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ملخص

الشائعة المعايير من العديد على ومقارنتها تقييمها التوزيع، خارج بيانات عن للكشف طرق ثلاث تجربِة تم العمل، هذا في
جديدة بيانات مجموعة وهي ImageNet-O بيانات مجموعة على وكذلك المختلفة)، الطبيعية الصور بيانات (مجموعات
في بالتحقيق ائضًا نقوم الاطٔروحة، هذه .في ImageNet لنماذج OOD اكتشاف في البحث في للمساعدة انٕشاؤها تم
) التوزيع داخل مختلفة بيانات مجموعات ثلاث استخدمنا لانٔنا OOD، اكتشاف ادٔاء على المٌعلمّة البيانات حجم تاثٔير
المٌعلمّة. البيانات عدد زيادة مع بسرعة ينخفض الادٔاء انٔ واظٔهرنا ,( ImageNet-1 K و CIFAR-100 و CIFAR-10 
لاختبار ويب مستخدم واجهة انٕشاء طريق وعن الكشف ادٔاء في السابقة الثلاث الاسٔاليب تتجاوز طريقة باقتراح اختتمنا

بنا. الخاصة OOD اكتشاف طريقة
طريقة تصنيف, بالمقارنة, تقييم الصور, بيانات التوزيع, خارج بيانات عن كشف عصبية, شبكة : مفتاحية كلمات

ويب. مستخدم واجهة مقترحة,

Résumé

Dans ce travail, trois méthodes de détection des hors distribution sont mises en œuvre,
évaluées et comparées sur plusieurs repères communs (différents ensembles de données
d’images naturelles) ainsi que sur le jeu de données ImageNet-O, un nouveau jeu de
données qui a été créé pour aider la recherche dans la détection des hors distribution
pour les modèles ImageNet. Dans ce projet, nous étudions également l’effet du nombre
de classes sur les performances de détection des hors distribution, pour cela nous avons
utilisé trois jeux de données différents (CIFAR-10, CIFAR-100 et ImageNet-1K), et nous
avons constaté que les performances se dégradent rapidement lorsque le nombre de classes
augmente. Nous avons également proposé une méthode qui surpasse les trois méthodes
précédentes en termes de performances de détection et nous avons créé une interface
utilisateur web permettant de tester cette méthode de détection.

Mots clés : Réseau neuronal, détection de la hors-distribution, image, évaluation
comparative, classification, méthode proposée, interface web

Abstract

In this work, three out-of distribution detection methods are implemented, evaluated
and compared on several common benchmarks (different natural image datasets), as well
as on the ImageNet-O dataset, a novel dataset that has been created to aid research
in OOD detection for ImageNet models. In this thesis, we also investigate the effect
of label space size on the OOD detection performance, for that we used three different
in-distribution datasets (CIFAR-10, CIFAR-100 and ImageNet-1K), and we showed that
the performance degrades rapidly as the number of in-distribution classes increases. We
concluded by proposing a method that surpasses the three previous methods in detection
performances and by creating a web user interface to test out our OOD detection method.

Keywords : Neural network, out-of-distribution detection, image data, comparative
evaluation, classification, proposed method, web interface
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Introduction

Neural networks (NNs) have been successfully applied to increasingly difficult tasks
over the past decade. This is largely due to the rising power and availability of graphics
processing units (GPUs) and the increased availability of datasets necessary to implement
these models. The impressive ability of some NNs to perform tasks with superhuman accu-
racy and speed has also led to their adoption and use in a few safety-critical environments.
In these environments, the poor performance of the model could cause serious damage,
human injury, or death. Unfortunately, the complex nature of these models makes it dif-
ficult or impossible to verify with traditional methods that they will perform the correct
action given some input.

During development, NNs models are typically tested and assured as being reasonably
accurate on a set of input samples which are analogous to the data used to train them.
There is, however, serious risk when the model encounters data that is different from the
limited domain of expected inputs: A type of data often referred to as being Out-Of-
Distribution (OOD). Research has shown that when machine learning (ML) models like
NNs encounter OOD samples as input, they often make an output prediction with high-
confidence, despite being poorly equipped to handle such data [1, 2]. This is problematic
because it may cause a complex system that relies on these predictions to perform an
inappropriate and dangerous action.

Critically, a model may thus return overconfident predictions on OOD data, which may
give serious consequences in high stake applications, such as cybersecurity, autonomous
vehicles, infrastructure monitoring, disease outbreak detection or medical diagnosis, just
to name a few.

Recent ML literature aims to rectify this problem by detecting when model input data
falls far outside of the data-generating distribution of previously encountered samples
where performance has been empirically measured as being good. This body of literature
is collectively known as OOD detection. The main idea behind these methods is that
when an OOD input is given to the ML model, the OOD detection system can detect it
as being a sample in which the model has a high risk of making a poor prediction. It
would then, for example, be possible to let a human take over from an automated system
that is not trained to handle that input.

Problem Definition and Purpose

OOD detection is applicable to many types of data, including text, images, videos, time
series, speech and more. However, in this work, we will focus on image data. In order
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to identify the most relevant and promising methods, this thesis critically evaluates and
analyzes the literature to find positive and negative aspects of each method, such as
scalability, complexity, performance, interpretability and required architectural changes.
Of special interest are methods called Post-Hoc methods that do not require architectural
changes to an existing classifier, avoiding retraining of the model, which make them have
the advantage of being easy to use without modifying the training procedure and objective.

The purpose of this work is to study existing OOD methods, choose and focus on three
of them. These are then implemented, evaluated and compared in order to assess how
well they handle anomalous data. We also propose an enhanced new method that mainly
consists in fusing the three previously considered methods. The new resulting technique is
evaluated as well. In the specific context of image classification (the application considered
in this work), OOD detection methods are typically tested using samples from a class
the model has not learned. For this, we have performed tests using several common
benchmarks (different natural image datasets) as well as a novel dataset that has been
created to aid research in OOD detection for ImageNet models. As for the in-distribution
data we consider three in-distribution datasets: CIFAR-10, CIFAR-100 and ImageNet-1K
with a number of classes of 10, 100 and 1000 classes respectively, this lets us investigate
the effect of label space size on the OOD detection performance.

Structure of the thesis

This thesis is organized into four chapters:

Chapter 1 “Background” covers the necessary background for understanding the
base classifiers and OOD detection methods studied in this thesis.

Chapter 2 “Principles and concepts of out-of-distribution detection” provides a
theoretical description of the OOD detection task, some related terminology and concepts,
an overview of related works, some potential improvements as well as the used evaluation
metrics.

Chapter 3 “Experimental Setup” describes the used datasets and implementation
details of the base classifiers and OOD methods,

Chapter 4 “Results and Analysis” presents and analyzes the experimental findings,
discusses possible causes for these results.

Finally, the thesis is concluded by summarizing the main findings and presenting
possible avenues for future research.
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Chapter 1

Background

1.1 Introduction

This chapter summarizes the concepts required for understanding the following chapters.
It begins with a summary of deep neural network concepts, followed by an overview of
the popular convolutional networks architectures, and in particular the DenseNet and
EfficientNet architectures that have been used in our experiments.

1.2 Machine Learning

Machine learning is a subset of artificial intelligence that includes mathematical tech-
niques for estimating functions that will map some input data to a desired output. These
mathematical techniques are typically used when the function f(x′) is difficult to explic-
itly specify. They can be classified into two broad categories, based on the kind of data
used to estimate the function parameters. Unsupervised methods are only provided with
a dataset of possible inputs x′ and are often used to find structure or patterns that are
intrinsic to the dataset [3]. In contrast, in supervised models, parameters are estimated
using a dataset with examples of both the inputs x′ and corresponding desired outputs
y′ of f [3]. Supervised learning, which is the focus of this thesis, can be broken down by
task into two sub-types: classification or regression.

1.2.1 Classification

Classification is the task of mapping inputs x′ to outputs y′ ∈ 1, ..., C where C is the
number of categorical classes. Classification tasks require that y is a categorical or nominal
value in a finite set of possible classes [3]. If C = 2, the task is called a binary classification
problem, while for any C > 2, the task is called multi-class classification. If it is the case
that labels y′ are not mutually exclusive and the model should potentially output more
than one category for each input, the task is called a multi-label classification problem. It
is most common for a classification model to provide a single discrete categorical output for
each input and it should be assumed this is the case unless otherwise specified. Examples
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of classification problems include predicting the name of an object most prominently
featured in an image or predicting if the content of an email is spam or a fishing attempt.

1.2.2 Regression

Regression is the task of predicting a function that can map an input x′ to a continuous
output y′ ∈ R [3]. Examples of regression tasks include predicting the selling price of a
home given details about its size, etc., and predicting the location of a robot in a room
given the information from various on-board sensors.

1.3 Feedforward Neural Networks

Feedforward neural networks are a kind of machine learning model that approximate
a function f through a series of intermediate computational layers. These layers are
parameterized by values θ such that desired outputs y′ are approximated by the function
ŷ = f(x′; θ). Feedforward models are some of the simplest architectures of deep neural
networks in that data x′ passes through one or more intermediate layers of the model to the
output layer with no cyclical connections between the output and any of the intermediate
layers [2].

These kinds of models are referred to as networks because of how they are composed
of a series of relatively simple functions. The network f is typically composed of simpler
layer functions f 1, f 2, and f 3 as follows: f(x′) = f 3(f 2(f 1(x′))). The depth of the network
refers to how many of these layer functions are composed in this way. The outermost layer
(f 3 in the example) is referred to as the output layer while functions f 1 and f 2 are referred
to as hidden layers [2]. The desired output of the hidden layers is not explicitly specified
by the training dataset. The structure of a simple feedforward neural network can be seen
in Figure 1.1.

Figure 1.1: Example of a feedforward neural network.
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The following sections describe in more details some aspects of feedforward neural
networks, how they are trained (i.e. the parameters θ are optimized), and how general-
ization capability of f can be encouraged such that the model remains performant when
presented with previously unseen, yet analogous, input data.

1.3.1 Activation Functions

Activation functions refer to a set of functions used for computing the hidden layer out-
put values [2]. These functions take a linear combination of the input data via layer
weights W , add a bias term b, and then output values of a non-linear transformation of
that computation. That is, a typical activation neuron has the form h = fact(W

Tx′ + b).
There are several commonly used activation functions fact with different properties based
on the range of outputs, the magnitude of gradients at different points, and other char-
acteristics. It is possible to use linear activation functions, however, these only allow
function approximation by simple linear regression. Non-linear activation functions allow
for learning more complex functions and allow for neural networks to behave as universal
function approximators [2]. Some commonly used activation functions are the rectified
linear unit (ReLU) and Softmax functions.

ReLU

The ReLU function is a piece-wise linear activation function, which retains many of the
properties of linear functions that make them easy to optimize with gradient-based meth-
ods [2]. ReLU is defined by the equation 1.1 and a visualization of the output is shown
in the Figure 1.2. ReLU activation functions are the default recommended non-linear
activation function for use within neural networks, although others also exist [2]. While
the gradient of the ReLU function is undefined at 0, software implementations typically
define it heuristically as either the left or right derivative which allows the function to
work well in practice [3].

ReLU(z) = max(0; z) (1.1)

where max(a,b) denotes the maximum operator between a and b.
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Figure 1.2: Output of the ReLU activation function.

Softmax

The softmax activation function is often used as the final activation function in multi-class
classification neural networks. It is used to normalize the outputs of a neural network
(logits) to the interval (0; 1) and change them such that the sum of all outputs is equal to
1. This is useful in practice when it is desirable to have outputs that can be interpreted
as probability scores for each of the possible output classes as illustrated in Figure 1.3.
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Figure 1.3: Illustration of softmax in a multi-class classification problem.

The formula for the softmax function is given by:

σ(z)i =
ezi∑C
j=1 e

zj
(1.2)

where e denotes the exponential function.
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1.3.2 Loss Functions

The loss function of a neural network is a function that indicates how well the model is
performing at the task it is supposed to accomplish. In supervised learning problems,
this is often some kind of distance measure between the training data labels y′ and the
value predicted by the model ŷ = f(x′). These loss functions, which are interchangeably
called objective functions, are meant to be used such that the value they output can be
maximized or minimized using gradient-based optimization methods [2]. The choice of
loss function depends on the objective of the model. The loss functions used within this
thesis are covered in more detail below.

