Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11023
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMechenet, Abderezak-
dc.contributor.otherBerrani, Sid-Ahmed, Directeur de thèse-
dc.date.accessioned2024-10-16T14:09:18Z-
dc.date.available2024-10-16T14:09:18Z-
dc.date.issued2024-
dc.identifier.otherEP00744-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11023-
dc.descriptionMémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2024fr_FR
dc.description.abstractDeepfakes are the fruit of development in the fields of Artificial Intelligence and Deep Learning, their appearance created a new field: deepfake detection, a domain that specialises in the verification of the authenticity of media content. Convolutional Neural Networks based detectors aim at detecting artifacts left by the generation process to draw conclusions on the multimedia. Our study was centralised around the assessment of existing deepfake detectors, aiming to evaluate and improve our diagnosed problem which is the generalisation ability across multiple datasets, our final product was put to the test on external videos to conclude on the hypothesis established.fr_FR
dc.language.isoenfr_FR
dc.subjectDeepfake detectionfr_FR
dc.subjectGeneralisationfr_FR
dc.subjectMedia contentfr_FR
dc.titleAssessment of deepfake detection techniques : a study of performance and generalisationfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2024.eln.MECHENET.Abderezak.pdfPN002249.09 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.