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ملخص
مختلف بعرض بدءا . (TRMS)الهليكوبتر طائرة لمقلد الكسري النموذج وتحديد التحكم كيفية تقديم يتم العمل هذا في
عدة تقدير ثم الدراسة، هذه في الضرورية المفاهيم مناقشة يتم حيث التحكم بنظرية وعلاقتها الكسرية الرياضية النظريات
خطي نموذج تام، خطي نموذج نماذج: ثلاث حددت للنظام. مفصلة فيزيائية دراسة مع الطيران لمقلد رياضية نماذج
تم اخٔيرا للنظام. كسري خطي غير رياضي نموذج تحديد كيفية مناقشة الى اضافة تام. خطي غير ونموذج كسري
في السرب عناصر استمثال خوارزمية استعملت حيث النظام بسلوك للتحكم وكسري تام (PID)نوع من متحكم تصميم

التصميم. هذا

استمثال زمية الهليكوبتر، طائرة مقلد الكسري، التحكم الكسري، الرياضي النموذج تحديد : مفتاحية كلمات
السرب. عناصر

Résumé

Le travail présenté dans ce mémoire concerne l’identification et la commande d’ordre
fractionnaire d’un système Twin Rotor MIMO System (TRMS). Nous commençons par
un rappel sur les concepts mathématiques liés à la théorie du calcul fractionnaire et son
utilisation en commande des systèmes dynamiques. A travers une étude physique détaillée
nous présentons le modèle mathématique analytique du système TRMS. Ensuite, nous
avons proposé plusieurs modèles de représentation à base d’algorithmes d’identification,
à savoir : un modèle linéaire d’ordre entier, un modèle linéaire d’ordre fractionnaire
ainsi qu’un modèle non-linéaire d’ordre entier. Des commandes de type PID d’ordre
entier et d’ordre fractionnaire sont, ensuite, synthétisées afin de stabilise le système. Afin
d’améliorer les performances du système, les paramètres de l’ensemble des commande
proposées sont optimisés par un algorithme méta heuristique de type (OEP).

Mots clés : Identification d’ordre fractionnaire, Commande d’ordre fractionnaire, simu-
lateur de vol TRMS, optimisation par essaim de particules (OEP)

Abstract

In this project we present fractional-order identification and control of the Twin Rotor
MIMO System. We start by introducing the necessary mathematical concepts of frac-
tional calculus and then of fractional control theory in which we discuss all the necessary
theoretical tools used in the study. Afterwards, we estimate several mathematical repre-
sentations for our TRMS alongside with a detailed physical study of the system. Three
different mathematical models are identified and compared: a linear integer-order model,
a linear fractional-order model and a nonlinear integer-order model. We also discuss the
possibility of establishing a nonlinear fractional-order model. Finally we design integer-
order and fractional-order PID controllers to stabilize and control the TRMS. The design
is made using particle swarm optimization to tune the controllers parameters.

Keywords : Fractional-order identification, Fractional-order control, TRMS, particle
swarm optimization (PSO)
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Chapter 1. General Introduction

Fractional calculus is the branch of mathematics that considers the integrals and
derivatives of any real positive order, meaning it generalizes the integro-differential oper-
ators for arbitrary orders.

The idea of fractional calculus is as old as traditional integer-order calculus, first
mentioned by Leibnitz in the 17th century [1] and later had its foundation built by Li-
ouville in the 19th century [2]. However, the applications of the theory remained limited
until the 20th century when it was introduced to different fields of science, more impor-
tantly control theory and signal processing where it had extended applications. In the last
decades it became a subject of intensive works and interest due to its utility in these fields.

In control theory, fractional calculus bring so much value. First of all, real life
systems show fractional behaviours that cannot be explained by integer-order dynamics.
Secondly, some phenomena that did not have a good representation with integer-order
models show perfect fitness with fractional-order models, such as the long memory effect
and the hereditary phenomena. For instance, linear viscoelastic systems and heat transfer
systems exhibit such phenomena [3]. Finally, fractional calculus controllers offer a huge
flexibility in their design compared to integer-order ones and provide a good level of ro-
bustness.

A simple example where fractional behaviour appear in real life is shown when we
represent the relation between the stress σ(t) and the strain ϵ(t):
According to Newton’s law:

σ(t) = ν
dϵ(t)

dt
(1.1)

And according to Hooke’s law:
σ(t) = Eϵ(t) (1.2)

where:
ν: The viscosity
E: The modulus of elasticity
The stress is both an expression of the first derivative of the strain (1.1) and a direct
function of the strain (1.2), this results in a transfer function between the strain and the
stress with a behaviour between a proportional gain and a first order transfer function.
This means that the true dynamics of the system are between the strain and its first
derivative i.e. of a fractional-order of the strain.
Real life system usually have some degree of fractional-order dynamics. However, for most
of them they are not shown explicitly through physical equations like in the case of the
stress/strain dependency.

In this work, we presented a complete study of the fractional identification and
control of a Twin Rotor MIMO System (TRMS) in which we identified mathematical
representations of the TRMS both of fractional and integer orders. We then proceeded
to control the system using both integer and fractional-order PID controllers.

This report consists of four chapters alongside with the general introduction and
conclusion. The second chapter revolves around the fundamental notions in fractional

14



Chapter 1. General Introduction

calculus and their relation to control theory, a theoretical background necessary to proceed
to application. The third chapter is about the study and identification of the TRMS, in
which we estimated three different mathematical representations some of fractional orders
and some of integer orders. The fourth chapter presents the process of designing integer
and fractional-order PID controllers for the TRMS using metaheuristic algorithms.

15
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Chapter 2. Fractional calculus theory

2.1 Fractional-order operator

We note by aDα
t the fractional-order operator, where a and t are the limits of the

operation, and α is a real number (α ∈ R) is the generalized fractional-order of the
derivative and integral operations.
It is defined as [4]:

aDα
t =


dα

dtα
, α > 0

1, α = 0∫ t

a
(dτα), α < 0

(2.1)

dα

dtα
and

∫ t

a
(dτα) represent the α-order derivative and integral respectively.

Many definitions of the above operations were proposed in literature, we will mention in
this paper the most used ones.

2.1.1 The Gamma function

Before we proceed to define the fractional-order integrals and derivatives we need to
introduce the Gamma function, an essential function used in fractional calculus.
For any complex number z (z ∈ C) the Gamma function is defined as followed [5]:

Γ(z) =

∫ ∞

0

e−ttz−1dt, R(z) > 0 (2.2)

This function clearly converges for any complex number z where R(z) > 0. Using inte-
gration by part we can prove that:

Γ(z + 1) = zΓ(z) (2.3)

So naturally if we consider z to be a natural number z ∈ N, then we obtain:

Γ(z + 1) = zΓ(z) = z(z − 1)Γ(z − 1) = z(z − 1)(z − 2)..1Γ(1) = z! (2.4)

Furthermore, for any complex number z where R(z) > 0 the Gamma function preserves
the following properties: {

Γ(z + 1) = zΓ(z)

Γ(1) = 1
(2.5)

(2.4) and (2.5) allow the Gamma function to generalize the factorial operator for non-
integer values, a key-property to define non-integer integrals and derivatives.

2.1.2 Fractional integral

Let α be a complex number such that R(α) > 0 and f a locally integrable function. We
define the fractional α-order integral of f according to Riemann-Liouville as followed [6]:

aDα
t f(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ (2.6)

Where Γ(α) is the Gamma function. This definition is a direct result of the extension of
Cauchy’s formula for repeated integration [7] by generalizing the factorial operation using
the Gamma function.

17



Chapter 2. Fractional calculus theory

2.1.3 Fractional derivative

We can not simply define a fractional derivative by inverting the sign of α in Riemann-
Liouville’s integral (2.6), because the resulting formula will change the essential properties
of the traditional integer-order derivatives, meaning the properties that define the concept
of a derivative, as well as it may disturb the convergence of the integral.
To avoid those problems, many definitions of fractional-order derivatives were proposed
in literature.
Let α ∈ R+, m ∈ N such that m− 1 < α < m and f an enough derivable function.

