Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11361
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorChaabeni, Ilyes-
dc.contributor.authorBoulassel, Bilel-
dc.contributor.otherTadjine Mohamed Directeur de thèse-
dc.contributor.otherSouanef Toufik Directeur de thèse-
dc.date.accessioned2025-12-09T10:39:26Z-
dc.date.available2025-12-09T10:39:26Z-
dc.date.issued2025-
dc.identifier.otherEP00899-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11361-
dc.descriptionMémoire de Projet de Fin d’Études : Automatique : Alger, École Nationale Polytechnique : 2025.-Mémoire confidentiel 2ans jusqu'à Juin 2027fr_FR
dc.description.abstractReliable operation of unmanned aerial vehicles (UAVs) in uncertain and adverse conditions remains a critical challenge, particularly in the presence of icing, disturbances, and dynamic in- teractions in multi-agent systems. This thesis develops an integrated framework that combines probabilistic estimation and nonlinear control strategies to enhance performance and robust- ness. An approach based on the particle filter (PF) is employed to improve state estimation ac- curacy and detect icing-related faults by analyzing variations in system parameters. For robust trajectory tracking in uncertain flight conditions, the proposed control scheme combines a high-order sliding mode observer (HOSMO) with the super-twisting algorithms (STA), effectively managing disturbances and model variations. At the multi-agent level, a distributed control strategy is introduced, utilizing finite-time observers and controllers within a leader–follower structure to enable fast and coordinated group behavior. The thesis demonstrates the effec- tiveness of the proposed methods in enhancing fault detection capabilities, control robustness, and ensuring reliable multi-UAV coordination.fr_FR
dc.language.isoenfr_FR
dc.subjectFixed-wing Unmanned Aerial Vehiclefr_FR
dc.subjectIcing detectionfr_FR
dc.subjectParticle filterfr_FR
dc.subjectSliding Modefr_FR
dc.titleIcing Detection, State Estimation, and Control of Fixed-Wing Dronesfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Automatique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2025.aut.BOULASSEL.Bilel_CHAABENI.Ilyes.pdfPA01125830.36 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.