Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/2534
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorSkoudarli, Abdeslam-
dc.contributor.authorSereir El Hirtsi, Adelane-
dc.contributor.otherBourahla, Nouredine, Directeur de thèse-
dc.contributor.otherTafraout, S., Directeur de thèse-
dc.date.accessioned2020-12-24T08:44:18Z-
dc.date.available2020-12-24T08:44:18Z-
dc.date.issued2020-
dc.identifier.otherEP00122-
dc.identifier.urihttp://repository.enp.edu.dz/xmlui/handle/123456789/2534-
dc.descriptionMémoire de Projet de Fin d’Études : Génie Civil : Alger, École Nationale Polytechnique : 2020fr_FR
dc.description.abstractDue to the rapid technology advancement, the construction industry is being challenged to achieve a high level of performance. The use of BIM platform has enhanced the productivity through the improvement of the knowledge sharing and interface between the disciplines involved in the construction process. In this context, the present study proposes a methodology based on genetic algorithm to integrate an automatic structural design of Cold Formed Steel (CFS) structures in a BIM platform. CFS refers to a manufacturing process where metallic-coated sheet steel is rollformed at ambient temperature into structural elements of various cross-section shapes used for low and mid-rise buildings. In Algeria, the use of CFS profiles as the primary structural members in buildings is in its beginning, the first CFS multi-storey buildings were erected early last decade. The concept of the proposed algorithm is based on a multi-objective optimization process that generates a best structural layout for a given BIM model of an architectural configuration. For illustrative purposes, the proposed methodology is applied to several prototype buildings and the obtained results have demonstrated that, in the case of the considered architectural configurations, the proposed approach is very efficient in generating optimal structures, which are consistent with the predefined criteria and fulfilling the structural design requirements.fr_FR
dc.language.isoenfr_FR
dc.subjectCold formed steelfr_FR
dc.subjectBIMfr_FR
dc.subjectStructural optimizationfr_FR
dc.subjectBuilding designfr_FR
dc.subjectGenetic algorithmfr_FR
dc.subjectBuilding projectfr_FR
dc.titleOptimization of cold formed steel structures using genetic algorithm in a BIM environmentfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Génie Civil

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
PFE.2020.cvl.SEREIR-EL-HIRTSI.adelane_SKOUDARLI.abdeslam.pdfPB012202.43 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.