Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/1778
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMaoui, Mohamed-
dc.contributor.otherT. M. Laleg Kirati, Directeur de thèse-
dc.contributor.otherLarbes, Chérif, Directeur de thèse-
dc.date.accessioned2020-12-21T20:38:36Z-
dc.date.available2020-12-21T20:38:36Z-
dc.date.issued2018-
dc.identifier.otherP000279-
dc.identifier.urihttp://repository.enp.edu.dz/xmlui/handle/123456789/1778-
dc.descriptionMémoire de Projet de Fin d’Étude : Électronique : Alger, École Nationale Polytechnique : 2018fr_FR
dc.description.abstractTraining machine learning algorithms to classify cognitive states is a challenge that many biomedical researchers are dealing with nowadays, for the numerous medical advantages that this kind of research has in understanding many neurodegenerative diseases. However, it is important to feed these classifiers with high-quality features allowing us to obtain high classification performance of cognitive states. We propose in this work, a new signal analysis modality to extract features from some specific brain regions whose activations are triggered by two mental states, performed by different subjects. We explore the efficiency of the technique and its fundamental aspects.fr_FR
dc.language.isofrfr_FR
dc.subjectLassifiersfr_FR
dc.subjectFeaturesfr_FR
dc.subjectCognitive statesfr_FR
dc.titleFeatures extraction based on Schrödinger operator's spectrum for cognitive states classificationfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
MAOUI.Mohamed.pdfPN005184.46 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.