Cross-Entropy Loss

Cross-entropy loss is used to measure the performance of a model with categorical output
probabilities in the range (0; 1) [4]. In the context of classification neural networks, the
cross-entropy loss is applied to the output of a final softmax activation layer ŷ and a
one-hot representation of the ground truth label y′. That is, a one-hot vector of class
label y′ will be a vector of zeros of size C, the number of classes, with a value of 1 at the
index corresponding to the ground truth label of data x′. Given these representations,
cross-entropy is then defined as:

L(ŷ, y′) = −
C∑

k=1

y′klog(ŷk) (1.3)

Cross-entropy loss is minimized when the predicted distribution ŷ matches the distri-
bution of the ground truth, and increases as the predicted class diverges from the true
label [4]. When there are only two possible ground truth classes (a binary classification),
it is more common to use the simpler binary cross-entropy formula, which encodes the
label y′ as a single 0 or 1, rather than a one-hot vector, as follows:

L(ŷ, y′) = −y′log(ŷ) + (1− y′)log(1− ŷ) (1.4)

In this last case, the output layer is composed of only one neuron with a Sigmoid activation
function.

L2 Loss

L2 or mean squared error (MSE) loss is used to minimize the difference between the
ground truth and model-predicted value. The L2 loss function is defined by the Equation
1.5. L2 loss is used in regression models and increases with the square of the distance
between predicted output ground truth value. As a result, the L2 loss is sensitive to
outliers in the data that may skew the model due to their effect on drastically increasing
the loss value [5].

L2(ŷ, y′) =
n∑

i=0

(y′i − ŷi)
2 (1.5)
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L1 Loss

L1 loss is used in similar situations as mean squared error loss. L1 loss has an advantage
over L2 in that the effect of outliers is reduced, which may result in a better model when
there is noise present in the data [5]. It is defined as:

L1(ŷ, y′) =
n∑

i=0

|y′i − ŷi| (1.6)

1.3.3 Gradient Descent

The most common method to train a neural network is by using gradient descent. The
way this works is by defining a loss function l(θ) that expresses how well the weights
biases θ allow the network to fit the training data. A higher loss means that the network
is bad and makes a lot of errors while a low loss generally means that the network performs
well. We can then train the network by adjusting the network parameters in a way that
reduces the loss.

Formally the update rule in the gradient descent algorithm is defined like this:

θt+1 = θt − ϵ∇l(θ) (1.7)

Here you take the gradient ∇ of the loss function l which tells you in which direction
you have to move through parameter space to increase the loss. Then you go in the
opposite direction −∇l (in which the loss decreases) and move by a distance dependent
on the learning rate ϵ . This works very well in most cases and is the foundation of much
of modern deep learning.

The learning rate is a typically small fraction that optimizes the model in smaller steps
such that loss minima are not over-shot by the update step. This prevents the learning
algorithm from oscillating around a local minimum rather than decreasing the error more
steadily [2].

1.3.4 Regularization

Regularization is a set of methods for improving the generalization capabilities of a ma-
chine learning model without drastically increasing the training error [2]. Without regu-
larization, gradient descent optimizations will usually perform very well for the training
data but poorly on any new data that was unseen during training, despite containing
the same classes of image content, text, etc. When this undesirable scenario occurs, the
model is said to have overfit the training data. The kind of regularization used within
this thesis is briefly described below:

Dropout

Dropout is a method that effectively allows training an ensemble of models simultaneously
without the expensive computation or memory overhead of doing so the traditional way
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(i.e. by optimizing multiple models initialized with different random parameters) [2].
Dropout does this by randomly turning off some fraction of specified model layer outputs
for a batch of data used in a single training pass of the model. The computation of
the loss function and the gradient descent update operation are performed using the
network outputs that were computed using the subset of model parameters. This random
deactivation of layer neurons (i.e. a single weighted parameter value in a layer) encourages
the model to learn an internal representation with a level of redundancy. This is useful
for learning more robust features from the dataset and often improves the generalization
capability of the model.

Dropout is most often implemented as a layer in a feedforward neural network that
sets some fraction of the output of the previous layer to zero before continuing the forward
pass of the network. During evaluation time, these layers are no longer needed and no
sampling of the input is performed. Instead, the output of the dropout layer is normalized
using the same fraction used to randomly sample neurons at train time.

1.3.5 Optimization

Optimization is the process of adjusting hyper-parameters in order to minimize the cost
function by using one of the optimization techniques. It is important to minimize the
cost function because it describes the discrepancy between the true value of the estimated
parameter and what the model has predicted.The kinds of regularization used within this
thesis are briefly described below:

Stochastic Gradient Descent (SGD)

SGD stands for Stochastic Gradient Descent. In Stochastic Gradient Descent, a few
samples are selected randomly instead of the whole data set for each iteration. In Gradient
Descent, there is a term called “batch” which denotes the total number of samples from
a dataset that is used for calculating the gradient for each iteration. In typical Gradient
Descent optimization, like Batch Gradient Descent, the batch is taken to be the whole
dataset. Although, using the whole dataset is really useful for getting to the minima in
a less noisy or less random manner, but the problem arises when our datasets get really
huge.

This problem is solved by Stochastic Gradient Descent. In SGD, it uses only a
single sample to perform each iteration. The sample is randomly shuffled and selected for
performing the iteration.

Since only one sample from the dataset is chosen at random for each iteration, the path
taken by the algorithm to reach the minima is usually noisier than your typical Gradient
Descent algorithm. But that does not matter all that much because the path taken by the
algorithm does not matter, as long as we reach the minima and with significantly shorter
training time.
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Momentum

Momentum is essentially a small change to the SGD parameter update so that move-
ment through the parameter space is averaged over multiple time steps. This is done by
introducing a velocity component v. Momentum speeds up movement along directions of
strong improvement (loss decrease) and also helps the network avoid local minima. It is
intuitively related to the concept of momentum in physics. With momentum, the SGD

update rule is changed to:
vt+1 = µvt − ϵ∇l(θ) (1.8)

θt+1 = θt + vt+1 (1.9)

Here v is the velocity and µ is the momentum parameter which controls how fast the
velocity can change and how much the local gradient influences long term movement. At
every time step the velocity is updated according to the local gradient and is then applied
to the parameters.

Nesterov Momentum

Nesterov momentum is a simple change to normal momentum. Here the gradient term is
not computed from the current position θt in parameter space but instead from a position
θintermediate = θt + µvt. This helps because while the gradient term always points in the
right direction, the momentum term may not. If the momentum term points in the wrong
direction or overshoots, the gradient can still go back and correct it in the same update
step.

The revised parameter update rule is:

vt+1 = µvt − ϵ∇l(θ + µvt) (1.10)

θt+1 = θt + vt+1 (1.11)

Learning rate decay

Learning rate decay is a technique for training modern neural networks. It starts training
the network with a large learning rate and then slowly reducing (decaying) it until local
minima is obtained. It is empirically observed to help both optimization and generaliza-
tion.

When we have a constant learning rate, the steps taken by our algorithm while iterating
towards the minima are so noisy that after certain iterations it seems wandering around
the minima and do not actually converges. But when the learning rate is reducing over
time, since the learning rate is large initially we still have relatively fast learning but as
tending towards minima learning rate gets smaller and smaller, end up oscillating in a
tighter region around minima rather than wandering far away from it.
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1.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specialized kind of model for processing data
with grid-like spatial correlations between the input features [2]. An example of data with
this property is image data. CNNs form the basis for many state-of-art image classification
neural networks such as DenseNet [6], Wide Residual Networks [7] and EfficientNet [8].
The difference between a simple feedforward neural network and a CNN is that a CNN
makes use of at least one convolutional layer. These layers are a modification of the
more simple linear vector multiplication layers (called fully-connected or dense layers)
and account for relationships between adjacent data features.

1.4.1 Convolution operation

The convolution operation is most easily understood as a mathematical operation between
some ordered input data matrix and a kernel matrix which slides over the input. The
kernel matrix is used to compute a matrix dot product with the corresponding input
data covered by the kernel function. The output of this operation is a single value in a
convolved matrix output, commonly called the feature map. This definition is visualized
and clarified by Figure 1.4. More formally, for multi-dimensional arrays of parameters as
in machine learning, convolution is defined:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (1.12)

Where S is the output convolved matrix, i and j are indices in the matrix, I is an
input multidimensional array (such as an image), and K is the kernel matrix [2]. Here,
K is assumed to be zero everywhere except for a finite set of points for which we store
the values. In the context of machine learning, these values are shared weight parameters
learned via gradient descent.

Figure 1.4: The convolution operation.
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The dot product of kernel K is computed with image region I to produce a single value
in the feature map output.

The shape of the non-zero elements of K in Figure 1.4 is described as the size of the kernel,
with square 3x3 or 5x5 matrices being common in machine learning literature. The step
size the kernel makes as it iterates over the input data is referred to as the stride. Finally,
the input matrix I is sometimes modified before the convolution by padding the perime-
ter with zeros or some other value such that the output of the convolution operation is
a matrix with some desired shape. Manipulating the kernel size, stride, and padding all
affect the shape of the output feature map and also define how the spatially correlated
input features are mapped to the hidden representation.

Finally, the convolution operation is usually defined as a layer in a neural network.
It is common to have multiple convolutional kernels of the same size and stride but with
different randomly initialized parameters in a single convolutional layer of a NN. An
individual kernel in one of these layers is called a filter. Each of the filters or kernels is
convolved with the input data to produce a set of feature map outputs.

1.4.2 Pooling Layer

Pooling is an operation used in CNNs to encourage the model to be invariant to small
translations in the input data. To do this, a filter similar to the convolutional operation
is used to summarize the values of a layer in the spatial neighbourhood. An example
of a pooling layer includes max pooling. Max pooling slides a window over some input
data and outputs the maximum value in that kernel neighbourhood as an output feature.
Similar to convolutional layers, pooling layers also have a defined kernel size and stride.
Average pooling is another common kind of pooling layer, with the output being computed
as the statistical mean of the values in the kernel neighbourhood.

1.4.3 Normalization Layer

Normalization layers, as the name suggests, normalize the output of the previous layers.
It is added in between the convolution and pooling layers, allowing every layer of the
network to learn more independently and avoid overfitting the model.

However, normalization layers are not used in advanced architectures because they do
not contribute much towards effective training.

1.4.4 Fully-Connected Layer

The Convolutional Layer, along with the Pooling Layer, forms a block in the Convolutional
Neural Network. The number of such layers may be increased for capturing finer details
depending upon the complexity of the task at the cost of more computational power.

Having been able to furnish important feature extraction, we are going to flatten the
final feature representation and feed it to a regular fully-connected neural network for
image classification purposes as illustrated in Figure 1.5.
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Figure 1.5: A simple CNN for classifying images.

1.5 Transfer Learning

Transfer learning is a machine learning method where a model developed for a task is
reused as the starting point for a model on a second task.

It is a popular approach in deep learning where pre-trained models are used as the
starting point on computer vision, given the vast compute and time resources required to
develop neural network models on these problems. Transfer learning is so common that
it is rare to train a model for an image or natural language processing-related tasks from
scratch. Instead, researchers and data scientists prefer to start from a pre-trained model
that already knows how to classify objects and has learned general features like edges,
shapes in images. ImageNet and AlexNet are typical examples of models that have the
basis of Transfer learning.

To achieve transfer learning, first we need to choose a pre-trained model a high corre-
lation between source and knowledge dataset is required. The final output layer needs to
be changed accordingly to the source. Freezing the starting layers from the pre-trained
model is essential to make the model learn the basic features. One method of improv-
ing the performance is fine-tuning, fine-tuning involves unfreezing some part of the base
model and training the entire model again on the whole dataset at a very low learning
rate. The low learning rate will increase the performance of the model on the new dataset
while preventing overfitting.

