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ملخص
التموضع مشكلة لحل خطي غير مراقب لاشتقاق الحالة تقدير في لي نظرية امٕكانات من الاستفادة على العمل هذا يركز
الجسم حركات تمثيل في جدًا مفيدة انٔها SO(3) و SE(3) المجموعات اثٔبتت ، الامٔر واقع في الخرائط. ورسم المتزامن
باستخدام SLAM مشكلة لحل خطيين غير مراقبين تصميم الممكن من يصبح ، لذلك الابٔعاد. ثلاثية مساحة في
المراقب منح في مساهمتنا تتمثل عمل[1]. تقديم خلال من اطٔروحتنا في نوضحه والذي ، Lyapunov استقرار تحليل
اكتشاف وكتلة ، ديناميكيًا الحالة مصفوفة ابٔعاد تغيير على القدرة السيارة لإعطاء ، النظام تعزيز ميزة عمليتين: ميزتين

المقترح. المراقب لتنفيذ IMU و الكاميرا من الخاطئة القياسات وتصحح تكتشف التي والعزل الاعٔطال

خطي. غير ,مراقب SLAM لي, نظرية : مفتاحية كلمات

Résumé

Ce travail se concentre sur l’exploitation de la théorie de Lie dans le domaine de l’estimation
d’état afin de développer une solution non linéaire au problème de localisation et cartogra-
phie simultanées (SLAM). En effet, les groupes SE(3) et SO(3) se sont avérés très pratique
pour représenter le mouvement d’un corps évoluant dans un espace 3D. Par conséquent, il
est possible de concevoir des observateurs non linéaires afin de résoudre le problème SLAM
à travers une analyse de stabilité de Lyapunov, ce qui est démontré dans notre thèse en
présentant le travail de [1]. Notre contribution consiste à doter l’observateur de deux
fonctionnalités pratiques : une fonctionnalité de redimensionnement de système, afin de
permettre au véhicule de dynamiquement changer la dimension de la matrice d’état, ainsi
qu’un bloc de Détection et d’Isolation de Faute afin de détecter et corriger les mesures
faussées de la caméra et de l’IMU utilisées pour implémenter l’observateur proposé.

Mots clés : Théorie de Lie, SLAM, observateur non linéaire.

Abstract

This work focuses on leveraging the potential of Lie theory in state estimation to derive
a nonlinear approach for solving the Simultaneous Localization And Mapping problem.
As a matter of fact, the groups SE(3) and SO(3) have proven to be very convenient
in representing body motions in 3D space. Therefore, it becomes possible to design
nonlinear observers for solving the SLAM problem using Lyapunov stability analysis,
which we demonstrate in our thesis by presenting the work of [1]. Our contribution
consists of endowing the observer with two practical features: a System re-dimensioning
feature, to give a vehicle the ability to dynamically change the dimension of the state
matrix, and a Fault Detection and Isolation block that detects and corrects faulty mea-
surements from the camera and the IMU used to implement the proposed observer.

Keywords : Lie theory, SLAM, nonlinear observer.
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Chapter 1. General Introduction

SLAM is a very popular topic in the mobile robotics community, and it has been an
open problem among researchers during the last 30 years [2]. It stands for Simultaneous
Localization And Mapping, and it basically consists of giving the ability to a mobile vehicle
of simultaneously building a consistent map of its surrounding by estimating the position
of some discriminant features1 in the environment, and localizing itself within that very
map by estimating its position and orientation relative to the features describing the
estimated map. Over the years, SLAM has found applications in numerous fields, such as
self-driving cars, augmented reality...etc. But it is generally used in indoor applications
where there is no access to an absolute positioning system such as GPS [3]. Two of
the most popular state-of-the-art techniques used to deal with the SLAM problem are
the Extended Kalman Filter (EKF) and the Pose Graph Optimization (PGO). However,
these techniques approach the SLAM problem through linearization, and do not deal very
well with poor initial guess. Additionally, these probabilistic approaches are considerably
computationally expensive and do not perform well in the long run [4]. Most recently,
the nonlinear nature of the SLAM problem has caught the interest of many researchers
from the nonlinear observer community. This is due to the fact that the pose dynamics
of a vehicle moving in 3D space are highly nonlinear, and are best modeled using the
Special Euclidean group SE(3). Also, the dynamics of the features describing the map
rely on the orientation of the vehicle, which is best represented using the Special orthogonal
group SO(3). These two groups are two of the most popular Lie groups used in solving
state estimation problems in robotics. Therefore, it becomes legitimate to believe that
Lie groups based approaches can fit the true nature of the SLAM problem and lead
to globally stable observers. Consequently, many Lie groups based observers have been
designed during the most recent years [1], [4]–[6].

In this work, we presented a Geometric Nonlinear Observer on Matrix Lie groups
proposed by Tayebi et al. in [1], where they extended the SE(3) group and its Lie algebra
se(3) to encompass positions and velocities of the landmarks (measured using a camera
and an IMU), which they defined as SEn+1(3) and sen+1(3), respectively. Additionally,
they provided an analysis of the global convergence of the proposed observer, and finalized
the paper by extending the observer to compensate angular and linear velocity biases.
Finally, their work also deals with dynamic environments, as the landmarks can also take
arbitrary velocities.

This report consists of four chapters, alongside the general introduction and conclu-
sion. Chapter 2 consists of a literature review of the SLAM problem, where we provide a
brief overview of the most consequent advancements towards solving the SLAM problem
during the last three to four decades in a chronological manner. Chapter 3 provides a light
introduction to Lie theory, which will be needed later on in the next chapter. Chapter
4 presents the Lie groups based nonlinear observer proposed in [1]. Finally, chapter 5
presents a robust SLAM on lie groups when facing landmarks uncertainties.

1These features can be landmarks, point clouds, planes, surfels...
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Chapter 2. Literature review

2.1 History of SLAM

Autonomous navigation has always had a central place in the mobile robotics com-
munity and caught the interest of the most experienced researchers. And one of the main
capabilities that a robot must have in order to aim for autonomy is the ability to localize
itself relative to its environment, as this would enable it to achieve the subsequent building
blocks of autonomous navigation, such as path planning and online decision-making (see
Fig 2.1). In early applications, the location of a mobile robot evolving in a known envi-
ronment was obtained by integrating wheel encoders, which is referred to as odometry,
and which quickly drifts because of the accumulation of the measurement errors caused
by the encoders. Afterwards, and with the emergence of new sensors of higher precision
(cameras, inertial measurement units...), new odometry algorithms based on visual and
inertial information arose. These algorithms have proven to be way more reliable and
showed less significant drifts (< 0.5% of the whole trajectory [7]). However, localization
using this kind of approaches do require either a manually built map of the environment,
or access to an absolute positioning system such as GPS. What actually makes a robot
truly autonomous is its ability to learn about its environment through exploration and
navigate without the need of a pre-build map. In other words, the robot needs to consis-
tently estimate its surroundings (by building a map of its environment) before estimating
its state1 relative to its environment.

Figure 2.1: Building blocks of autonomous navigation

Seeking for true autonomy, researchers agreed in the IEEE International Conference
on Robotics and Automation, which was held in San Francisco [8], that self-sufficient
localization and mapping was an open problem that needed to be explored from various

1The state of the robot usually contains information about its pose, velocity, measurement biases...etc.

15



Chapter 2. Literature review

perspectives (machine vision, signal processing, optimization, graph theory, geometry,
probabilistic estimation...)[9]. Ever since, many works have been proposed to lay down
the foundations in the different fields needed to implement such a system ([10]–[16]),
which finally resulted in the idea of joining the vehicle’s and the environment’s states in
a larger vector and estimating them simultaneously, and the term SLAM (Simultaneous
Localization And Mapping) was first introduced by Durrant-Whyte et al. in [17].

Nowadays, and after more than three decades from the emergence of SLAM, it is
now a reliable solution for map and pose estimation in robotics, and it has found many
applications in self-driving cars [18], augmented reality [19], and other indoor and out-
door applications that require the building of a consistent map of the environment [9],
[20]. Solutions to the SLAM problem had been constantly proposed from the day of its
emergence until now, and it has been solved on a theoretical level in various ways, and
using different sensors (Lidar and Visual SLAM [21]) and approaches (smoothing and fil-
tering approaches [3]), so that the developer now, has the ability to choose from a broad
collection of algorithms based on his requirements (in terms of efficiency, cost...etc.).

In this chapter, and because it is not the main subject of our work, we will only
provide a shallow overview of the SLAM problem, by presenting its components, its
classifications, and some of its approaches. However, we redirect the reader to more
comprehensive overviews of SLAM ([3], [9]), especially the work of Cadena et al. where
they make a very interesting distinction between the eras of SLAM (the classical age and
the algorithmic-analysis age) and they even argue that we are entering a third era which
they called the robust-perception age, and they provided the main characteristics of each
period that SLAM went through. We also redirect the reader to a deeper historical review
of the first 20 years of SLAM ([8], [22]), where Durrant–Whyte and Bailey presented the
main probabilistic formulations for SLAM [9].

2.2 Components of SLAM

The anatomy of a typical SLAM solution is made of two main components, namely,
the frontend component, and the backend component (see Fig 2.2). Where the frontend
component is responsible for processing and basically making sense out of sensor data.
whereas, the backend component handles the optimization underlying the SLAM problem
to both estimate the vehicle’s and the environment’s states.

2.2.1 The frontend component

Typically, SLAM uses either cameras or laser scanners to gather information from the
environment. And that data in its raw state cannot be fed directly into an optimization
algorithm because of its high complexity and level of abstraction. In other words, it is im-
possible to design a function that describes the environment in an enough general manner
while not exceeding the currently-supported complexity by the chips that are used in most
robotics applications. Instead, sensor data need to be preprocessed and well understood
before used for estimation. And that is where the role of the frontend component lies,
which generally includes a short term data association block, responsible for detecting
the tracking recently seen features (in two consecutive measurements for example), and a

16



Chapter 2. Literature review

long term data association block, responsible for associating new measurements of older
explored scenes of the environment (which is referred to as loop closure). In visual-SLAM,
where the main sensor used is either a monocular or a stereoscopic camera, feature de-
tection and tracking is performed using a very well known technique in machine vision,
namely structure for motion (SfM) [23]. On the other hand, in Lidar-SLAM, iterative
closets point (ICP) [24] is used to achieve feature matching.

Figure 2.2: The architecture of modern SLAM solutions

2.2.2 The backend component

After transforming the raw sensor data into meaningful information that are amenable
for optimization in the frontend component, the backend component estimates the map
and the pose of the vehicle by optimizing a cost function whose formulation is chosen in
advance (one fundamental formulation of the SLAM problem is the maximum a poste-
riori). The backend component also feeds back information to the frontend in order to
detect, optimize and validate loop closures.
N.B. We will not provide any mathematical development in this section. However, two
of the most popular SLAM solvers are presented later in this chapter.

2.3 Classifications of SLAM

Over the years, a tremendous amount of SLAM solvers had been proposed, and each
one of them focussed on one aspect of SLAM and had, at a certain level, a target appli-
cation in mind. Therefore, there exist nowadays, various solutions of the SLAM problem
that one can choose from based on the application requirements. And as a result, these
implementations of SLAM can be classified in various manners, based on the sensors
used, or the representation of the environment. As an example, if a SLAM algorithm
considers images as input data, then we call it Visual-SLAM. On the other hand, if it
considers point clouds as its inputs, then we call it Lidar-SLAM. In this section, we will
introduce the reader to two main ways of classifying SLAM solvers, and we will illustrate
the advantage of each category.
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2.3.1 LIDAR-SLAM vs Visual-SLAM

The main difference between LIDAR-SLAM and Visual-SLAM, is the type of sensor
used to provide feedback. Clearly, the chosen sensor determines the type of acquired
information about its surroundings (e.g. a camera provides images, while LIDAR provides
a point cloud representing nearby objects), so input data can take different forms, and
it’s up to the researcher to make use of the acquired data to solve the SLAM problem.

In the case of Visual-SLAM, a camera is used to localize itself while simultaneously
mapping the environment, using a sparse representation of many 3D points to describe
distinguishable features within the environment; the front-end algorithm processes suc-
cessive frames of the visualized scene in order to compute the pose of a detected feature
within the scene. Even though the word visual refers to cameras, still there are differ-
ent types of them, and depending on the type, different algorithms have been proposed.
Among them, we find the MonoSLAM, which was developed in 2003 by Davison et al.
([25], [26]), and which makes use of a single monocular camera. Another algorithm that
uses an RGB-D camera (e.g. kinect camera) is proposed in [27], and is called RGB-D
SLAM. The latter is more accurate than the MonoSLAM, as it relies on a more developed
type of cameras, which provides measurements containing depth information.

The LIDAR-SLAM, on the other hand, uses a LIDAR to extract dense information
about the surrounding environment. A LIDAR emits an eye-safe laser and detects the
light reflected on the surrounding objects, then it calculates the distance using the mea-
sured time between light emission and reception multiplied by half the speed of light.
Unlike the Visual-SLAM which represents the environment using a sparse representation,
the LIDAR-SLAM creates a more precise dense representation that shows all the geo-
metrical properties of the objects around the LIDAR, and this is better than the sparse
representation when avoiding obstacles.

The main advantages of cameras over Lidars is that they are less expensive and less
cumbersome, as we know that Lidars usually cost more and take more space in the
vehicle. In terms of data processing, the images taken with cameras do require heavy
data preprocessing using computationally expensive computer vision algorithms in order
to extract useful data. Whereas, the scans of a LIDAR can be used by the SLAM algorithm
after light processing. Therefore, even though cameras are usually less expensive than
Lidars, their high computational need requires more sophisticated calculators, which can
also prove to be costly.

2.3.2 2D vs 3D SLAM

Another way to classify SLAM techniques, is their way of representing the map.
Certainly, environment modeling plays a critical role to solve computational problems like
path planning, where the optimal path of a drone, for example, can be a 3 dimensional
trajectory, that requires a 3D construction of the map which calls for 3D SLAM. On the
other hand, path planning on UGR can be accomplished without any need for 3D SLAM,
thus 2D SLAM suffices.

When a SLAM method takes only 2 dimensions into account, it becomes classified as a
2D SLAM. Although this class seems to be incomplete, as it ignores the third dimension,
it was studied enormously throughout the years, where several 2D SLAM methods had
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proved to be extremely efficient in practice for navigation, path planning, and obstacle
avoidance ([28]–[32]). Among the commonly known 2D SLAM algorithms, we find the
HectorSLAM, which is LIDAR based. This latter, proved to be extremely efficient on
UGR, USV, and HMD ([33], [34]).

Even though, 2D SLAM methods are utilized mostly in robotics, they remain relatively
limited compared to their counterparts 3D SLAM methods. In the same way 2D SLAM
was defined, 3D SLAM is a problem where we attempt to construct a 3D map of the
environment while localizing the measurement sensor relative to this map. Thus, we can
deduce that 3D SLAM methods offer a more clear observability of the surroundings, and
allows the robot to navigate in a 3D space more freely. A method of 3D map reconstruction
using an RGB-D camera is presented in [35], while a non-linear observer which helps in
estimating the 3D map and localizing the robot relative to this map is presented in [1].
Several researches were also conducted to solve the 3D SLAM problem using a LIDAR
sensor, including ([36], [37]).

2.4 Different approaches of SLAM

2.4.1 The Extended Kalman Filter based SLAM

In this section, we will first introduce some probabilistic laws that are required for a
clear understanding of the estimation process. Then, we will define the Bayes Filter which
is derived from the Bayes theorem, along with some mathematical definitions. Next, we
will present a practical application of the Bayes Filter, namely, the Kalman Filter, and
we will expose its pros and cons. Finally, we will introduce a more flexible version of the
Kalman filter and which is referred to as the Extended Kalman filter.

2.4.1.1 The Bayes Filter

The definition of a state

We can define a state as a collection of internal and external variables of a system that
can have an influence on it. It can be either dynamic, where the variables change over
time, e.g. the pose of a robot, or static, where the variables remain unchanged over time,
e.g. the location of some landmarks like trees or walls. We denote a state vector Xt,
where the t index refers to its dynamic nature.