2.1.3.1 Riemann-Liouville’s definition

One way to respect the above mentioned conditions is to derive the (m−α)th fractional
Riemann-Liouville’s integral m times ( dm

dtm
Dm−α). This will result in a (−α) fractional

operation that agrees with the essential properties of derivatives and preserves the con-
vergence of the integral.It represents the Riemann-Liouville’s definition [4]:

aDα
t f(t) =

1

Γ(m− α)

dm

dtm

∫ t

a

f(τ)

(t− τ)α−m+1
dτ (2.7)

2.1.3.2 Caputo’s definition

Another approach is to directly derive the function f m times instead of the (m−α)th

fractional Riemann-Liouville’s integral. This corresponds to Caputo’s definition [8]:

aDα
t f(t) =

1

Γ(m− α)

∫ t

a

f (m)(τ)

(t− τ)α−m+1
dτ (2.8)

One downward of this definition compared to the one proposed by Riemann-Liouville
is that it requires the absolute integrability of the mth derivative of the function f(t).
However it is considered as the most suitable fractional derivative to model real life prob-
lems, because unlike Riemann-Louisville’s derivative, when building a fractional-order dif-
ferential equation Caputo’s derivative brings the initial conditions f (k)(a), k = 0, ...,m−1

into the equation the same way integer-order derivatives do, so it brings much useful in-
formation about the system and its interactions with its past creating a memory effect.
By comparing Caputo’s and Riemann-Liouville’s derivatives we can extract the following
relation:

RL
a Dα

t f(t) =
C
a D

α
t f(t) +

m−1∑
k=0

(t− a)k−α

Γ(k − α + 1)
f (k)(a) (2.9)

This shows that the two definitions are equivalent for zero initial conditions, i.e.
f (k)(a) = 0 for k = 0, ...,m− 1.

2.1.3.3 Gründwald-Leitnikov’s definition

The Gründwald-Leitnikov’s derivative is defined by extending the original definition of
multiple derivatives [9] to fractional orders. It is defined as followed [6]:

18



Chapter 2. Fractional calculus theory

aDα
t f(t) = lim

h→0

1

hα

k∑
j=0

(−1)j
(
α

j

)
f(kh− jh) (2.10)

Where: (
α

j

)
=

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)
(2.11)

Is the extension of the binomial coefficient for non-integer parameters, and h is the sam-
pling step.
In addition, if f is a causal function and the step h is too small, we can approximate the
α-order fractional derivitave in the instant tm = kh:

aDα
t f(t) ≈

1

hα

k∑
j=0

(−1)j
(
α

j

)
f(tm − jh) (2.12)

This derivative is important in control theory because it offers a simple form of the
Laplace transform.

2.1.4 Laplace transform

The Laplace transform is an essential tool in control theory that allows us to commute
between time and frequency domains. The Laplace transforms of the fractional-order
operators are [5]:

• Fractional order integral:
L(aIαt f(t)) = s−α.F (s) (2.13)

• Riemann-Liouville’s derivative:

L(RL
a Dα

t f(t)) = sα.F (s)−
m−1∑
k=0

sk[RL
a Dα−k−1f(t)]t=0 (2.14)

• Caputo’s derivative:

L(Ca D
α
t f(t)) = sα.F (s)−

m−1∑
k=0

sα−k−1f (k)(0) (2.15)

• Gründwald-Leitnikov’s derivative:
L(GL

a Dα
t f(t)) = sα.F (s) (2.16)

The advantages and disadvantages of the different definitions of the derivatives ap-
pear more clearly through the Laplace transforms, as we can observe that for the case of
Riemann-Liouville’s derivative the initial conditions are of a fractional-order and thus their
physical interpretation is still considered a challenge in modern control theory, Caputo’s
derivative however brings physically well-known initial conditions. As for Gründwald-
Leitnikov’s derivative, its transform has a simple form, independent from initial condi-
tions.
We can observe as well that for zero initial conditions Riemann-Liouville and Caputo’s
derivatives have the same simple Laplace transform as Gründwald-Leitnikov’s.
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2.1.5 Fractional order operator properties

Let f(z) be a complex function of a general class that we can apply the fractional-order
operator Dαf(z) on, and α ∈ C. Dα has the following properties [4]–[6], [10], [11]:

• If f(z) is an analytical function of z, then Dαf(z) is an analytical function of z and
α.

• if α ∈ N then Dαf(z) (D−αf(z) respectively) has the same result as the integer
α-order derivative (integer α-order integral respectively).

• If α = 0 then Dαf(z) = f(z).

• The operator Dαf(z) is linear, for f ,g two complex functions and a,b two complex
numbers:

Dα(af(z) + bg(z)) = aDαf(z) + bDαg(z) (2.17)

• The fractional order integrals hold the additive exponent law, for α,β ∈ R+ :

D−α(D−βf(z)) = D−β(D−αf(z)) = D−α−βf(z) (2.18)

• The fractional-order derivatives hold the additive exponent law, for αi ∈ R+:

D−αf(z) = D−α1D−α2D−α3 ...D−αnf(z) (2.19)

such that: α = α1 + α2 + ...αn

2.2 Fractional-order linear time invariant-systems

Fractional-order linear time invariant-systems (FOLTIS) are linear systems that has a
fractional-order mathematical representation that indirectly depends on time. In control
theory the most used representations of the FOLTIS are the differential equations, trans-
fer functions and state-space representations.
Let u(t) and y(t) represent the input and output of the system in the time domain respec-
tively, and U(s), Y (s) their Laplace transforms. We define the following representations
for fractional-order systems:

2.2.1 Fractional-order differential equations

Using the fractional-order operator we can establish fractional-order differential equa-
tions by generalizing the orders of the integer-order derivatives, this results in the following
form:

anD
αny(t) + ...+ a0D

α0y(t) = bmD
βmy(t) + ...+ b0D

β0y(t) (2.20)

If all the fractional orders are integer multiples of a base order α ∈ R+ i.e. αi,βi = kα

where k ∈ N,we call the system Commensurate-order system.
In addition if α is a positive rational number ,α ∈ Q+ it is called a rational-order system.

20



Chapter 2. Fractional calculus theory

2.2.2 Transfer function

Applying the Laplace transform on the fractional differential equation (2.20) allow us
to extract the transfer function of the system:

G(s) =
Y (s)

U(s)
=

bms
βm + ...+ b0s

β0

ans
αn + ...+ a0s

α0
(2.21)

If the system is commensurable we can write [4]:

G(s) =

∑m
i=0 bis

αi∑n
i=0 ais

αi
(2.22)

2.2.3 State-space representation

The fractional-order state-space representation is defined as [11]:

{
Dαx(t) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t)
(2.23)

where: x ∈ Rn is the state vector, u ∈ Rr the input vector, y ∈ Rp the output vector
and A ∈ Rn×n, B ∈ Rn×r, C ∈ Rn×p and D ∈ Rp×r are the state, input output and
feedthrough matrices respectively.
α = [α1, α2, ..., αn] represent the fractional orders.
The transfer function can be calculated from the state-space representation as followed
[5]:

G(s) = C(sαI − A)−1B +D (2.24)

Where: I is the n×n identity matrix.

2.3 Stability

We consider the commensurable-order transfer function (2.22). We note by pi = λ
1
α
i

the poles of the system, such that λi are the eigenvalues of the matrix A in the state-space
representation.
In order for linear invariant-time system to be stable, all the poles must have a negative
real part, i.e. |arg(pi)| > π

2
, thus [12]:

|arg(λi)| > α
π

2
(2.25)
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Figure 2.1: The stability regions in the complex plane for fractional-order systems

Note: The controllability and observability notions for fractional-order systems are
the same as in integer-order systems. Therefore, the fractional-order system (2.23) is
controllable (respectively observable) if the controllability matrix C (respectively the ob-
servability matrix O) has rank n. Where:

C = [B AB A2B ... An−1B]

O = [C CA CA2 ... CAn−1]t
(2.26)

2.4 Integer-order approximations of fractional-order
systems

Control theory usually deals with integer-order systems and adapting the classical
methods to fractional-order systems is a difficult process. This is due the irrational na-
ture of their transfer functions and the infinite-dimensional state-space (they showed
infinitely small and high time constants [13], [14]) which make the numerical approaches
computationally hard to apply. To overcome this difficulty many methods to approximate
the fractional-order systems by integer-order representations were proposed. The most
famous of these methods are Charef approximation [15] and Oustaloup approximation
[16]. In this paper we will use the Oustaloop approximation.

2.4.1 Oustaloup approximation

The Oustaloup method, also called the Oustaloup’s recursive filter revolves around
approximating the fractional operator sα where α ∈ R to an integer-order transfer function
of a specific order in a limited frequency-band.
The (2N + 1)th-order Oustaloop approximation (where N ∈ N) of the operator sα in the
a band of frequency of [wb, wh] is defined as followed [16]:

sα ≈ (
wu

wh

)α
k=N∏
k=−N

(1 + s
w′

k
)

(1 + s
wk
)

(2.27)
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where:
wu =

√
wb.wh

w′
k = wb(

wh

wb
)(k+N+0.5(1−α))/(2N+1)

wk = wb(
wh

wb
)(k+N+0.5(1+α))/(2N+1)

(2.28)

2.4.2 Oustaloup filter’s parameters

To understand how the parameters of the filter i.e. the order and the frequency-band
influence the quality of the approximation, let us consider the following example of the
fractional-order transfer function: G(s) = 1

s0.5
, the different Oustaloup approximations of

this function for different parameters are:
For an order of N = 2 in a frequency-band of [0.01; 100]rad/s :

1

s0.5
≈ 0.1s5 + 7.497s4 + 76.85s3 + 121.8s2 + 29.85s+ 1

s5 + 29.85s4 + 121.8s3 + 76.85s2 + 7.497s+ 0.1
(2.29)

For an order of N = 2 in a frequency-band of [0.001; 1000]rad/s :
1

s0.5
≈ 0.03162s5 + 16.92s4 + 537.1s3 + 1072s2 + 134.4s+ 1

s5 + 134.4s4 + 1072s3 + 537.1s2 + 16.92s+ 0.03162
(2.30)

For an order of N = 3 in a frequency-band of [0.01; 100]rad/s :
1

s0.5
≈ 0.1s7 + 9.834s6 + 204.5s5 + 1079s4 + 1499s3 + 548.7s2 + 50.94s+ 1

s7 + 50.94s6 + 548.7s5 + 1499s4 + 1079s3 + 204.5s2 + 9.834s+ 0.1
(2.31)

The bode diagrams of G(s) and its Oustaloop approximations are shown in figure 2.2.

