Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/11362
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBENSALEM, Serine-
dc.contributor.authorBensalem, Serine-
dc.contributor.otherLadaci S.Directeur de thèse-
dc.date.accessioned2025-12-09T12:59:57Z-
dc.date.available2025-12-09T12:59:57Z-
dc.date.issued2025-
dc.identifier.otherEP01046-
dc.identifier.urihttp://repository.enp.edu.dz/jspui/handle/123456789/11362-
dc.descriptionMémoire de Projet de Fin d’Études :Automatique : Alger, École Nationale Polytechnique : 2025fr_FR
dc.description.abstractType 1 diabetes mellitus is a disease where the patient is not able to produce necessary insulin to regulate the concentration of glucose in the blood. Artificial pancreas is a device that can regulate this concentration and turn the behavior to normal. The human regulatory system can be modeled using differential equations; their order could be integer or fractional. In this work, we examine the accuracy of fractional-order modeling of the minimal model using real data, then robust control techniques are implemented. First, a model reference indirect adaptive controller is designed using two approaches: integer order approach and fractional-order approach, then a fractional-order sliding mode controller is implemented with a robust sliding mode observer to estimate the glucose concentration in the blood. The controller is tuned by a genetic optimization algorithm. Finally, a Neuro fuzzy controller. Several robustness tests are presented (Meal simulation) and evaluated using different types of errors’ criteria.fr_FR
dc.description.sponsorship,fr_FR
dc.language.isoenfr_FR
dc.subjectArtificial Pancreasfr_FR
dc.subjectFractional Calculus, Adaptivefr_FR
dc.subjectControl, Slidingfr_FR
dc.subjectMode Controlfr_FR
dc.subjectBergmanfr_FR
dc.subjectMinimal Modelfr_FR
dc.subjectIVTT Modelfr_FR
dc.subjectRobustness Testfr_FR
dc.subjectMeal Intakefr_FR
dc.subjectAdaptive Neuro Fuzzy Controller,fr_FR
dc.subjectGenetic Algorithmfr_FR
dc.subjectOptimization.fr_FR
dc.titleFractional-Order Adaptive Control Techniques for Artificial Pancreasfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Automatique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe.2025.aut.BOULASSEL.Bilel_CHAABENI.Ilyes.pdfPA02425830.36 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.