Probabilistic laws

We denote the probability distribution over a state Xt conditioned on another event
A, P (Xt|A). Since we know that Xt is generated conditionally on the past states X0:t−1 =[
X0 X1 ... Xt−1

]
, all past input data U1:t =

[
U1 U2 ... Ut

]
, and all past measure-

ments z1:t−1 =
[
z1 z2 ... zt−1

]
, We conclude that A = {X0:t−1, z1:t−1, U1:t} . Thus, we

can write the probability distribution of Xt as :

p(Xt|X0:t−1, z1:t−1, U1:t) (2.1)
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We can further simplify the formula of the probability distribution of Xt knowing that a
state Xt−1 is generated conditionally to {X0:t−2, z1:t−2, U1:t−1} along with an effectuated
measurement zt−1, which indicates the sufficiency of Xt−1

2 to replace {X0:t−2, z1:t−1, U1:t−1}.
Thus, we get :

p(Xt|X0:t−1, z1:t−1, U1:t) = p(Xt|Xt−1, Ut) (2.2)

Similarly, we can write the probability distribution of a measurement zt as :

p(zt|X0:t, z1:t−1, U1:t) (2.3)

and since we know that Xt−1 is generated conditionally to {X0:t−2, z1:t−2, U1:t−1}, along
with an effectuated measurement zt−1, we can bring (2.3) down to :

p(zt|Xt) (2.4)

Belief distributions

Knowing that state estimation is always subject to noise, a robot can never know per-
fectly its true state, as it relies on measurements and input data to generate an approxi-
mation of the real state. A way to describe this imperfect knowledge of the environment
is the belief, where the belief simply is the probability distribution of a state Xt given all
measurements and input data up to the instant of estimation. We mathematically present
it as :

bel(Xt) = p(Xt|z1:t, U1:t) (2.5)

Bayes Filter algorithm

The Bayes theorem is a mathematical formula that describes the relationship between
the probability distributions of two events A and B, and their conditioned probability
relative to each other. It is mathematically described as

P (A|B) =
P (B|A) · P (A)

P (B)
(2.6)

where P (A|B) defines the probability distribution of A given B and P (B|A) is the prob-
ability distribution of B given A. We will next use this theorem and the previous proba-
bilistic laws (2.2) and (2.4), to derive the Bayes filter. This filter allows us to recursively
estimate the belief of a state Xt using the belief of the past state Xt−1 and some partial
knowledge of the true state obtained from measurements.
We know from (2.5) that

P (Xt|z1:t, U1:t) =
P (zt|Xt, z1:t−1, U1:t) · P (Xt|z1:t−1, U1:t)

P (zt|z1:t−1, U1:t)
(2.7)

2When a state is sufficient to replace all past events, it is called complete under the Makov assumption
[38], and for it to be complete all variables that can influence the state of the robot must be included in
the vector state Xt, while assuming that the used probability distribution model is accurate enough.
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from the Markov assumption, which assumes the completeness of Xt , we can safely say
that past measurements and past input data will not provide additional information when
measuring the state at an instant t, mathematically speaking we write

P (zt|Xt, z1:t−1, U1:t) = P (zt|Xt) (2.8)

which is similar to the result we got in (2.4), this result is an example of conditional
independence [39], which is defined for three events a, b, and c as P (a|b, c) = P (a|c) when
P (a|b, c) does not depend on b, here we say that a is conditionally independent of b given
c.
Using (2.8) and the law of total probability [40], we obtain

P (Xt|z1:t, U1:t) =
P (zt|Xt, zt) · P (Xt|z1:t−1, U1:t)

P (zt|z1:t−1, U1:t)

=
P (zt|Xt) ·

∫ +∞
−∞ P (Xt|Xt−1, z1:t−1, U1:t)P (Xt−1|z1:t−1, U1:t)dXt−1

P (zt|z1:t−1, U1:t)

We denote the predicted belief as bel(Xt) and we define it as follows,

bel(Xt) =

∫ +∞

−∞
P (Xt|Xt−1, z1:t−1, U1:t)P (Xt−1|z1:t−1, U1:t)dXt−1 (2.9)

Knowing that Ut adds no extra information about P (Xt−1|z1:t−1, U1:t), we conclude that
P (Xt−1|z1:t−1, U1:t) = P (Xt−1|z1:t−1, U1:t−1), and using the Markov assumption of a com-
plete state, we can bring the formula of the predicted Bayes filter down to

bel(Xt) =

∫ +∞

−∞
P (Xt|Xt−1, Ut)bel(Xt−1)dXt−1 (2.10)

Finally, we get the recursive formula of the Bayes filter

bel(Xt) =
1

P (zt|z1:t−1, U1:t)
P (zt|Xt)bel(Xt) (2.11)

2.4.1.2 Kalman filter

Introduction

In this subsection, we will present a recursive state estimator called the Kalman Filter,
which is discussed in [41]. This filter is a practical implementation of the Bayes Filter
for linear systems. Its purpose is to estimate the belief of a current state given some
noisy measurements, an input, and a belief representing the prior state. We encourage
reading the Kalman Filter subsection in [41] for more details on how the algorithm is
derived. We also provide some graphical demonstrations (Fig. 2.4) to better imagine how
the estimator functions.

We will start first by defining the mathematical tools needed to understand the KF,
then we will introduce the algorithm (1).
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State estimation

Similar to any other Gaussian estimator, the KF uses the multivariate normal dis-
tribution over a state X, its mathematical formula is stated in (2.12), and its graphical
representation is depicted in (Fig. 2.3)

P (X) = det(2πΣ)−
1
2 exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)
(2.12)

where µ represents the mean with the same dimension as the state vector X, and rep-
resents the state vector with the highest probability. Meanwhile, the covariance matrix
Σ represents the uncertainty of the state X and has a dimension equal to square the di-
mension of X, this matrix is symmetric positive semi-definite, where it controls the range
around the peak at the mean. Throughout this subsection, we will refer to the set (µ,Σ)

as a moment, while we will refer to (2.12) as the moments’ representation.

Figure 2.3: The influence of the covariance matrix on the normal distribution. This
figure shows the normal probability distribution over two states X1 = (x1, y1) ∈ R2 and
X2 = (x2, y2) ∈ R2 representing the x and y coordinates of the robot, one with a moment
(µ1,Σ1) ∈ R2 × R2×2 and the other with (µ2,Σ2) ∈ R2 × R2×2. In this illustration,
we assumed that the robot’s orientation is completely noiseless, and the Gaussian noise
affects only the x and y coordinates.

The linear mathematical model of any system is written as follows

Xt = AtXt−1 +BtUt + ϵt (2.13)

where the state vector at instant t is denoted Xt ∈ Rn , the input vector is denoted
Ut ∈ Rm, the state matrix is denoted At ∈ Rn×n, and the input matrix is denoted
Bt ∈ Rn×m, while ϵt ∼ N (0n,Σϵt) represents a Gaussian additive noise with a mean 0n
and a covariance matrix Σϵt ∈ Rn×n. We note that the index t defines the dynamic nature
of the indexed matrices and vectors.

Next, we will define the linear measurement model

zt = CtXt + ξt (2.14)

Where zt ∈ Rp is the measurement of the state, Ct ∈ Rp×n is the output matrix, ξt ∼
N (0p,Σξt) is a Gaussian additive noise with a mean 0p and a covariance matrix Σξt ∈ Rp×p.
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The KF algorithm is built to estimate a corrected belief of a state Xt given a prior
vector state Xt−1, an input Ut, and a measurement of the state zt. However, for it
to properly function, three assumptions are made. The first one is to have a normally
distributed initial belief, while the second one is the linear nature of the motion model.
The second constraint will allow the KF to maintain the Gaussian form of the belief over
the Xt state vector. The last assumption is a linear measurement model, also to assure
a normal distribution of the probability density function, which will help to maintain the
Gaussian nature of the belief during the correction step.

The arguments of the KF algorithm are the moment (µt−1,Σt−1), some input Ut, and
some measurement zt, while it returns the moment (µt,Σt) of the current state Xt. A
graphical demonstration of the path estimation from the initial state X0 to the state Xt

is depicted in (Fig. 2.4), where the belief of a state Xi denoted bel(Xi) is associated with
a moment (µi,Σi)

Algorithm 1 Kalman_Filter(µt−1,Σt−1, Ut, zt)
Data: µt−1,Σt−1, Ut, zt
Result: µt,Σt

1 µ̄← Atµt−1 +BtUt

2 Σ̄t ← AtΣt−1A
T
t + Σϵt

3 Kt ← Σ̄tC
T
t

(
CtΣ̄tC

T
t + Σξt

)−1

4 µt ← µ̄t +Kt (zt − Ctµ̄t)

5 Σt ← (I −KtCt)Σ̄t

where Kt is the Kalman gain and I ∈ Rn×n is the identity matrix.
We describe the belief of a state Xt as

bel(Xt) = det(2πΣt)
− 1

2 exp
(
−1

2
(Xt − µt)

TΣ−1
t (Xt − µt)

)
(2.15)

Figure 2.4: State estimation using KF
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It is clear from (Fig. 2.4) that the estimation is getting less certain, that is why an
accurate initial guess is preferred for the KF to perform well. We also refer to the fact that
the KF helps reduce the uncertainty by combining measurements and predictions, where
the kalman gain determines the dominance of both the prediction and the update steps. If
measurement is very noisy, we find that ‖Σξt‖F 3→ +∞ which implies that ‖Kt‖F → +∞,
and then we get µt ← µ̄t, and that means that the measurement will be completely
ignored. On the other hand, when the prediction is the noisiest, the measurement is the
one that will be taken into account instead.

2.4.1.3 Extended Kalman Filter

Introduction

One of the limitations of the KF is the assumption that the mathematical model of
the system is linear. However, it’s impossible to find this property in reality, since every
mathematical model is derived from laws of physics, which are most of the time non-linear,
e.g. the drag fluid force used to draw the mathematical model of flying vehicles is relative
to square the speed of the moving vehicle [42]. In order to overcome this limitation, the
KF is extended to a more flexible algorithm called the Extended Kalman Filter, denoted
EKF.

In this subsection, we will extend the KF and explain how the EKF estimates the
belief of a state, by combining real-time measurements and predictions from a prior state.
Also, we will present the mathematical tools needed for the reader to understand it. On
the other hand, the mathematical development will not be discussed, though we direct to
[41] for more details regarding the theory behind it.

State estimation

As it was mentioned in the introduction, the EKF deals with non-linear systems. It
does so by calculating the linearized model around the state to be estimated at each
iteration.
First, we will define the non-linear model of any system as :

Xt = f(Xt−1, Ut) + ϵt (2.16)

where f : Rn × Rm → Rn, while n, m, Xt, Ut, and ϵt are defined in the same way as for
the KF.

We next will define the non-linear measurement model as :

zt = h(Xt) + ξt (2.17)

where h : Rn → Rp, while p and ξt are defined in the same way as for the KF.
The linearized models of (2.17) and (2.16) will be calculated next to construct the EKF.
Since we know that Xt−1 is normally distributed around a mean state µt−1, we can cal-

3The frobenius norm ‖ · ‖F is defined for a matrix Σ as ‖Σ‖F = tr(ΣTΣ)
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culate the predicted state using first order Taylor series near µt−1 as follows :

Xt = f(Xt−1, Ut) + ϵt

≈ f(µt−1, Ut) +
∂f

∂Xt−1

∣∣∣
Xt−1=µt−1

(Xt−1 − µt−1) + ϵt

denoting that :

Ft =
∂f

∂Xt−1

∣∣∣
Xt−1=µt−1

(2.18)

we obtain :
Xt ≈ f(µt−1, Ut) + Ft(Xt−1 − µt−1) + ϵt (2.19)

now, we will linearize the observation model (2.17) around the predicted mean µ to get:

zt ≈ h(µt) +Ht(Xt − µt) + ξt (2.20)

where :

Ht =
∂h

∂Xt

∣∣∣
Xt=µt

(2.21)

Like the KF, the arguments of the EKF algorithm are the moment (µt−1,Σt−1) of the
prior state Xt−1, some input Ut, and some measurement zt, while it returns the moment
(µt,Σt) of the current state Xt.

Algorithm 2 Extended_Kalman_Filter(µt−1,Σt−1, Ut, zt)
Data: µt−1,Σt−1, Ut, zt
Result: µt,Σt

1 µ̄← g(µt−1, Ut)

2 Compute Ft and Ht using (2.18) and (2.21)
3 Σ̄t ← FtΣt−1F

T
t + Σϵt

4 Kt ← Σ̄tC
T
t

(
HtΣ̄tH

T
t + Σξt

)−1

5 µt ← µ̄t +Kt (zt − h(µt))

6 Σt ← (I −KtHt)Σ̄t

2.4.1.4 2D velocity motion model

In this subsection, we will introduce the motion model of a robot moving with some
angular and translational velocities.

Let R, p, ϖB, vB, ϖI , and vI be the rotation of the body frame with respect to
the inertial frame, the location of the body frame with respect to the inertial frame, the
rotational velocity with respect to the body frame, the translational velocity with respect
to the body frame, the rotational velocity with respect to the inertial frame, and the
translational velocity with respect to the inertial frame, respectively.
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Figure 2.5: Graphical demonstration of the 2D motion model

The velocity motion model (2.22) which we will be using in the EKF SLAM, is math-
ematically proved in [41].

Xt =

xt−1

yt−1

θt−1

+

−
∥vB∥
∥ϖB∥ sin(θ) + ∥vB∥

∥ϖB∥ sin(θ + ‖ϖB‖dt)
∥vB∥
∥ϖB∥ cos(θ)− ∥vB∥

∥ϖB∥ cos(θ + ‖ϖB‖dt)
‖ϖB‖dt

+ ϵt (2.22)

where ϵt is defined as in (2.16) with n = 3, and Xt =
[
xt yt θt

]T
2.4.1.5 2D observation model

In this subsection, we will introduce the observation model used in [41] to measure
the pose of a landmark with respect to the initial pose of the body frame. We also
provide a graphical demonstration in (Fig. 2.6) to better understand how noise affects
the measurement process.

Let µt, µt,θ, µj, and zit be the predicted 2D position of the robot at time t with respect
to the initial pose of the body frame, the predicted orientation of the robot at time t with
respect to the initial pose of the body frame, the predicted location of the landmark with
respect to the initial pose of the body frame, and the range-bearing relative measurement
of the landmark j corresponding to the feature i at instant t. Where zit = (rit, ϕ

i
t) and rit

,ϕi
t are defined to be the polar coordinates of the jth landmark, respectively.
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Figure 2.6: Graphical demonstration of landmarks’ measurement

Thus, we define the observation model from range bearing measurements as :[
µj,x

µj,y

]
=

[
µt,x

µt,y

]
+

[
rit cos(ϕi

t + µt,θ)

rit sin(ϕi
t + µt,θ)

]
(2.23)

Using this observation model (2.23), we will introduce a predicted observation, which
will be used next in the SLAM algorithm to correct the state of the prediction using the
difference between what the robot really observed and what the robot should observe
based on the mathematical model. The predicted observation is defined as follows :

ẑit = h(µt) =

[
q

atan2(δy, δx)− µt,θ

]
(2.24)

where :

δ =

[
δx
δy

]
=

[
µj,x − µt,x

µj,y − µt,y

]
(2.25)

q =
√
δT δ (2.26)

2.4.1.6 EKF SLAM presentation

In order to solve the slam problem using the EKF, we first will define the state vector
Xt ∈ R2n+3 containing the pose of the vehicle, and the location of the landmarks, where
:

Xt =
[
xt yt θt m1,x m1,y ... mn,x mn,y

]T (2.27)
while we define the predicted state vector as :

µt =
[
µt,x µt,y µt,θ µ1,x µ2,y ... µn,x µn,y

]T (2.28)

We, next, will calculate the Jacobian matrix of (2.24) using (2.21) :

H i
t =

1

q2

[
qδx −qδy 0 −qδx qδy
δy δx −1 −δy −δx

]
Lx,j (2.29)
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where :
Lx,j =

[
I3 03×(2j−2) 03×2 03×(2n−2j)

02×3 02×(2j−2) I2 02×(2n−2j)

]
(2.30)

We will next calculate the Jacobian of the motion model (2.22) using (2.18) :

Ft = I2n+3 + LT
x

0 0 ∥vB∥
∥ϖB∥ cos(θ)− ∥vB∥

∥ϖB∥ cos(θ + ‖ϖB‖dt)
0 0 ∥vB∥

∥ϖB∥ sin(θ)− ∥vB∥
∥ϖB∥ sin(θ + ‖ϖB‖dt)

0 0 0

Lx (2.31)

where Lx is defined as :
Lx =

[
I3 03×2n

]
(2.32)

ϵt and ξt are defined in the same way as in (2.13) and (2.14), respectively.
Even though the mathematical development in this chapter is not rigorous enough,

we redirect the reader to [41] for more details about the derivation of the EKF-SLAM
presented below :

Algorithm 3 EKF_SLAM(µt−1,Σt−1, Ut, zt)
Data: µt−1,Σt−1, Ut, zt, n

Result: µt,Σt

1 Define Lx as in (2.32)

2 µt ← µt + LT
x

−
∥vB∥
∥ϖB∥ sin(θ) + ∥vB∥

∥ϖB∥ sin(θ + ‖ϖB‖dt)
∥vB∥
∥ϖB∥ cos(θ)− ∥vB∥

∥ϖB∥ cos(θ + ‖ϖB‖dt)
‖ϖB‖dt


3 Define Ft as in (2.31)
4 Define Σϵt and Σξt as in (2.14)
5 Σt ← FtΣt−1F

T
t + LT

xΣϵtLx

6 while i in observed features do
7 if i is new then
8 n← n+ 1

9

[
µn,x

µn,y

]
=

[
µt,x

µt,y

]
+

[
rit cos(ϕi

t + µt,θ)

rit sin(ϕi
t + µt,θ)

]
10 Compute δ and, q as in (2.25) and (2.26), respectively.
11 Compute ẑit as in (2.24)
12 Compute Lx,i as in (2.30)
13 Compute H i

t as in (2.29)
14 Ki

t ← ΣtH
i
t
T
(H i

tΣtH
i
t
T
+ Σξt)

−1

15 µt ← µt +
∑

i K
i
t(z

i
t − ẑit)

16 Σt =
(
Isizeof(observed_features) −

∑
i K

i
tH

i
t

)
Σt

We can see from the algorithm 3 that the pose of the robot is corrected using all the
measurements of the landmarks in sight, which means that every time an error occurs
during the prediction, the Kalman gain will help in reducing the effect using the obser-
vation model, while controlling the degree of how much each measurement is taken into
consideration based on the noise affecting the measurement sensor.
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2.4.2 Pose Graph Optimization based SLAM

[43] and [44] provide a complete, but computationally expensive smoothing-based
solution to the SLAM problem. This method doesn’t estimate the most recent pose of
the robot only, but also helps improve the estimation of the past poses over time. In this
approach, these poses are referred to as nodes, and are linked together with what are called
edges, which represent constraints between poses that have to be respected to correctly
improve the estimation of the motion path in the optimization phase. As a result, we
find ourselves facing a problem where the state of the robot is a state vector with a large
dimension and which contains some selected poses of the robot to approximate the real
trajectory.