Figure 2.2: Bode diagrams of the function G(s) and its Oustaloop approximations
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From the above figure we can observe the following:

• In general, Oustaloup filter gives an accurate approximation of fractional-order
transfer functions in the desired frequency-band.

• Outside Oustaloup frequency-band the approximated transfer function shows dif-
ferent magnitude and phase from the real function.

• The phase of the approximated function is more sensitive than the magnitude, where
we observe that it does not correspond to the phase of the real function near the
transition frequencies wb and wh.

• Enlarging the frequency-band causes approximation errors where the values of the
phase and magnitude of the approximated function start oscillating around the
values of the phase and magnitude of the real function.

• Increasing the order of the filter decreases the approximation errors in the frequency-
band but increases computation time.

2.5 Fractional-order nonlinear systems

Fractional-order nonlinear systems can be described by a nonlinear version of the dif-
ferential equation (2.20). The Laplace transform of such an equation does not result in
a transfer function, therefore the state-space representation is the only remaining math-
ematical representation that can be deduced based on the physical properties. Such a
state-space has the following form:{

Dαx(t) = F (x(t), u(t))

y(t) = G(x(t), u(t))
(2.32)

where: F and G are nonlinear functions of x(t) and u(t).
Similarly to the integer-order case, the fractional-order linear control theory constitute
the base tool of fractional-order nonlinear system study.

2.6 Conclusion

In this chapter, we provided the necessary mathematical background for fractional
calculus which includes some fundamental definitions of the fractional-order integrals and
derivatives with their main properties. We also briefly introduced fractional-order control
theory and the necessary tools used in the study of fractional systems. Starting with the
different mathematical representations of fractional-order linear time-invariant systems,
then the analysis of the main characteristics of these systems like the stability. Finally,
we introduced the Oustaloup recursive filter as an approximation method that helps to
adapt classical control theory with fractional calculus.
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Introduction

We mean by system identification the process of determining a mathematical repre-
sentation that describes the behaviour of the system. It is a tool to study it properly and
does not necessarily need a physical interpretation.
In recent years, system identification developed drastically and came up with revolution-
ary models and techniques that made it faster, more accurate and richer in information.
For instance, fractional-order models are currently one of the most promising represen-
tations. They proved to offer more insight on phenomena representation especially when
it comes the hidden non-understandable effects and some particular properties like the
memory effect [17], [18]. In this chapter we will discuss the estimation of some differ-
ent integer and fractional-order models in both time and frequency domains for a highly
non-linear MIMO system, the TRMS.

3.1 Control process

Our final goal in this study is to control our Twin Rotor MIMO system and get a
desirable behavior, to do so, we need to pass through the following steps:

1. Technological study of our system.

2. Mathematical modeling.

3. Open-loop analysis (stability and dynamic behavior).

4. Command synthesis.

5. Closed-loop simulation.

6. Choice of the technology of command.

7. Practical tests.

To build the mathematical model of a system there are many approaches to determine
the structure of the model:

3.1.1 White-box approach

This approach relies completely on the physical laws to model the system. Using
physical properties we can find the mathematical expressions of the variables we want to
control, or as in most cases, a differential equation that involves them. This method is a
projection of real life phenomena so every single parameter has a physical interpretation,
however it presents many limitations: first, most of the systems and phenomena are
too complicated to be physically modeled, with a significant class of behaviors that cant
be represented in the first place. Secondly, pure physical induction ignores many side-
phenomena that affects the system’s behavior as well as internal interactions, this causes
a deficiency in the system’s representation.
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3.1.2 Black-box approach

In this approach we fix a mathematical model in which we include the input, output
and the disturbances of the system with unknown parameters that will be identified using
an optimization algorithm. Basically, the error between the real measured output value
and the one predicted using the model is calculated, then an optimization criteria is fixed
to minimize that error. A minimal error corresponds to a close predicted output to the real
value, and thus a valid model. The disadvantages of this method consist in the absence
of a systematic approach to fix the mathematical model which gives it some randomness,
as well as the non-physical sense of the model’s parameters.

3.1.3 Grey-box approach

This approach is a combination of the previous two. First, the structure of the math-
ematical model is built using physical laws, and then for any unknown parameter or
complicated phenomena an optimization algorithm is used in the same way as in the
black-box approach to numerically identify the remaining unknown parameters. This
approach avoids a significant part of the inconveniences of the white and black-box ap-
proaches. The identification algorithm is:

Algorithm 1 Grey-box identification
1. Collect the measures (inputs and outputs)
2. Filter and normalize the collected data
3. Choose a model structure
4. Choose an optimization method
5. Identify the unknown parameters with the help of the optimization method
6. Validate the estimated model

Figure 3.1: Estimation block

3.2 The Twin Rotor MIMO System:

The Twin Rotor MIMO System (TRMS) is a laboratory instrument developed by
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Feedback Instruments Ltd. Its behavior is similar to that of a helicopter with some
particular distinctions[19]: the location of the pivot in the TRMS is midway between
the rotors instead of being in the main rotor head, and the lifting force comes from the
rotational speed of the main rotor instead of the collective pitch control in the helicopter
(constant rotational speed of the rotors with variable pitch angle of the tail rotor to
generate lifting).
It consists of the following parts:

• A beam that rotates freely around the vertical and horizontal axis.

• A support tower fixed on a base that holds the rest of the parts. The base contains
all the circuitry responsible for the processing of the I/O signals of the TRMS.

• A pivot that joints the beam and the support tower, allowing the beam to have the
2 degrees of freedom.

• Two rotors on the two extremities of the beam: A main rotor facing the horizontal
plane and causes vertical movement, and a tail rotor facing the vertical plane and
causes horizontal movement. Each of these rotors contain a DC-motor, a tachometer
and propellers that are protected by a shield.

• a counterbalance beam attached to the pivot that holds a movable counterweight.
Its purpose is to establish an equilibrium position and to diminish the vibrations of
the system.

• An On and Off interface.

Figure 3.2: The Twin Rotor MIMO System [20]

In control, the TRMS represents a perfect example of a Multiple-Input Multiple-
Output (MIMO) highly coupled system with non-linearities of superior order.
The measurable values of the TRMS (represent the outputs of the system) consist of the
horizontal angle αh called azimuth produced mainly by the propulsive force from the tail
rotor, and the vertical angle αv called elevation produced mainly by the propulsive force
from the main rotor. These angles are measured by a sensor situated in the pivot part.
The controls of the system (i.e. the inputs of the system) are the voltage supplies of the
motors uv and uh, they vary in a range of [−2.5,+2.5]V .
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3.2.1 Physical study

Using Newton’s second law of motion we can establish some differential equations that
describe accurately the behaviour of our system.
Since the system has two degrees of freedom, we will consider studying the motion in each
plane individually:

3.2.1.1 Vertical plane

Basically the majority of the dynamics in the vertical plane are caused by the main
rotor and the gravity force pulling down the different parts of the setup. In addition, a
centrifugal force is created when the beam moves vertically, accompanied with a friction
force in the joint part. The torque of tail rotor has a slim effect on the dynamics of this
plane, that we can simply neglect.
To make the process easier we can consider dividing the effect of the gravitational force
on the different parts of the TRMS. The following figure illustrates all the forces that are
applied in the vertical plane.