1.6 Popular Convolutional Networks Architectures

The following section present the details of some of the popular Convolutional Networks
Architectures. In particular, the architectures of the neural network classifiers used in the
experiments: DenseNet and EfficienNet.
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1.6.1 LeNet

This was the first introduced convolutional neural network [9]. LeNet was trained on 2D
images, grayscale images with a size of 32x32x1. The goal was to identify hand-written
digits in bank cheques. It had two convolutional-pooling layer blocks followed by two fully
connected layers for classification.

1.6.2 AlexNet

AlexNet [10], named after its creator Alex Krizhevsky, was trained on the ImageNet
dataset with 15 million high-resolution images with 256x256x3.

ReLU activation function was used between convolution layers and pooling layers for
the first time as well as the overlapping pooling with stride smaller than the window size.
It had five convolutional-pooling layer blocks followed by three fully connected dense
layers for classification.

1.6.3 VGGNet

VGGNet [11] came with a solution to improve performance rather than keep adding more
dense layers in the model.

The key innovation came down to grouping layers into blocks that were repetitively
used in the architecture because more layers of narrow convolutions were deemed more
powerful than a smaller number of wider convolutions.

A VGG-block had a bunch of 3x3 convolutions padded by 1 to keep the size of output
the same as that of input, followed by max pooling to half the resolution. The architecture
had n number of VGG blocks followed by three fully connected dense layers.

1.6.4 GoogLeNet

This architecture [12] has Inception blocks that comprise 1x1, 3x3, 5x5 convolution layers
followed by 3x3 max pooling with padding (to make the output of the same shape as the
input) on the previous layer and concatenates their output.

It has 22 layers, none of which are fully connected layers. It requires a total of 4
million parameters which is still 12 times fewer parameters than previous architectures
like AlexNet [10].

1.6.5 Residual Neural network (ResNet)

It was observed that with the network depth increasing, the accuracy gets saturated and
eventually degrades. Therefore, data scientists proposed the ResNet [13] to rescue us from
that scenario, and helps to resolve this problem.

Residual Network (ResNet) is one of the famous deep learning models ever introduced
[13] and is one of the popular and most successful deep learning models so far.
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Residual Blocks

The problem of training very deep networks has been relieved with the introduction of
these Residual blocks and the ResNet model is made up of these blocks.

Figure 1.6: Residual learning: a building block.

In Figure 1.6, the very first thing we can notice is that there is a direct connection
that skips some layers of the model. This connection is called ’skip connection’ and is the
heart of residual blocks. The output is not the same due to this skip connection. Without
the skip connection, input x gets multiplied by the weights of the layer followed by adding
a bias term.

Then comes the activation function, f() and we get the output as H(x).

H(x) = f(wx+ b)orH(x) = f(x) (1.13)

Now with the introduction of a new skip connection technique, the output is H(x) is
changed to

H(x) = f(x) + x (1.14)

But the dimension of the input may be varying from that of the output which might
happen with a convolutional layer or pooling layers. Hence, this problem can be handled
with these two approaches:

• Zero is padded with the skip connection to increase its dimensions.
• 1×1 convolutional layers are added to the input to match the dimensions. In such

a case, the output is:
H(x) = f(x) + w1.x (1.15)

Here an additional parameter w1 is added whereas no additional parameter is added
when using the first approach.

These skip connections technique in ResNet solves the problem of vanishing gradi-
ent in deep CNNs by allowing alternate shortcut path for the gradient to flow through
(identity mapping). Also, the skip connection helps if any layer hurts the performance of
architecture, then it will be skipped by regularization.
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Architecture of ResNet

There is a 34-layer plain network in the architecture that is inspired by VGG-19 in which
the shortcut connection or the skip connections are added. These skip connections or the
residual blocks then convert the architecture into the residual network as shown in Figure
1.7:

Figure 1.7: Example network architectures for ImageNet.

Left: the VGG-19 model (19.6 billion FLOPs) as a reference. Middle: a plain
network with 34 parameter layers (3.6 billion FLOPs). Right: a residual network with
34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions.
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1.6.6 Dense Convolutional Network (DenseNet)

A limitation that ResNet has is that it require weeks for training, so in order to make a
model more efficient and take advantage of shortcut connections that ResNet has, a novel
architecture was proposed called DenseNet [6]. In this architecture, all the layers are con-
nected directly with each other, like shown in Figure 1.8, to insure maximum information
flow and feature reuse, allowing the network to achieve high-parameter efficiency.
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Figure 1.8: A 5-layer dense block with a growth rate of k = 4.

The growth rate k is the additional number of channels for each layer. Each layer
takes all preceding feature-maps as input.

Architecture of DenseNets

DenseNets-B

In the basic DenseNets, For each composition layer, Pre-Activation Batch Norm (BN)
and ReLU, then 3×3 Conv are done with output feature maps of k channels. As depicted
in Figure 1.9, DenseNets-B are just regular DenseNets that take advantage of 1×1 convo-
lution to reduce the feature maps size before the 3×3 convolution and improve computing
efficiency. The B comes after the name Bottleneck layer.
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Figure 1.9: Architecture of DenseNet-B with 3×k input channel concatenated into k
output channel.
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DenseNets-BC

DenseNets-BC are another little incremental step to DenseNets-B, for the cases where
we would like to reduce the number of output feature maps. The compression factor θ

in the range 0 ≤ θ ≤ 1 determines this reduction. Instead of having m feature maps
at a certain layer, we will have θ×m output layer. If θ = 1 DenseNets will remain the
same as a DenseNets-B and the number of feature-maps across transition layers remains
unchanged. Figure 1.10 shows a comparison of the parameter efficiency on CIFAR_10
between DenseNet variations and ResNet.
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Figure 1.10: Comparison of the parameter efficiency on Cifar10 between DenseNet vari-
ations and ResNet.

1.6.7 EfficientNet

EfficientNet [8] model was proposed by Mingxing Tan and Quoc V. Le of Google Research,
Brain team. These researchers studied the model scaling and identified that carefully
balancing the depth, width, and resolution of the network can lead to better performance.

Based on this observation, they proposed a new scaling method that uniformly scales
all dimensions of depth, width and resolution of the network. They used the neural
architecture search to design a new baseline network and scaled it up to obtain a family
of deep learning models, called EfficientNets, which achieve much better accuracy and
efficiency as compared to the previous Convolutional Neural Networks.

Scaling

The researchers used the compound scaling method to scale the dimensions of the network.
The applied grid search strategy to find the relationship between the different scaling
dimensions of the baseline network under a fixed resource constraint. Using this strategy,

34



Chapter 1. Background

the could find the appropriate scaling coefficients for each of the dimensions to be scaled-
up. Using these coefficients, the baseline network was scaled by the desired size.

Figure 1.11: Comparison of different scaling methods.

Unlike conventional scaling methods (b)-(d) that arbitrary scale a single dimension of
the network, EfficientNet compound scaling method uniformly scales up all dimensions in
a principled way, as depicted in Figure 1.11. The researchers claimed in their work that
this compound scaling method improved the model’s accuracy and efficiency.

EfficientNet Architecture

The researchers first designed a baseline network by performing the neural architecture
search, a technique for automating the design of neural networks. It optimizes both the
accuracy and efficiency as measured on the floating-point operations per second (FLOPS)
basis. This developed architecture uses the mobile inverted bottleneck convolution (MB-
Conv). The researchers then scaled up this baseline network to obtain a family of deep
learning models, called EfficientNets. Its architecture is given in Figure 1.12.

Figure 1.12: EfficientNet architecture.

They also presented a comparison of EfficientNet’s performance with other powerful
transfer learning models when worked on ImageNet dataset. As illustrated in Figure
1.13, it has been shown that the latest version of EfficientNet that is EfficientNet-B7 has

35



Chapter 1. Background

the highest accuracy among all with less number of parameters. EfficientNet-B0 is the
baseline network developed by AutoML MNAS, while Efficient-B1 to B7 are obtained by
scaling up the baseline network. In particular, EfficientNet-B7 achieves 84.4% top-1 and
97.1% top-5 accuracy, while being 8.4x smaller than the best existing CNN.
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Figure 1.13: Model Size vs. Accuracy Comparison.

1.7 Conclusion

In this chapter, we have presented the basic concepts of deep learning that allow the reader
to understand the upcoming chapters. In Chapter 2 and 3 for instance, the Softmax
function is extensively used in an OOD detection method and both EfficientNet and
DenseNet architectures have been used in our experiments, they have been trained using
specific hyper-parameters that are described in the present chapter.
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Chapter 2

Principles and concepts of
out-of-distribution detection

2.1 Introduction

In this chapter, the out-of-distribution detection task is described. Following this, the
evaluation metrics used to assess the performance of the OOD detection methods are
presented. Finally, three detection techniques are explained and a new proposed method
is introduced. This chapter presents the main contributions of our work.

2.2 Theoretical Definition: Out-Of-Distribution data

Figure 2.1: An illustration of an estimated standard normal distribution (blue) density,
with samples from three other example distributions (red, purple, orange).
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Let X ∈ RD denote the input space for some task. A concept of normality may then be
defined as the distribution P+ on X that captures a ground-truth law of normal behavior
for the given task [14]. An anomaly may then be defined as a sample x ∈ X that lies in
a low probability region of P+, as illustrated in Figure 2.1.

Given that there exists a corresponding probability density P+(x), a set of anomalies
may then also be defined as A = {x ∈ X | P+(x) ≤ δ } for some threshold δ > 0, chosen
such that it ensures that the probability of each x ∈ A is sufficiently small under P+.

In Figure 2.1, the blue distribution represents an estimate of P+, while the data from
the other distributions are of low probability under P+. This example illustrates one
challenge with OOD detection, as some samples from OOD distributions may overlap
with low-probability samples from the In-Distribution (ID) distribution.

2.3 Terminology

The problem of OOD detection is described using different terms in the literature, caused
by the lack of a universally accepted definition [15]. Many of the works around OOD
detection point to a similar problem, but with slight variations in problem description
and underlying assumptions. However, the underlying problem is the same: To find a
model that distinguishes samples originating from a different underlying distribution than
that of the training data. The most common terms used in the literature are:

• Anomalies are samples originating from a data-generating distribution that is dif-
ferent from P+. In the context of an airport security Xray application, weapons [16, 17]
and illegal drugs are examples of anomalies that would be of interest. Given such an
anomaly, the application would inform the operator and allow for manual inspection of
the image.

• OOD samples are considered as samples that are rejected due to irrelevance to the
application [14]. An example could be a dog breed image classifier to which an image
of a cat is presented. The sample lies outside of the training distribution, and is thus
anomalous, but the consequent action (rejection) differs from anomaly detection, where
the anomalies are instead of special interest.

• Outliers are samples that lie within a low probability density region of P+, but
that are in fact generated by P+. Examples of this could be instances that are highly
infrequent, but also those that may be anomalous due to measurement errors or noise. An
example of a rare instance could be a rare neurological disease observed by an assisting
medical diagnosis model. The difficulty with outliers lies in determining whether an
instance is in fact a true rare event or the result of some measurement noise due to some
mechanical error. In Figure 2.1, the blue data points that lie outside of the shaded area
can be considered outliers. As seen there, some purple and red data points have a higher
probability than the blue (ID) data points, highlighting this challenge.

• Novelties are samples that originate from a new, previously unseen, mode or region
of P+. Imagine a developer creating a model for classifying car brands from images. When
given an image of a previously unseen car brand, the model would ideally detect that this
is a new class, and consequently update the model to be able to classify it correctly in the
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future. For example, if it was known that the distribution in Figure 2.1 was multimodal,
then the samples from the red, purple and orange distributions would be considered
novelties from three new modes of P+. This scenario may be hard, as instances from
different classes may be semantically close.

The slight differences in these terms are mainly important in specific applications and
the actions taken at their respective detection. While an anomaly is often regarded as
interesting and may provide valuable information for the user and the model, an outlier
is often disregarded as a result of noise or measurement errors. Novelties may indicate
that a model needs to be updated in order to facilitate modeling of the newly discovered
class, which thereforth ought to be considered normal. Theoretically, the main objective
of these approaches are the same: to determine whether a sample x lies within A or not.

