Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/1908
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorTerbouche, Hacène-
dc.contributor.otherAdnane, Mourad, Directeur de thèse-
dc.contributor.otherOuadjer, Youcef, Directeur de thèse-
dc.date.accessioned2020-12-22T10:05:36Z-
dc.date.available2020-12-22T10:05:36Z-
dc.date.issued2020-
dc.identifier.otherEP00085-
dc.identifier.urihttp://repository.enp.edu.dz/xmlui/handle/123456789/1908-
dc.descriptionMémoire de Projet de Fin d’Études : Électronique : Alger, École Nationale Polytechnique : 2020fr_FR
dc.description.abstractEpileptic seizure prediction is a challenging problem which consists in identifying a seizureonset using electroencephalogram (EEG) signals, either by an experienced neurologist or automaticallyusing machine learning techniques. In this work, we will take advantage from recent advances of deeplearning techniques and propose two architectures. The first model is based on one dimensional convolutional neural network (1-D CNN) architecture that learns hierarchical representations of EEG with nopreprocessing steps. The second model is based on long term recurrent convolutional network (LRCN)which has the capacity to learn different representations of the spatiotemporal structure of EEG signal.Experimental results demonstrate the reliability of the models by achieving a mean Area Under Curve(AUC) Receiver Operating Characteristics (ROC) of 0.848 for 1-D CNN model, and 0.873 for LRCN model.fr_FR
dc.language.isoenfr_FR
dc.subjectEEGfr_FR
dc.subjectEpileptic seizure predictionfr_FR
dc.subjectDeep Learningfr_FR
dc.subjectCNNfr_FR
dc.subjectLSTMfr_FR
dc.titleDeep learning for predicting epileptic seizures using EEG signalsfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
TERBOUCHE.Hacene.pdfPN015206.08 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.