Veuillez utiliser cette adresse pour citer ce document : http://repository.enp.edu.dz/jspui/handle/123456789/9934
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBouaouni, Mohamed Yacine-
dc.contributor.authorAit-Ali-Yahia, Rayane-
dc.contributor.otherBelouchrani, Mohamed Arezki Adel, Directeur de thèse-
dc.date.accessioned2021-11-14T14:29:07Z-
dc.date.available2021-11-14T14:29:07Z-
dc.date.issued2021-
dc.identifier.otherEP00262-
dc.identifier.urihttp://repository.enp.edu.dz/xmlui/handle/123456789/9934-
dc.descriptionMémoire de Projet de Fin d’Études : Électronique : Alger, École Nationale Polytechnique : 2021fr_FR
dc.description.abstractAudio source separation is a challenging problem which consists of identifying the different sources present in a mixed signal, either by using traditional model based methods or using deep learning algorithms. In this work, we propose two different paradigms for combining model based methods (nonnegative matrix factorization) with neural networks to take advantage of both. The first approach fuses the NMF and a deep neural network (DNN) in a two sequential stages stack, where the DNN enhances the separation of the signals by updating the spectrograms/gains that were estimated using the NMF. Two architectures based on autoencoders are presented in this thesis, that handle two different kind of input data. The second approach is based on the deep unfolding paradigm. It consists of unrolling the optimization algorithm of the model based method into layers of a deep network, and train it using deep learning techniques.fr_FR
dc.language.isoenfr_FR
dc.subjectDeep Learningfr_FR
dc.subjectNMFfr_FR
dc.subjectDNNfr_FR
dc.subjectAutoencodersfr_FR
dc.subjectUnfolding algorithmfr_FR
dc.titleHybrid deep learning based speech signal separationfr_FR
dc.typeThesisfr_FR
Collection(s) :Département Electronique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
BOUAOUNI.Mohamed_Yacine_AIT_ALI_YAHIA.Rayane.pdfPN005212.71 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.