Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11331
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorLakehal, Mohamed Merouane-
dc.contributor.otherBeldjoudi, Samia, Directeur de thèse-
dc.date.accessioned2025-11-16T08:23:49Z-
dc.date.available2025-11-16T08:23:49Z-
dc.date.issued2025-
dc.identifier.otherEP00976-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11331-
dc.descriptionMémoire de Projet de Fin d’Études : Génie Industriel.Date Science et intelligence artificiel : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstractHypoglycemia, defined as a blood glucose level below 70 mg/dL, is a serious risk for individuals with Type 1 Diabetes Mellitus (T1DM), potentially causing severe outcomes such as seizures or unconsciousness if not addressed in time. Continuous Glucose Monitoring (CGM) systems, though less invasive than finger-prick testing, suffer from a physiological lag of 5–20 minutes between blood and interstitial glucose levels, limiting their ability to warn patients early. This study proposes a predictive model to anticipate hypoglycemic events ahead of time, helping patients take preventive actions like carbohydrate intake. Using time-series CGM data, the model explores both univariate (CGM-only) and multivariate (including insulin and carbohydrate intake) inputs. It also addresses the challenge of data imbalance, with a focus on achieving high precision and recall to reduce false alarms. Results show that univariate models perform comparably to multivariate ones, making them practical for real-world use. Regression-based models also generalize better across test conditions than classification models. The model’s clinical validity is supported by Clarke error grid analysis, where over 98% of predictions fall in safe zones (A and B). This approach supports safer, proactive diabetes management through timely, CGM-based hypoglycemia prediction.fr_FR
dc.language.isoenfr_FR
dc.subjectHypoglycemia predictionfr_FR
dc.subjectContinuous glucose monitoring (CGM)fr_FR
dc.subjectTime series forecastingfr_FR
dc.subjectData imbalancefr_FR
dc.subjectDiabetes managementfr_FR
dc.subjectEarly warning systemfr_FR
dc.subjectMachine learningfr_FR
dc.titlePrediction of hypoglycemia episodes in type 1 diabetes patientsfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie industriel : Data Science_Intelligence Artificielle

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2025.DSIA.LAKEHAL.Mohamed.Merouane.pdfPI007254.22 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.