Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11030
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBenkirat, Mehdi-
dc.contributor.authorLayes, Mehdi Chames Eddinne-
dc.contributor.otherBerkouk, El Madjid, Directeur de thèse-
dc.date.accessioned2024-10-17T14:01:00Z-
dc.date.available2024-10-17T14:01:00Z-
dc.date.issued2024-
dc.identifier.otherEP00753-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11030-
dc.descriptionMémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2024fr_FR
dc.description.abstractThis study investigates machine-learning techniques aimed at enhancing turbo decoding in wireless communication. Traditional turbo decoders often struggle with challenges such as susceptibility to burst noise and high error rates at high Signal-to-Noise Ratios (SNRs). To tackle these issues, the study explores Sequence-to-Sequence attention models and Transformer architectures, adapting them for turbo decoding to potentially enhance accuracy and robustness across various channel noise conditions. The research includes foundational discussions on convolutional and turbo codes, simulations using the SOVA algorithm, reviews of neural networks in turbo decoding applications, and introduces the effective models TurboAttention and TurboTransformer. These models demonstrate promising results in terms of Bit Error Rate (BER) across a wide range of SNR values, with encouraging performance observed in hardware inference tests.fr_FR
dc.language.isoenfr_FR
dc.subjectTurbo codesfr_FR
dc.subjectTurbo decodingfr_FR
dc.subjectSNRfr_FR
dc.subjectMachine learningfr_FR
dc.subjectAttention modelsfr_FR
dc.subjectTransformerfr_FR
dc.subjectSOVAfr_FR
dc.subjectError Rate (BER)fr_FR
dc.titleMachine learning techniques for turbo decoding in wireless communication systemsfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
BENKIRAT.Mehdi_LAYES.Mehdi-Chames-Eddinne.pdfPN0112419 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.