A related field to anomaly and OOD detection is uncertainty estimation, which aims
at quantifying how confident a model is in its prediction, i.e., if the model “knows what
it doesn’t know” [18]. In uncertainty estimation, the goal is to quantify this uncertainty,
which is usually approached from different theoretical angles. This uncertainty can be
interpreted as an anomaly score and may be used as a means to discriminate between
ID and OOD data. Although some research has suggested that the latter method may
be misleading in specific cases [19], it has shown strong empirical results on image data
[20, 21]. Another related field is active learning, in which a model receives feedback from a
user on samples that deviate from the current notion of normality, and updates its notion
of normality accordingly [22, 23].

This thesis focuses on methods that detect when a sample likely originates from outside
the training distribution, and uses this information to reject samples that are deemed
anomalous. Under the terminology presented, the problem statement is thus cast as
out-of-distribution detection.

2.4 Data Properties

An important aspect to consider in OOD detection is how the OOD data differs from
the In-Distribution (ID) data. As illustrated in Figure 2.2, semantic shift is the problem
where the OOD data is drawn from a distribution that has no class overlap with the ID
data, such as the example with dogs and cats, while non-semantic shift (covariate shift)
considers distributions with the same classes in ID and OOD data. An example of non-
semantic shift would be where ID data are camera pictures of dogs, while the OOD data
are sketches or paintings of dogs.
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Figure 2.2: An illustration of covariate shift and semantic shift.

While most works in the current community interpret the keyword ”out-of-distribution”
as ”out-of label/ semantic-distribution”, some OOD detection works also consider detect-
ing covariate shifts, which claim that covariate shift usually leads to a significant drop in
model performance and therefore needs to be identified and rejected. However, although
detecting covariate shift is reasonable on some specific (usually high-risk) tasks, such as a
medical diagnosis model that trained by one hospital should detect scans under distribu-
tional shift, research on this topic remains a controversial task [24]. Therefore, detecting
semantic shift has been the mainstream of OOD detection tasks.

Furthermore, the amount of information that is available when training and testing
a model for OOD detection must be considered. The unsupervised setting is arguably
the most realistic scenario, in which no OOD samples are available during training or
validation. In these scenarios, the models are trained in various ways to learn features of
the normal data, and then use the learned features to discriminate incoming data that
deviates significantly from the learned notion of normality. This discrimination can be
done in many different ways and has been widely explored in the literature.

The unsupervised setting may require assumptions to be made on data, such as what
type of anomalies to expect, and if any prior information is known about this data. It
has previously been shown that unsupervised OOD detection models often fail to reach
their required detection rates in applications, and are poor at detecting new unseen OOD
samples, especially adversarial ones [25].

In the semi-supervised setting, there are labels available for ID data, and a smaller set
of labels available for the OOD data. These samples may have been chosen and labelled by
an expert and provide valuable prior information on the underlying distribution generating
the anomalous samples, which can be incorporated during training. Work in the semi-
supervised setting has shown that a small sample of anomalous data can be sufficiently
informative and significantly improve OOD detection [25, 26].

In the supervised setting, labeled samples are available during training and testing,
for both ID and OOD samples. However, because labeling samples is an expensive task,
this is a very uncommon setting in OOD detection, and the problem can then instead be

40



Chapter 2. Principles and concepts of out-of-distribution detection

solved by regular classification techniques, although with special care taken to consider
any potential class imbalance between anomalous and normal data[14].

2.5 Out-of-distribution detection

2.5.1 Background

With the observation that deep learning models can over-confidently classify samples from
different semantic distributions, the field of out-of-distribution detection emerges, requir-
ing models to reject label-shifted samples to guarantee reliability and safety. Formally,
test samples in the OOD detection setting come from the distribution with semantic shift
from ID.

2.5.2 OOD detection framework

Out-of-distribution detection is a super-category that includes multi-class novelty detec-
tion, and open-set recognition, as depicted in Figure 2.3:

Figure 2.3: OOD detection framework with a model trained on cats and dogs. the left
multi-class novelty detection and Open set recognition in the right.

• In multi-class novelty detection: ID images belong to multiple classes. Test
images with semantic shift will be considered as OOD. So it’s like a binary classification
between ID and OOD only.

41



Chapter 2. Principles and concepts of out-of-distribution detection

• Open set recognition is identical to multi-class novelty detection in the task of de-
tection, with the only difference that open set recognition further requires In-Distribution
(ID) classification label, so it’s considered as an enhancement to the main classification.

Since our thesis is about enhancing deep learning based classifiers using OOD detec-
tion, we focus in this work on the “Open set recognition” setting.

2.5.3 Application and Benchmark

The application of OOD detection usually falls into safety-critical situations, such as
autonomous driving. An example academic benchmark is to use CIFAR-10 as ID dur-
ing training, and to distinguish CIFAR images from other datasets such as Places365,
Textures, etc. it is worth pointing out that OOD datasets should NOT have any label
overlapping with ID datasets when building the benchmark.

2.6 Evaluation Metrics

This section details several evaluation metrics used in the OOD detection. Unless speci-
fied, the range for each metric is between 0 and 1, and the arrows in each subsection title
indicate whether a higher (↑) or lower (↓) value is desirable.

2.6.1 Confusion matrix

Confusion matrix is a very popular measure used while solving classification problems. It
can be applied to binary classification as well as for multiclass classification problems. In
our case of OOD detection (binary classification), the confusion matrix is shown in Figure
2.4:

Figure 2.4: Confusion matrix in OOD detection task.

Definition of True Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN) metrics. Columns indicate the predicted label and the rows the true labels.
Confusion matrices represent counts from predicted and actual values. The output “TN”
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stands for True Negative which shows the number of negative examples classified accu-
rately (OOD classified as OOD). Similarly, “TP” stands for True Positive which indicates
the number of positive examples classified accurately (ID classified as ID). The term “FP”
shows False Positive value, i.e., the number of actual negative examples classified as posi-
tive (OOD classified as ID); and “FN” means a False Negative value which is the number
of actual positive examples classified as negative (ID classified as OOD).

2.6.2 Accuracy ↑ and Error rate ↓

The accuracy is defined as the fraction of correctly classified samples among all classified
samples. The best accuracy is 1, whereas the worst is 0:

Accuracy =
TP + TN

TP + FN + TN + FP
(2.1)

Conversely, the error rate is defined as the fraction of misclassified samples among all
classified samples. The best error rate is 0, whereas the worst is 1:

Error rate =
FP + FN

TP + FN + TN + FP
(2.2)

The accuracy and error rate are complements of each other, meaning that we can
always calculate one from the other. For example:

Accuracy + Error rate = 1 (2.3)

2.6.3 Precision ↑

The precision of a model is defined as the fraction of samples classified as positive that
were truly positive:

Precision =
TP

TP + FP
(2.4)

The higher the precision, the less the model is wrong on the positives.
In an OOD detection setting, this translates to what fraction of samples classified as

ID were truly ID.

2.6.4 True Positive Rate ↑

The TPR, also known as the recall, is defined as the fraction of all truly positive samples
correctly classified as positive:

TPR = Recall =
TP

TP + FN
(2.5)

The higher the recall, the more positives the model finds.
In an OOD detection setting, this translates to the fraction of ID data that was

correctly classified as ID.
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2.6.5 False Positive Rate ↓

The FPR, also known as the fall-out, is defined as the fraction of negative samples that
were incorrectly classified as positive samples:

FPR =
FP

FP + TN
(2.6)

In an OOD detection setting, this translates to the fraction of missed anomalies.

2.6.6 True Negative Rate ↑

The TNR, also known as the specificity, is defined as the fraction of negative samples
correctly classified as such:

TNR =
TN

FP + TN
= 1− FPR (2.7)

In an OOD detection setting, this translates to the fraction of samples classified as
OOD that was in fact OOD.

2.6.7 False Negative Rate ↓

The FNR is defined as the fraction of positive samples that were incorrectly classified as
negative:

FNR =
FN

FN + TP
= 1− TPR (2.8)

In an OOD setting, this translates to the fraction of ID samples incorrectly classified
as OOD.

2.6.8 AUROC ↑

The area under the receiver-operating characteristic curve (AUROC) metric is a threshold
independent performance measure for evaluating detection networks that output some real
valued confidence or distance measure. AUROC is essentially a statistic that describes
how well the positive and negative classes can be separated by the output confidence
measure values without requiring that a threshold be determined beforehand. AUROC is
calculated by sorting the output predictions by the confidence score and calculating the
true positive rate (TPR) and false positive rate (FPR) for each possible threshold on that
sorted data. The TPR is plotted against the FPR and the area under the curve that is
formed by interpolation is taken to be the AUROC like shown in Figure 2.5.

With an equal number of positive and negative samples, the baseline AUROC of a
random classifier will be 0.50, while a classifier that always gives positive samples a higher
confidence value than negative samples will have an AUROC value of 1.0.
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Figure 2.5: Example of a Receiver Operating Characteristic curve.

2.6.9 AUPR ↑

The Area under the Precision-Recall (AUPR) curve is the second most common thresh-
old independent performance measure for evaluation detection networks with positive and
negative samples. The AUPR, like AUROC, also sidesteps the issue of having to deter-
mine an appropriate threshold for a classifier but is more appropriate for datasets with
imbalanced numbers of positive and negative samples. The metric is calculated similarly
as AUROC, in that the data is sorted by the output confidence score and the precision
and recall at each possible threshold δ ∈ [δmin, δmax] are calculated using the previous
equations. These values are plotted and AUPR is calculated as the area under this curve,
as depicted in Figure 2.6.

Figure 2.6: Example of a Precision-Recall curve.
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A random classifier has an AUPR approximately equal to the precision, which tends
to the fraction of ID samples in the dataset as the number of samples increases, while a
perfect detector has an AUPR of 1.

In OOD detection, AUPR is reported as two separate metrics, AUPR (in) and AUPR
(out). The difference between these metrics is which of the classes is considered the
positive class in the precision and recall calculations. For AUPR (in) the positive class is
the ID samples. For AUPR (out) the OOD samples are considered positive.

2.6.10 FPR at 95% TPR ↓

The FPR @95% TPR metric describes the FPR on the AUROC curve when the TPR
is at least 95%. This metric describes the probability that the model will misclassify an
OOD sample as ID when the ID samples are correctly classified at least 95% of the time.

2.6.11 Detection error ↓

The detection error describes the probability of a misclassification on either an OOD or
ID sample when ID samples are classified correctly at least 95% of the time. The detection
error is calculated as:

Pe =
n+

n
(1− TPR) +

n−

n
FPR (2.9)

where n+, n− are the number of positive and negative samples, respectively and n is
the total number of samples. Here, negative samples are considered to be the OOD class.

2.7 OOD detection: Existing techniques

Numerous methods have been proposed to avoid explicitly modelling the OOD class. The
majority of these methods assume that the ID dataset has an unknown and unknowable
underlying data generating distribution from which the ID samples are drawn. OOD
detection methods model this ID data-generating distribution in some way and compare
new samples to it. When a sample is determined to be unlikely as being generated by
the ID data-generating distribution, it is labelled OOD. In this way, we can think of the
task of OOD detection as a binary classification problem where the space of ID samples
is modelled by using the training set. Samples that poorly fit the model of ID data are
then classified as OOD. The way we model the data generating distribution and how this
one-class bounding is performed on the ID set can be divided into three categories [24],
as depicted in Figure 2.7:
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Figure 2.7: Timeline for representative methodologies of OOD detection. Different colors
indicate different categories of methodologies.