Figure 3.3: Forces in the vertical plane

Where:

29



Chapter 3. System identification

Fv: The aerodynamic force created by the main motor
g: Gravitational acceleration of the earth
αv: The angle of inclination from the vertical plane
mm: The mass of the beam part holding the main rotor
mmr: The mass of the main rotor
mms: The mass of the main shield
mt: The mass of the beam part holding the tail rotor
mtr: The mass of the tail rotor
mts: The mass of the tail shield
mcb: The mass of the counterweight
mb: The mass of the counterweight beam
lm: The length of the main part of the beam
lt: The length of the tail part of the beam
lcb: The distance between the counterweight and the pivot
lb: The length of the counterweight beam

According to Newton’s second law of motion, we have:
M = J d2α

dt2

M =
∑

i Mi

J =
∑

i Ji

(3.1)

Where:
M : The torque caused by forces
J : The moment of inertia
We define as well:
Ωv/h: The angular velocity of the rotation in the vertical/horizontal plane
Kv/h: The friction coefficient in the vertical/horizontal plane

Feedback instrument Ltd in [20] and H.N. Nguyen in [21] simplified the calculation of
the moments and the application of Newton’s law (3.1) on the TRMS:

• The moment resulting from gravitational force:

Mv1 = g[(A− B)cos(αv)− Csin(αv)] (3.2)

where:

A = (
mt

2
+mtr +mts)lt, B = (

mm

2
+mmr +mms)lm, C = (

mb

2
+mcb)lcb (3.3)

• The moment resulting from the aerodynamic force of the main rotor:

Mv2 = lmFv (3.4)

• The moment resulting from the centrifugal force:

Mv3 = −Ω2
h(A+B + C)sin(αv)cos(αv) (3.5)
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• The moment resulting from the friction force existing in the joint:

Mv4 = −ΩvKv (3.6)

The moments of inertia depend on the geometric distribution of the mass of the parts,
we can calculate them :

Jv1 = mmrl
2
m Jv2 = mm

l2cb
3

Jv3 = mcbl
2
cb

Jv4 = mb

l2cb
3

Jv5 = mtrl
2
t Jv6 = mt

l2t
3

Jv7 = Jmr =
mms

2
r2m +mmsl

2
m Jv8 = Jtr = mtsr

2
ts +mtsl

2
t

(3.7)

Replacing the above equations in Newton’s law, we obtain:
Jv

d2αv

dt2
= lmFv − Ω2

h(A+B + C)sin(2αv)− ΩvKv + g[(A− B)cos(αv)− Csin(αv)]

Sv = dαv

dt

JvSv = JvΩv − Jtrwt

(3.8)
Where:
Sv: The angular momentum of the beam in the vertical plane.
wt: The angular velocity of the tail rotor.

3.2.1.2 Horizontal plane

In a similar way to the vertical plane, the tail rotor is responsible for most of the
horizontal dynamics. Since gravity has no effect in this plane, the aerodynamic force
is the major force causing the motion. This aerodynamic force is produced mainly by
the tail rotor and significantly influenced by the main rotor, a cross-coupling effect that
cannot be neglected . In addition, when moving frictions always exist in the joint and
must be taken in consideration.

Figure 3.4: Forces in the horizontal plane
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Where:
Fh: The aerodynamic force caused by the tail rotor.
αh: The angle of inclination from the horizontal plane
In a similar way we can calculate:

• The moment caused by the aerodynamic force:

Mh1 = ltFhcos(αv) (3.9)

• The moment caused by the friction:

Mh2 = −ΩhKh (3.10)

The horizontal moment of inertia was calculated according to the geometrical distribution
of the mass of the system:

Jh = Dcos2(αv) + Esin2(αv) + F (3.11)

where:

D =
mb

3
l2b +mcbl

2
cb, E = (

mm

3
+mmr+mms)l

2
m+(

mt

3
+mts+mms)l

2
t , F = mmsr

2
ms+

mts

2
r2ts

(3.12)
And thus: 

Jh
d2αh

dt2
= ltFhcos(αv)− ΩhKh

Sh =
dαh

dt

JhSh = JhΩh − Jmrwmsin(αv)

(3.13)

Where:
Sh: The angular momentum of the beam in the horizontal plane.
wm: The angular velocity of the main rotor.

The equations (3.8) and (3.13) describe the behaviour of our outputs, the azimuth αh

and elevation αv, and to produce an accurate mathematical representation of our system
we need some relations that describe the behaviour of our controls uv and uh the control
voltages of the rotors. Such a relation for the DC motors exists and combines the linear
dynamics and the static nonlinearity of the rotors [20]:{

duvv

dt
= 1

Tmr
(−uvv + uv)

duhh

dt
= 1

Ttr
(−uhh + uh)

(3.14)

Where:
uvv/hh: The input voltage of the main/tail rotor.
Tmr/tr: The time constant of the main/tail rotor.
We note that the angular velocity of each rotor is a static nonlinearity of its input voltage
let us call it the function P . {

wm = Pv(uvv)

wt = Ph(uhh)
(3.15)

Note: We can physically measure some constants like the dimensions of the TRMS and
the masses of its parts, their values are included in the Manuel of the TRMS [20].
The measurement of the constants is summarized in the following table:
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measurements
Constant Value
mm 0.0145 kg
mmr 0.228 kg
mms 0.225 kg
mt 0.0155 kg
mtr 0.206 kg
mts 0.162 kg
mcb 0.068 kg
mb 0.022 kg
lm 0.24 m
lt 0.25 m
lcb 0.13 m
lb 0.13 m
rms 0.155 m
rts 0.10 m
Kv 0.006 N.s/rad
Kh 0.1 N.s/rad

3.2.1.3 Static nonlinearities and aerodynamic forces estimation

An interesting approach to deal with the non-linear functions in our representation
Pv/h and Fv/h was introduced in [22] , where they proved that the approximated polyno-
mials give valid results. This spares the trouble of dealing with the complex intertwined
physical phenomena that produce them, as well as offering a simplicity of the modeling.
Nevertheless, some attempts successfully modeled these functions using physical laws with
high accuracy [23].
We will consider the polynomial expressions found in [22]:

Pv(uvv) = 90.99u6
vv +599.73u5

vv +129.26u4
vv − 1238.64u3

vv +63.45u2
vv +1283.41uvv (3.16)

Ph(uhh) = 2020u5
hh − 194.69u4

hh − 4283.15u3
hh + 262.27u2

hh + 3796.83uhh (3.17)

Fv(wm) = 3187×10−15w5
m − 4096×10−12w4

m + 1385×10−9w3
m + 1234×10−6w2

m + 0.799wm

(3.18)

Fh(wt) = 9496×10−16w5
t − 9844×10−16w4

t + 2785×10−10w3
t + 1730×10−7w2

t + 0.729wt

(3.19)

3.2.2 Block model simulation:

Due to equations (3.8),(3.13) and (3.14) we can build a MATLAB Simulink block model
that simulates the attitude of the TRMS (figure 3.5).
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Figure 3.5: Block model of the TRMS

The simulations of a pulse response are presented in figure 3.6.

Figure 3.6: Simulation of a pulse response
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3.3 The Linear representation

In general, it is interesting to asses a linear mathematical representation of a non-
linear system because it offers an accessibility for a mathematical model of a certain
hard-to-model non-linear class of systems, and a simplicity of analyzing and studying
the system with insignificant errors. The frequency representation for instance, is rich
in information and thus allows a good deduction when it comes to control and analysis.
In our case however, there is a high order nonlinearity that prevents an accurate linear
representation and results in a significant modeling error in the case of traditional transfer
function representations. Nevertheless, introducing fractional-order in linear modeling
proved to reduce the linear modeling error of non-linearities significantly when it comes
to a certain class of non-linear systems [24]. Therefore, we will consider the traditional
integer-order transfer function representation as well, for analyzing and comparing means.

3.3.1 Integer-order transfer function

We use in the estimation of our transfer function the data extracted from injecting
an appropriate input into the simulation model in figure 3.5, which is a sequence that
slightly disturbs the system, deterministic if possible and rich in frequency, such the
Pseudo-Random Binary Sequence (PRBS). In our example we will use the PRBS as an
input.
The principle of the estimation consists basically in determining the parameters of a fixed
model using an optimization method, as followed:

Algorithm 2 Estimation of the model’s unknown parameters
Result: The optimal model parameters

1 Initialize the parameters with random values
2 Excite the real system and the modeled one with a PRBS
3 Collect the output of the real system y and the predicted output of the model ỹ
4 Calculate the error between the two outputs ϵ = |y − ỹ|
5 Apply an optimization method to minimize a criteria of the error
6 if the optimization algorithm diverges then
7 return to step 1 with different initial conditions

For the optimization criteria to minimize the error, we have many choices. In our
example we will consider the least squares principle which aims to minimize the sum of
the squares of the error [25]:

Min(J) = Min(
∑

(ϵ)2) (3.20)

As for the optimization method we will go with the recursive least squares RLS algorithm
[26]. The linear frequency representation of the TRMS can be defined as followed:[

y1
y2

]
=

[
g11 g12
g21 g22

] [
u1

u2

]
Where: G(s) = Y (s)

U(s)
represent the MIMO transfer function (MTF) of the TRMS, and the

input and output parameters are:
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u(t)=
(
uv uh

)
t=

(
u1 u2

)
t y(t)=

(
αv αh

)
t=

(
y1 y2

)
t

Thus the block model is:

Figure 3.7: The block model of the transfer function representation of the TRMS

We fix the order of our transfer function gii to 5 poles for a better approximation and
no zeros since the simulated response of the TRMS shown in figure 3.5 show no zero’s
dynamics and we apply Algorithm 2.
In our simulation we will rely on a two-steps method to identify the functions: In the
first step only one input excites the system with a PRBS while the other input remains
zero i.e. we will have ystep11 = g11u

step1
1 and ystep12 = g12u

step1
1 from which we can extract

the functions g11 and g12 using the RLS algorithm. In the second step, in a similar way,
the first input is switched to zero while the other one excites the system with a PRBS,
resulting in ystep21 = g21u

step2
2 and ystep22 = g22u

step2
2 , and therefore we can estimate the

remaining functions.
In literature, many methods were proposed concerning the estimation of the transfer func-
tions of a MIMO system, like the improved one-step method [24] in which the decoupling
process was removed.
The estimation gives the following results:

[
g11 g12
g21 g22

]
=

[
488.1

s5+5.856s4+190.7s3+478.6s2+1124s+946.6
816.9

s5+7.715s4+219.4s3+379.1s2+132.6s+0.3898

0 3777
s5+2.147s4+899.7s3+1231s2+282.6s+0.486

]

The simulation of the identified functions for a random input signal are given in the
following figures:
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Figure 3.8: Elevation response of the estimated integer-order transfer function

Figure 3.9: Azimuth response of the estimated integer-order transfer function

We can observe the resemblance between the block model and the identified integer-
order responses, nevertheless, the identified model is clearly flawed and cannot be used as
a valid model.
To note, g21 = 0 makes sens since the effect of tail rotor on the elevation is negligible,
therefor the choice of parameters in the RLS algorithm led to approximate the function
to zero.
The integer-order transfer function, being a linear mathematical representation of the
TRMS does not model its behaviour well due the high-order non-linearities.
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3.3.2 Fractional-order transfer function

The traditional identification methods like the RLS do not work directly in the case of
fractional-order estimation, and this is for three main reasons:

1. Unlike the integer-order integro-differential operator, the fractional-order one does
not disappear transforming the function into a past version or any other possible
physical interpretation. For instance, the first derivative of an output ẏ(t) can be
interpreted as a past version of the present output i.e. ẏ(t) = y(t− k) with k ∈ Z+,

but for fractional-order operations this property does not exist, and therefore new
mathematical solutions must take place.

2. This new transformation generates a non-linear relation between the measurements
and the estimated parameters.

3. The fractional orders must be estimated as well and they have no direct relations
with the other parameters.

To overcome those problems, the estimation methods were shifted and enhanced to suit
the fractional-order systems. We will proceed and discuss how to apply the RLS algorithm
for a fractional-order system [27].

3.3.2.1 Recursive least squares algorithm for fractional-order systems

For our TRMS we consider the following ARX system:

y(t) +
n∑

i=1

aiD
αiy(t) =

m∑
j=0

bjD
βju(t) (3.21)

where: ai,bj ∈ R and αi,βj ∈ R+.
The fractional-order transfer function of the system is therefore:

G(s) =
U(s)

Y (s)
=

∑m
j=0 bjs

βj

1 +
∑n

i=1 ans
αi

(3.22)

Since it is highly difficult to directly deal with fractional systems we need to approximate
the transfer function into an integer-order one. We consider the following version of the
N th-order Oustaloop approximation in a band of frequency [wb, wh] [28]:

1

sm
≈ 1

(wc)
m

∏N−1
i=1 (1 + s/zi)∏N
i=1(1 + s/pi)

=
N∑
i=1

ki
1 + s/pi

(3.23)

where: wc = γwb for (0.0001 ≤ γ ≤ 0.1), wmax = σwh for (10 ≤ σ ≤ 10000), and:
p1 = wc10

ϵ/m

pi = 10pi−1, i ≥ 2

ϵ = m(1−m)
2(N+(1−m)/2)

[log10(wmax/wc)]

(3.24)
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{
z1 = p110

2ϵ
(1−m)

zi = pi10
m, i ≥ 2

(3.25)

kj =
1

(wc)
m

∏N
i=1(1− pj/zi)∏N

i=1,i ̸=j(1− pj/pi)
, j = 1, 2, ..., N (3.26)

Now that we have an integer-order approximation of our fractional transfer function we can
establish our traditional RLS algorithm, therefore we first calculate the discrete transfer
function:

1

sm
|
s= 1−z−1

T

=
N∑
i=0

kiz

(1 + 1
Tpi

)z − 1
Tpi

(3.27)

Then the inverse Z-transform gives:

g(k) =
N∑
i=0

kipiT

piT + 1
(

1

piT + 1
)ku(k) (3.28)

The function (3.28) allows us to define an algebraic expression of the fractional-order
operator in the ARX model (4.11) and thus solving the first problem by creating
a mathematical interpretation of Dαy(t) relating it to y. For M measures such that
M >> Q we have:

Dαy(t) =

Q−1∑
q=0

gα(q)y(M − q) =

Q−1∑
q=0

N∑
i=1

kipiT

piT + 1
(

1

piT + 1
)qu(q)y(M − q) (3.29)

Replacing the results of (3.29) in the ARX model (4.11) we find:

y(M) = −
∑n

i=1 ai
∑Q−1

q=1 gα(q)y(M − q)∑n
i=1 aigα(0) + 1

+

∑m
j=0 bj

∑Q−1
q=0 gβ(q)u(M − q)∑n

i=1 aigα(0) + 1
(3.30)

As we can observe, the above relation (3.30) involves the measurements and the parame-
ters we want to estimate and it is non-linear . So to linearize them and as a consequence
solve the second problem we can create the following variables:

a′i =
ai∑n

i=1 aigα(0)+1

b′j =
bj∑n

i=1 aigα(0)+1

(3.31)

The predicted output becomes:

ỹ(M) = −
n∑

i=1

a′iYi(M) +
m∑
j=0

b′jUj(M) = ϕ(M)θ (3.32)

where:
Yi(M) =

∑Q−1
q=1 gα(q)y(M − q)

Uj(M) =
∑Q−1

q=0 gβ(q)u(M − q)

θt = [a′1, a
′
2, ..., a

′
n, b

′
0, ..., b

′
m]

ϕ(M) = [Y1(M), Y2(M), ..., Yn(M), U0(M), ..., Ym(M)]

(3.33)

Now for the last problem, many solutions were proposed to determine the fractional orders.
For instance, D.Idiou et al. in [27] and K.Kothari in [24] considered in their approaches a
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commensurable system, which left them with only one fractional order to identify. Such
an identification can be done for example, through a basic loop that goes over every
possible order which is negligible since there are only 101 possibilities for a 2 decimal
digits fractional-order 0 ≤ α ≤ 1. Or more efficiently, by using an optimization algorithm
like the particle swarm optimization (PSO) to quickly estimate the best order. Others
like O.Stark et al. in [29], developed techniques to estimate the non-commensurable
fractional-order.
In our study, we will consider the 2 decimal digits non-commensurable fractional-order,
in which it will be identified separately from the parameters ai and bj using the Trust-
Region-Reflective (TRR) MATLAB function presented in [30] like follows:

Algorithm 3 Identification of the fractional-order transfer function
1. Fix an ARX structure
2. Initialize the fractional-orders with random values
3. Identify the parameters’ vector θ using RLS algorithm
4. Estimate the fractional-orders using the TRR algorithm in the new estimated system
5. Estimate the new parameters’ vector related to the new order using the RLS algorithm
if the identified system converges to the real one then

the estimation is finished
else

return to step 4.

The TRR is an optimization algorithm used to calculate the minimum of an objective
function, just like the RLS. We use it for the estimation of the fractional-orders because
the regression principle used in the TRR makes the estimation of the exponents faster
than the RLS .

3.3.2.2 Estimation and simulation

We fix the same structure as the integer-order transfer function with 5 poles and no
zeros. As for the approximation of the fractional-order transfer function, we consider the
10th-order Oustaloop approximation in the range of [0.0001, 10000]rad/s.
The estimation results are:

[
g11 g12
g21 g22

]
=[

0.8
0.66s2.75+5.69s1.09−2.65s1.01−8.06s0.38+9.12s0.29+0.36s0.04

1
0.04s3.67+0.04s2.92+0.45s2.56+0.14s2.17−0.44s1.65+0.66s1.4

1
433.53s1.15+428.23s0.93+437.97s0.67+427.77s0.42+434.6s0.18+432.27

0.85
0.26s2.8−0.01s2.77+0.41s2.73−0.66s2.15+0.68s1.75

]

The simulation of the identified functions for a random input signal are given in the
following figures:
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Figure 3.10: Elevation response of the estimated fractional-order transfer function

Figure 3.11: Azimuth response of the estimated fractional-order transfer function

The results of this estimation are quiet precise, with some little modeling errors. The
model can be used as a mathematical representation of the TRMS to a certain degree.
We must note that we cannot easily simulate the fractional transfer functions directly and
we have to pass through an integer-order approximation, in which the type of approxi-
mation, order and the frequency range must be chosen carefully and correspond to those
we estimated the function with.

