Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11175
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorSaadi, Brahim-
dc.contributor.authorElfraihi, Mohammed Younes-
dc.contributor.otherZouaghi, Iskander, Directeur de thèse-
dc.contributor.otherIoana, Manolescu, Directeur de thèse-
dc.contributor.otherOana, Balalau, Directeur de thèse-
dc.date.accessioned2025-02-03T14:27:11Z-
dc.date.available2025-02-03T14:27:11Z-
dc.date.issued2024-
dc.identifier.otherEP00882-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11175-
dc.descriptionMémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificielle : Alger, Ecole Nationale Polytechnique : 2024fr_FR
dc.description.abstractThis thesis explores the development and evaluation of automated fact-checking systems, focusing on matching claims and tweets to fact-checking articles. We assess retrieval and re-ranking methods, such as the BM25 algorithm and SBERT model. Key contributions include: • Sentence-Level Similarity: A novel approach for SBERT re-ranking improves accuracy in tweet-article matching. • Language-Specific Analysis: Comparative analysis of English and French claims highlights the need for language-specific models. • FactCheckBureau Platform: A web application designed to help researchers and journalists develop accurate claim-fact check matching systems. Our experiments reveal the strengths and limitations of various methods. While BM25 serves as a robust baseline, SBERT with sentence-level granularity enhances precision. We also explore tweet enrichment techniques like OCR and image captioning to improve tweet representation. This research advances automated fact-checking, offering tools and insights to combat misinformation. The FactCheckBureau platform enables effective claim verification, promoting accurate information online.fr_FR
dc.language.isoenfr_FR
dc.subjectFact-checkingfr_FR
dc.subjectMisinformationfr_FR
dc.subjectAutomated systemsfr_FR
dc.subjectTweet-article matchingfr_FR
dc.subjectInformation retrievalfr_FR
dc.subjectBM25fr_FR
dc.subjectSBERTfr_FR
dc.subjectSentence-level similarityfr_FR
dc.subjectTweet enrichmentfr_FR
dc.subjectEnglish and Frenchfr_FR
dc.subjectFactCheckBureaufr_FR
dc.titleFactCheckBureau : build your own fact-check analysis pipelinefr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
SAADI.Brahim_ ELFRAIH.Mohamed-Younes.pdfPI026242.78 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.