2.7.1 Density-based Methods

Density-based methods in OOD detection explicitly model the in-distribution with some
probabilistic models, and flag test data in low-density regions as OOD. When the ID
contains multiple classes, class-conditional Gaussian distribution can explicitly model the
in-distribution so that the OOD samples can be identified based on their likelihoods [27].
Flow-based methods [28, 29, 30, 31] can also be used for probabilistic modeling. While
directly estimating the likelihood seems like a natural approach, some works [18, 32, 33]
find that probabilistic models sometimes assign a higher likelihood for the OOD sample.
Several works attempt to solve the problems using likelihood ratio [34]. [35] finds that the
likelihood exhibits a strong bias towards the input complexity and proposes a likelihood
ratio-based method to compensate the influence of input complexity. Recent methods turn
to new scores such as likelihood regret [36] or an ensemble of multiple density models [32].
Overall, generative models can be prohibitively challenging to train and optimize, and
the performance can often lag behind the classification-based approaches.

2.7.2 Distance-based Methods

The basic idea of distance-based methods is that the testing OOD samples should be
relatively far away from the centroids or prototypes of in-distribution classes. ”MAHA”
[27] uses the minimum Mahalanobis distance to all class centroids for detection. A sub-
sequent work splits the images into foreground and background, and then calculates the
Mahalanobis distance ratio between the two spaces [37]. Some works use cosine similarity
between test sample features and class features to determine OOD samples [38, 39]. The
one-dimensional subspace spanned by the first singular vector of the training features is
shown to be more suitable for cosine similarity-based detection [40]. Moreover, other works
leverage distances with radial basis function kernel ”Deterministic Uncertainty Quantifi-
cation” (DUQ) [41] and Euclidean distance [42] between the input’s embedding and the
class centroids.

2.7.3 Classification-based Methods

Research on OOD detection originated from a simple baseline, that is, using the maximum
softmax probability (MSP) as the indicator score of whether in or out of distribution [1].
Early OOD detection methods focus on deriving improved OOD scores based on the
output of neural networks.
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Here are some classification-based methods as shown in Figure 2.7:
Maximum Softmax Probability (MSP) [1], Out-of-Distribution Detector for Neural

Networks (ODIN) [43], Ensemble of self supervised Leave-Out Classifiers (ELOC) [44],
Outlier Exposure (OE) [45], Confidence Enhancing Data Augmentation (CEDA) [46],
Generalized ODIN (G-ODIN) [47], Energy-based Out-Of-Distribution Detection (En-
ergyOOD) [48], OOD detection with Rectified ACTivations (ReACT) [49], Multi-level
Out-Of-Distribution detection (MOOD) [50], Semantically Coherent Out-Of-Distribution
detection (SCOOD) [51] and OOD detection using joint energy (JointEnergy) [52].

2.8 Classification-based post-hoc methods

The post-hoc Detection is a classification-based Method that depends on the output of
the neural network. These methods are easy to use since they rely on the output value
only, without modifying the actual model or have a training procedure that could take
hours.

This is the main advantage of these methods. This property can be used in OOD detec-
tion in real life problems where the cost of retraining a model is costly.
In this thesis, we will study some of Post-hoc methods, implement and evaluate them.

Post-hoc methods aim to amplify the ID/OOD separability, making them more separable
by a threshold δ. An image xi is classified as in-distribution if the method output score
Sy(xi; fi) is greater than the threshold and vice versa. The out-of-distribution detector
can be described as shown in the Figure 2.8:

Input
OutputLogits

OOD
Post-hoc
Classi�er

Pretrained
model

OOD   if Sy(xi;f)≤ δ

ID      if Sy(xi;f)> δScoring function

S(xi;fi)

f0(xi)

fN(xi)
xi

Class
Label

Label 
Classi�cation

Figure 2.8: Post-hoc methods workflow.

The parameter δ is chosen so that the true positive rate (i.e., the fraction of in-
distribution images correctly classified as in-distribution images) is 95%.

Studied post-hoc methods are presented in the following subsections.
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2.8.1 Max-Softmax (MSP)

Maximum softmax probability (MSP) method [1] is called the baseline technique. It has
been proposed in 2017 and is considered as the first OOD detection technique, yet it’s
very effective and commonly used. This technique can be applied to a neural network
trained on N ID class. Softmax function turn logits fn(x) (which are the last output of
classification neural networks that its values in range of ] − ∞; +∞[) into probabilities
that could sum up to 1 using the Softmax function (described in Section 1.3.1).

We note the MSP function for a xi input S∧
y
(xi) :

S∧
y
(xi) = max(Softmax(fi(x))) (2.10)

The Softmax function has a behaviour where correctly classified examples tend to
have higher confidence score, greater than erroneously classified and out-of-distribution
examples, so as a result the maximum Softmax will be higher for the ID data and lower for
the OOD as illustrated in Figure 2.9, and the distribution can be separable by a threshold
δ, as shown in Figure 2.10.
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Figure 2.9: Illustration of the Softmax function behaviour, where the ID data xID gives
higher maximum probability than the OOD Input xOOD.
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Figure 2.10: MSP workflow.
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As depicted in Figure 2.11, the parameter δ is chosen so that the true positive rate
(i.e., the fraction of ID images correctly classified as ID images) is 95%.

Figure 2.11: Illustration of the softmax score distribution for ID and OOD data and the
classifier threshold.

2.8.2 Out-of-Distribution Detector for Neural Networks (ODIN)

ODIN [43] is a method used for improving the calibration of neural networks, for detect-
ing out-of-distribution samples. The detector is built on two components: Temperature
scaling and input preprocessing. These components are methods are both used in other
purposes in data science and machine learning.

2.8.2.1 Temperature Scaling

For the temperature scaling, the previous MSP method is used and the logits are divided
by a hyper-parameter called the temperature scaling factor T , where S∧

y
(xi;T ) is the

output of the MSP with temperature scaling:

T ∈ R+ : Si(xi;T ) =
e

fi(x)

T

N∑
j

e
fj(x)

T

(2.11)

S∧
y
(xi;T ) = max(Si(xi;T )) (2.12)

The value for the temperature T is a hyper-parameter which the authors in the original
paper optimize using a fraction of the test images [43].

Using temperature scaling, the Softmax scores will be more separable between in-
and out-of-distribution images, making OOD detection more effective than the baseline
method, as shown in Figure 2.12.
T is tuned from OOD data. We get higher output distributions with higher T values then
we get spiky distribution where the probabilities start to converge. The ID data tend to
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have higher distribution values. Above the value of T=1000 the gain is saturated and no
improvement is noticed. In general T is fixed to T=1000. When we put T=1 we get the
MSP method mentioned in the previous subsection.

Figure 2.12: Comparison between the softmax score and temperature scaling for In and
OOD datasets.

2.8.2.2 Input Preprocessing

Input Preprocessing consists of adding small controlled noise to the input data. Input is
preprocessed by adding small perturbations:

∧
x = x− εsign(−∇x logS∧

y
(x;T )) (2.13)

S∧
y

is the output of MSP of the clean image, and the parameter ε is called the “per-
turbation magnitude”. This method relies on the idea of adversarial training [53], where
small controlled noise is added to the input image to decrease the confidence score for the
true label to force the neural network to make a wrong prediction, as illustrated in Figure
2.13. Adversarial attacks refer to finding adversarial examples for well-trained models.

Figure 2.13: Illustration of an adversarial attack.

Where the noise magnitude is multiplied by the negative of the “fast gradient sign
method” [53], this method generates adversarial examples. Small perturbations are de-
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signed to decrease the probability of the true class. Perturbations can be easily computed
by back-propagating the gradient of the cross-entropy loss with reference to the input.
The final output score is calculated using Equation 2.14, where x̂i is the preprocessed
input and T is the previous temperature scaling factor and S∧

y
(xi;T ) is the output of the

MSP with temperature scaling and input preprocessing:

S∧
y
(xi, T ) = max(Si(x̂i;T )) (2.14)

Using the negative sign can have a stronger effect on the ID images than that on OOD
images, making them more separable by a threshold δ like depicted in Figure 2.14.

Figure 2.14: Comparison of MSP, temperature scaling and ODIN score distributions
respectively for ID and OOD datasets.
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Figure 2.15: ODIN method workflow.

As illustrated in Figure 2.15, two passes of the network are required to do the input
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perturbation.

For the first pass, a pretrained model is fed with input data Xi, then the logits pass
through the model’s label classifier for later classification. Then the logits are scaled
by T and passed through the MSP scoring function S(xi) that gives the temperature
scaling confidence score. Then the gradient of the cross-entropy loss is calculated with
respect to the input sample, which is done using the back-propagation algorithm. Then
the preprocessed input x̂i is calculated. Next, the preprocessed image x̂i is passed into
the neural network, Then through the scaled Softmax score S(x̂i;T ) where the ODIN
confidence score is obtained. Lastly, the score S(x̂i;T ) is compared with a threshold δ

and obtain the class label.

2.8.3 Energy score

The framework of energy-based models [48] is a unifying framework encompassing many
different probabilistic and non-probabilistic learning models, including discriminative neu-
ral classifiers. The key point of energy-based models is capturing dependencies - described
by the weights and biases in neural networks - between inputs x and the labels y, which
minimize an energy function E(x, y), mapping x to a non-probabilistic scalar value, called
the energy,

This framework enables highly flexible models, since it allows any function that maps
data to a real value to be interpreted as an energy model. It was recently shown that every
discriminative DNN classifier using a cross-entropy loss of p(y/x) can be reinterpreted as
an energy-based model for p(x, y), for some sample x with labels y.
This induces that the logits produced by the DNN are energies. The energy-based OOD
detection method considered in this work, called EBM, has been recently proposed [48]
and uses the following energy function for OOD detection:

E(x;F ) = −T.log

K∑
i=1

e
Si
T (2.15)

where Si = F (x)i denotes the logit of class i produced by the classifier F, as depicted
in Figure 2.16.
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Figure 2.16: Energy score method workflow.

It can be shown that this energy score and the softmax score for some class k given
data x, is related by:

lnmax
k

(y =
k

x
) = E(x;F ) +maxkF (x) (2.16)

which shows that an energy-based detection score is, unlike the classic softmax score,
theoretically aligned with the probability density of the inputs. It is therefore less sus-
ceptible to the overconfidence issue. Furthermore, in opposition to other energy-based
models, this approach does not rely on full density estimation, which avoids the use of
unstable generative models.

The energy function that is used as a scoring function assigns low energies to the ID
data, and higher energies to the incorrect values OOD data, so we use negative energy
scores to align with the convention that positive (in-distribution) samples have higher
scores like depicted in Figure 2.17.

Figure 2.17: Illustration of the energy score for In and OOD datasets.

In figure 2.17 we used negative energy scores for to align with the convention that
positive (in-distribution) samples have higher scores.
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2.8.4 Proposed Method

In order to make use of the advantages of the previously presented methods, we propose
a new method that consists of fusing the results of the three methods. The fusion relies
on the OR operator, that requires a single method to detect a sample as OOD image
to say it’s OOD image, as shown in Figure 2.18. This can only enhance the detection
performance or keep it the same as the best of the three performances. After a lot of
experiments with different datasets, we have noticed that the previous methods are not
as consistent as they should be. Every technique came as an improvement of the one that
came before, so since our goal is to minimize the FPR error, the OR condition will classify
an image as ID if only all the methods outputs were greater than their corresponding δ.
In other words, it will classify an image as OOD if only one of the methods outputs was
greater than their corresponding δ. As a result, more of the false positive results will be
eliminated. {

SMSP (x) ≤ δ||SODIN(x, T, ε) ≤ δ||SEnergy(x, T ) ≤ δ : OOD

Else : ID
(2.17)

where || is the OR operator.
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Figure 2.18: Proposed method workflow.

2.9 Conclusion

After presenting OOD detection methods theory and the evaluation metrics used to assess
their performance, we have discussed post-hoc techniques and how efficient they can be.
We have also combined them in a single technique that we will evaluate later.
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Experimental Setup

3.1 Introduction

This chapter details the datasets that have been used in this thesis as well as the image
classifiers and their training configurations. The implementation details of the three OOD
detection methods studied are also described.

3.2 Datasets

Thirteen different datasets have been used in this work. Three datasets have been used
as in-distribution datasets (CIFAR-10, CIFAR-100 and ImageNet) and the other 10 as
OOD datasets for testing the OOD detection methods. The 13 datasets are described in
more detail in the next subsections.