Throughout this subsection, we will explain the pose graph optimization SLAM. Also,
why this method is computationally expensive. Again, we note that the mathematical
derivation will not be fully explained in this work, and we direct to [43] for more details.

First, we will define some mathematical tools needed to understand the theory behind
this approach. Then, we will explain how the pose graph optimization algorithm works.
And finally, how and when should the optimization take place.

2.4.2.1 Mathematical definitions

Figure 2.7: Odometry-based estimation

(Fig.2.7) shows the path of a robot generated over time in blue, and its estimation using
the dead-reckoning method. Clearly, odometry alone is not sufficient to accurately esti-
mate the robot’s trajectory, as it usually drift over time. Thus, we rely on loop closure
(illustrated in (Fig. 2.8)) to do a closed loop estimation. When loop closure takes place,
the graph optimization algorithm runs to help improve the estimation of all poses in the
state vector.

We define the state vector as :
X0:t =

[
XT

0 XT
1 ... XT

t

]T (2.33)
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where Xi ∈ R3 is the ith pose of the robot, which contains the xi and yi coordinates of
the robot, as well as the orientation of the robot denoted θi

We call a pose of the robot a node, and the relation between two nodes an edge. (Fig.
2.7) shows a graph with six nodes, five edges, and one loop closure constraint. Also, we
refer to the fact that a Loop closure constraint is introduced to the optimization problem
when the exact same measurement is made twice, as explained in (Fig. 2.8) :

Figure 2.8: Loop closure detection

(Fig. 2.8) shows how the loop closure constraint in (Fig. 2.7) is formed using a
measurement taken from X0 and the most recent measurement taken from X6. The
front-end algorithm continues to compare all previous measurements to the most recent
one, and the moment it finds two identical measurements, it concludes that the most
recent pose and the pose with the similar measurement are the same. Thus, it includes a
loop-closure constraint to the optimization problem between the two estimated poses.

In order to find the best estimate of the state vector X0:n containing n nodes, we
will opt for maximizing the normal probability distribution of X0:n given the commands
U = {U0:n, Uij|(i, j) ∈ LC}, defined as in (2.12), since we assume that the noise affecting
the motion model is Gaussian. And using the Markov assumption [45], we conclude that

P (X0:n|U) =
n∏

i=1

P (Xi|Xi−1, Ui)
∏

i,j∈LC

P (Xj|Xi, Uij) (2.34)

where LC is a set of all loop closure pairs. In order to find the state with the highest
probability, we have to compute the state that maximizes (2.35). We define the set Q of
all constraints, including edges and loop closure constraints, to obtain.

P (X0:n|U) =
∏
i,j∈Q

P (Xj|Xi, Uij) (2.35)
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2.4.2.2 Objective function optimization

Next, we will prove that maximizing (2.35) can be brought down to a least-square
optimization problem [44], where edges and loop closure constraints are defined as the
error between states.

X∗
0:n = argmax (P (X0:n|U0:n))

= argmin (− log (P (X0:n|U0:n)))

= argmin
(∑

i,j∈Q

‖Xj − f(Xi, Ui,j)‖2Σϵt

)

We will use the following objective function, which we denote J(X0:n), to mathematically
derive the PGO algorithm as in [43], and we put Jij(X0:n) = ‖Xj − f(Xi, Ui,j)‖2Σϵt

J(X0:n) =
∑
i,j∈Q

Jij(X0:n) (2.36)

Now we will use Gauss-newton method [46] to derive an iterative PGO algorithm to
compute the local minimum of the objective function, starting from an initial guess X̂0:n.
We put eij(X̂0:n) = X̂j − f(X̂i, Ui,j).

Jij(X̂0:n +∆X0:n) = eTij(X̂0:n +∆X0:n)Σ
−1
ϵt eij(X̂0:n +∆X0:n)

≈
(
eTij(X̂0:n) + ∆XT

0:n

∂eij
∂X0:n

T)
Σ−1

ϵt

(
eij(X̂0:n) +

∂eij
∂X0:n

∆X0:n

)
= eTij(X̂0:n)Σ

−1
ϵt eij(X̂0:n) + 2Bij∆X0:n +∆XT

0:nHij∆X0:n

= Jij(X̂0:n) + 2Bij∆X0:n +∆XT
0:nHij∆X0:n

where Hij =
∂eij
∂X0:n

T

Σ−1
ϵt

∂eij
∂X0:n

, and Bij = eTij(X̂0:n)Σ
−1
ϵt

∂eij
∂X0:n

. From (2.36) we get

J(X̂0:n +∆X0:n) =
∑
i,j∈Q

(
Jij(X̂0:n) + 2Bij∆X0:n +∆XT

0:nHij∆X0:n

)
=
∑
i,j∈Q

Jij(X̂0:n) + 2
∑
i,j∈Q

Bij∆X0:n +∆XT
0:n

∑
i,j∈Q

Hij∆X0:n

= J(X̂0:n) + 2B∆X0:n +∆XT
0:nH∆X0:n

we set ∂J(X0:n +∆X0:n)

∂∆X0:n

= 0, and we get the linear system to be solved (2.37) at each
iteration until (2.36) reaches its minimum at X∗

0:n :

H∆X0:n = −B (2.37)

2.4.2.3 PGO SLAM presentation

In this section, we present the PGO SLAM algorithm as a pseudocode :
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Algorithm 4 PGO_SLAM(X∗
0:n)

Data: Σϵt , Uij

Result: X∗
0:n

1 Initialize X∗
0:n

2 while !converged do
3 H ← 0

4 B ← 0

5 for i, j ∈ Q do
6 B ← B + eTij(X̂0:n)Σ

−1
ϵt

∂eij
∂X0:n

7 H ← H +
∂eij
∂X0:n

T

Σ−1
ϵt

∂eij
∂X0:n

8 Compute ∆X0:n as in (2.37);
9 X∗

0:n ← X∗
0:n +∆X0:n

2.5 Map representations

2.5.1 Sparse map representation (landmark-based)

This type of representation had been widely used in Simultaneous Localization And
Mapping for mobile robotics, to localize a robot’s pose, while estimating the location of
3-D landmarks to create the map. The majority of SLAM solutions use this type of map
representation to represent the environment as a set of 3-D landmarks [9], which describe
distinguishable features in the real world (e.g.trees and corners) ([1], [47]–[49]). In order
to map the environment correctly, the measurement sensor (e.g. Camera) has to provide a
descriptor to define what landmark corresponds to some made measurement. However, It
is not possible to perfectly match measurements with their corresponding landmarks, to
solve that problem, several outliers rejection methods had been proposed to make a more
robust feature matching algorithm ([50]–[52]), to come up with a better landmark-based
representation.

2.5.2 Dense map representation (dense cloud points)

Unlike sparse map representation, the dense representation provides a higher map
resolution of the real world, so instead of representing only the location of a landmark,
it represents all of its geometric properties (e.g. a tree is represented as a point cloud
in the shape of the observed tree). This type of representation is widely used to solve
the SLAM problem, when obstacle avoidance is more needed than navigation ([53]–[56]).
In order to create a dense representation of the environment, sensors which can provide
point cloud measurements of the environment like RGB-D cameras, stereo cameras, and
LASER 3D scanners are mandatory. Due to the high resolution of the map, this type of
representation requires a large size of memory.
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2.5.3 Grid based map representation (occupancy grid)

Occupancy mapping refers to the family of algorithms that helps in representing the
2-D environment as a grid, where occupied spaces are represented with black squares,
to indicate the existence of obstacles, while unoccupied spaces are represented in white.
When the sensor returns noisy measurements, it represents the measurement in dark gray
if the probability is high, or light gray if the probability is low. This type of representation
is used to map the environment using wide range sonar in [57], and using a LIDAR in
[58]. A novel approach proposed in [59] that uses reinforcement learning, to swap between
two representations, grid occupancy and landmark-based, to increase the robustness of
the map during autonomous navigation, and enhance the accuracy of pose estimation.

2.6 Conclusion

In this chapter, we first gave the reader a glimpse of the history of SLAM, where
we focused on showing the gradual increasing need for Simultaneous Localization And
Mapping over time, to replace incomplete techniques like odometry. In the section that
follows, we explained how a SLAM method is made of two components, the frontend
and the backend components, and presented the main role of each one. Subsequently,
we tried to draw the reader’s attention to how vast the SLAM problem can be, and
we presented two possible classifications of SLAM (LIDAR-SLAM vs V-SLAM and 2D
SLAM vs 3D SLAM), and insisted on the advantages and disadvantages of each category
of SLAM. Then, we presented two approaches to solving the SLAM problem, a filtering
approach (EKF-SLAM) and a smoothing approach (PGO SLAM). Finally, we presented
three types of map representations, along with the strengths of each one. The overview of
SLAM presented in this chapter was purposely light and shallow, as this is not the main
focus of our work, and a more detailed overview of SLAM would’ve taken many more
pages to present. However, we tried to provide some references in the different topics that
we introduced in order to fill the gaps of the chapter.

33



Chapter 3

Lie groups for Robotics



Chapter 3. Lie groups for Robotics

3.1 The power of Lie theory

By the end of the 19th century, the Norwegian mathematician Sophus Lie gave birth
to a theory for continuous transformation groups, namely, Lie groups. For being highly
abstract concepts, they have been reserved for the most seasoned mathematicians or served
as a partially understood tool for chemists and physicists for a considerable amount of
time [60]. It is only during the last couple of years that efforts have been made to break
down the level of abstraction of Lie theory and bring it within the reach of researchers in
various fields of study and even undergraduate students. To our knowledge, two of the
most significant contributions towards this direction are the ”Naive Lie Theory” book
by John Stillwell [60], and the ”Very Basic Lie Theory” article by Roger Howe [61].
The idea that the structure of a nonlinear space (the manifold of the Lie group) can
be almost entirely recovered from a linear vector space (the Lie algebra) and a binary
operation (the Lie bracket) has caught the interest of many fields, especially where state
estimation is needed (e.g. in robotics). Therefore, several efforts have been made to bring
Lie theory even closer to the robotics community and to make it easier to use in solving
state estimation problems such as SLAM ([7], [62]–[64]). To do so, and because state
estimation only requires a subset of Lie theory, these works intentionally omitted a large
part of it in order to help roboticists focus only on the essential.

Figure 3.1: An intuitive representation of the relationship between the Manifold M and
its Lie algebra TEM

In this chapter, we will be even more selective than the above-mentioned works in
choosing what to introduce from Lie theory, since we are more interested in reducing the
learning curve of the reader rather than leveraging the full potential of this theory. We
will try to tackle the subject from a modest roboticist point of view and introduce the
must-know concepts of Lie theory in an intuitive way, and only focus on Matrix Lie groups
that are used in robotics to represent orientations and poses of rigid bodies. The chapter
itself should be very light in content, as we want it to be pleasant to read so that we can
draw the reader’s attention to what we believe to be the real power of Lie theory, which is
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perfectly described by Roger Howe in [61] when he talked about the source of power of Lie
theory : ”The essential phenomenon of Lie theory is that one may associate in a natural
way to a Lie group G its Lie algebra g. The Lie algebra g is first of all a vector space
and secondly is endowed with a bilinear nonassociative product called the Lie bracket [...].
Amazingly, the group G is almost completely determined by g and its Lie bracket. Thus,
for many purposes, one can replace G with g. Since G is a complicated nonlinear object
and g is just a vector space, it is usually vastly simpler to work with g. [...] This is one
source of the power of Lie theory”. Meaning that we can leverage the exact relationship
between the nonlinear Manifold defining the elements of the Lie group and its respective
linear Lie algebras by moving back and forth between the two spaces using the exponential
and logarithm maps (see Fig. 3.1) to do calculus and other mathematical operations on
the Lie algebra, and express the final results on the nonlinear manifold. The argument
just stated, together with the fact that Matrix Lie groups are very handy for modeling
states and measurements in one bundle, illustrates how one can precisely and effectively
model complex nonlinear dynamics and design nonlinear observers that imitate the true
nature of the problem to be optimized (e.g. the SLAM problem) using Lie theory.

The material of this chapter is organized as follows : first, we introduce a Lie group
as a regular group endowed with a smooth manifold, and we define the properties of
both concepts. Afterwards, we define the must-know concepts of Lie theory and their
properties, while giving practical examples of their application in robotics when appropri-
ate. Finally, we will end by introducing two of the most popular Lie groups in robotics,
namely, the special orthogonal group SO(3)1, and the special euclidean group SE(3)2

and we will define all the already-introduced concepts in these two groups.

3.2 What is a Lie group?

A very popular and yet very abstract definition of a Lie group states that a Lie group
is a regular group which is also a smooth manifold. To understand this definition, we first
need to know what is considered as a group? and what is a manifold defined by?
First, a group is a combination of a set G and a composition operation ◦, denoted (G, ◦).
For elements of the group X ,Y ,Z ∈ G, a valid group must satisfy the following axioms :

1. Closure under ’◦’ : X ◦ Y ∈ G

2. Identity E : E ◦ X = X ◦ E = X

3. Inverse X−1 : X−1 ◦ X = X ◦ X−1 = E

4. Associativity : (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z)

meaning that (1) all the compositions of elements of the group remain in the group, (2)
every element of the group has an inverse element that also belongs to the group, (3) one
of the elements of the group is the identity element, and (4) is a basic associativity rule.

Second, a manifold is a topologically curved n-dimensional surface that is constructed
by all the elements of the group. And it is said to be smooth or differentiable when it

1The special orthogonal group SO(3) is the group of 3×3rotationmatrices.
2The special euclidean group SE(3) is the group of rigid-bodies motions.
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has a shape that has no spikes or edges. One can visualize a smooth manifold as a 3-
dimensional sphere3 contained in a higher dimension. One important implication of the
smoothness of the manifold is the existence of a unique tangent space at each state, which
is a vector space that allows calculus. As we will see later in this chapter, the manifold
of the group of rotation matrices represents every possible orientation that a vehicle can
have, and the tangent space at different states represents the possible angular velocities
at that particular state.

Hence, Lie groups join forces of linear algebra and calculus in some way. On the one
hand, they allow us to do calculus on tangent spaces, and on the other hand, the global
properties of the group allow us to do composition of elements all across the manifold.

3.3 Group actions in robotics

What makes Lie groups so useful in robotics is their ability to act on elements of other sets
and transform them. In robotics, for example, some Lie groups can rotate rigid bodies,
translate them or even scale them. This ability to act on other sets is defined by the
group action.
Let G a Lie group, S a set, and let X ,Y ∈ G, x ∈ S. And let 〈·〉 be the action of G on S,
such that X · x ∈ S, then it must have the following properties to be considered a valid
group action :

1. Identity : E · x = x

2. Compatibility : (X ◦ Y) · x = X · (Y · x) ∈ S

In robotics, the group of rotations and the group of rigid-body motions act on vectors
through matrix multiplication to create new vectors (we will see this more in depth when
we will introduce these groups).

