Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11060
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorLyraa, Yasser-
dc.contributor.otherTachi, Salah Eddine, Directeur de thèse-
dc.contributor.otherBenziada, Salim, Directeur de thèse-
dc.date.accessioned2024-10-30T12:56:30Z-
dc.date.available2024-10-30T12:56:30Z-
dc.date.issued2024-
dc.identifier.otherEP00839-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11060-
dc.descriptionMémoire de Projet de Fin d’Études : Hydraulique : Alger, École Nationale Polytechnique : 2024. - Bibliogr. p. 72-75fr_FR
dc.description.abstractThis thesis investigates the application of Artificial Intelligence (AI) to monitor and forecast drought in the Northeast region of Algeria, utilizing atmospheric circulation indices and the Standardized Precipitation-Evapotranspiration Index (SPEI). The primary objective is to develop accurate forecasting models and identify the atmospheric circulation indices most influential in this region. Drought, a recurrent natural hazard in Algeria, significantly impacts agriculture, water resources, and socio-economic activities. Traditional monitoring methods often fall short in predicting drought onset and severity. This study leverages AI techniques, specifically the Random Forest model, to analyze and interpret large datasets comprising climatic variables and atmospheric circulation indices. The research methodology includes collecting historical climate data and atmospheric circulation indices relevant to the Northeast region of Algeria. The SPEI index, which incorporates both precipitation and temperature data, is used to quantify drought conditions. The Random Forest model is trained and validated to predict SPEI values based on the selected atmospheric indices. Results demonstrate that the Random Forest model achieves high accuracy in forecasting drought, with some atmospheric circulation indices proving to be significant predictors. The findings highlight the potential of AI to enhance drought monitoring systems, offering timely and reliable information for decision-making and resource management. This study not only contributes to the understanding of drought dynamics in Algeria but also provides a framework for integrating AI into environmental monitoring systems. The successful identification of influential atmospheric indices further enriches the scientific knowledge required for developing robust predictive models.fr_FR
dc.language.isoenfr_FR
dc.subjectAtmospheric circulation indicesfr_FR
dc.subjectSPEIfr_FR
dc.subjectDroughtfr_FR
dc.titleUsing artificial intelligence techniques and standardised precipitation evapotranspiration index for meteorological drought forecastingfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Hydraulique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Lyraa.Yasser.pdfPH005245.12 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.