3.2.1 CIFAR-10

The CIFAR-10 [54] dataset consists of 60,000 32×32 color images. They represent 10
classes as shown in Table 3.1, with 6,000 images per class. There are 50,000 training
images and 10000 test images.

The dataset is divided into five training batches and one test batch, each with 10,000
images. The test batch contains exactly 1,000 randomly-selected images from each class.
The training batches contain the remaining images in random order, but some training
batches may contain more images from one class than another. Between them, the training
batches contain exactly 5,000 images from each class.

Table 3.1: The list of the 10 classes in the CIFAR-10 dataset.

airplane automobile bird cat deer
dog frog horse ship truck

Here are 25 random images from this dataset presented in the Figure 3.1:

56



Chapter 3. Experimental Setup

Figure 3.1: Random CIFAR-10 examples.

3.2.2 CIFAR-100

CIFAR-100 [54] similar to CIFAR-10, except it has 100 classes containing 600 images
each. There are 500 training images and 100 testing images per class. The 100 classes in
the CIFAR-100 are grouped into 20 superclasses. Each image comes with a ”fine” label
(the class to which it belongs) and a ”coarse” label (the superclass to which it belongs).
The list of classes is represented in Table 3.2.

Table 3.2: The list of classes in the CIFAR-100 dataset

apple’ Aquarium_fish’ Baby’ Bear’ Beaver’ Bed’ Bee’ Beetle’
mouse’ Mushroom’ Oak_tree’ Orange’ Orchid’ Otter’ Palm_tree’ Pear’
castle’ Caterpillar’ Cattle’ Chair’ Chimpanzee’ Clock’ Cloud’ Cockroach’

ray’ Road’ Rocket’ Rose’ Sea’ Seal’ Shark’ Shrew’
fox’ Girl’ Hamster’ House’ Kangaroo’ Keyboard’ Lamp’ Lawn_mower’

table’ Tank’ Telephone’ Television’ Tiger’ Tractor’ Train’ Trout’
Bicycle’ Bottle’ Bowl’ Boy’ Bridge’ Bus’ Butterfly’ Camel’

Pickup_truck’ Pine_tree’ Plain’ Plate’ Poppy’ Porcupine’ Possum’ Rabbit’
Couch’ Crab’ Crocodile’ Cup’ Dinosaur’ Dolphin’ Elephant’ Flatfish’
Skunk’ Skyscraper’ Snail’ Snake’ Spider’ Squirrel’ Streetcar’ Sunflower’

Leopard’ Lion’ Lizard’ Lobster’ Man’ Maple_tree’ Motorcycle’ Mountain’
Tulip’ Turtle’ Wardrobe’ Whale’ Willow_tree’ Wolf’ Woman’ Worm’
Can’ Raccoon’ Forest’ Sweet_pepper’

A set of 25 random images from this dataset presented in Figure 3.2:
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Figure 3.2: Random CIFAR-100 examples.

3.2.3 ImageNet

The ImageNet dataset [55] consists of three parts: training data, validation data, and
image labels. The training data contains 1000 categories and 1.2 million images, packaged
for easy downloading. The validation and test data are not contained in the ImageNet
training data. Here are some random images from this dataset presented in Figure 3.3:

Figure 3.3: Random ImageNet examples.
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The validation and test data consists of 150,000 photographs, hand labeled with the
presence or absence of 1000 object categories. A random subset of 50,000 of the images
with labels has been released as validation data along with a list of the 1000 categories.
The remaining images are used for evaluation and have been released without labels.

3.2.4 TinyImageNet (crop) and TinyImageNet (resize)

The Tiny ImageNet dataset [56] consists of a subset of ImageNet images (Deng et al.,
2009). It contains 10,000 test images from 200 different classes. We have used two
datasets, TinyImageNet (crop) and TinyImageNet (resize), that gave been created by
either randomly cropping image patches of size 32×32 or downsampling each image to
size 32×32.

Here are some random images from these datasets presented in Figure 3.4 :

(a) Random TinyImageNet (crop) ex-
amples.

(b) Random TinyImageNet (resize)
examples.

Figure 3.4: TinyImageNet (crop) and TinyImageNet (resize) examples.

3.2.5 Places365

The Places365 dataset [57] is a scene recognition dataset. It is composed of 10 million
images comprising 434 scene classes. There are two versions of the dataset: Places365-
Standard with 1.8 million train and 36,000 validation images from K=365 scene classes,
and Places365-Challenge-2016, in which the size of the training set is increased up to 6.2
million extra images, including 69 new scene classes (leading to a total of 8 million train
images from 434 scene classes). In this thesis, the former version have been used.

Here are some random images from this dataset presented in Figure 3.5:
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Figure 3.5: Random Places365 examples.

3.2.6 Textures

The Describable Textures Dataset (DTD) [58] is an evolving collection of textural images
in the wild, annotated with a series of human-centric attributes, inspired by the perceptual
properties of textures. This data is made available to the computer vision community for
research purposes. It is consisting of 5640 images, organized according to a list of 47 terms
(categories) inspired from human perception. There are 120 images for each category.
Image sizes range between 300x300 and 640x640, and the images contain at least 90% of
the surface representing the category attribute. The data is split in three equal parts, in
train, validation and test, 40 images per class, for each split.

Here are some random images from this dataset presented in Figure 3.6:

Figure 3.6: Random Textures examples.
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3.2.7 INaturalist

The iNaturalist dataset [59] contains 675,170 training and validation images from 5,089
natural fine-grained categories. Those categories belong to 13 super-categories including
Plantae (Plant), Insecta (Insect), Aves (Bird), Mammalia (Mammal), and so on. The iNat
dataset is highly imbalanced with dramatically different number of images per category.
For example, the largest super-category “Plantae (Plant)” has 196,613 images from 2,101
categories; whereas the smallest super-category “Protozoa” only has 381 images from 4
categories.

Here are some random images from this dataset presented in Figure 3.7:

Figure 3.7: Random INaturalist examples.

3.2.8 SUN

The Scene UNderstanding (SUN) [60] database contains 899 categories and 130,519 im-
ages. There are 397 well-sampled categories to evaluate numerous state-of-the-art algo-
rithms for scene recognition.

Here are some random images from this dataset presented in Figure 3.8:
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Figure 3.8: Random SUN examples.

3.2.9 ISUN

The iSUN [61] consists of a subset of SUN images. We include the entire collection of
8925 images in iSUN and downsample each image to size 32 by 32.

Here are some random images from this dataset presented in Figure 3.9:

Figure 3.9: Random ISUN examples.
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3.2.10 LSUN (crop) and LSUN (resize)

The Large-scale Scene UNderstanding dataset (LSUN) has a testing set of 10,000 images
of 10 different scenes [62]. Similar to TinyImageNet, we used two datasets, LSUN (crop)
and LSUN (resize), that were created by randomly cropping and downsampling the LSUN
testing set, respectively.

Here are some random images from these datasets in Figure 3.10:

(a) Random LSUN (crop) examples. (b) Random LSUN (resize) examples.

Figure 3.10: LSUN (crop) and LSUN (resize).

3.2.11 ImageNet_O

ImageNet_O [63] contains 2000 images from 200 classes that contain semantic information
differing from the ImageNet-1K classes. As depicted in Figure 3.11, there is a label
distribution shift between ImageNet-1K classes and the ImageNet_O classes, albeit being
visually similar.

Figure 3.11: Comparison between ImageNet_O and the previous OOD benchmarks.
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This is a more real world OOD scenario and hence makes it an important dataset to
benchmark on.

Here are some random images from this dataset presented in Figure 3.12:

Figure 3.12: ImageNet_O examples.

3.3 Preprocessing

All the images should be normalized by the mean and standard deviation computed from
each training dataset but since these values are very similar to each other in the case of
CIFAR-10, CIFAR-100 and ImageNet, the normalization have been preformed using the
same mean and standard deviation of the CIFAR datasets.

Finally, we have resized them to the right shape of each ID dataset as they are fed into
their respective model: 32×32 for the DenseNet CNN models (CIFAR-10 and CIFAR-100)
and 224×224 for the ImageNet model.

3.4 Architectures and training configurations.

We have used two neural network architectures: DenseNet [6] for the CIFAR-10 and
CIFAR-100 and EfficientNet-B7 [8] for ImageNet dataset.

On the one hand, the DenseNet model follow the same setup as in [6], with depth L
= 100, growth rate k = 12 (Dense-BC) and dropout rate=0. The hyper-parameters have
been set to values that are identical to the original DenseNet implementation. They have
been trained with stochastic gradient descent with Nesterov momentum for 300 epochs
with batch size=64 and momentum 0.9. The learning rate starts at 0.1, and is dropped
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by a factor of 10 at 50% and 75% of the training progress, respectively.
On the other hand, EfficientNet-B7 have been trained using similar settings as [8]:

RMSProp optimizer with decay 0.9 and momentum 0.9; batch norm momentum 0.99
weight decay 1e-5; initial learning rate 0.256 that decays by 0.97 every 2.4 epochs. They
have also used SiLU (Swish-1) activation, AutoAugment, and stochastic depth with sur-
vival probability 0.8 and a 0.5 dropout.

Table 3.3 presents the test accuracies of the pretrained models used in our experiments.

Architecture (dataset) Accuracy
DenseNet-BC-100 (CIFAR-10) 95.20%
DenseNet-BC-100 (CIFAR-100) 77.63%

EfficientNet_b7 (ImageNet) 84.12%

Table 3.3: Test accuracies on CIFAR-10, CIFAR-100 and ImageNet datasets considering
only ID data.

3.5 Implementation details

For each OOD method, we have a score of 20,000 images which are equally splitted
between ID dataset and the OOD dataset, in order to evaluate these methods.

3.5.1 Maximum softmax probability (MSP)

MSP requires no hyper-parameter tuning. The OOD score OODMSP ∈ [0, 1] was defined
as the maximum softmax score of the model output, and is considered as a baseline in
our experiments.

3.5.2 Out-of-Distribution Detector for Neural Networks (ODIN)

On the other hand, ODIN requires the tuning of the noise magnitude ε. For this we have
used 1,000 of ID images and 1,000 of OOD images for its tuning by doing a grid search and
we chose the optimal value that gives the best separability between ID and OOD images.
As for the temperature scaling T, it has been fixed to 1000 in all the experiments. At
last, we have evaluated using these values of T and ε on the remaining images.

3.5.3 Energy score

The energy-based OOD score OODEBM ∈ R− simply applies the energy function E(x;F )

described previously to the logits produced by the classifier. In order to align with the
convention that positive (in-distribution) samples have higher scores, we have used the
negative energy instead: OODEBM ∈ R+. In their original paper, Liu et al. show that
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tuning the temperature does not improve the results, and the method may therefore be
used with T = 1, which reduces the anomaly score to the logarithm of the denominator
of the softmax and makes it a hyper-parameter free method, as depicted in Figure 3.13.

Figure 3.13: Effect of the temperature on the energy score.

3.6 Conclusion

After presenting the datasets used in this thesis, we introduced the image classification
models architecture and their training configurations. Finally, we set the implementation
details of the three OOD detection methods studied in this work.
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Chapter 4

Results and Analysis

4.1 Introduction

This chapter presents, compares and analyzes the results of the experiments detailed in
Chapter 2 and 3. First, the evaluation results of the three studied methods as well as
the proposed one are presented while considering three different ID datasets: CIFAR-10,
CIFAR-100 and ImageNet. The next section provides implementation results samples and
few examples that show the limitation of the OOD detection techniques. The chapter is
concluded by a presentation of a web user interface that allows to use and test our proposed
method.