3.4 Tangent spaces and the Lie algebra

What Stillwell’s [60] describes to be ”The miracle of Lie theory” is the capacity of
capturing a curved complex object, i.e. the Lie group, by a flat one, i.e. the tangent
space at the identity. An intuitive way to visualize what a tangent space is, is to consider
a point X (t) moving on the manifold of a Lie group M, then its time derivative Ẋ
represents the velocity of that point, and it belongs to the tangent space [62] (see Fig.
3.2). The tangent space at a state X is denoted TXM, and since the manifold of a Lie
group is differentiable, there is only one distinct tangent space at each state, although the
structure of the tangent space remains the same at every state described by the manifold.
For multiplicative groups, the elements of the tangent space are defined as follows :

Ẋ = X ς∧ ; X ∈ G, ς∧ ∈ g (3.1)

Such result can be obtained by taking the time derivative of the constraint XX−1 = E
3It is important to note that a 3-dimensional sphere is not a Lie group. However, a 4-dimensional

hypersphere is. We represent a manifold as a 3D sphere only for the sake of visualization
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Figure 3.2: An illustration of the tangent space at a state X

We consider the Lie algebra g of a Lie group G to be the tangent space of its manifold
M at the identity element, we also denote it TEM, and it has the following properties :

1. The Lie algebra g of a Lie group G is the vector space tangent to the manifold of
the group at the identity.

2. The dimension of g, which we note m, is defined by the number of degrees of freedom
of M.

3. Since g is an m-dimensional vector space, all its elements can be described by a
vector in Rm.

4. We can transform elements back and forth between g and G through the exponential
and the logarithm maps.

5. g is also closed under a binary operation called the Lie bracket.

6. The structure of the Lie algebra g can be defined by time differentiating the inverse
constraint of G : X ◦ X−1 = E

7. Elements of g can be thought of as all possible values of Ẋ when X is the identity
of G [65].

3.4.1 The ∨ and ∧ operators

Elements of the Lie algebra are sometimes given in complex and tedious-to-manipulate
structures4, but since the Lie algebra is a vector space, and its elements are described by
m-vectors, it can be useful to use the generators [62] of the Lie algebra and those of the
m-dimensional Cartesian space Rm to move back and forth from g and Rm and vice versa.

4Elements of the Lie algebra of rotation matrices are skew symmetric matrices. And the Lie algebra
of the homogenous transformation matrices group has an even more complex structure.

38



Chapter 3. Lie groups for Robotics

Such maps are called hat (·)∧ and vee (·)∨. Consider ς ∈ Rm, then, the two maps or
isomorphisms are given by:

Hat : Rm → g; ς 7→ ς∧ =
m∑
i=1

ςiEi (3.2)

V ee : g→ Rm; ς∧ 7→ (ς∧)∨ =
m∑
i=1

ςiei (3.3)

Where Ei are the generators of the Lie algebra and ei the base of the m-dimensional
Cartesian space (e∧i = Ei). In other words, the ∧ operator describes elements of the Lie
algebra, and the ∨ operator cancels the ∧. These transformations can be very useful since
vectors are more convenient to use than the elements of the Lie algebra, whose structure
can be complex. For example, we can easily calculate the Jacobian of a manipulator simply
by stacking the screw vectors5 of its joints as the columns of the Jacobian, however it is
necessary to have their counterparts in the Lie algebra to calculate the forward kinematics
of the manipulator.

3.5 The exponential and logarithm maps

We define the matrix exponential and the matrix logarithm by their respective infinite
series for square matrices, with ‖A‖ < 1:

exp(A) = I + A+
A2

2!
+

A3

3!
+ ... (3.4)

log(I + A) = A− A2

2
+

A3

3
− A4

4
+ ... (3.5)

These two matrix functions play a central role in Lie theory for matrix Lie groups, as
they allow integrating elements of the Lie algebra to the manifold, and vice versa. The
matrix exponential appears when integrating the ODE (3.1), which gives :

X (t) = X (0) exp(ς∧t) (3.6)

Since both X (t) and X (0) are in G, then exp(ς∧t) must be in G. And since ς∧ is in g, we
say that the exponential maps elements from g to elements from G. Also, if ς∧ is close
enough to zero, then :

log(exp(ς∧)) = ς∧ (3.7)

We can easily verify this by expanding the infinite series of both functions. From this,
we infer the fact that the logarithm map is the inverse function of the exponential map.
Hence, we can write :

exp : g→ G; ς∧ 7→ X = exp(ς∧) (3.8)
log : G → g; X 7→ ς∧ = log(X ) (3.9)

5Screws are unitary twists, which are the 6-vectors that define the Lie algebra of the homogenous
transformation group.
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It is worth mention again that the exponential map is a general concept in Lie theory
and that the matrix exponential is the same as the exponential map in our case because
we are only interested in matrix Lie groups. Otherwise, the matrix exponential and the
exponential map represent two different things [66].

Furthermore, consider A,B ∈ g and X ∈ G, then the matrix exponential satisfies the
following properties :

1. d
dt

exp(At) = A exp(At) = exp(At)A

2. exp(A) exp(B) = exp(A+B)⇐⇒ AB = BA

3. exp(iA) exp(jA) = exp((i+ j)A) ; i, j ∈ R

4. exp(A)t = exp(At)

5. exp(A)−1 = exp(−A)

6. exp(XAX−1) = X exp(A)X−1

We also consider a vectorized version of the exponential and the logarithm matrices,
which are used to map vectors from Rm directly to the group (see 3.3), and which we
denote Exp and Log, respectively :

Exp : Rm → G; ς 7→ X = Exp(ς) (3.10)
Log : G → Rm; X 7→ ς = Log(X ) (3.11)

Figure 3.3: The mapping of the different spaces of a Lie group

3.6 The Lie bracket

As we mentioned earlier, the true power of Lie theory lies in the ability of captur-
ing the complex structure of the manifold defining the Lie group G, only by looking at
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the properties of its Lie algebra g, and this is only possible because g is closed under
the Lie bracket operation. As we saw in earlier sections, considering X,Y ∈ g, then
exp(X) exp(Y) = exp(X+Y) if and only if XY = YX. This means that the sum operation
only captures the structure of groups endowed with commutative operations. However, as
demonstrated in the Baker–Campbell–Hausdorff formula presented below, the behavior
of non-commutative groups can only be inferred by the Lie bracket (which is always zero
on the tangent space of a commutative group [60]).

The Lie bracket of two elements X,Y ∈ g is denoted [X,Y] and is given by :

[X,Y] = XY− YX (3.12)

Considering X,Y,Z ∈ g and a, b ∈ R, then the elements of the Lie algebra under its Lie
bracket must satisfy the following identities [61], [63]:

• closure : [X,Y] ∈ g

• bilinearity : [aX+ bY, Z] = a[X,Z] + b[Y,Z]; [Z, aX+ bY] = a[Z,X] + b[Z,Y]

• skew symmetry : [X,Y] = −[Y,X]

• alternating : [X,X] = 0

• Jacobi identity : [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0

3.6.1 The Baker–Campbell–Hausdorff Theorem

There is a very interesting relationship between the Lie bracket and the exponen-
tial map defined by the Baker–Campbell–Hausdorff formula that states that we can in-
fer the product of two elements in G which are close enough to the identity, by the
Lie bracket of two elements in g. In other words, we can determine the value of Z =

log(exp(X) exp(Y)) ∈ g such that Z is only expressed by X,Y and their Lie bracket. We
can prove this by expanding the logarithm and the two exponential terms into their Taylor
series :

exp(X) = I + X+
X2

2!
+

X3

3!
+ ... (3.13)

exp(Y) = I + Y+
Y2

2!
+

Y3

3!
+ ... (3.14)

log(I +Ψ) = Ψ− Ψ2

2
+

Ψ3

3
− Ψ4

4
+ ... (3.15)

41



Chapter 3. Lie groups for Robotics

By only considering terms of second order and below :

Z = log(exp(X) exp(Y))

= log((I + X+
X2

2!
+ ...)(I + Y+

Y2

2!
+ ...))

= log(I + X+ Y+ XY+
X2

2!
+

Y2

2!
+ ...︸ ︷︷ ︸

Ψ

)

= (X+ Y+ XY+
X2

2!
+

Y2

2!
+ ...)− 1

2
(X+ Y+ XY+

X2

2!
+

Y2

2!
+ ...)2

= (X+ Y+ XY+
X2

2!
+

Y2

2!
+ ...)− 1

2
(X2 + Y2 + XY+ YX+ ...)

= X+ Y+
1

2
(XY− YX︸ ︷︷ ︸

[X,Y]

+...)

Therefore :

Z = X+ Y+
1

2
[X,Y] + ξ (3.16)

Which completes the proof up to the second order terms, with ξ containing higher order
terms of the Taylor series.

In our demonstration, we just considered terms up to the second order, however it is
important to know that the Lie bracket operation is enough to express all the higher order
terms of Z. We will not prove this point, but we redirect readers who are curious about
this to Eichler’s demonstration, which is way lighter to digest than the one proposed by
Baker, Campbell and Hausdorff. Also, [66] expanded the Taylor series to the 4th order,
and [61] showed that the remaining term ξ was upper bounded by 65(‖X‖+ ‖Y‖)3.

A practical use of such a result is the ability to generate smooth trajectories (we will
see this in more details when we introduce the special euclidean group SE(3)).

3.7 From mathematical abstraction to the real world

Until now, we introduced Lie theory as a set of pure mathematical concepts, even
though we tried to break down the level of abstraction the best we could. However,
the only way to effectively and correctly use the tools that Lie theory provides is by
understanding their physical meaning. For example, it is because we specifically know
how elements of SE(3) describe orientations and positions and how elements of its Lie
algebra represent linear and angular velocities that we can understand how to use them
properly to solve robotics problems.

In this section, we will introduce two of the most popular matrix Lie groups in robotics,
the special orthogonal group SO(3), and the special euclidean group SE(3). And we will try
to describe all their properties from a geometric point of view (orientations and positions),
as well as from a mechanical point of view (displacements and velocities), so that the
reader can build a practical intuition about the usefulness of these two groups.
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3.7.1 The special orthogonal group SO(3)

Suppose we want to describe the orientation of a vehicle with respect to an inertial
frame, which we denote {I}. One convenient way to do that in 3-dimensional space is by
attaching a frame that describes the position and orientation of the vehicle at any time,
which we call “body frame {B}”, and then express all its unitary vectors in {I}. Say for
example that our body frame is initially perfectly aligned with the inertial frame, then
we perform a rotation around the x̂B axis by an angle of θ, followed by a rotation around
ẑB by φ (see Fig. 3.4).

Figure 3.4: Rotation of a body frame with respect to an inertial frame.

Then we would express the vectors of {B} as follows :

x̂B = cosφ x̂I + sinφ cos θ ŷI + sinφ sin θ ẑI (3.17)
ŷB = − sinφ x̂I + cosφ cos θ ŷI + cosφ sin θ ẑI (3.18)
ẑB = − sin θ ŷI + cos θ ẑI (3.19)

If we now stack the 3 vectors into a 3× 3 matrix R :

R =
[
x̂B ŷB ẑB

]
=

 cosφ − sinφ 0

cos θ sinφ cos θ cosφ − sin θ

sin θ sinφ sin θ cosφ cos θ

 (3.20)

The matrix R is an example of a 3 × 3 rotation matrix. We can express elements of
the rotation matrix (3.20) rij as a dot product between two unitary vectors of the inertial
and body frames :

R =

x̂B · x̂I ŷB · x̂I ẑB · x̂I
x̂B · ŷI ŷB · ŷI ẑB · ŷI
x̂B · ẑI ŷB · ẑI ẑB · ẑI

 (3.21)

Now, let’s consider a general rotation matrix A :

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (3.22)

It is clear that a 3× 3 rotation matrix has 9 entries. However, since a rotation matrix is
composed of 3 unitary vectors, that are orthogonal two by two, the following constraints
must be satisfied :
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• The unit norm condition :

a211 + a221 + a231 = 1 (3.23)
a212 + a222 + a232 = 1 (3.24)
a213 + a223 + a233 = 1 (3.25)

• The orthogonality condition :

a11a12 + a21a22 + a31a32 = 0 (3.26)
a11a13 + a21a23 + a31a33 = 0 (3.27)
a12a13 + a22a23 + a32a33 = 0 (3.28)

These constraints can be expressed more compactly as follows :

ATA = I (3.29)

Additionally, from the last 6 constraints we conclude that det(A) = ±1. To guarantee
proper rotations6 we choose det(A) = 1.
With all this, we can finally derive a complete definition of the SO(3) group.

3.7.1.1 Definition of SO(3)

The special orthogonal group is the group of rotations whose composition operation
is the matrix multiplication, and it is defined as follows :

SO(3) = {R ∈ R3×3 | RTR = I, det(R) = 1} (3.30)

Consider R1,R2,R3 ∈ SO(3), then all group axioms must be satisfied as proved below :

1. Closure : R1R2 ∈ SO(3)

Because :

(R1R2)
T (R1R2) = RT

2 RT
1R1︸ ︷︷ ︸
I

R2

= RT
2R2 = I

and :

det(R1R2) = det(R1) det(R2) = 1

2. Associativity : R1(R2R3) = (R1R2)R3

This property follows from the associative nature of the matrix multiplication.

3. Identity : R1I = IR1 = R1

The identity element of the group is simply the 3-identity matrix.

6A proper rotation is a simple rotation around an axis, whereas an improper rotation is a rotation
followed by a reflection in a mirror plane
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4. Inverse : R1R−1
1 = R−1

1 R1 = I

Simply because :

RT
1R1 = I =⇒ R−1 = RT

=⇒ det(RT
1 ) = det(R−1

1 ) = 1

Additionally, it turns out that elements of this group form a smooth manifold. Therefore,
we can safely say that the special orthogonal group is a Lie group.

3.7.1.2 Angular velocities and the Lie algebra of SO(3)

Suppose we are rotating the body frame {B}, whose axes are {x̂B, ŷB, ẑB}, around
an arbitrary axis ϖ = ϖ̂‖ϖ‖. Also consider R to be the rotation matrix describing the
orientation of {B} with respect to an inertial frame {I}, and Ṙ its rate of change. By
expressing ϖ in the inertial frame, it should be clear from Fig.3.5 that :

˙̂xB = ϖI × x̂B (3.31)
˙̂yB = ϖI × ŷB (3.32)
˙̂zB = ϖI × ẑB (3.33)

Figure 3.5: Angular rate of change of the body frame’s axes

To get rid of the cross product, we introduce the 3×3 skew-symmetric matrix :

[Ψ] =

 0 −Ψ3 Ψ2

Ψ3 0 −Ψ1

−Ψ2 Ψ1 0

 ; Ψ =
[
Ψ1 Ψ2 Ψ3

]T (3.34)

such that Ψ× α = [Ψ]α. We can now right (3.32)-(3.33) in a more compact form :[
˙̂xB ˙̂yB ˙̂zB

]︸ ︷︷ ︸
Ṙ

= [ϖI ]
[
x̂B ŷB ẑB

]︸ ︷︷ ︸
R

(3.35)

Ṙ = [ϖI ]R (3.36)
[ϖI ] = ṘR−1 (3.37)
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Considering ϖB = RTϖI , we can express Ṙ in terms of [ϖB] :

[ϖB] = [RTϖI ]

= RT [ϖI ]R
= RT (ṘRT )R
= RT Ṙ = R−1Ṙ

Therefore, we write :

Ṙ = R[ϖB] (3.38)

Following the definition of Lie algebra, we can see that if R = I, then Ṙ = [ϖB] is the
Lie algebra of SO(3), which we denote so(3). From the mechanical point of view, [ϖ] can
be seen as all the possible angular velocities when R = I.

3.7.1.3 Definition of so(3)

We define the Lie algebra of SO(3) as all the 3× 3 skew-symmetric matrices :

so(3) = {ϖ∧ = [ϖ] ∈ R3×3 | ϖ ∈ R3} (3.39)

And it has the following properties :

1. so(3) is a 3-dimensional vector space since the group SO(3) has 3 degrees of freedom
(9 entries - 6 constraints).

2. All elements of so(3) are described by 3-vectors representing possible angular veloc-
ities.

3. We can infer the result of chaining multiple rotations only from the Lie algebra
using the Lie bracket.

R.q. For the SO(3) group, we use the ∧ and the ∨ to transform a 3-vector into its
corresponding skew-symmetric matrix and vice versa. Also, now that we know that
[ϖ] ∈ so(3), we will refer to it as ϖ∧ for the sake of consistency.

3.7.1.4 The exponential and logarithm maps

By integrating (3.38), we obtain :

R(t) = R exp(ϖ∧t) (3.40)

We will replace t by θ to express angles instead of times :

R(θ) = R exp(ϖ∧θ) (3.41)

as we proved earlier, the exponentiation of an element of the Lie algebra belongs to the
Lie group, so exp(ϖ∧θ) ∈ SO(3). Now, by expanding the exponential to its infinite series,
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we observe that (ϖ∧)3 = −ϖ∧, (ϖ∧)5 = −(ϖ∧)3 = ϖ∧... and that (ϖ∧)4 = −(ϖ∧)2..., we
can write:

exp(ϖ∧θ) = I +ϖ∧θ +
(ϖ∧)2

2!
θ2 + ...

= I + (θ − θ3

3!
+

θ5

5!
...)ϖ∧ + (

θ2

2!
− θ4

4!
+ ...)(ϖ∧)2

the use of the series expansion of cos θ and sin θ leads us to the final result :
exp(ϖ∧θ) = I + sin θϖ∧ + (I − cos θ)ϖ∧ ∈ SO(3) (3.42)

This formula is known as the Rodrigues’ formula for rotations. Knowing the axis and the
angle of rotation, one can recover the rotation matrix using this formula.

