Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/1107
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Tafat, Rania | - |
dc.contributor.other | Chakir, Messaoud, Directeur de thèse | - |
dc.date.accessioned | 2020-12-20T11:18:09Z | - |
dc.date.available | 2020-12-20T11:18:09Z | - |
dc.date.issued | 2020 | - |
dc.identifier.other | EP00070 | - |
dc.identifier.uri | http://repository.enp.edu.dz/xmlui/handle/123456789/1107 | - |
dc.description | Mémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2020 | fr_FR |
dc.description.abstract | In this work, we present two non-asymptotic integration transform based estimation methods: the Volterra and modulating functions approaches. We explain the design and reproduce both of the robust Volterra observer of a biased sinusoidal signal and Volterra differentiator. We contribute to the Volterra differentiator by constructing a novel bivariate kernel functions family in order to extend the approach to the noisy scenario and obtain promising results. We also propose a novel type of pseudo-modulating functions that are randomized, relax the differentiability condition and test them on a simple ODE parameter estimation in both noise-free and noisy cases where we obtain a maximum error of 5%. At last, we use the modulating functions based method to estimate the arterial blood flow and Windkessel 2-Element parameter first with analytically generated blood pressure and then using a database and conclude by underlying the data-sensitivity of the method. | fr_FR |
dc.language.iso | en | fr_FR |
dc.subject | Non-asymptotic estimators | fr_FR |
dc.subject | Volterra observers | fr_FR |
dc.subject | Modulating functions based method | fr_FR |
dc.title | Non asymptotic estimation methods : a focus on the volterra and modulating functions approaches | fr_FR |
dc.type | Thesis | fr_FR |
Collection(s) : | Département Automatique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
pfe.2020.aut.TAFAT.Rania.pdf | PA01620 | 6.42 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.