4.2 OOD detection evaluation

4.2.1 CIFAR-10 and CIFAR-100 datasets

Table 4.1 presents the obtained results after evaluating 3 different techniques and baseline.
All methods are fine-tuned from the same pre-trained Densenet (BC_100) with CIFAR-
10 and CIFAR-100 as in-distribution datasets. ↑ indicates larger values are better, while
↓ indicates smaller values are better. All values are percentages.
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Table 4.1: OOD detection performance comparison between 3 different techniques and baseline. All methods are fine-tuned from the same pre-trained Densenet (BC_100)
with CIFAR-10 and CIFAR-100 as in-distribution datasets. ↑ indicates larger values are better, while ↓ indicates smaller values are better. All values are percentages.
Bold numbers are superior results.

Evaluation metrics
Model

In-distribution
dataset

Out-of-distribution
dataset

FPR@95%TPR
↓

Detection error
↓

AUROC
↑

AUPR-In
↑

AUPR-Out↑

MSP(Baseline)/ODIN/EnergyScore/ProposedMethod

ISUN 37.4/6.2/11.2/5.4 10.8/5.5/7.0/6.9 94.7/98.8/97.9/99.9 95.9/98.9/98.2/99.9 93.0/98.8/97.5/98.1
LSUN (crop) 39.0/8.8/4.7/2.5 10.2/6.0/4.8/4.8 94.8/98.2/98.8/99.9 96.1/98.5/99.0/99.9 93.2/97.9/98.6/98.5
LSUN (resize) 33.55/3.8/8.8/3.4 9.8/4.3/6.1/5.7 95.4/99.2/98.3/99.9 96.4/99.3/98.6/99.9 94.1/99.2/98.1/98.6
SUN 51.5/48.5/34.1/23.6 14.2/19.4/12.2/13.8 92.1/88.1/94.2/99.4 92.9/87.4/95.1/99.2 89.4/87.8/92.6/91.2

Dense-BC-100 TinyImageNet (crop) 34.8/4.3/6.5/3.1 10.0/4.7/5.5/5.6 95.3/99.1/98.6/99.9 96.4/99.2/98.8/99.9 93.8/99.1/98.4/98.6
CIFAR-10 TinyImageNet (resize) 41.2/7.6/14.2/6.5 11.5/6.0/7.9/7.5 94.1/98.5/97.4/99.9 95.0/98.6/97.7/99.8 92.3/98.5/97.0/97.7

PLACES365 60.2/58.4/45.6/37.7 17.7/21.0/17.3/19.3 89.4/86.5/90.0/97.5 87.6/86.7/89.9/97.0 86.4/84.6/89.0/86.3
TEXTURES 53.1/50.9/56.3/28.0 15.1/21.9/20.8/16.2 91.5/85.0/86.5/99.2 91.9/82.6/85.6/99.0 88.9/86.1/86.0/90.1
INATURALIST 58.4/68.1/53.4/41.3 15.7/22.7/16.4/18.2 90.7/84.7/90.5/98.6 91.2/86.3/92.0/98.3 87.3/81.1/87.6/84.8
ImageNet_O 55.2/47.0/45.6/30.3 16.5/18.3/15.9/16.5 90.3/89.2/90.8/98.5 90.1/89.1/91.1/98.1 87.7/88.7/89.7/89.6

Average 46.4/30.4/31.2/18.2 13.2/13/11.4/11.5 92.8/92.8/94.3/99.3 93.4/92.7/94.6/99.1 90.6/92.2/93.5/93.4

ISUN 85.1/65.6/80.4/62.4 36.2/24.3/29.4/30.0 69.5/83.5/77.3/90.5 72.4/84.6/79.5/91.3 66.4/81.2/73.5/74.3
LSUN (crop) 59.6/17.2/20.9/11.9 23.2/9.4/10.6/10.6 85.5/96.7/96.2/99.0 87.0/96.9/96.3/99.0 84.4/96.5/96.2/96.0
LSUN (resize) 83.2/61.5/76.8/59.0 35.1/23.4/27.5/29.0 70.8/84.8/79.7/91.2 73.9/85.9/81.7/92.0 67.9/83.0/76.3/76.5
SUN 77.9/59.8/62.8/43.9 28.7/21.0/20.6/21.1 78.1/86.9/85.9/97.8 80.5/88.3/89.2/98.0 74.7/84.9/87.0/84.8

Dense-BC-100 TinyImageNet (crop) 66.7/27.7/38.9/26.2 27.0/13.1/16.6/15.9 81.1/94.4/91.5/96.8 82.9/94.6/91.7/96.9 80.1/94.4/91.7/92.2
CIFAR-100 TinyImageNet (resize) 82.4/59.0/76.1/56.2 34.3/23.3/28.7/28.3 71.7/84.7/78.3/91.0 74.0/85.2/79.3/91.5 69.0/83.5/76.1/77.6

PLACES365 79.9/77.6/78.7/54.1 30.0/27.2/28.6/22.3 76.4/79.0/77.8/95.0 78.2/79.7/78.5/95.9 73.0/75.3/74.7/80.6
TEXTURES 76.1/56.7/60.3/44.3 30.6/21.1/21.6/22.8 76.1/86.6/85.7/94.3 77.0/86.6/84.9/94.2 74.1/85.4/85.0/84.1
INATURALIST 78.6/76.8/76.4/62.7 26.1/24.9/25.7/26.0 80.3/81.7/81.4/93.0 83.5/83.9/83.3/94.1 75.5/76.4/77.2/75.8
ImageNet_O 81.8/65.3/80.1/57.5 29.3/23.9/27.3/26.4 76.4/83.3/78.5/92.4 78.5/83.1/79.1/92.9 72.0/81.3/74.4/78.1

Average 77.1/56.7/64.6/47.8 30/21.2/23.8/23.2 76.6/86.1/82.9/94.1 78.8/86.9/83.8/94.6 73.7/84.2/81.2/82

Figure 4.1: Performance comparison of 3 OOD detection techniques and baseline (MSP)
considering two ID datasets: CIFAR-10 and CIFAR-100.

As depicted in Figure 4.1, all three methods ODIN, energy score and the proposed
one give better performance results than the baseline MSP regarding all the 5 evaluation
metrics. We notice that the AUPR_in evaluation metric is in general better than the
AUPR_out, which makes the OOD detection techniques better in detecting ID images
than OOD ones. We observe a drastic drop in performance when we increase the label
class size from 10 to 100, for example when considering the proposed method, the FPR
increased from 18.2 to 47.8 percent which means that the FPR has increased by 163%
from its initial value in CIFAR-10.
Overall, the proposed method surpasses the other three studied techniques in OOD de-
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tection performance, but we observe a slight difference considering the evaluation metric
AUPR_Out making the proposed method always second in detecting truly OOD samples,
which is foreseeable since our method work with an OR operator making the FP increase
a little bit (OOD is considered as positive) regarding the other three methods.
But, in an OOD detection context it is better to be wrong in classifying ID as OOD than
classifying OOD as ID given that they are applied in safety-critical environments, such
as autonomous cars and medical diagnosis.

In the literature, the OOD detection techniques are often evaluated while considering
CIFAR datasets as ID datasets, but in real world application CIFAR datasets have lots
of limitations such as:

• Low resolutions (32x32)
• Small class space (10-100 labels)
• Not reflective of the visual complexity observed in the real world
One solution would be to test OOD detection on the ImageNet dataset.

4.2.2 ImageNet dataset

Some datasets were not included in this experiment due to their class overlapping with
ImageNet dataset.

Table 4.2 presents the obtained results after evaluating 3 different techniques and
baseline using ImageNet as ID dataset.

Table 4.2: OOD detection performance comparison between 3 different techniques and baseline. All methods are fine-tuned from the same pre-trained EfficientNet_B07
with ImageNet as in-distribution dataset. ↑ indicates larger values are better, while ↓ indicates smaller values are better. All values are percentages. Bold numbers are
superior results.

Evaluation metrics
Model and In
distribution

dataset

Out-of-distribution
dataset

FPR@95%TPR
↓

Detection error
↓

AUROC
↑

AUPR-In
↑

AUPR-Out↑

MSP(Baseline)/ODIN/EnergyScore/ProposedMethod
LSUN (crop) 16.6/23.3/21.2/9.2 10.6/13.9/12.3/9.3 96.1/92.4/94.3/98.8 95.5/90.5/92.8/98.7 96.6/94.1/95.3/96.8

Efficientnet-B7 SUN 56.9/79.6/87.3/48.5 23.5/32.3/40.3/27.0 84.7/71.4/50.3/99.6 84.2/75.7/59.5/99.6 84.7/72.4/70.9/81.4
ImageNet-1K PLACES365 64.2/87.2/74.5/55.6 26.6/36.2/32.3/30.3 81.2/68.6/74.3/92.8 80.7/70.6/73.4/93.4 80.8/64.9/74.2/76.8

TEXTURES 55.5/75.0/59.1/43.4 25.4/26.9/26.4/25.0 82.8/80.1/81.1/94.7 81.5/81.8/79.5/94.9 84.0/77.7/82.4/83.6
ImageNet_O 86.5/80.6/82.6/69.8 43.9/30.1/32.5/34.0 59.2/75.6/73.2/89.2 61.4/76.3/73.6/89.9 60.2/73.3/71.0/70.9
Average 55.9/69.1/64.9/45.3 26/27.9/28.8/25.1 80.8/77.6/74.6/95.0 80.7/79/75.8/95.3 81.3/76.5/78.8/81.9

Since ImageNet_O is a more real world OOD scenario than the other OOD datasets and
it is a dataset that has been created specifically for ImageNet models to aid research in
OOD detection, we have studied it in depth in the following.

As depicted in Figure 4.2, the three methods give better performance results than the
baseline. The OOD detection techniques are better in detecting ID images than OOD
ones since AUPR_in evaluation metric is in general better than the AUPR_out. The
detection performance tend to fall when we increase the label class size from 10 to 100
to 1000. In general, the proposed method surpasses the other three studied techniques in
OOD detection performance but we observe a slightly difference considering the evaluation
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metric AUPR_Out making the proposed method always second in detecting truly OOD
samples.

Figure 4.2: Effect of label space size on the OOD detection performance with ImageNet_O
as OOD dataset.

The graphs in Figure 4.3 illustrate the ROC-curves for all methods in three repre-
sentative scenarios (CIFAR10, CIFAR100 and ImageNet). This shows the effect of label
space size on the AUROC metric with ImageNet_O as OOD dataset. The results suggest
that the performance of all the techniques regarding the AUROC metric rapidly decreases
until the MSP become performing like a random classifier in the case ImageNet.

Figure 4.3: Effect of label space size on the AUROC metric with ImageNet_O as OOD
dataset.
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4.2.3 Runtime comparison

Table 4.3 summarizes the runtime required for each method to output a novelty score
for all considered images. Runtime was determined by averaging the total runtime to
obtain novelty scores by the total number of testing images: 20000 images splitted equally
between ID images and OOD images.

Method Runtime (sec)
Max Softmax (MSP) 0.05

ODIN 0.13
Energy score 0.05

Proposed Method 0.13

Table 4.3: Inference time for each of the OOD methods.

We note that ODIN and the proposed method take more time to give novelty scores for
the considered images and are 2.5 slower that the baseline and the energy score techniques.

4.3 Accuracy comparison

In the Table 4.4, we compare the classification accuracies of our models in a multi-class
novelty detection setting when the MSP and the proposed method are implemented. We
note an enhancement of 14.1%, 14.65% and 5.3% when the ID dataset is CIFAR-10,
CIFAR-100 and ImageNet respectively.

Architecture ID Dataset MSP (baseline) Proposed method

DenseNet(BC-100) CIFAR-10 74.30% 88.40%
DenseNet(BC-100) CIFAR-100 58.95% 73.60%
EfficientNet-B7 ImageNet 69.55% 74.85%

Table 4.4: Comparison of the classification accuracy between MSP and the proposed
method in multi-class novelty detection setting.

In Table 4.5, we have compared the classification accuracies of our pretrained models
when OOD detection is applied or not. We have noted that in the case of classification
without OOD detection the accuracies are pretty low despite being originally high (divided
by two), that’s due to considering only ID data in the former computation. As a result,
when we tested with OOD data they were all misclassified as ID. In contrast, when the
OOD detection techniques were being used the accuracies were pretty high and a clear
improvement were observed.
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Architecture ID Dataset Without OOD detection With OOD detection
DenseNet(BC-100) CIFAR-10 47.60% 91.80%
DenseNet(BC-100) CIFAR-100 38.80% 75.60%
EfficientNet-B7 ImageNet 42.10% 79.50%

Table 4.5: Comparison of the classification accuracy when no OOD detection were used
and when we are in an Open set recognition setting using our proposed method.