Now we will do the work the other way around. Starting from a rotation matrix, we
define the axis and the angle of rotation that would lead to this rotation matrix. We
will provide the final result of the logarithm map without proving it, but we redirect the
reader to [65] for more details : {

log(R) = R−RT

2 sin θ

θ = cos−1 (tr(R)−1)
2

(3.43)

Note that if θ = 0, the axis of rotation cannot be determined. Which makes sens because
the frame did not move.

To sum up, given an axis and an angle of rotation, one can recover the rotation matrix
through the exponential map. And given a rotation matrix, we can infer the axis and
angle of rotation via the logarithm map.

3.7.2 The special euclidean group SE(3)

Until now, we have only been interested in expressing the orientation of our body
frame {B}. However, in order to describe complete poses of our vehicle, we need to find
a way to express both orientations and positions in a handy way. For example, how can
we describe both the orientation and position of the body frame with respect to {I} in
Fig.3.6?

Figure 3.6: 3D pose representation
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We can express such a representation by stacking a rotation matrix and a position
vector into a single matrix :

T =

[
R p

0T3 1

]
(3.44)

This is an example of a homogeneous transformation matrix. This type of matrices are
the elements of the SE(3) group.

3.7.2.1 Definition of SE(3)

The special euclidean group, whose composition operation is the matrix multiplication,
is defined as follows :

SE(3) = {T =

[
R p

0T3 1

]
∈ R4×4 | R ∈ SO(3), p ∈ R3, 03 ∈ R3} (3.45)

Again, we will prove that elements of this group satisfy all the group axioms. Consider
T1, T2, T3 ∈ SE(3), then, the following must verify :

1. Closure : T1T2 ∈ SE(3)

Because :

T1T2 =

[
R1 p1
0T3 1

] [
R2 p2
0T3 1

]
=

[
R1R2 R1p2 + p1
0T3 1

]
since R1R2 ∈ SO(3) and R1p2 + p1 ∈ R3, then T1T2 ∈ SE(3).

2. Associativity : T1(T2T3) = (T1T2)T3

Same as for SO(3), this property follows from the associative nature of the matrix
multiplication.

3. Identity : T1I = IT1 = T1

The identity element of the group is simply the 4-identity matrix.

4. Inverse : T1T
−1
1 = T−1

1 T1 = I

If we calculate T−1
1 , we find that :

T−1
1 =

[
R1 p1
0T3 1

]−1

=

[
RT

1 −RT
1 p1

0T3 1

]
(3.46)

Again, since RT ∈ SO(3) and −RTp1 ∈ R3, then T−1
1 ∈ SE(3).

3.7.2.2 linear and angular velocities and the Lie algebra of SE(3)

We derived the structure of so(3) using basic geometry and applied mechanics (an-
gular velocities, axes of rotations, cross product...). This time, we will make use of some
group properties for the sake of variety. By time-differentiating the inverse constraint of
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multiplicative groups, we can find the structure of se(3) which we denote Φ∧ :

Φ∧ = T−1Ṫ (3.47)

=

[
RT −RTp

0T3 1

] [
Ṙ ṗ

0T3 0

]
(3.48)

=

RT Ṙ︸ ︷︷ ︸
ϖ∧

B

RT ṗ︸︷︷︸
vB

0T3 0

 (3.49)

=

[
ϖ∧

B vB
0T3 0

]
(3.50)

We have already seen that ϖ∧
B is the matrix representation of angular velocity expressed

in the {B} frame. Similarly, vB is the linear velocity of the vehicle expressed in the body
frame. A complete definition of se(3) can be now derived.

3.7.2.3 definition of se(3)

The Lie algebra of the special euclidean group is defined as follows :

se(3) = {Φ∧ =

[
ϖ∧ v

0T3 0

]
∈ R4×4 | ϖ ∈ so(3), v ∈ R3} (3.51)

And it has the following properties :

1. se(3) is a 6-dimensional vector space since the group SE(3) has 6 degrees of freedom
(12 entries - 6 constraints).

2. All elements of se(3) are described by 6-vectors, which we call velocity twists V .7

3. We can infer the result of chaining multiple transformations only from the Lie
algebra using the Lie bracket. (see Fig.3.7).

4. Elements of se(3) can be thought of as all possible linear and angular velocities
when T = I.

Figure 3.7: Smooth path generation using the Lie bracket
7Twists are 6-vectors describing angular and linear velocity in 3D space.
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3.7.2.4 The exponential and logarithm maps

Just as we did a separation between the axis and angle of rotation when deriving the
exponential map for rotations, we introduce the notion of screw vectors [65], which are
unitary twists, and which allow us to do just the same.

Consider a twist :

V =

[
ϖ

v

]
= Sθ (3.52)

Such that S is a screw axis, and θ the angle of rotation around it. We define the screw
axis as follows :

• If ‖ϖ‖ 6= 0 :

S =

[
ϖ

∥ϖ∥
v

∥ϖ∥

]
(3.53)

• If ‖ϖ‖ = 0 and ‖v‖ 6= 0 :

S =

[
03
v

∥v∥

]
(3.54)

Now we can write the infinite series of the exponential as follows :

exp(S∧θ) = I + S∧θ +
(S∧)2

2!
θ2 + ... (3.55)

=

[
exp(ϖθ) ρ(θ)v

0T3 1

]
(3.56)

with :

ρ(θ) = Iθ + (1− cos(θ))ϖ∧ + (θ − sin θ)(ϖ∧)2 (3.57)

Therefore, given an arbitrary twist, we can recover its transformation matrix following
these two cases :

• If ‖ϖ‖ 6= 0 :

T =

[
exp(ϖθ) (Iθ + (1− cos(θ))ϖ∧ + (θ − sin θ) (ϖ∧)2)v

0T3 1

]
(3.58)

• If ‖ϖ‖ = 0 and ‖v‖ 6= 0 :

T =

[
I θv

0T3 1

]
(3.59)

Now again, the other way around, given a transformation matrix we derive the logarithm
map to recover the screw axis and the angle of rotation as follows [65]:
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• If R = I then ‖ϖ‖ = 0, v = p
∥p∥

• Otherwise, we use the logarithm map for SO(3) to recover ϖ and θ, and we get v

as follows :

v = ρ(θ)−1p (3.60)

with :

ρ(θ)−1 =
1

θ
I +

1

2
ϖ∧ +

(
1

θ
− 1

2
cot θ

2

)
(ϖ∧)2 (3.61)

We now derived a way to move between SE(3) and se(3). Meaning that given an
arbitrary twist, we can recover the resulting transformation matrix. And, inversely, given
a transformation matrix, it is possible for us to extract the components of the screw
vector, which are the angular and linear velocity, as well as the angle of rotation around
the screw axis.

3.8 Conclusion

In this chapter, we tried to provide a light but complete introduction to Lie theory
from a modest roboticist point of view. We were highly inspired by ([7], [62]–[64]) in
selecting the material of the chapter, and by [65] in providing the physical interpretation
of most of the abstract mathematical concepts of Lie theory. We tried to present Lie
theory in a way that is beginner-friendly, by providing illustrations and giving robotics
examples of some concepts when possible. We also tried to share some very interesting
physical interpretations that we found in [65] and that allowed us to develop a certain way
of thinking about Lie theory that made it more intuitive for us. We started by defining
a Lie group as well as its properties, then we showed how they can act on other sets. We
then introduced the notion of tangent spaces and Lie algebras. Subsequently, we defined
the exponential and logarithm maps that allow the transition between the manifold of
the Lie group and its Lie algebra, and we emphasized on how we can infer the behavior
of elements in the manifold (which is nonlinear) only from elements of the Lie algebra
(which is linear) and using the Lie bracket. Finally, and with the aim of transiting from
the abstract mathematical world to a practical use of Lie theory, we introduced two of the
most used Lie groups in robotics, namely, the Special Orthogonal group and the Special
Euclidean group, and we made sure to emphasize on the geometrical and mechanical
impact that these two groups have.
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Introduction

As we saw in the literature review chapter, several solutions were developed over the
years to solve the SLAM problem, and the fact that they were made using a linearized
motion model makes them subject to numerous problems like the high time complexity1

and the lack of accuracy engendered by the linearization of the kinematics.
In this chapter, we will introduce a Nonlinear Observer for SLAM on a Matrix Lie

Group, presented in [1]. Contrastingly to the old SLAM problem solutions, this approach,
which makes a good use of the Lie theory, helps in preserving the non-linear properties of
the motion model without any need for linearization, and reducing the time complexity
through acting on a linear space (the Lie algebra) instead of directly acting on the non-
linear space describing the dynamics of the system, and which are represented using a Lie
group. First, we will start by introducing the mathematical tools needed for the reader to
understand the theoretical proof, namely, the Lie group and its associated Lie algebra used
throughout this chapter, as well as the 3D motion model. Next, we will mathematically
prove how the observer is constructed and present the used theorems. Finally, we will
write the algorithms of the two observers with and without velocity biases, (6) and (5)
respectively, for the reader to have an idea on how to use it in practice.

4.1 Nonlinear Observer Design for SLAM on a Ma-
trix Lie Group

In the work presented in [1], a non-linear observer is developed to estimate both the pose
of a vehicle, along with the location of some surrounding landmarks. The mathematical
development, which will be explained in the coming section, is performed on a matrix
that belongs to the SE1+n(3) Lie group, which will later be defined, where it contains the
pose of the vehicle and the location of the landmarks at every instant t, relative to the
inertial frame. In order to observe the state, we will use the input matrix U ∈ se1+n(3),
the location of the landmarks with respect to the body frame, which we assume available
for measurement using a camera, and a correcting term, which will be designed later on.

4.1.1 Mathematical background

We define the sets of real and natural numbers as R and N , respectively. The frobenius
norm is defined for a real valued n ×m matrix G, as ‖G‖F =

√
〈〈G,G〉〉, where n,m ∈

N, while the operation 〈〈, 〉〉 is called inner product and defined for two given matrices
A,B ∈ Rn×m as 〈〈A,B〉〉 = tr(ATB) . The n× n identity matrix is denoted In, and the
ith column of In is denoted ei, for i ∈ 0, 1...n. The n dimensional column zero vector is
denoted 0n, while 0n×m describes the n×m zero matrix.

We denote T (R, p,L) ∈ SE1+n(3) as the transformation matrix on Lie group SE1+n(3),
where R ∈ SO(3) is a 3 × 3 rotation matrix which represents the rotation of the body

1Based on the study made in [67], the worst time complexity for the EKF SLAM is O(n3) for n
landmarks, where it can be reduced in some cases to O(n2).
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frame (which also corresponds to the rotation of the measurement tool, in our case the
camera), p is a 3 × 1 vector which represents the location of the body frame, and L is a
3×n matrix which contains the locations of the n landmarks in the form L = (l1, l2, ..., ln).
The matrix T is introduced as:

T (R,L, p) =

 R p L
01×3 1 01×n

0n×3 0n In

 (4.1)

The Lie algebra associated with T is denoted U ∈ se1+n(3), it represents a compact
form containing the angular Ω ∈ so(3) and translational v ∈ R3 velocities of the body
frame with respect to the body frame, and also the velocities of the landmarks. We denote
the velocity of the ith landmark with respect to the body frame vi ∈ R3 , we will next use
the 3× n matrix v =

[
v1 v2 ... vn

]
to represent all the landmarks’ velocities in a more

compact form.

U =

[
Ω v v

0(n+1)×3 0n+1 0(n+1)×n

]
(4.2)

We define X,X1, X2 ∈ SE1+n(3), where we can easily verify that SE1+n(3) respects the
properties of a Lie group: X−1 = T (RT ,−RTp,−RTL) ∈ SE1+n(3), X1X2 ∈ SE1+n(3)

and X1X
−1
1 = In+4.

For a (n+4)×(n+4) real valued matrix M =

[
A1 A2

A3 A4

]
, where A1 ∈ R3×3, A2 ∈ R3×(n+1),

A3 ∈ R(n+1)×3, and A4 ∈ R(n+1)×(n+1), we define the function P : R(n+4)×(n+4) → se1+n(3)

P(M) =

[
Pa(A1) A2

0(n+1)×3 0(n+1)×(n+1)

]
(4.3)

where : Pa : R3×3 → so(3), and defined as Pa(A1) = (A1 − AT
1 )/2

We will next define the adjoint function adX : SE1+n(3)× se1+n(3)→ se1+n(3)

adX(U) = XUX−1 (4.4)

The tangent space at an element X ∈ SE1+n(3) is denoted

TXSE1+n(3) := {XU ∈ SE1+n(3)|X ∈ SE1+n(3), U ∈ se1+n(3)}

we define the Riemannian metric 〈, 〉X : TXSE1+n(3)× TXSE1+n(3) −→ R as:

〈XU1, XU2〉X = 〈〈U1, U2〉〉 (4.5)

For a smooth differentiable function h : SE1+n(3) −→ R, its gradient denoted ∇Xh ∈
TXSE1+n(3) relative to the Riemannian metric 〈, 〉X is defined as :

ḣ = 〈∇Xh, Ẋ〉X = 〈〈X−1∇Xh,X
−1Ẋ〉〉 (4.6)
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Let {B} be the body frame attached to the vehicle, and {I} be the inertial frame as
demonstrated in (Fig. 4.1). vi represents the translational velocity of the ith landmark
with respect to the body frame {B}, v the translational velocity of the vehicle with respect
to {B}, Ω = ω∧ where Ω ∈ so(3) is the skew-symmetric representation of ω ∈ R3 which
represents the angular velocity of the body frame with respect to {B}, R ∈ SO(3) is a
3× 3 rotation matrix with respect to {I}, p ∈ R3 is the location of the body frame with
respect to {I}, and li defines the location vector of the ith landmark with respect to the
inertial frame {I}.

Figure 4.1: Graphical demonstration of the V-SLAM problem

For some given velocities Ω, v, and vi, the 3D non-linear velocity motion model is
defined as follows:

Ṙ = RΩ (4.7)
ṗ = Rv (4.8)
l̇i = Rvi ∀i ∈ (1, 2, ..., n) (4.9)

An equivalent compact form to write (4.7), (4.8), and (4.9) using X = T (R, p,L) and
U defined in (4.1) and (4.2) respectively, is as follows:

Ẋ =
d

dt

 R p L
01×3 1 01×n

0n×3 0n In


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=

[
Ṙ ṗ L̇

0(n+1)×3 0n+1 0(n+1)×n

]
=

[
RΩ Rv Rv

0(n+1)×3 0n+1 0(n+1)×n

]

=

 R p L
01×3 1 01×n

0n×3 0n In

[ Ω v v
0(n+1)×3 0n+1 0(n+1)×n

]
= XU

Ẋ = XU (4.10)

where U is assumed to be bounded and available for measurement.
We define the measurement model (4.11) as the measurement of the ith landmark with

respect to the body frame {B} :

yi = RT (li − p) (4.11)

In order to solve the SLAM problem, we have to construct another augmented (n+4)

dimensional measurement vector bi that respects the measurement model : (4.11).

yi = RT (li − p)

=
[
RT −RTp

] [li
1

] (4.12)

Combining all the landmarks’ measurements in a single 3× n matrix, gives

[
y1 y2 ... yn

]
=
[
RT −RTp

] [l1 l2 ... l3
1 1 ... 1

]

=
[
RT −RTp −RTL

] 03×n

11×n

−In

 (4.13)

Now to make the (3 × (n + 4)) matrix
[
RT −RTp −RTL

]
square and invertible we

will define bi =
[
yTi 1 −eTi

]T , to get

[
b1 b2 ... bn

]
=

 RT −RTp −RTL
0T3 1 01×n

0n×3 0n In

03×n

11×n

−In


= X−1

[
r1 r2 ... rn

] (4.14)

we finally find an equivalent measurement model (4.15) which will prove to be useful to
construct the observer :

bi = X−1ri ∀i ∈ (0, ..., n) (4.15)

where :
ri =

[
0T3 1 −eTi

]T
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4.1.2 Gradient observer without velocity biases

In this section, we will construct an observer using (4.10) to estimate the state of the
robot by measuring the surrounding landmarks with respect to the body frame.

We denote R̂(t) ∈ SO(3), p̂(t) ∈ R3, and l̂i(t) ∈ R3, i = 1, 2..., n, the estimates of
R(t) ∈ SO(3), p(t) ∈ R3, and li(t) ∈ R3 at instant t, respectively. The estimate of the
state X(t) ∈ SEn+1(3) is denoted X̂(t) ∈ SEn+1(3), where X̂ = T (R̂(t), p̂(t), l̂i(t)) and
X = T (R(t), p(t), li(t)).
Next, we will define the error X̃(t) = T (R̃(t), p̃(t), l̃i(t)) between the estimate X̂(t) and
the real state X(t) in a way that the error X̃(t) remains in the Lie group SEn+1(3).