3.3.3 Comparison

The simulation of our identified systems together is as followed:
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Figure 3.12: Elevation response of the estimated transfer functions

Figure 3.13: Azimuth response of the estimated transfer functions

For comparison purposes we consider the residual sum of squares (RSS) criteria, which
evaluates the fitness of our estimated models, such that the smaller the RSS is, the better
is the estimation. It is given by the following expression [31] :

RSS =
n∑

i=1

(yi(t)− ỹi(t))
2 (3.34)

where n is the number of the measurements.
The results of the RSS criteria for the estimated responses in figures 3.12 and 3.13 are
given in the following table, for a 100 measurements we have:
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TF estimation FOTF estimation
RSS for elevation error 2.5138 0.6423
RSS for azimuth error 101.9981 69.1929

Table 3.1: Residual sum of squares of the estimation error

We can observe:

• The fractional-order transfer function is a more accurate representation than the
integer-order one when it comes to the TRMS.

• Despite being a linear representation, the identified fractional-order transfer func-
tion represented the TRMS, a highly non-linear system with minimal modeling
error.

• The modeling error in both cases is due to the limitation of the frequency repre-
sentation for non-linear systems modeling, but we can see clearly through the RSS
that the fractional-order estimation is significantly more accurate.

3.4 The non-linear representation

A more accurate representation of the TRMS must take in consideration the non-linear
behaviour, like the state-space representation. In addition to modeling non-linearities, this
representation is more adapted to the control problem because it allows us to directly asses
the commands of the system in real time.

3.4.1 Integer-order state-space model

A precise state-space model is one that includes the controls, measures and any internal
variable that has a significant relation with the previous ones and with the dynamics of
the system like those that influence the stability, controllability and observability.
In our case a good choice of the variables is the following:
State vector x(t):

(
αv Ωv uvv αh Ωh uhh

)
t

Control vector u(t):
(
uv uh

)
t

Output vector y(t):
(
αv αh

)
t

To note, many good choices of the variables exist, like the one proposed by M. Ilyas et
al. in [32]. They result in different mathematical representations but give similar precise
results. Also, it is quiet difficult to deal directly with the coupling effect using the state-
space representation since the decoupling in this representation generates model errors,
and thus we will consider the coupling effect as an external disturbance when controlling
our system.
Now that we defined our variables and we have all the necessary expressions and equations
to create the state-space model for our TRMS:
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From (3.8), (3.13) and (3.14) :

ẋ1 =
1
Jv
x2 +

Jtr
Jv
Ph(x6)

ẋ2 = lmFv(Pv(x3)) + g[(A− B)cos(x1)− Csin(x1)]− 1
2
[ 1
Jh(x1)

x5

+ Jmr

Jh(x1)
Pv(x3)cos(x1)]

2(A+B + C)sin(2x1)−Kv[
1
Jv
x2 +

Jtr
Jv
Ph(x6)]

ẋ3 =
1

Tmr
(−x3 + uv)

ẋ4 =
1

Jh(x1)
x5 +

Jmr

Jh(x1)
Pv(x3)cos(x1)

ẋ5 = ltFh(Ph(x6))cos(x1)−Kh[
1

Jh(x1)
x5 +

Jmr

Jh(x1)
Pv(x3)cos(x1)]

ẋ6 =
1
Ttr

(−x6 + uh)

(3.35)

As we can observe, the state-space model is highly nonlinear with the existence of
sinusoidal behaviours, as well as significant cross-coupling effect between the vertical and
horizontal subsystems.
It is a valid model since it was extracted from the equations without loss of information.
Its simulation is identical to the block model in figure 3.5.

3.4.2 Fractional-order state-space modeling

It is interesting to introduce fractional calculus in the state-space representation of the
TRMS, this could result in an enhanced model. Nevertheless, it is extremely complicated
to find the expressions of the fractional derivatives of our states due to the high nonlin-
earities and complexity of the equations (3.8),(3.13) and (3.14) describing the behaviour
of the system.
In literature, many methods were proposed to deal with nonlinearities for fractional-order
state-space modeling, the most famous are Wiener, Hammerstein and Hammerstein-
Wiener models [33]–[37]. For a better understanding of the process, let us discuss the
principle of Wiener model identification, because it is suitable for most parts of our
TRMS.
The Wiener model divides the system into two cascaded blocks: a dynamic linear block
and a static nonlinear one (figure 3.14), which is perfect for some parts of our system.
For instance the rotors present a nonlinear behaviour that can be described as a linear
first-order system cascaded with a static nonlinearity of the input voltage P (u).

Figure 3.14: Wiener model

The linear part can be represented by a linear asymptotically stable fractional-order
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state-space model, for example:{
Dαx(t) = Ax(t) + Bu(t)

r(t) = Cx(t) +Du(t)
(3.36)

While the nonlinear part is usually represented by any basic nonlinear function f(r) such
as a polynomial, same like some of our nonlinear functions of the TRMS.

f(r) =
n∑

i=0

air
i, ai ∈ R (3.37)

the combined system (3.38) represent a non-linear fractional-order model.{
Dαx(t) = Ax(t) + Bu(t)

y(t) = f(r) =
∑n

i=0 ai(Cx(t) +Du(t))i
(3.38)

Hammerstein model is just a backward version of the Wiener model, in which the
non-linear part comes first, and as consequence the Hammerstein-Wiener and Wiener-
Hammerstein models are combinations of the two first models. Following this doctrine
we can modelized a multitude of nonlinear system classes.
Back to our TRMS for example, the first-order linear behaviour of our main rotor can
be modeled by a fractional-order state-space representation and the static nonlinearity
by a polynomial (approximation in (3.16)). However, the discussed complexity of its
intertwined relations makes it complicated to apply those methods on all of the parts. In
addition, it is an unnecessary representation for the TRMS since it does not occasion any
of the phenomena that have limited representations with traditional integer-order models
like the memory effect in batteries for example [29]. The integer-order state-space (3.35)
gives highly precise simulation results, and thus we will proceed with it to synthesize the
controllers.

3.5 Conclusion

In this chapter, we went through a physical study of the TRMS to assess the mathe-
matical relations that express its behaviour. Those expressions allowed us to build a block
simulation model to use as a base to simulate the attitude of the system. In addition, we
estimated three different mathematical representations to analyse the system with in the
next chapters, which are:

• A linear integer-order transfer function that turned out to be incoherent due to its
incapability to bypass the nonlinearities of the TRMS.

• A linear-fractional order transfer function that better approaches the real model
and proved to be valid with some inaccuracies.

• A highly precise nonlinear integer-order state-space representation, purely a white-
box estimated model.

Also we discussed the possibility to assess an enhanced non-linear fractional-order state-
space representation of the TRMS.
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Introduction

PID control is the most used controlling technique in industrial applications. It was
first introduced by Elmer Sperry in 1911 [38] and developed since then.
The PID controllers operate in closed-loop feedback control, they target the error be-
tween the response of the system and the desired reference input to which they attribute
a proportional gain kp (controller P), a gain to the integral of the error ki (controller
I) and a gain to the derivative of the error kd (controller D). These actions play on the
characteristics of the closed-loop response which are the time delay, the overshoot, the
oscillations and the steady-state error.
An interesting development of the PID controllers these last years consists in the intro-
duction of fractional calculus into the effect of the integral and derivative actions. In this
chapter we will assess a comparative study of the control of the TRMS using the integer
and fractional-order PID controllers.

4.1 Problem statement

Designing a PID controller for non-linear systems is quiet different from the linear case,
since we do not have a direct frequency representation like the transfer function that we
can use to determine the PID parameters for a precise behaviour. This means that we
cannot rely on the traditional methods for PID tuning, and this includes the FOPID as
well.
An obvious solution is to try linearizing the system since a wide class of systems accept a
linearization around the different operating points, and apply to each point the tradition
PID controller. This approach however risks poor control qualities for high-order nonlinear
systems, like the TRMS.
A more sophisticated and modern technique consists in estimating the parameters of the
PID controller directly for the non-linear system using optimization algorithms like the
Particle Swarm algorithm (PSO) [39], [40] and the Genetic Algorithm (GA) [41], [42].
These algorithms are used to minimise a cost function like the error between the reference
input and the tuned closed-loop response by tuning the controller’s parameters to achieve
a better response.
In this study we will use the PSO algorithm to estimate the PID and FOPID parameters
around the equilibrium point (αv, αh) = (0, 0).

4.2 Particle swarm optimization

The particle swarm optimization is an iterative algorithm that was inspired from the
movement of animal swarms like birds, insects and fishes, it mimics their navigation as a
group to reach a objective location.
The principle of the method consists in the following:

• A populatiom of n homogeneous particles dedicated to solve the optimization prob-
lem are randomly arranged in a search-space D and each of the particles is a po-
tential solution.
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• Each particle has a position xi and moves with a velocity of vi.

