Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11069
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorChouiref, Zinab-Kawtar-
dc.contributor.otherZouaghi, Iskander, Directeur de thèse-
dc.contributor.otherBouzeghoub, Amel, Directeur de thèse-
dc.date.accessioned2024-10-31T10:04:46Z-
dc.date.available2024-10-31T10:04:46Z-
dc.date.issued2024-
dc.identifier.otherEP00813-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11069-
dc.descriptionMémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificiel : Alger, École Nationale Polytechnique : 2024 Mémoire confidentiel 6 mois jusqu'à Janvier 2025fr_FR
dc.description.abstractThe proliferation of smart mobile devices and social networks has streamlined location sharing, enabling the analysis of check-in data for predicting human movement and enhancing point of interest (POI) recommendations. This predictive capability is pivotal for various intelligent location-based services, including crowd flow prediction and business recommendations. However, sparse user-POI interactions due to privacy concerns pose challenges to accurate prediction. To tackle these challenges, we propose a location prediction framework that integrates temporal-spatial dependencies and sequential influences. While traditional methods like matrix Factorization and Markov Chains have limitations in capturing complex behavioral patterns, recent advancements in deep learning, particularly Recurrent Neural Networks (RNNs) and Graph Convolutional Networks (GCNs) and knowledge graphs, offer promising avenues for improved prediction accuracy. Our proposed model, PULSE (Predictive User Location and Spatiotemporal Experience), leverages graph neural networks to capture both long-term life patterns and short-term behavioral preferences from user trajectories. By considering spatial and temporal dependencies separately and fusing them effectively, PULSE demonstrates superior performance compared to existing approaches, as validated through extensive experiments on real-world datasets. In summary, PULSE represents a novel approach to location prediction that harnesses the power of deep learning and Knowledge networks / Graphs, offering a comprehensive solution to address the complexities of human mobility forecasting and preferences history.fr_FR
dc.language.isoenfr_FR
dc.subjectCheck-in (POI)fr_FR
dc.subjectPULSEfr_FR
dc.subjectHuman movementsfr_FR
dc.subjectPOI recommendationsfr_FR
dc.subjectCrowd flowsfr_FR
dc.subjectSpatio-temporal dependenciesfr_FR
dc.subjectSequential influencesfr_FR
dc.subjectMatrix factorizationfr_FR
dc.titlePULSE : leveraging spatiotemporal dynamics and human preferences for traffic prediction via graph representation learningfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2024.DSIA.CHOUIREF.Zineb-Kawtar..pdfPI01524320.53 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.