X̃(t) = X(t)X̂(t)−1 (4.16)

We have R̃(t) = R(t)R(t)T , p̃(t) = p(t)− R̃(t)p̂(t)

We can see that: X̂(t) −→ X(t)⇒ X̃(t) −→ In+4 ⇒ X̃(t)− In+4 −→ 0(n+4)×(n+4)

Now, we consider the smooth differentiable function U : SEn+1(3) −→ R that we will
be using as a lyapunov function candidate

U(X) =
1

2
tr
(
(In+4 −X)A (In+4 −X)T

)
(4.17)

where A is a gain matrix defined as A =
∑n

i=1 kirir
T
i , implying that AT = A

We replace h with U in (4.6) and we get :

U̇(X) = 〈∇XU , Ẋ〉X = 〈〈X−1∇XU , X−1Ẋ〉〉 (4.18)

The gradient ∇XU is defined as :

∇XU = XP((In+4 −X−1)A) (4.19)

Notice that P((In+4 −X−1)A) ∈ sen+1(3) and therefore ∇XU ∈ TXSEn+1(3).
The observer proposed in [1] is the following,

˙̂
X = X̂(U −∆) (4.20)

where ∆ ∈ sen+1(3) is a correcting term that we will use to stabilize the error dynamics.
We differentiate the equation (4.16) with respect to time to get :

˙̃X =
d

dt

(
XX̂−1

)
= ẊX̂−1 +X

˙̂
X−1

(4.21)

knowing that X̂−1X̂ = In+4, we get ˙̂
X−1 = −X̂−1 ˙̂

XX̂−1, we substitute it in (4.21) to
obtain

˙̃X = ẊX̂−1 −XX̂−1 ˙̂
XX̂−1

= XUX̂−1 −XX̂−1X̂(U −∆)X̂−1

= XUX̂−1 −XUX̂−1 +XX̂−1︸ ︷︷ ︸
X̃

X̂∆X̂−1︸ ︷︷ ︸
adX̂∆

(4.22)
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we finally get
˙̃X = X̃adX̂∆ (4.23)

We now consider the following lyapunov candidate function

U(X̃) =
1

2
tr

((
In+4 − X̃

)
A
(
In+4 − X̃

)T)
(4.24)

knowing that A =
∑n

i=1 kirir
T
i , we can prove that A has the following form:

A =

 03×3 03 03×n

0T3
∑n

i=1 ki −KT

0n×3 −K Kdiag

 (4.25)

Where K =
[
k1 k2 ... kn

]T , and Kdiag = diag(KT ).
We also know that:

In+4 − X̃ =

 I3 − R̃ −p̃ −L̃
0T3 0 01×n

0n×3 0n 0n×n

 (4.26)

We substitute (4.25) and (4.26) in (4.24) :

U(X̃) =
1

2
tr

 I3 − R̃ −p̃ −L̃
0T3 0 01×n

0n×3 0n 0n×n

A

 I3 − R̃T 03 03×n

−p̃T 0 01×n

−L̃T 0n 0n×n


=

1

2
tr

 I3 − R̃ −p̃ −L̃
0T3 0 01×n

0n×3 0n 0n×n

 03×3 03 03×n∑n
i=1 kil̃

T
i −

∑n
i=1 kip̃

T 0 01×n

Kp̃T −KdiagL̃T 0n 0n×n


=

1

2
tr

 −∑n
i=1 kip̃l̃

T
i +

∑n
i=1 kip̃p̃

T − L̃Kp̃T + L̃Kdiagp̃
T 03 03×n

0T3 0 01×n

0n×n 0n 0n×n


=

1

2
tr

 −∑n
i=1 kip̃l̃

T
i +

∑n
i=1 kip̃p̃

T −
∑n

i=1 kil̃ip̃
T +

∑n
i=1 kil̃il̃

T
i 03 03×n

0T3 0 01×n

0n×n 0n 0n×n


=

1

2
tr

 ∑n
i=1 kip̃p̃

T −
∑n

i=1 kip̃l̃
T
i −

∑n
i=1 kil̃ip̃

T +
∑n

i=1 kil̃il̃
T
i 03 03×n

0T3 0 01×n

0n×n 0n 0n×n


=

1

2

n∑
i=1

ki‖p̃− l̃i‖2

and since the vector norm is preserved when applying rotations, we can write :

U(X̃) =
1

2

n∑
i=1

ki‖R̃T
(
p̃− l̃i

)
‖2 (4.27)

We define the estimation error of the ith landmark with respect to the inertial frame as :

ϵi = l̂i − p̂− R̂yi (4.28)
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we substitute (4.12) to get :

ϵi = l̂i − p̂− R̂RT (li − p)

= l̂i − p̂− R̃T (li − p)

= R̃T

p− R̃p̂︸ ︷︷ ︸
p̃

−

li − R̃l̂i︸ ︷︷ ︸
l̃i




ϵi = R̃T (p̃− l̃i) (4.29)

we substitute (4.29) in (4.27) to obtain :

U(X̃) =
1

2

n∑
i=1

ki‖ϵi‖2 (4.30)

We calculate the derivative of U(X̃) with respect to time using the definition (4.18),
and by substituting (4.19) and (4.23) we get :

U̇(X̃) = 〈〈X̃−1X̃P((In+4 − X̃−1)A), X̃−1X̃adX̂∆〉〉
= 〈〈P((In+4 − X̃−1)A), adX̂∆〉〉

We choose adX̂∆ to assure that U̇(X̃) is negative definite, by putting :

adX̂∆ = −P((In+4 − X̃−1)A)

we get :

∆ = −adX̂−1

(
P((In+4 − X̃−1)A)

)
(4.31)

we substitute (4.31) to obtain :

U̇(X̃) = 〈〈P((In+4 − X̃−1)A),−P((In+4 − X̃−1)A)〉〉
= −‖P((In+4 − X̃−1)A)‖2F

U̇(X̃) = −‖P((In+4 − X̃−1)A)‖2F (4.32)

By applying the second stability theorem of lyapunov explained in [68], we deduce that
the error dynamics become Globally uniformly asymptotically stable.

We will next prove the global exponential stability :
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P((In+4 − X̃−1)A) = P

 I3 − R̃T R̃T p̃ R̃T L̃
0T3 0 01×n

0n×3 0n 0n×n

 03×3 03 03×n

0T3
∑n

i=1 ki −KT

0n×3 −K Kdiag


= P

 03×3

∑n
i=1 kiR̃

T p̃− R̃T L̃K P
0T3 0 01×n

0n×3 0n 0n×n


= P

 03×3

∑n
i=1 kiR̃

T p̃−
∑n

i=1 kiR̃
T l̃i P

0T3 0 01×n

0n×3 0n 0n×n



= P


 03×3

∑n
i=1 kiR̃

T
(
p̃− l̃i

)
P

0T3 0 01×n

0n×3 0n 0n×n




= P

 03×3

∑n
i=1 ϵi ϵ

0T3 0 01×n

0n×3 0n 0n×n


=

 03×3

∑n
i=1 ϵi ϵ

0T3 0 01×n

0n×3 0n 0n×n


Where P = −R̃T p̃KT + R̃T L̃Kdiag, and ϵ =

[
−ϵ1 −ϵ2 ... −ϵn

]
.

P((In+4 − X̃−1)A) =

 03×3

∑n
i=1 kiϵi ϵKdiag

0T3 0 01×n

0n×3 0n 0n×n

 (4.33)

by substituting (4.33) in (4.32) we get :

U̇(X̃) = −tr


 03×3

∑n
i=1 kiϵi ϵKdiag

0T3 0 01×n

0n×3 0n 0n×n

 03×3

∑n
i=1 kiϵi ϵKdiag

0T3 0 01×n

0n×3 0n 0n×n

T


= −‖
n∑

i=1

kiϵi‖2 −
n∑

i=1

k2
i ‖ϵi‖2

≤ −λU

Where λ is a real constant, by integrating both terms we will get :

U(t) ≤ −e−λtU(0) (4.34)

thus the landmark estimation errors converge exponentially to 03.
Next we will study the convergence of R̃ and p̃. From (4.31), (4.33), and (4.23) we get
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˙̃X =

 R̃ p̃ L̃
0T3 1 01×n

0n×3 0n In

 03×3 −
∑n

i=1 kiϵi −ϵKdiag

0T3 0 01×n

0n×3 0n 0n×n


=

 03×3 −R̃
∑n

i=1 kiϵi −R̃ϵKdiag

0T3 0 01×n

0n×3 0n 0n×n



we obtain the following dynamics :
˙̃R = 03×3 (4.35)

˙̃p = −R̃
n∑

i=1

kiϵi (4.36)

˙̃li = kiR̃ϵi (4.37)

From these dynamics we conclude that R̃ and p̃ converge to some arbitrary constants
R̃∗ and p̃∗ respectively. This result is due to the non-observability of the SLAM problem,
where the absolute pose cannot be recovered, unless a full knowledge of the inertial frame’s
location and orientation is available. Which is natural, since SLAM itself finds applications
in areas where we don’t have access to such measurements. In other words, if we can
measure the absolute position and orientation of our vehicle, then SLAM wouldn’t
even be necessary.

Now we will write the correcting term ∆ in a way that all its parameters are known,
using (4.33) and (4.28) we get :

(In+4 − X̃−1)A =

 03×3

∑n
i=1 kiϵi ϵKdiag

0T3 0 01×n

0n×3 0n 0n×n


=

n∑
i=1

 03×3 kiϵi −kiϵieTi
0T3 0 01×n

0n×3 0n 0n×n


=

n∑
i=1

ki

 03×3 ϵi −ϵieTi
0T3 0 01×n

0n×3 0n 0n×n


=

n∑
i=1

ki

 03×3 03 03
0T3 1 −eTi
0n×3 −ei eie

T
i

−
 03×3 −ϵi ϵie

T
i

0T3 1 −eTi
0n×3 −ei eie

T
i


=

n∑
i=1

ki

rir
T
i −

 −ϵi1
−ei

 [0T3 1 −eTi
]

=
n∑

i=1

ki

rir
T
i −

 −l̂i + p̂+ R̂yi
1

−ei

 rTi


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=
n∑

i=1

ki

rir
T
i −

 R̂ p̂ L̂
01×3 1 01×n

0n×3 0n In

 yi
1

−ei

 rTi


=

n∑
i=1

ki

(
rir

T
i − X̂bir

T
i

)
=

n∑
i=1

ki

((
ri − X̂bi

))
rTi

thus we can compute ∆ using :

∆ = −adX̂−1

(
P

(
n∑

i=1

ki

((
ri − X̂bi

))
rTi

))
(4.38)

Finally the proposed observer is written as follows


˙̂
X(t) = X̂(t)(U −∆)

∆ = −adX̂−1

∑n
i=1 ki

(
P
(
ri − X̂(t)bi

)
rTi

) (4.39)

Algorithm 5 Gradient observer without velocity biases
Data: ki > 0 ∀i ∈ (1, 2, ..., n), X̂0 ∈ SE1+n(3), U ∈ se1+n(3), ri ∈ Rn+4 ∀i ∈

(1, 2, ..., n), dt

Result: X̂k

1 k ← 0

2 while 1 do
3 Get measurments yi(k) ∀i ∈ (1, 2, ..., n)

4 Construct bi(k) from yi(k) as in (4.15)
5 ∆← −adX̂−1

k

∑n
i=1 ki

(
P
(
ri − X̂kbi

)
rTi

)
6 X̂k ← X̂k exp ((U −∆) dt)

7 k ← k + 1

4.1.3 Observer design with velocity biases compensation

In this section, we will construct an observer of the state X(t) while taking into account
some biases on the velocity matrix U . We define the biased rotational and translational
velocities as Ωy = Ω+ bΩ ∈ so(3) and vy = v+ bv ∈ R3 respectively, where bΩ ∈ so(3) and
bv ∈ R3 are the rotational and translational velocity biases respectively.

The velocity biases matrix is denoted bU ∈ sen+1(3), where bU = Pb(bΩ, bv), and
Pb : so(3)× R3 −→ sen+1(3) defined as :

Pb(bΩ, bv) =

[
bΩ bv 03×n

0(n+1)×3 0n+1 0(n+1)×n

]
(4.40)
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Using the kinematics model in (4.10), we define the biased velocity matrix Uy =

U + bU ∈ sen+1(3), let’s now find the estimation error for the following observer :

˙̂
X = X̂

(
Uy − b̂U −∆

)
(4.41)

From (4.16), and by following the same approach as in (4.22), we get :

˙̃X = ẊX̂−1 +X
˙̂
X−1

= X(Uy − bU)X̂
−1 −XX̂−1X̂(Uy − b̂U −∆)X̂−1

= X(b̂U − bU)X̂
−1 +X∆X̂−1

= XX̂−1
(
X̂(b̂U − bU)X̂

−1 + X̂∆X̂−1
)

= X̃
(
−adX̂ b̃U + adX̂∆

)
˙̃X = X̃

(
−adX̂ b̃U + adX̂∆

)
(4.42)

We consider the lyapunov function V(X̃) as :

V(X̃) = U(X̃) +
1

2
tr(b̃UKbb̃

T
U) (4.43)

where Kb = diag(1/kw, 1/kw, 1/kw, 1/kv, 0
T
n )

Next we will calculate ∂

∂t

(
1

2
tr
(
b̃UKbb̃

T
U

))
, In order to mathematically derive V̇ :

∂

∂t

(
1

2
tr
(
b̃UKbb̃

T
U

))
=

∂

∂t

(
1

2kw
tr
(
b̃TΩb̃Ω

)
+

1

2kw
b̃Tv b̃v

)
(4.44)

since b̃Ω = b̃∧ω, where b̃ω =
[
b̃ω,x b̃ω,y b̃ω,z

]T , we can prove that :

tr
(
b̃TΩb̃Ω

)
= tr

 0 b̃ω,z −b̃ω,y
−b̃ω,z 0 b̃ω,x
b̃ω,y −b̃ω,x 0

 0 −b̃ω,z b̃ω,y
b̃ω,z 0 −b̃ω,x
−b̃ω,y b̃ω,x 0


= 2

(
b̃2ω,x + b̃2ω,y + b̃2ω,z

)
= 2‖b̃ω‖2

tr
(
b̃TΩb̃Ω

)
= 2b̃Tω b̃ω (4.45)

we substitute (4.45) in (4.44), and we obtain :

∂

∂t

(
1

2
tr
(
b̃UKbb̃

T
U

))
=

∂

∂t

(
1

kw
b̃Tω b̃ω +

1

2kw
b̃Tv b̃v

)
=

2

kw
bTω

˙̃bω +
1

kv
b̃Tv

˙̃bv

=
1

kw
tr
(
PT

b (b̃Ω, 03)Pb(
˙̃bΩ, 03)

)
+

1

kv
tr
(
PT

b (03×3, b̃v)Pb(03×3,
˙̃bv)
)
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where Pb is defined in (4.40). Using the properties of the trace tr(A+B) = tr(A)+ tr(B)

and tr(AT ) = tr(A) for A ∈ R(n+4)×(n+4), B ∈ R(n+4)×(n+4), we get :

∂

∂t

(
1

2
tr
(
b̃UKbb̃

T
U

))
= tr

(
1

kw
PT

b (b̃Ω, 03)Pb(
˙̃bΩ, 03) +

1

kv
PT

b (03×3, b̃v)Pb(03×3,
˙̃bv)

)

= tr


 1

kω
b̃TΩ

˙̃bΩ 03 03×n

0T3
1
kv
b̃Tv

˙̃bv 0Tn
0(n)×3 0n 0(n)×n




= tr


 1

kω
b̃TΩ

˙̃bΩ
1
kω
b̃TΩ

˙̃bv 03×n

1
kv
b̃Tv

˙̃bΩ
1
kv
b̃Tv

˙̃bv 0Tn
0(n)×3 0n 0(n)×n




= tr

[ 1
kω
b̃Ω

1
kv
b̃v 03×n

0(n+1)×3 0n+1 0(n+1)×n

]T [ ˙̃bΩ
˙̃bv 03×n

0(n+1)×3 0n+1 0(n+1)×n

]
= tr

[ ˙̃bΩ
˙̃bv 03×n

0(n+1)×3 0n+1 0(n+1)×n

]T [
1
kω
b̃Ω

1
kv
b̃v 03×n

0(n+1)×3 0n+1 0(n+1)×n

]
= tr

(
˙̃bTU b̃UKb

)
=
〈〈

˙̃bU , b̃UKb

〉〉
∂

∂t

(
1

2
tr
(
b̃UKbb̃

T
U

))
=
〈〈

˙̃bU , b̃UKb

〉〉
(4.46)

Knowing that Kb = KT
b , we will next calculate ∇b̃U

V2 :

∇b̃U
V =

∂V
∂b̃U

=
1

2
b̃U(Kb +KT

b )

= b̃UKb

= Kbb̃U

∇b̃U
V = b̃UKb (4.47)

Using (4.6),(4.19), (4.42), (4.47), and the fact that ∇X̃V = ∇X̃U we find :

