Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11175
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Saadi, Brahim | - |
dc.contributor.author | Elfraihi, Mohammed Younes | - |
dc.contributor.other | Zouaghi, Iskander, Directeur de thèse | - |
dc.contributor.other | Ioana, Manolescu, Directeur de thèse | - |
dc.contributor.other | Oana, Balalau, Directeur de thèse | - |
dc.date.accessioned | 2025-02-03T14:27:11Z | - |
dc.date.available | 2025-02-03T14:27:11Z | - |
dc.date.issued | 2024 | - |
dc.identifier.other | EP00882 | - |
dc.identifier.uri | http://repository.enp.edu.dz/jspui/handle/123456789/11175 | - |
dc.description | Mémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificielle : Alger, Ecole Nationale Polytechnique : 2024 | fr_FR |
dc.description.abstract | This thesis explores the development and evaluation of automated fact-checking systems, focusing on matching claims and tweets to fact-checking articles. We assess retrieval and re-ranking methods, such as the BM25 algorithm and SBERT model. Key contributions include: • Sentence-Level Similarity: A novel approach for SBERT re-ranking improves accuracy in tweet-article matching. • Language-Specific Analysis: Comparative analysis of English and French claims highlights the need for language-specific models. • FactCheckBureau Platform: A web application designed to help researchers and journalists develop accurate claim-fact check matching systems. Our experiments reveal the strengths and limitations of various methods. While BM25 serves as a robust baseline, SBERT with sentence-level granularity enhances precision. We also explore tweet enrichment techniques like OCR and image captioning to improve tweet representation. This research advances automated fact-checking, offering tools and insights to combat misinformation. The FactCheckBureau platform enables effective claim verification, promoting accurate information online. | fr_FR |
dc.language.iso | en | fr_FR |
dc.subject | Fact-checking | fr_FR |
dc.subject | Misinformation | fr_FR |
dc.subject | Automated systems | fr_FR |
dc.subject | Tweet-article matching | fr_FR |
dc.subject | Information retrieval | fr_FR |
dc.subject | BM25 | fr_FR |
dc.subject | SBERT | fr_FR |
dc.subject | Sentence-level similarity | fr_FR |
dc.subject | Tweet enrichment | fr_FR |
dc.subject | English and French | fr_FR |
dc.subject | FactCheckBureau | fr_FR |
dc.title | FactCheckBureau : build your own fact-check analysis pipeline | fr_FR |
dc.type | Thesis | fr_FR |
Collection(s) : | Département Génie industriel : Data Science_Intelligence Artificielle |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
SAADI.Brahim_ ELFRAIH.Mohamed-Younes.pdf | PI02624 | 2.78 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.