As it might be seen in Figure 4.4, when the OOD data increase at the test phase the
accuracy will drop drastically in the case of a classification when no OOD detection were
applied. In contrast, when we apply our proposed method to the pretrained models the
accuracy performance will not be very affected by the OOD data and a smaller decrease
is noticed.

Figure 4.4: Effect of the size of OOD data in the test set on the classification accuracy of
our models.

4.4 Implementation results samples

Here are some examples of the OOD detection after implementing the previous OOD
detection techniques on 3 ID datasets: CIFAR-10,CIFAR-100 and ImageNet.
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4.4.1 CIFAR10:

Figure 4.5: OOD examples: CIFAR-10

4.4.2 CIFAR100:

Figure 4.6: OOD examples: CIFAR-100

4.4.3 ImageNet:

Figure 4.7: OOD examples: ImageNet

We can see in the Figures 4.5, 4.6 and 4.7 that if the OOD detection techniques were
not applied, the model would have produced arbitrarily confident predictions, such as the
example with the lion in the CIFAR-10 that was misclassified as a cat with a 99.93%
probability.
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4.5 Limitations

In addition to the large number of ID classes, OOD images with high semantic similarity
to ID can pose a real challenge for the OOD detection techniques.

Figure 4.8: In the left we have the OOD examples from the ImageNet_O dataset, in the
right we have the predicted class.

Due to the high semantic similarity between ImageNet and ImageNet_O and the pre-
viously introduced problem of producing arbitrarily confident predictions, an overlapping
between the IN distribution an the Out distribution occurred making their separation
more difficult which result as an important increase in the FPR like shown in Figure 4.9.

Figure 4.9: Distribution of softmax scores vs. ODIN detector vs. energy scores from pre-
trained EfficientNet_B07. We use negative energy scores to align with the convention
that positive (in-distribution) samples have higher scores.
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4.6 Web Interface

4.6.1 Introduction

We have created a web user interface to test out our OOD detection method, with this
interface testing our method will be accessible by normal users. It can also be deployed
on the web. The main goal of this UI is to identify OOD and ID data of a dataset.

4.6.2 Development tools

Python:
Python is a high-level, interpreted, general-purpose programming language, it is used

widely in data science and deploying deep learning algorithms, is the main language used
in the previous experiments, from creating and loading models to plotting classification
results.

Google Colaboratory:
Google Colaboratory, or Google Colab, is a product from Google Research. Colab

allows anybody to write and execute arbitrary python code through the browser on the
cloud, and is especially well suited to machine learning, data analysis. More technically,
Colab provides a free development environment with resources like CPU and GPU, and
it doesn’t require any kind of setup to use.

Flask:
Flask a micro web framework written in Python, it can create APIs for python and

allow the user to create simple or complex applications, it supports extensions that can
add application features as if they were implemented in Flask itself, it is used to pass the
classification function from the python function, to the Vue.JS interface and show it to
the user.

Vue.JS:
Vue.js is an open-source front end JavaScript framework for building user interfaces

and single-page applications, it has an HTML syntax by default which makes it a sim-
ple framework to develop with, also it has virtual DOM feature which renders only the
elements that have changed in the page (the header elements in our interface), also Vue
came in handy when exchanging API with the Flask app.

Ngrok:
Ngrok is a cross-platform application that facilitates putting local applications on the

web for testing purposes, it can be considered as a temporary deployment solution.
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4.6.3 Structure

Figure 4.10 presents the structure of our web interface.
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Figure 4.10: Structure of the web application.

Colab: In the Colab notebook we import all the libraries needed (Pytorch, Numpy,
Flask, Ngrok…etc), we also have to load the three used pretrained models with their la-
bels: ImageNet can be loaded from Pytorch library and Densenet 10 and 100 can be
downloaded from GitHub. The notebook also contains the classification function that
transforms the image depending on the selected model and applying our OOD detection
method.

The Flask app: In the last cell we built the Flask app, it contains the index function
which gets the In-distribution dataset from the radio-box after pressing submit, and the
predict-api function that grabs the image and pass it to the predict function in previous
predict function cell, then it returns the prediction results to show it in the Vue.JS appli-
cation.

Front end: In the Colab notebook, there are two cells dedicated to the front end appli-
cation, one is for the home page where you select the In-distribution dataset, the second
page is for uploading the image and classify it.
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Bridging: There is a cell in the notebook dedicated to Ngrok authentication key, adding
the key provided by Ngrok allows the local cloud application to be shared with anyone
with internet access via Ngrok agent.

4.6.4 Presentation

Our interface uses three different models: Densenet-BC-10, Densenet-BC-100 and Efficientnet-
B7, trained with : CIFAR-10, CIFAR-100 and ImageNet respectively. Using this interface
is simple as it’s supposed to be, at the home page of our web interface you can select one
of the in distribution datasets mentioned above then press submit as presented in Figure
4.11.

Figure 4.11: Web interface homepage

Then upload the image that you want to classify and tap on “Classify image” as shown
in Figure 4.12.
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Figure 4.12: Web interface homepage.

The classification output will be the prediction class and its confidence score, with the
OOD class in orange and ID class in green as illustrated in Figure 4.13.

Figure 4.13: Some results from the web interface using CIFAR-10, CIFAR-100 and Ima-
geNet as in-distribution datasets respectively.

4.7 Conclusion

After presenting and analyzing our experimental findings, we discussed the possible causes
for these results and pointed up the limitations of the OOD detection techniques consid-
ered in this thesis. We concluded by presenting our web user interface implementation of
our proposed method.
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Conclusions and Future Work

Conclusions

In this work, three out-of distribution detection methods have been implemented, evalu-
ated and compared on several common benchmarks that are used in the literature, as well
as on the ImageNet-O dataset, a dataset that is more interesting and important than the
previous OOD datasets since it is considered as a more real world OOD scenario. The
comparison shows that despite the good performance of ODIN in OOD detection it needs
a hyper-parameter tuning and remains a slower method compared to MSP and energy
based score function.

In this thesis, we have also investigated the effect of label space size on the OOD
detection performance. For that we have used three different ID datasets (CIFAR-10,
CIFAR-100 and ImageNet-1K), and we have showed that the performance drastically
decreases as the number of ID classes increases. We have also proposed a method that
surpassed the three studied methods in detection performances and we created a web user
interface to test out this proposed technique on the previous ID datasets.

Obtained results also suggest that none of the evaluated methods are consistently re-
liable for semantically similar data. The methods show decent results in specific scenarios
but they struggles once the out-of-distribution data is too semantically similar to ID data.

Future work

The base classifiers considered in this work show a very high accuracy on the base task,
which is rarely the case in a real-world applications. It is therefore of interest to study
how the considered methods perform on less accurate classifiers.

Furthermore, it would be of interest to study how these methods perform in a real
application and on other domains, such as text data, video, audio...

In this project, we have only worked with three OOD detection methods but in the
literature there are many more OOD detection techniques to study. Therefore, it will be
very interesting to test other types of OOD detection methods.

Finally, our ambition for the future is to apply these techniques on other inverse prob-
lems such as the object detection task, since it is one of the fundamental problems of
computer vision.
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Appendix A

Figures

Figures A.1 to A.30 show the histograms for each method (MSP, ODIN and energy
score) on every considered ID and OOD test set in this thesis. ID data in green and OOD
data in orange.

A.1 CIFAR-10

Figure A.1: Distributions over the anomaly scores for CIFAR-10 as ID and Textures as
OOD using MSP, ODIN and Energy score respectively

Figure A.2: Distributions over the anomaly scores for CIFAR-10 as ID and TIR as OOD
using MSP, ODIN and Energy score respectively
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Figure A.3: Distributions over the anomaly scores for CIFAR-10 as ID and ISUN as OOD
using MSP, ODIN and Energy score respectively

Figure A.4: Distributions over the anomaly scores for CIFAR-10 as ID and iNaturalist as
OOD using MSP, ODIN and Energy score respectively

Figure A.5: Distributions over the anomaly scores for CIFAR-10 as ID and ImageNet_o
as OOD using MSP, ODIN and Energy score respectively

Figure A.6: Distributions over the anomaly scores for CIFAR-10 as ID and LSUN_R as
OOD using MSP, ODIN and Energy score respectively
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Figure A.7: Distributions over the anomaly scores for CIFAR-10 as ID and TIC as OOD
using MSP, ODIN and Energy score respectively

Figure A.8: Distributions over the anomaly scores for CIFAR-10 as ID and Places365 as
OOD using MSP, ODIN and Energy score respectively

Figure A.9: Distributions over the anomaly scores for CIFAR-10 as ID and SUN as OOD
using MSP, ODIN and Energy score respectively

Figure A.10: Distributions over the anomaly scores for CIFAR-10 as ID and LSUN_C as
OOD using MSP, ODIN and Energy score respectively
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A.2 CIFAR-100

Figure A.11: Distributions over the anomaly scores for CIFAR-100 as ID and Textures as
OOD using MSP, ODIN and Energy score respectively

Figure A.12: Distributions over the anomaly scores for CIFAR-100 as ID and TIR as
OOD using MSP, ODIN and Energy score respectively

Figure A.13: Distributions over the anomaly scores for CIFAR-100 as ID and ISUN as
OOD using MSP, ODIN and Energy score respectively
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Figure A.14: Distributions over the anomaly scores for CIFAR-100 as ID and iNaturalist
as OOD using MSP, ODIN and Energy score respectively

Figure A.15: Distributions over the anomaly scores for CIFAR-100 as ID and LSUN_R
as OOD using MSP, ODIN and Energy score respectively

Figure A.16: Distributions over the anomaly scores for CIFAR-100 as ID and ImageNet_o
as OOD using MSP, ODIN and Energy score respectively

Figure A.17: Distributions over the anomaly scores for CIFAR-100 as ID and TIC as
OOD using MSP, ODIN and Energy score respectively
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Figure A.18: Distributions over the anomaly scores for CIFAR-100 as ID and Places365
as OOD using MSP, ODIN and Energy score respectively

Figure A.19: Distributions over the anomaly scores for CIFAR-100 as ID and SUN as
OOD using MSP, ODIN and Energy score respectively

Figure A.20: Distributions over the anomaly scores for CIFAR-100 as ID and LSUN_C
as OOD using MSP, ODIN and Energy score respectively
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A.3 ImageNet

Figure A.21: Distributions over the anomaly scores for ImageNet as ID and Textures as
OOD using MSP, ODIN and Energy score respectively

Figure A.22: Distributions over the anomaly scores for ImageNet as ID and TIR as OOD
using MSP, ODIN and Energy score respectively

Figure A.23: Distributions over the anomaly scores for ImageNet as ID and ISUN as OOD
using MSP, ODIN and Energy score respectively
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Figure A.24: Distributions over the anomaly scores for ImageNet as ID and iNaturalist
as OOD using MSP, ODIN and Energy score respectively

Figure A.25: v for ImageNet as ID and ImageNet_o as OOD using MSP, ODIN and
Energy score respectively

Figure A.26: Distributions over the anomaly scores for ImageNet as ID and LSUN_R as
OOD using MSP, ODIN and Energy score respectively

Figure A.27: Distributions over the anomaly scores for ImageNet as ID and TIC as OOD
using MSP, ODIN and Energy score respectively
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Figure A.28: Distributions over the anomaly scores for ImageNet as ID and Places365 as
OOD using MSP, ODIN and Energy score respectively

Figure A.29: Distributions over the anomaly scores for ImageNet as ID and SUN as OOD
using MSP, ODIN and Energy score respectively

Figure A.30: Distributions over the anomaly scores for ImageNet as ID and LSUN_C as
OOD using MSP, ODIN and Energy score respectively
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