V̇(X̃) = 〈∇X̃V ,
˙̃X〉X̃ + 〈〈 ˙̃bU ,∇b̃U

V〉〉

= 〈〈X̃−1∇X̃V , X̃
−1 ˙̃X〉〉+ 〈〈 ˙̃bU ,∇b̃U

V〉〉

= 〈〈X̃−1∇X̃U , X̃
−1 ˙̃X〉〉+ 〈〈 ˙̃bU , b̃UKb〉〉

=
〈〈

P
((
In+4 − −̃1

)
A
)
,−adX̂ b̃U + adX̂∆

〉〉
+ 〈〈 ˙̃bU , b̃UKb〉〉

=
〈〈

P
((

In+4 − X̃−1
)
A
)
, adX̂∆

〉〉
+
〈〈

P
((

In+4 − X̃−1
)
A
)
,−adX̂ b̃U

〉〉
+ 〈〈 ˙̃bU , b̃UKb〉〉

2We calculate the gradient using ∂
∂X tr(XGXT ) = X(G+GT ), proved in [69]
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by choosing :

∆ = −adX̂−1

(
P
((

In+4 − X̃−1
)
A
))

(4.48)
˙̃bU = P

(
X̂T

(
In+4 − X̃−1

)
AX̂−T

)
K ′

b (4.49)

where K ′
b = diag(kw, kw, kw, kv, 0

T
n ), we also define I = diag(1, 1, 1, 1, 0Tn )

and using the following lemmas :
for M ∈ sen+1(3) and D,G ∈ R(n+4)×(n+4) :

〈〈M, bU〉〉 = 〈〈P(M), bU〉〉 = 〈〈P(M)I, bU〉〉 (4.50)
tr(GD) = tr(DG) (4.51)

we get :

〈〈 ˙̃bU , b̃UKb〉〉 = 〈〈P
(
X̂T

(
In+4 − X̃−1

)
AX̂−T

)
K ′

b, b̃UKb〉〉

= 〈〈P
(
X̂T

(
In+4 − X̃−1

)
AX̂−T

)
I, b̃U〉〉

= 〈〈P
(
X̂T

(
In+4 − X̃−1

)
AX̂−T

)
, b̃U〉〉

= 〈〈X̂T
(
In+4 − X̃−1

)
AX̂−T , b̃U〉〉

= tr

((
X̂T

(
In+4 − X̃−1

)
AX̂−T

)T
b̃U

)
= tr

(
X̂−1

((
In+4 − X̃−1

)
A
)T

X̂b̃U

)
= tr

(
X̂−1

((
In+4 − X̃−1

)
A
)T (

X̂b̃U

))
= tr

((
X̂b̃U

)
X̂−1

((
In+4 − X̃−1

)
A
)T)

= tr

((
X̂b̃UX̂

−1
)((

In+4 − X̃−1
)
A
)T)

= tr

(((
In+4 − X̃−1

)
A
)T (

X̂b̃UX̂
−1
))

=
〈〈(

In+4 − X̃−1
)
A, adX̂ b̃U

〉〉
=
〈〈

P
((

In+4 − X̃−1
)
A
)
, adX̂ b̃U

〉〉
〈〈 ˙̃bU , b̃UKb〉〉 =

〈〈
P
((

In+4 − X̃−1
)
A
)
, adX̂ b̃U

〉〉
(4.52)

thus :

V̇(X̃) = −
∥∥∥P((In+4 − X̃−1

)
A
)∥∥∥2

F
+
〈〈

P
((

In+4 − X̃−1
)
A
)
,−adX̂ b̃U

〉〉
+ 〈〈 ˙̃bU , Kbb̃U〉〉︸ ︷︷ ︸

= 0

= −
∥∥∥P((In+4 − X̃−1

)
A
)∥∥∥2

F
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Using (4.33), we obtain the semi-negative definite function V̇(X̃) :

V̇(X̃) = −‖
n∑

i=1

kiϵi‖2 −
n∑

i=1

k2
i ‖ϵi‖2 (4.53)

thus by applying the second stability theorem of lyapunov, we proved the uniform stability
of the proposed observer for all b̃U and ϵi where i ∈ (1, 2, ..., n), which implies that V is
non-increasing. As a result, ‖ϵi‖ and ‖b̃U‖ are also non-increasing and remain always
bounded, for all ∀i ∈ (1, 2, ..., n).

Next we will prove the asymptotic stability of the observer, to demonstrate that V̇
decreases to zero.

First we will calculate adX̂ b̃U by applying (4.4) :

adX̂ b̃U = X̂b̃UX̂
−1

=

 R̂ p̂ L̂
01×3 1 01×n

0n×3 0n In

 b̃Ω b̃v 03×n

01×3 0 01×n

0n×3 0n 0n×n

 R̂T −R̂T p̂ −R̂T L̂
01×3 1 01×n

0n×3 0n In


=

 R̂ p̂ L̂
01×3 1 01×n

0n×3 0n In

 b̃ΩR
T −b̃ΩR̂T p̂+ b̃v −b̃ΩR̂T L̂

01×3 0 01×n

0n×3 0n 0n×n


=

 R̂b̃ΩR̂
T −R̂b̃ΩR̂

T p̂+ R̂b̃v −R̂b̃ΩR̂
T L̂

01×3 0 01×n

0n×3 0n 0n×n



adX̂ b̃U =

 R̂b̃ΩR̂
T −R̂b̃ΩR̂

T p̂+ R̂b̃v −R̂b̃ΩR̂
T L̂

01×3 0 01×n

0n×3 0n 0n×n

 (4.54)

From (4.42),(4.48),(4.49),(4.33), and (4.54) we obtain :
˙̃X = X̃

(
−adX̂ b̃U + adX̂∆

)
=

 R̃ p̃ L̃
01×3 1 01×n

0n×3 0n In

 −R̂b̃ΩR̂
T A B

0T3 0 01×n

0n×3 0n 0n×n



=

 −R̃R̂b̃ΩR̂
T R̃

(
R̂b̃ΩR̂

T p̂− R̂b̃v −
∑n

i=1 kiϵi

)
R̃
(
R̂b̃ΩR̂

T l̂i + kiϵi

)
0T3 0 01×n

0n×3 0n 0n×n


where A = R̂b̃ΩR̂

T p̂− R̂b̃v −
∑n

i=1 kiϵi, and B = R̂b̃ΩR̂
T L̂− ϵKdiag

after identification, we get :
˙̃R = −R̃R̂b̃ΩR̂

T (4.55)

˙̃p = R̃

(
R̂b̃ΩR̂

T p̂− R̂b̃v −
n∑

i=1

kiϵi

)
(4.56)

˙̃li = R̃
(
R̂b̃ΩR̂

T l̂i + kiϵi

)
, ∀i ∈ (1, 2, ..., n) (4.57)
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using (4.49) and (4.33) we obtain :

˙̃bU = P


 R̂ 0T3 03×n

p̂T 1 01×n

L̂T 0n In


 03×3

∑n
i=1 kiϵi ϵKdiag

0T3 0 01×n

0n×3 0n 0n×n

 X̂−T

K ′
b

= P


 03×3 R̂T

∑n
i=1 kiϵi R̂T ϵKdiag

0T3 p̂T
∑n

i=1 kiϵi p̂T ϵKdiag

0n×3 L̂T
∑n

i=1 kiϵi L̂T ϵKdiag

 X̂−T

K ′
b

= P


 03×3 R̂T

∑n
i=1 kiϵi R̂T ϵKdiag

0T3 p̂T
∑n

i=1 kiϵi p̂T ϵKdiag

0n×3 L̂T
∑n

i=1 kiϵi L̂T ϵKdiag


 R̂ 0T3 03×n

−p̂T R̂ 1 01×n

−L̂T R̂ 0n In


K ′

b

= P




R̂T
∑n

i=1 kiϵi

(
l̂Ti − p̂T

)
R̂ R̂T

∑n
i=1 kiϵi R̂T ϵKdiag

p̂T
∑n

i=1 kiϵi

(
l̂Ti − p̂T

)
p̂ p̂T

∑n
i=1 kiϵi p̂T ϵKdiag

L̂T
∑n

i=1 kiϵi

(
l̂Ti − p̂T

)
R̂ L̂T

∑n
i=1 kiϵi L̂T ϵKdiag


K ′

b

=

 Pa(R̂
T
∑n

i=1 kiϵi

(
l̂Ti − p̂T

)
R̂) R̂T

∑n
i=1 kiϵi R̂T ϵKdiag

0T3 0 01×n

0n×3 0n 0n×n

K ′
b

=

 kwPa(R̂
T
∑n

i=1 kiϵi

(
l̂Ti − p̂T

)
R̂) kvR̂

T
∑n

i=1 kiϵi 03×n

0T3 0 01×n

0n×3 0n 0n×n


after identification we obtain :

˙̃bΩ = kwPa(R̂
T

n∑
i=1

kiϵi

(
l̂Ti − p̂T

)
R̂) (4.58)

˙̃bv = kvR̂
T

n∑
i=1

kiϵi (4.59)

We will next prove the convergence of V̇ to 0, which is equivalent to the convergences
of ϵi, ∀i ∈ (1, 2, ..., n) to 03. Based on Barbalat theorem which states that limt→∞ V̇ → 0,
if V has a finite limit and V̈ is bounded.
We previously proved that V has a finite limit, now it remains to prove that V̈ is bounded,
which can be achieved by proving the boundedness of ϵ̇i.
Using (4.29) and the fact that R̂T (p̂− l̂i) = −R̂T ϵi +RT (p− li) we get :

ϵ̇i = R̃T
(
˙̃p− ˙̃li

)
+ ˙̃RT (p̃− l̃i)

= R̃T

(
R̃

(
R̂b̃ΩR̂

T p̂− R̂b̃v −
n∑

i=1

kiϵi

)
− R̃

(
R̂b̃ΩR̂

T l̂i + kiϵi

))
+
(
−R̃R̂b̃ΩR̂

T
)T (

p̃− l̃i

)
= R̂b̃ΩR̂

T p̂− R̂b̃v −
n∑

i=1

kiϵi − R̂b̃ΩR̂
T l̂i − kiϵi −

(
R̃R̂b̃ΩR̂

T
)T

R̃ϵi
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= −R̂b̃v −
n∑

i=1

kiϵi − kiϵi + R̂b̃ΩR̂
T
(
p̂− l̂i

)
+ R̃R̂b̃ΩR̂

T ϵi

= R̂
(
b̃ΩR̂

T
(
p̂− l̂i

)
− b̃v + b̃ΩR̂

T ϵi

)
−

n∑
i=1

kiϵi − kiϵi

= R̂
(
b̃ΩR̂

T (p− li)− b̃v

)
−

n∑
i=1

kiϵi − kiϵi

ϵ̇i = R̂
(
b̃ΩR

T (p− li)− b̃v

)
−

n∑
i=1

kiϵi − kiϵi (4.60)

Knowing from (4.53), that b̃U ,R̂ and ϵi are bounded, and that p and li are bounded by
assumption, we conclude that ϵ̇i s also bounded, thus V̈ is also bounded, and we conclude
that V̇ converges to 0 which also implies that ϵi, ∀i ∈ (1, 2, ..., n) converge to 03. Since
limt→∞ ϵi → 03, ∀i ∈ (1, 2, ..., n) and ϵ̇i is bounded, we conclude that limt→∞ ϵ̇i → 03, ∀i ∈
(1, 2, ..., n). As a result, we conclude that when convergence is achieved (4.60) becomes :

lim
t→∞

R̂
(
b̃ΩR

T (p− li)− b̃v

)
= 03

and since limt→∞ R̂ 6= 03×3 we find :

lim
t→∞

(
b̃ΩR

T (p− li)− b̃v

)
= 03 (4.61)

Next we assume that at least three landmarks, which are also assumed to be available
for measurement, form a plane. By substituting their respective position with respect to
the inertial frame {I} in (4.61) we obtain :

lim
t→∞

(
b̃ΩR

T (p− l1)− b̃v

)
= 03 (4.62)

lim
t→∞

(
b̃ΩR

T (p− l2)− b̃v

)
= 03 (4.63)

lim
t→∞

(
b̃ΩR

T (p− l3)− b̃v

)
= 03 (4.64)

we next will subtract (4.64) from (4.62) and (4.63), we find :

lim
t→∞

b̃Ω (l3 − l1) = 03 (4.65)

lim
t→∞

b̃Ω (l3 − l2) = 03 (4.66)

since l3 − l1 and l3 − l2 are noncollinear we conclude that :

lim
t→∞

b̃Ω = 03×3 (4.67)

we replace (4.67) in (4.61), and we get :

lim
t→∞

b̃v = 03 (4.68)

When convergence is attained, (4.55) and (4.56) become :
˙̃R = 03×3

˙̃p = 03
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which implies that R̃ and p̃ converge to some arbitrary constants R̃∗ and p̃∗, respectively.

The proposed observer is finalized from (4.41), (4.48), and (4.49), knowing that ˙̃bU =

ḃU − ˙̂
bU ≈ − ˙̂bU since the variation of bU is considered far lower compared to the variation

of b̂U with respect to time t :

˙̂
X = X̂

(
Uy − b̂U −∆

)
(4.69)

∆ = −adX̂−1

(
P
((

In+4 − X̃−1
)
A
))

(4.70)
˙̂
bU = −P

(
X̂T

(
In+4 − X̃−1

)
AX̂−T

)
K ′

b (4.71)

Algorithm 6 Gradient observer with velocity biases
Data: ki > 0 ∀i ∈ (1, 2, ..., n), X̂0 ∈ SE1+n(3), Uy ∈ se1+n(3), ri ∈ Rn+4 ∀i ∈

(1, 2, ..., n), b̂U(0) ∈ sen+1(3), kw > 0, kv > 0, dt

Result: X̂k

1 k ← 0

2 K ′
b ← diag(kw, kw, kw, kv, 0

T
n )

3 while 1 do
4 Get measurements yi(k) ∀i ∈ (1, 2, ..., n) and Uy

5 Construct bi(k) from yi(k) as in (4.15)
6 ∆← −adX̂−1

k

∑n
i=1 ki

(
P
(
ri − X̂kbi

)
rTi

)
7 X̂k+1 ← X̂k exp

((
Uy − b̂U(k)−∆

)
dt
)

8 b̂U(k + 1)← b̂U(k)− dtP
(
X̂T

k

∑n
i=1 ki

(
P
(
ri − X̂kbi

)
rTi

)
X̂−T

k

)
K ′

b

9 k ← k + 1

4.2 Simulation

In this section, we simulate the observer (with biases) in order to test its perfor-
mance. We consider a vehicle moving at a 10-meter height, with an angular veloc-
ity ω =

[
0 0 1

]T
rad/s, and a translational velocity v =

[
0 1 0

]T
m/s. Also, the

rotation matrix was initialized as R(0) = I3, and a set of 16 landmarks were ran-
domly chosen following a uniform distribution in a range of {−10, 10} meters. Addi-
tionally, we consider the biases of the angular and translational velocity measurements as
bω =

[
−0.02 0.02 0.01

]T and bv =
[
0.2 −0.1 0.1

]T , respectively. Moreover, the esti-
mates are initialized as R̂(0) = I3, p̂(0) = 03, b̂ω = 03, b̂v = 03 and l̂i = 03 for i = 1, ..., 16.
Finally, we chose the gains involved in the algorithm as follows : kω = 0.02, kv = 1 and
ki =

5
22

for i = 1, ..., 16.

4.2.1 Simulation results

Given the above-mentioned conditions, we get the following results after running the
simulation on python :
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Figure 4.2: Estimation errors of rotation, position, velocity biases, and landmarks with
respect to time.

4.2.2 Results discussion

As expected from the previous mathematical analysis, the landmark estimation errors
along with the angular and translational velocity biases converge to zero, and the pose
estimation error (R̃, p̃) converges to some constant (R∗, p∗), since the SLAM problem is
not observable. We also notice that the position estimation error and the translational
velocity bias converge faster to their final values compared to the rotation estimation
error, the angular velocity bias and the landmark estimation errors.

By both considering the graphs above and the derivative equations (4.55), (4.56),
(4.57), (4.58) and (4.59), we give the following remarks :

• ‖R̃‖ converges relatively slower (after more than 20s) because ˙̃R depends on b̃Ω
which in turn converges to 0 after more than 20s.

• ‖p̃‖ converges almost instantly (after barely 3s), even though its derivative depends
on b̃Ω and

∑
kiϵi. We can explain this on the one hand, because b̃Ω ≤ 0.05, hence its

influence on ˙̃p can be considered as negligible, and on the other hand, as we can see
in (Fig 4.3), it turns out that

∑
kiϵi tends to zero before the landmark estimation

errors converge to zero (i.e. the landmark estimation errors start cancelling each
other before ϵi tend to zero). Therefore, p̃ converges once

∑
kiϵi goes to zero.

• Same as for ˙̃p, ˙̃bv depends on
∑

kiϵi. Therefore, b̃v stabilizes once
∑

kiϵi converges
to 0.
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• b̃Ω Converges to zeros after more than 20s because it depends on landmark estima-
tion errors, which in turn converge after 20s.

• Since ϵ̇i depend on ϵi, the landmark estimation errors stabilize once ϵ̇i = ϵi = 0,
which is also illustrated in the landmark estimation errors graph.