• The particles have the ability to evaluate the quality of their positions using an
objective function f , as well as keeping track of their best visited position Pbest.

• The particles communicate with the neighbouring particles and keep track of the
global best position Gbest.

• Each particle adjusts its position and velocity in every iteration in order to converge
to the global optimum.

In the beginning the positions and velocities are initialized randomly between the max-
imum and minimum candidate solutions, then each particle i tries to get to the best
recorded performance according to the formula in figure 4.1.

Figure 4.1: Velocity update in the PSO algorithm

w is called the weight of inertia, c1 and c2 are positive constants used to control the
importance of the distance to the personal best (called cognitive behaviour) and of the
distance to the global best (called social behaviour) respectively.
r1 and r2 are random numbers in the range of [0, 1] that induce a stochastic character to
the effect of the cognitive and social behaviours.
j represents the index of the dimension of the search-space D.
The position is therefore updated in every iteration like follows:

xk+1
i,j = xk

i,j + vk+1
i,j , j ∈ {1, ..., D} (4.1)

The algorithm also updates the best local and global positions in every iteration. In the
case of a minimization problem for example the update is:

Pbestk+1
i =

{
Pbestki , if Pbestki ≤ f(xk

i )

xk+1
i , if Pbestki > f(xk

i )
(4.2)

Gbestk+1 = argmin
Pbesti

f(Pbestk+1
i ), 1 ≤ i ≤ n (4.3)

where argmin function returns the indices of the minimum values found.
We note that the algorithm needs a stopping criteria as well which defines the objective
of the minimization and evaluates the results. In addition, this allows us to avoid going
through all of the iterations when the objective can be attained for fewer attempts.
We can recap the PSO algorithm as follows:
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Algorithm 4 Particle Swarm Optimization
1. Initialize the controlling parameters: The number of iterations, n, c1, c2, w.
2. Initialize the population of n particles randomly in the range of the potential solutions
3. for each particle do

Evaluate the position of the particle using the objective function
Calculate Pbest
Calculate Gbest

4. while the stopping condition is not satisfied do
Update the velocity
Update the position
return to step 3

5. Return Gbest the global optimum

Many variations of the PSO algorithm exist, and they all aim to improve some of
its aspects for certain applications. We can mention for example the technique of setting
up a variable weight of inertia w to enhance the quality of the results. Either by randomly
varying it throughout the iterations or by adapting it accordingly to the solutions. In [43]
results of adaptive weight inertia in the PSO algorithm proved the superiority of this
technique in terms of speed convergence and accuracy.
It is worth mentioning that the size of the search-space and the number of iterations
influence drastically the quality of the final results of the optimization, where a larger
search-space and a bigger number of iterations give a better quality. Nevertheless, they
induce additional computation time and thus it is more optimal to find a compromise
between the time and the quality of the results.
Sometimes it happens that some particles exit the search-space, and to avoid this problem
many solutions were proposed in literature. X. Cai and Y. Tan in [44] for instance, studied
the effect of imposing in the algorithm some limitations concerning the velocity, where
they confined it in a specific range. This will prevent the particles from getting high
velocities that cause them to explode out of the search-space.
Another approach consists in establishing a relationship between w, c1 and c2 using a
constriction factor χ, this was proven by M. Clerc and J. Kennedy in [45] to confine
the particles inside the search-space. With this method the velocity update in figure 4.1
becomes:

vk+1
i,j = χ(vki ) + Φ1r

k
1i,j(Pbestki,j − xk

i,j) + Φ2r
k
2i,j(Gbestki,j − xk

i,j) (4.4)

where: {
χ = 2

|2−Φ−
√
Φ2−2Φ|

Φ = Φ1 + Φ2 > 4
(4.5)

Compared to the velocity update in figure 4.1 we have the following equivalents:

w ≡ χ

c1 ≡ χΦ1

c2 ≡ χΦ2

(4.6)

Many tests were made by Clerc and Kennedy in [45] to find the optimal values of χ,Φ1

49



Chapter 4. PID and FOPID control

and Φ2: 
χ = 0.7298844

Φ1 = 2.05

Φ2 = 2.05

(4.7)

In this study we will use this approach to confine our particles.

4.3 PID controller using the PSO algorithm

For the TRMS, each output has a PID controller and they are defined as followed:

uv = kp1ev(t) + ki1

∫
ev(t)dt+ kd1

dev(t)

dt
, ev(t) = αvref − αv (4.8)

uh = kp2eh(t) + ki2

∫
eh(t)dt+ kd2

deh(t)

dt
, eh(t) = αhref − αh (4.9)

The gains kp1, ki1, kd1, kp2, ki2, kd2 of the PID controllers are to be estimated with the PSO
algorithm. The structure of this estimation process is shown in figure 4.2.

Figure 4.2: Tuning of the PID using the PSO

4.3.1 Open-loop response

In order to compare the closed-loop controlled response to a reference we need to
simulate the open-loop response of the TRMS.
For a step input we get the following results:
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Figure 4.3: Step open-loop response of the elevation

Figure 4.4: Step open-loop response of the azimuth

we observe in the open-loop response of the step that the elevation has a significant
steady-state error and an oscillating behaviour of high order. As for the azimuth, it is
smoothly divergent.

4.3.2 Setting the PSO parameters

We establish the structure in figure 4.2 on MATLAB Simulink to estimate the gains
of the PID controllers. The best choice control-wise is to tune the entire vector P =

[kp1, ki1, kd1, kp2, ki2, kd2] because it takes in consideration the cross-coupling effect in its
complete influence. However, tuning with metaheuristic algorithms like the PSO and GA
is highly time-consuming, especially for big size estimation vectors. Thus, we will consider
the cross-coupling effect as a disturbance and we will estimate each controller individually,
this leave us with a 3-dimensional PSO problem for each controller.
We choose the objective function f as the sum of the squared errors e(t) between the
desired and actual inputs, for Q iterations:

f(gains) =

Q∑
i=1

(e(t))2 (4.10)
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We fix the constants χ,Φ1 and Φ2 as in (4.7), the number of particle as 30 particles and the
number of iterations as 100 iterations. In consideration of the compromise time/quality
of the estimation we will also limit the search-space as follows: 0 ≤ kp, ki, kd ≤ 10.

4.3.3 Tuning results

The tuning process gives the following results:

Parameters kp ki kd

Elevation 2.5205 10 10
Azimuth 10 0 10

Table 4.1: PID parameters for the TRMS

The simulation of the step closed-loop response using the tuned PIDs is given in figures
4.5 and 4.6.

Figure 4.5: Step response of the elevation with PID

Figure 4.6: Step response of the azimuth with PID

The corresponding input signals are:

52



Chapter 4. PID and FOPID control

Figure 4.7: Input signal of the elevation subsystem with PID

Figure 4.8: Input signal of the azimuth subsystem with PID

Now we change the parameters of our TRMS by adding an additional mass to the
mathematical representation which represents a modeling error, and by varying the posi-
tion of the counterbalance weight by 3cm. The simulations of the step responses in this
case are:

Figure 4.9: Robustness test of the PID for elevation subsystem
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Figure 4.10: Robustness test of the PID for azimuth subsystem

These results are obtained for a maximum number of iterations (100). We can observe
the following:

• Both the elevation and azimuth converges to the step signal.

• For the elevation the integral and derivative gains ki1 and kd1 are maxed out, same
for the proportional and derivative gains kp2 and kd2 of the azimuth.

• Increasing the imposed limits of the gains increases drastically computation time
but did not result in any significant enhancement of the quality of control, thus
limiting the gains between 0 and 10 is a good choice.

• The elevation subsystem presents many oscillations in the process. But unlike in the
open-loop response, the PID decreases the number and amplitude of the oscillations
drastically over time.

• The azimuth subsystem has an integration and thus the PSO estimated the integral
gain as 0. We can use this information and reduce the dimensions of the PSO to 2
dimensions for a faster optimization.

• The input signals frequently reach the physical limitations of ±2.5v, this implies
that if the system tolerates a wider voltage range the inputs would be less limited
and result in better control quality.

4.3.4 Feedforward control

An approach to enhance the poor quality of the PID control shown in figure 4.5 for
the elevation subsystem, consists in using a feedforward control alongside with the PID
feedback. S.F.Toha in [19] proved the efficiency of the method.
Its principle consists in feeding the control loop with the inverse model of the TRMS,
however for nonlinear systems the inverse model must be estimated. The structure of a
the PID with feedforward control in shown in figure 4.11 .
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Figure 4.11: Feedforward control with feedback PID structure

The estimation structure of the inverse model is illustrated in figure 4.12.

