Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11092
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMazari Boufares, Nadhir-
dc.contributor.otherBeldjoudi, Samia, Directeur de thèse-
dc.date.accessioned2024-11-04T09:59:14Z-
dc.date.available2024-11-04T09:59:14Z-
dc.date.issued2024-
dc.identifier.otherEP00861-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11092-
dc.descriptionMémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificiel : Alger, École Nationale Polytechnique : 2024fr_FR
dc.description.abstractRecommender systems (RSs) are rapidly evolving with increasing personalization to meet new constraints and improve performance on digital platforms. However, a significant issue remains: the lack of transparency in their decision-making, particularly with black-box approaches. Integrating logical reasoning and symbolic methods offers a promising solution for enhancing interpretability, but these methods are often underutilized. This thesis proposes a novel RS model that enhances interpretability for end users. Our architecture integrates a logical layer for generating rules from user and item attributes, alongside a graph convolutional network for collaborative filtering. By combining these components, our model generates recommendation scores with improved transparency and interpretability.fr_FR
dc.language.isoenfr_FR
dc.subjectRecommendation systemfr_FR
dc.subjectReasoningfr_FR
dc.subjectInterpretabilityfr_FR
dc.titleInterpretable recommender systems : a hybrid architecture with logical and collaborative filtering layersfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2024.DSIA.MAZARI-BOUFARES,N.pdfPI025241.31 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.