Veuillez utiliser cette adresse pour citer ce document :
http://repository.enp.edu.dz/jspui/handle/123456789/1908
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Terbouche, Hacène | - |
dc.contributor.other | Adnane, Mourad, Directeur de thèse | - |
dc.contributor.other | Ouadjer, Youcef, Directeur de thèse | - |
dc.date.accessioned | 2020-12-22T10:05:36Z | - |
dc.date.available | 2020-12-22T10:05:36Z | - |
dc.date.issued | 2020 | - |
dc.identifier.other | EP00085 | - |
dc.identifier.uri | http://repository.enp.edu.dz/xmlui/handle/123456789/1908 | - |
dc.description | Mémoire de Projet de Fin d’Études : Électronique : Alger, École Nationale Polytechnique : 2020 | fr_FR |
dc.description.abstract | Epileptic seizure prediction is a challenging problem which consists in identifying a seizureonset using electroencephalogram (EEG) signals, either by an experienced neurologist or automaticallyusing machine learning techniques. In this work, we will take advantage from recent advances of deeplearning techniques and propose two architectures. The first model is based on one dimensional convolutional neural network (1-D CNN) architecture that learns hierarchical representations of EEG with nopreprocessing steps. The second model is based on long term recurrent convolutional network (LRCN)which has the capacity to learn different representations of the spatiotemporal structure of EEG signal.Experimental results demonstrate the reliability of the models by achieving a mean Area Under Curve(AUC) Receiver Operating Characteristics (ROC) of 0.848 for 1-D CNN model, and 0.873 for LRCN model. | fr_FR |
dc.language.iso | en | fr_FR |
dc.subject | EEG | fr_FR |
dc.subject | Epileptic seizure prediction | fr_FR |
dc.subject | Deep Learning | fr_FR |
dc.subject | CNN | fr_FR |
dc.subject | LSTM | fr_FR |
dc.title | Deep learning for predicting epileptic seizures using EEG signals | fr_FR |
dc.type | Thesis | fr_FR |
Collection(s) : | Département Electronique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
TERBOUCHE.Hacene.pdf | PN01520 | 6.08 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.