Figure 4.3: Sum of weighted landmarks estimation errors over time

4.3 Conclusion

In this chapter, we discussed the work of Miaomiao Wang and Abdelhamid Tayebi
[1] which uses a Lie groups based geometric approach to design a nonlinear observer
that solves the SLAM problem, and which has proven to have many advantages over
the classical approaches. First, as we saw in the second chapter, EKF-SLAM and PGO-
SLAM are based on linear approximations that do not fit the nonlinear nature of the
SLAM estimation problem. However, a Lie groups based nonlinear approach can mimic
almost perfectly the structure of the SLAM problem. Also, we saw how the position
and orientation of the vehicle moving in 3D space was best modeled using the special
euclidean group SE(3) and the special orthogonal group SO(3). Additionally, a Lie
groups based approach leads to a nonlinear observer that converges globally without
depending on the quality of the initial guess, in contrast to approaches that are based
on linear approximations. Moreover, the fact that the approach presented in this chapter
is deterministic compared to the solutions presented in chapter 2 which are probabilistic
makes the Lie groups based SLAM much less computationally expensive. Finally, this
work leverages the full potential of Lie theory (at least from a roboticist point of view)
as it designs the observer parameter on the Lie algebra (linear space), then it expresses
the result on the Lie group (curved space) through the exponential map.
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Chapter 5. Robust visual SLAM in presence of landmarks uncertainties

5.1 Introduction

Several problems appear when trying to implement a SLAM method in practice,
among these problems we find the varying number of landmarks used for estimation; in
this case, new features can enter the state estimation process, as others can be dropped.
Another practical problem are faulty measurements, where a sensor can be damaged or
can’t function properly due to harsh environmental conditions.

In this chapter, we will deal with the above-mentioned two problems that can affect
the non-linear observer (with biases) (6) proposed in chapter 4. In the first section,
we will give a demonstration to the problem appearing when changing the dimension
of the state, and then present some simulation results to better see it’s behavior. In
the section that follows, we will propose a measurement detector and isolator, to help
diagnose measurement tools (Camera and IMU) used to provide feedback for estimation,
and then show the simulation results to see the performance of the suggested corrector.

5.2 State re-dimensioning for the SLAM problem

In practice, SLAM methods don’t rely on a fixed number of landmarks to do the
estimation. Sometimes, the state estimation algorithm drops a landmark during the
estimation process, because the sensor doesn’t recognize a memorized feature in the scene.
While some other times, it adds landmarks to the state to increase the accuracy of the
map.

In this section, we will test the performance of the non-linear observer (with biases)
(6) presented in chapter 4, when adding or dropping landmarks.

5.2.1 Missing landmark recognition

We assign to each landmark li an index i to indicate which feature it corresponds to.
We define the following measurements matrix

y1:n =

[
y1 y2 ... yn
1 2 ... n

]
When a landmark i disappears from the scene, the camera returns the following measure-
ments

y1:i−1,i+1,n =

[
y1 ... yi−1 yi+1 ... yn
1 ... i− 1 i+ 1 ... n

]
We can see that indices will allow us to detect the missing landmarks, which will allow
us to change the dimension of the estimated state.

Then we denote the new state X̂−, and we define it as

X̂− =

 R̂ p̂ L̂−

0T3 1 0Tn−1

0(n−1)×n 0n−1 In−1


where L̂− =

[
l̂1 ... l̂i−1 l̂i+1 ... l̂n

]
73



Chapter 5. Robust visual SLAM in presence of landmarks uncertainties

The new input matrix U−
y is defined as

U−
y =

[
Ωy vy v−

0n×3 0n 0n×(n−1)

]
where v− =

[
v1 ... vi−1 vi+1 ... vn

]
And the new velocity biases matrix b−U is defined as

b−U =

[
bΩ bv 03×(n−1)

0n×3 0n 0n×(n−1)

]

5.2.2 State augmentation

The SLAM algorithm starts with few landmarks, and continues to add others along its
motion. Let’s say that the estimated state X̂ at instant t has a dimension of (n+4)×(n+4),
where the upper left 4×4 matrix defines the pose of the robot, while the upper right 3×n

elements represent the estimated locations of n distinguishable landmarks. Let’s also say
that at instant t+dt, the camera returned an additional measurement of a new feature,
and the frontend algorithm assigned the index n+ 1 to it. In this case, the measurement
matrix would be defined as

y1:n+1 =

[
y1 y2 ... yn yn+1

1 2 ... n n+ 1

]
In this case we have to change the dimension of the estimated state matrix, where we
initialize the estimated pose of the new landmark for the observer to estimate its true
location using measurements.

Then we denote the new state X̂+, and we define it as

X̂+ =

 R̂ p̂ L̂+

0T3 1 0Tn+1

0(n+1)×n 0n+1 In+1


where L̂+ =

[
l̂1 ... l̂n l̂n+1

]
The new input matrix U+

y is defined as

U+
y =

[
Ωy vy v+

0(n+2)×3 0n+2 0(n+2)×(n+1)

]
where v+ =

[
v1 ... vn vn+1

]
And the new velocity biases matrix b+U is defined as

b+U =

[
bΩ bv 03×(n+2)

0(n+2)×3 0n+2 0(n+2)×(n+1)

]

5.2.3 Simulation

We consider a vehicle moving under the same conditions as the simulation section of
chapter 4. We initialize the estimated velocity biases, landmarks, and the vehicle’s pose
in the same way as in chapter 4, while R̂(0) = exp(0.2πu∧) where u =

[
0 0 1

]T . In
order to visualize the behavior of the observer, we drop a landmark at t = 60s.
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5.2.3.1 Simulation results

Given the above conditions, we obtain the following results after running the simulation
on python :

Figure 5.1: Estimation errors of rotation, position, velocity biases, and landmarks when
dropping a landmark.

5.2.3.2 Results discussion

As it is anticipated, changing the dimension of the state matrix X̂k will not affect the
stability of the system, as we can see from (Fig. 5.1) all estimation errors return to the
stability point after a certain time duration. Also, we can see that the convergence time of
landmark’s estimation error after changing the state matrix, which is equal to 20seconds,
is similar to the convergence time when starting the estimation process. As a result, we
conclude that successive changes in state must be done after a time duration equal to the
convergence time, to obtain a correct sparse mapping of the environment.

5.3 Fault detection and isolation block for the SLAM
problem

Some of the major problems that can affect the results of any kind of state observer are
faulty sensor data, where these incorrect measurements can be the result of environmental
conditions (e.g. the moist accumulated on the lens of a camera can change its intrinsic
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parameters, resulting in false measurements), or sensor-related problems (e.g. a damaged
IMU). Therefore, several researches had been made to improve information diagnosis,
among them, there is a solution based on sensor redundancy suggested in [70]. This
method, which is explained in detail in [71], detects wrong data based on what the majority
of sensors return. Although, using multiple sensors to diagnose measurements can be
accurate, it can also be financially very expensive, and can only be implemented in critical
applications where fault is highly intolerable and budget is less important than quality,
like military applications. Clearly, making information diagnosis cheaper, will help to
increase the robustness of SLAM systems dedicated for low budget applications.

In our work, we will present a solution to detect false measurements for V-SLAM
applications, by combining measurements from an IMU and a camera. This solution
can help increase the efficiency of the non-linear observer presented in (6), when used in
practice, and especially when multiple sensors of the same type cannot be used to reduce
the budget spent on hardware.

In order to visualize the efficiency of the proposed FDI, we present the results of a
simulation at the end of the chapter.

5.3.1 Mathematical definitions

For two n-dimensional vectors x =
[
x1 x2 ... xn

]T and, δ =
[
δ1 δ2 ... δn

]T we
define the function M : Rn × Rn → Rn×n, as

M(x, δ) = diag
(
H(x1, δ1) H(x2, δ2) ... H(xn, δn)

)
(5.1)

with H : R× R→ {0, 1} is defined as

H(xi, δi) =

{
1, xi > δi

0, xi ≤ δi
(5.2)

5.3.2 FDI presentation

We introduce the selection matrix Γ = diag
(
α1 α2 ... αn

)
∈ Rn×n, where n is the

number of landmarks available for measurement, as:

Γ = H

(
n− nF

n
, δIMU

)
M (d, δcamera) (5.3)

where δIMU ∈ [0, 1] depends on the quality of the camera and the IMU, and defined as the
percentage of the accurately measured landmarks among the total number of landmarks.
This threshold allows us to determine whether the IMU is giving false measurements
or not; when the number of false measurements nF ∈ N is close enough to the total
number of landmarks n, we can say that the IMU is giving false data, as it is very
unlikely that a camera makes a large percentage of wrong measurements. The vector
d ∈ Rn is defined as a vector containing all the euclidean norms between the predicted
measurements denoted yp =

[
yp,1 yp,2 ... yp,n

]
∈ R3×n, and the real measurements
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denoted y =
[
y1 y2 ... yn

]
∈ R3×n1

d =
[
‖yp,1 − y1‖ ‖yp,2 − y2‖ ... ‖yp,n − yn‖

]T (5.4)

δcamera =
[
δcamera,1 δcamera,2 ... δcamera,n

]T ∈ Rn is the threshold that decides whether
the measurement is wrong or not; if the euclidean norm between the ith predicted measure-
ment and the ith real measurement, denoted di = ‖yp,i−yi‖, is above a threshold δcamera,i,
which depends on how much we tolerate the error, it means that the measurement is false.

The Heaviside function will assure an alternation between the predicted measure-
ment and the real measurement when a measurement problem occurs. The first function
H

(
n− nF

n
, δIMU

)
allows the state observer to ignore temporarily the IMU while it is

considered to be wrong, and that is determined by the number of false measurements.
Meanwhile, the function M (d, δcamera) returns a matrix, that helps to select the correct
real measurements and replace the wrong ones with the predicted measurements, all that
while assuming that the predicted measurement is within tolerable error.

Finally, we propose the corrected measurement yc =
[
yc,1 yc,2 ... yc,n

]
∈ R3×n as

yc = ypΓ + y(In − Γ) (5.5)

knowing from (5.5) that:

yc,i = αiyp,i + (1− αi)yi (5.6)

We can detect which measurement is wrong by observing the state of αi; when αi = 1 we
deduce that the measurement of the ith landmark is incorrect.

Next we will present the correction algorithm :

Algorithm 7 FDI(yp, y, δIMU , δcamera)
Data: n ∈ N
Result: yc

1 Compute d as in (5.4)
2 nF ← 0

3 for i ∈ range(n) do
4 if ‖yp,i − yi‖ > δcamera,i then
5 nF ← nF + 1

6 Compute Γ as in (5.3)
7 yc ← ypΓ + y(In − Γ)

5.3.3 Fault-tolerant Nonlinear observer presentation

In this section, we will present the algorithm of the non-linear observer (6) when using
the FDI, along with a block diagram that illustrates the flow of data between the observer
and the FDI :

1Note that the predicted measurement is estimated using odometry (through the IMU) and the real
measurements are made from the camera.
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Algorithm 8 Fault-tolerant non-linear observer
Data: ki > 0 ∀i ∈ (1, 2, ..., n), X̂0 ∈ SE1+n(3), U ∈ se1+n(3), ri ∈ Rn+4 ∀i ∈

(1, 2, ..., n), b̂U(0) ∈ sen+1(3), kw > 0, kv > 0, δIMU ∈ R, δcamera ∈ Rn, dt

Result: X̂k

1 k ← 0

2 K ′
b ← diag(kw, kw, kw, kv, 0

T
n )

3 while 1 do
4 Get measurements yi(k) ∀i ∈ (1, 2, ..., n) and Uy

5 bp,i(k)← X̂−1
k ri, ∀i ∈ (1, 2, ..., n)

6 Extract yp,i from bp,i
7 y(k)←

[
y1(k) y2(k) ... yn(k)

]
8 yp(k)←

[
yp,1(k) yp,2(k) ... yp,n(k)

]
9 yc(k)← FDI (yp(k), y(k), δIMU , δcamera)

10 bi(k)←
[
yTc,i(k) 1 −eTi

]T
, ∀i ∈ (1, 2, ..., n)

11 ∆← −adX̂−1
k

∑n
i=1 ki

(
P
(
ri − X̂kbi

)
rTi

)
12 X̂k+1 ← X̂k exp

((
Uy − b̂U(k)−∆

)
dt
)

13 b̂U(k + 1)← b̂U(k)− dtP
(
X̂T

k

∑n
i=1 ki

(
P
(
ri − X̂kbi

)
rTi

)
X̂−T

k

)
K ′

b

14 k ← k + 1

Figure 5.2: Data flow between the FDI and the observer

5.3.4 Simulation

In this section, we simulated the above-mentioned observers (8) and (6), while intro-
ducing measurement errors of 3 meters in the 5th landmark for 10 seconds starting from
t = 50s, and the 10th for 30 seconds starting from t = 70s. We consider a vehicle moving
under the same conditions as in the simulation section in chapter 4. We initialize the
estimated velocity biases and the vehicles pose in the same way as in chapter 4, while
R̂(0) = exp(0.2πu∧) where u =

[
0 0 1

]T . In order to effectively diagnose the IMU, we
increase the number of landmarks to 45, which are also chosen randomly using a uniform
distribution between -10 and 10 meters, and initialized in the same way as in chapter 4.
We choose, δIMU = 0.1, and δcamera,i = 0.1 meters , ∀i ∈ (1, 2, ..., 45).
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5.3.4.1 Simulation results

Given the above conditions, we obtain the following results after running the simulation
on python :

(a) With FDI (b) Without FDI

Figure 5.3: Estimation errors of rotation and position.

(a) With FDI (b) Without FDI

Figure 5.4: Estimation errors of velocity biases.

(a) With FDI (b) Without FDI

Figure 5.5: Estimation errors of landmarks.
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Figure 5.6: The correction gains α5 and α10 of the measurements of the 5th and 10th

landmarks, respectively.

5.3.4.2 Results discussion

Before using the FDI, we can clearly see by looking at (Fig. 5.3b), (Fig. 5.4b), and
(Fig. 5.5b) that the estimation errors destabilize, because of the faulty measurements
caused by the camera. On the other hand, using an FDI can help to temporarily switch
to odometry predictions while the measurements are considered to be wrong.(Fig. 5.6)
depicts that the coefficient α5 goes from 0 to 1 at t = 50s which indicates that it took
the prediction, and ignored the false measurement. After 10 seconds, α5 goes back to 0
where the measurement of the 5th landmark is taken again into consideration. At t = 70s,
the error introduced in the 10th measurement is detected using α10, where it also helps to
ignore the false measurement of the 10th landmark while it is wrong.
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5.4 Conclusion

Throughout this chapter, we tried to provide some solutions to two major problems
that a SLAM method can face when implemented in practice. The first one is when
a change in the state’s dimension happens, either from a measurement of a completely
new feature in the scene viewed by the camera, or because of a missing measurement,
because a known feature escapes the field of view of the camera. The second solution
deals with the problem of faulty measurements, where we proposed a corrector that takes
the predicted measurement temporarily into account while the measurement is considered
to be wrong. The proposed solutions proved to be useful in practice, as the first one allows
the algorithm to introduce new feature or drop old ones. Meanwhile, the FDI helps to
detect false measurements and to keep the estimated state stable.
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Chapter 6. General Conclusion

In this project, we attempted to understand a Matrix Lie groups based nonlinear
observer for solving the SLAM problem proposed by [1]. After a general introduction, we
provided a brief overview of SLAM in chapter 2, in order to make the reader appreciate
the kind of problem that SLAM solves. Then, in chapter 3, we tried to provide the
mathematical background needed to tackle the work of [1], by introducing the reader
to the main concepts of Lie theory that are used in state estimation, and especially in
robotics. Subsequently, in chapter 4, we presented the work of [1], we provided a more
thorough mathematical derivation of the observer as we demonstrated all the assumptions
and mathematical tools needed to design it. Afterwards, we implemented the observer
and simulated its behavior in presence of velocity biases, and we also tried to provide a
mathematical interpretation of the obtained results.

Our practical contribution was presented in chapter 5, where we endowed the observer
with two practical features that we believe to be useful in real world applications. First,
we added the ability of dynamically changing the dimension of the system, as it is common
in practice to add new landmarks to the estimation process as the vehicle explores the
environment on the one hand, and to remove landmarks from the state matrix in case of
absence of measurements of a certain landmark because of harsh environmental conditions
on the other hand. Second, we implemented a fault detection and isolation block. As the
name suggests, this block detects faulty measurements, isolates them and corrects them.
It consists of two switches, the first one determines whether it is the IMU or the camera
that is making faulty measurements, by considering the percentage of correctly measured
landmarks among the total number of landmarks, and comparing it to a certain threshold
that depends on the quality of the available sensors. The second switch determines which
landmarks are wrongly measured, in order to correct their measurements, by considering
the euclidean distance between the measured positions of the landmarks (through camera)
and the predicted positions of the landmarks (through IMU), and comparing it to a certain
threshold that also depends on the application.
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