Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11228
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorDjeraoui, Houda-
dc.contributor.authorMalek, Mohamed Sidali-
dc.contributor.otherLaleg, Taous Meriem, Directeur de thèse-
dc.contributor.otherBousbia-Salah, Hicham, Directeur de thèse-
dc.date.accessioned2025-10-13T13:37:58Z-
dc.date.available2025-10-13T13:37:58Z-
dc.date.issued2025-
dc.identifier.otherEP00923-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11228-
dc.descriptionMémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstractThis work presents a non-invasive method for estimating Pulse Wave Velocity (PWV) from PPG signals using visibility graph transformation and machine learning. Complex features are extracted and selected through a multi-criteria approach. The study is based on simulated data (In-Silico) and real clinical data (VitalDB). The combination of different types of features allows a more comprehensive representation of the PPG signal structure. The results demonstrate the method’s ability to estimate arterial stiffness accurately and robustly.fr_FR
dc.language.isoenfr_FR
dc.subjectPulse wave velocityfr_FR
dc.subjectVisibility graphfr_FR
dc.subjectPhotoplethysmogramfr_FR
dc.subjectSignal processingfr_FR
dc.subjectMachine learningfr_FR
dc.subjectImage processingfr_FR
dc.titlePPG signals-based arterial stiffness estimation using visibility graphs image representationfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
DJERAOUI.Houda_MALEK.Mohamed-Sidali.pdfPN007255.21 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.