Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11317
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMokrani, Ali-
dc.contributor.otherBareche, Imene, Directeur de thèse-
dc.contributor.otherSahar, Mohamed Yacine, Directeur de thèse-
dc.date.accessioned2025-11-11T10:16:17Z-
dc.date.available2025-11-11T10:16:17Z-
dc.date.issued2025-
dc.identifier.otherEP00981-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11317-
dc.descriptionMémoire de Projet de Fin d’Études : Génie Industriel.Date Science et intelligence artificiel : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstractPetrophysical Rock Typing (PRT) is vital for reservoir characterization, yet traditional methodsrely on subjective interpretation or complex graphical workflows. The Hydraulic Flow Unit (HFU) method, though conceptually strong, lacks practical adoption due to implementation challenges. This thesis offers a fully automated, reproducible HFU workflow. It uses the Ramer-Douglas-Peucker algorithm to segment the Stratigraphic Modified Lorenz Plot (SMLP) and applies machine learning to classify segments into rock types. A key contribution is an expert-in-the-loop framework that enables iterative refinement using data-driven metrics. Rock types are further characterized with Pore Throat Radius Indicator boundaries to enhance interpretability. The approach was validated on the Gulfaks and Poseidon datasets and implemented as a web-based module combining automation with expert control. It supports both rapid default deployment and advanced customization, offering a scalable, consistent tool for reservoir studies.fr_FR
dc.language.isoenfr_FR
dc.subjectPetrophysical Rock Typingfr_FR
dc.subjectClusteringfr_FR
dc.subjectMachine Learningfr_FR
dc.subjectHydraulic Flow Unitfr_FR
dc.subjectSuper Lorenz Plotfr_FR
dc.subjectInteractive Assistanfr_FR
dc.titleAn interactive data-driven assistant for automated petrophysical rock typingfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Pfe.2025.dsia.MOKRANI.Ali.pdfEP00981668.67 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.