Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11332Affichage complet
| Élément Dublin Core | Valeur | Langue |
|---|---|---|
| dc.contributor.author | Maalem, Amine | - |
| dc.contributor.other | Fourar Laidi, Hakim, Directeur de thèse | - |
| dc.date.accessioned | 2025-11-16T09:16:04Z | - |
| dc.date.available | 2025-11-16T09:16:04Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.other | EP00977 | - |
| dc.identifier.uri | http://repository.enp.edu.dz/jspui/handle/123456789/11332 | - |
| dc.description | Mémoire de Projet de Fin d’Études : Génie Industriel.Date Science et intelligence artificiel : Alger, École Nationale Polytechnique : 2025 | fr_FR |
| dc.description.abstract | Modern recruitment faces a critical challenge: state-of-the-art semantic search engines, while powerful, operate as opaque ”black boxes” that lack the explainability and specificity required by professional recruiters. This project addresses this challenge through a dual-track approach. First, it details the development of a high-performance Industrial Baseline Engine, a system delivered to the host company that uses Google Gemini and the FAISS library to fulfill all requirements of a modern semantic matching solution. Second, using the insights gained from the baseline’s inherent limitations, this thesis introduces an advanced research framework. This framework is named MAALEM, an acronym for Multi-Axis Agile Learning Engine for Matching. The name, which translates to ”master” or ”expert” in Arabic and is also the surname of the author, reflects the project’s core ambition: to achieve a masterful and nuanced understanding of person-job fit. The MAALEM framework’s core innovation is its deconstructed architecture, which moves beyond a single similarity score to evaluate candidates along multiple, transparent, and interpretable dimensions. This design prioritizes justified reasoning and user control, transforming the AI from an opaque filter into a genuine decision-support partner. To validate this new paradigm, a comprehensive suite of three novel benchmarks was created, including an adversarial test designed to probe model intelligence and resilience. Empirical results demonstrate that while the Industrial Baseline is a powerful tool, the MAALEM framework significantly outperforms it and all other standard models, especially under adversarial conditions. It proved uniquely effective at rejecting deceptive candidates while simultaneously identifying non-obvious ”hidden gem” profiles. MAALEM therefore represents a new vision for recruitment AI one that is not only more accurate and robust but is also fundamentally more trustworthy and strategically aligned with the needs of its expert users. | fr_FR |
| dc.language.iso | en | fr_FR |
| dc.subject | Recommender Systems | fr_FR |
| dc.subject | Person-Job Fit | fr_FR |
| dc.subject | Explainable AI (XAI) | fr_FR |
| dc.subject | Semantic Search | fr_FR |
| dc.subject | Language Processing (NLP) | fr_FR |
| dc.subject | Recruitment Technology | fr_FR |
| dc.subject | Vector Databases | fr_FR |
| dc.subject | Human-Computer Interaction | fr_FR |
| dc.title | Multi-axis agile learning engine for matching : a framework for transparent and flexible candidate-job matching | fr_FR |
| dc.type | Thesis | fr_FR |
| Collection(s) : | Département Génie industriel : Data Science_Intelligence Artificielle | |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| pfe.2025.DSIA.Maalem.Amine.pdf | PI00825 | 2.56 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.