Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/11362Affichage complet
| Élément Dublin Core | Valeur | Langue |
|---|---|---|
| dc.contributor.author | BENSALEM, Serine | - |
| dc.contributor.author | Bensalem, Serine | - |
| dc.contributor.other | Ladaci S.Directeur de thèse | - |
| dc.date.accessioned | 2025-12-09T12:59:57Z | - |
| dc.date.available | 2025-12-09T12:59:57Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.other | EP01046 | - |
| dc.identifier.uri | http://repository.enp.edu.dz/jspui/handle/123456789/11362 | - |
| dc.description | Mémoire de Projet de Fin d’Études :Automatique : Alger, École Nationale Polytechnique : 2025 | fr_FR |
| dc.description.abstract | Type 1 diabetes mellitus is a disease where the patient is not able to produce necessary insulin to regulate the concentration of glucose in the blood. Artificial pancreas is a device that can regulate this concentration and turn the behavior to normal. The human regulatory system can be modeled using differential equations; their order could be integer or fractional. In this work, we examine the accuracy of fractional-order modeling of the minimal model using real data, then robust control techniques are implemented. First, a model reference indirect adaptive controller is designed using two approaches: integer order approach and fractional-order approach, then a fractional-order sliding mode controller is implemented with a robust sliding mode observer to estimate the glucose concentration in the blood. The controller is tuned by a genetic optimization algorithm. Finally, a Neuro fuzzy controller. Several robustness tests are presented (Meal simulation) and evaluated using different types of errors’ criteria. | fr_FR |
| dc.description.sponsorship | , | fr_FR |
| dc.language.iso | en | fr_FR |
| dc.subject | Artificial Pancreas | fr_FR |
| dc.subject | Fractional Calculus, Adaptive | fr_FR |
| dc.subject | Control, Sliding | fr_FR |
| dc.subject | Mode Control | fr_FR |
| dc.subject | Bergman | fr_FR |
| dc.subject | Minimal Model | fr_FR |
| dc.subject | IVTT Model | fr_FR |
| dc.subject | Robustness Test | fr_FR |
| dc.subject | Meal Intake | fr_FR |
| dc.subject | Adaptive Neuro Fuzzy Controller, | fr_FR |
| dc.subject | Genetic Algorithm | fr_FR |
| dc.subject | Optimization. | fr_FR |
| dc.title | Fractional-Order Adaptive Control Techniques for Artificial Pancreas | fr_FR |
| dc.type | Thesis | fr_FR |
| Collection(s) : | Département Automatique | |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| pfe.2025.aut.BOULASSEL.Bilel_CHAABENI.Ilyes.pdf | PA02425 | 830.36 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.