advancements in machine learning (ML) and deep learning (DL) methods, have shown considerable promise in enhancing cancer detection through medical image analysis and predicting patient-specific drug responses. This study focuses on the classi- fication of Gliomas, a type of brain tumor, into Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG) by proposing an end-to-end tumor grading model that performs on MRI slices. Additionally, it explores the development of a predictive model for cancer drug response by leveraging drug molecular data and clinical cell line information.fr_FR
dc.language.isoenfr_FR
dc.subjectCancerfr_FR
dc.subjectBrain tumorfr_FR
dc.subjectCancer Drug Responsefr_FR
dc.subjectMRIfr_FR
dc.subjectMachine learningfr_FR
dc.subjectDeepfr_FR
dc.subjectMachine learningfr_FR
dc.subjectDeep learningfr_FR
dc.titleMachine learning and deep learning methods for cancer prediction and responses to its treatmentfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.eln.2024.ACHOUR.Wissal_BOUDJATIT.Feriel..pdfPN00624471.17 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.