Figure 4.12: Estimation of the inverse model of the TRMS

An arbitrary mathematical model is chosen with random parameters then the error
between the reference input signal and the generated input signal from the inverse model is
calculated and used in an objective function by the PSO algorithm to tune the parameters
of the inverse model. Finally the inverse model is used in the feedforward structure in
figure 4.11 to tune the PID parameters. We fix a general ARX structure for the inverse
model:

y(k) +
n∑

i=1

aiy(k − i) =
m∑
j=0

bju(k − j) (4.11)

where: ai,bj ∈ R.
The work of Toha et al. in [46] showed through tests that an order of n = 4 and m = 3

gives good modeling results of the inverse model. Thus, the PSO algorithm tunes the
parameters [a1, a2, a3, a4, b0, b1, b2, b3].
The simulation results of the feedforward control with PID feedback is as followed:
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Figure 4.13: Step response of the elevation with PID+feedforward control

As we can observe the additional feedforward enhanced the quality of control, where
the overshoot and oscillations got dampened.

4.4 FOPID controller using the PSO algorithm

The fractional-order PID (FOPID also noted as PIλDµ) is a generalization of the tradi-
tional PID controller where the derivative and integral actions are extended for non-integer
orders.
We define the transfer function of the FOPID as [4]:

C(s) = kp + kis
−λ + kds

µ, λ, µ ∈ R+ (4.12)

kp,ki and kd are the gains of the proportional, integral and derivative actions respectively.
And λ,µ are the real positive fractional-orders of the integral and derivative actions.
It allows us more flexibility in designing the controller compared to the integer-order PID,
as shown in figure 4.14 it offers more possibilities of PID controllers design from 4 possible
points into a plane of infinite points.

Figure 4.14: Extension of PID control from four points to a plane for FOPID
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4.4.1 About FOPID tuning

In general, to estimate the parameters of the FOPID many methods were proposed in
literature. A huge class of them are extensions of the traditional methods for integer-order
PID tuning. They include:

• Imposing the crossover frequency wc and the phase margin Φm like follows:{
|C(jwc)G(jwc)|dB = 0dB

arg(C(jwc)G(jwc)) = −π + Φm

(4.13)

• Robustness to the gain variation, by forcing an invariant open-loop phase for the
crossover frequency [4]:

d(C(jw)G(wj))

dw
|w=wc = 0 (4.14)

• Assuring the pursuit of reference and disturbance rejection by imposing limit condi-
tions for sensitivity and complementary sensitivity functions. Let A be the desired
noise abatement for high frequencies and B the desired sensitivity for low frequen-
cies, we have then:

|T (s) = C(s)G(s)
1+C(s)G(s)

|dB ≤ A

|S(s) = 1
1+C(s)G(s)

|dB ≤ B
(4.15)

In our case, since we rely on the non-linear representation of the TRMS we do not have
the frequency representation G(s) and thus we cannot use the above methods in a direct
way. We will proceed with the PSO algorithm to find the FOPID parameters.

4.4.2 Setting the PSO parameters

We will keep the same settings as the previous integer-order PID tuning, but in this
case we have 2 more parameters to estimate for each controller (the fractional orders).
The FOPID for the TRMS is defined as:

uv = kp1ev(t) + ki1D
−λ
t ev(t) + kd1D

µ
t ev(t), ev(t) = αvref − αv (4.16)

uh = kp2eh(t) + ki2D
−λ
t eh(t) + kd2D

µ
t eh(t), eh(t) = αhref − αh (4.17)

Similarly we will consider the tuning of each controller individually to decrease the time
of estimation.
For the limitations of the search-space we take:

0 ≤ kp, ki, kd ≤ 10

0 ≤ λ, µ ≤ 2
(4.18)
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4.4.3 Tuning results

The tuning process gives the following results:

Parameters kp1 ki1 kd1 λ µ

Elevation 9.983 6.075 4.814 1 1.484
Azimuth 10 0 10 0 1.137

Table 4.2: FOPID parameters for the TRMS

The simulation of the step closed-loop response using the tuned FOPIDs is given in
figures 4.15 and 4.16.

Figure 4.15: Step response of the elevation with FOPID

Figure 4.16: Step response of the azimuth with FOPID

The corresponding input signals are:
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Figure 4.17: Input signal of the elevation subsystem with FOPID

Figure 4.18: Input signal of the azimuth subsystem with FOPID

We make the same robustness tests as the ones we did for PID response. The simula-
tion results are:

Figure 4.19: Robustness test of the FOPID for elevation subsystem
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Figure 4.20: Robustness test of the FOPID for azimuth subsystem

Comparing to the open-loop step response we can observe:

• Both the elevation and azimuth converge.

• The optimal integral controller for the elevation is of integer-order since λ = 1.

• The proportional and derivative gains kp2 and kd2 for the azimuth are maxed out.
Also the integral gain is zero since the subsystem already shown to have an inte-
gration.

• Increasing the imposed limits of the gains increases drastically computation time
but did not result in any significant enhancement of the quality of control, thus
limiting the gains between 0 and 10 is a good choice.

• The oscillations of the elevation have been dampened and the response becomes
smoother.

• The input signals frequently reach the physical limitations of ±2.5v, this implies
that if the system tolerates a wider voltage range the inputs would be less limited
and result in better control quality.

4.5 comparison of the results

Now we put the PID control results side to side with the ones obtained using the
FOPID in order to compare the performances of these two controllers for our TRMS.
In addition to figures 4.21 and 4.22 that show the step response of the system for the PID
and FOPID control in the same graph, we consider the figures 4.23 and 4.24 that show a
sneakier input reference, a random square signal, for a better comparison perspective we
will also add a sinusoidal disturbance of amplitude A = 0.1 to these responses to study
the disturbance rejection ability of both the PID and FOPID controllers.
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Figure 4.21: Comparative step response of the elevation with PID and FOPID controllers

Figure 4.22: Comparative step response of the azimuth with PID and FOPID controllers

Figure 4.23: Comparative random signal response of the elevation with PID and FOPID
controllers
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Figure 4.24: Comparative random signal response of the azimuth with PID and FOPID
controllers

The control results obtained using the FOPID controllers are superior in quality to
those obtained using PID controllers such that:

• The FOPID dampens the oscillations of the elevation subsystem instantly and en-
tirely while the PID only reduced them partially and over time.

• The responses obtained using the FOPID are faster and smoother.

• The overshoot of the FOPID responses is minimal, especially in the elevation sub-
system which is significantly smaller than that with PID controller.

• For a random variable reference, the FOPID control shows an acceptable reference
tracking while the response with the PID controller cannot keep up with it and gives
an altered result in the case of elevation.

• FOPID is more robust for modeling error.

• The PID controller needs a feedforward control to get a similar controlling quality
to the FOPID in the case of the TRMS.

• When it comes to the external disturbance, both controllers reject it perfectly.

• The input signals in the case of the FOPID show less oscillations and sudden changes
that cause damage to the physical system.

From these results, it is clear that the FOPID is a more accurate controller than the
integer-order PID. However, it is worth mentioning that the estimation of the FOPID
parameters using the PSO algorithm is significantly more time consuming than the PID
estimation due to the additional parameters. Though, this is not an issue when we use
powerful calculators for example, because the quality of the results overrides the additional
computation delay.
We note as well that better controllers can be tuned for a larger search-space, a bigger
number of iterations and particles but all in the expense of longer computation time.
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Conclusion

In this chapter, we designed PID and FOPID controllers for the TRMS using the parti-
cle swarm optimization, a metaheuristic algorithm that estimates the gains and fractional
orders of the controllers.
We also compared the results obtained from the closed-loop response in both PID and
FOPID feedback controls of the TRMS, in which the FOPID showed a superior quality
of control in most aspects: oscillation dampening, time response, overshoot reduction,
robustness to modeling error and reference tracking.
The FOPID control of the TRMS, a highly nonlinear system gives promising results over-
all, nonetheless it has two major flaws in the case of this class of systems. The first consists
in the time of computation spent by the metaheuristic algorithms like the PSO and GA
to estimate the controller’s parameters. And the second and most important, consists in
the incapability of establishing online direct control for the TRMS since the optimization
algorithms are time consuming, thus the present time control cannot synchronize with
the present state of the system.
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Fractional calculus generalizes the integro-differential operator for any real positive
order which opens up a wide range of applications. In this project, we presented some fun-
damental definitions of the theory which include Riemann-Liouville’s integral and three
distinct definitions of derivatives: Riemann-Liouville’s derivative, Caputo’s derivative and
Gründwald-Leitnikov’s derivative, that is because each one of these latter definitions has
its own advantages and disadvantages in applications. This type of calculus brings many
benefits to several scientific fields like control theory, our main interest. Therefore, we
defined the necessary properties and tools that allow us to make a transition from clas-
sical integer-order control theory to a fractional-order version, some of these tools are
Laplace transform of the integro-differential operator and Oustaloop approximation. The
theoretical part covers as well some basic concepts of control theory for fractional-order
systems like mathematical representations and stability.
As for the application section of this project, it includes two major parts: Identification
and Control of a Twin Rotor MIMO System (TRMS).
To identify our system, the TRMS, we had to go through a detailed physical study of
its components and their behaviour to establish some mathematical relations describ-
ing the latter. Those relations were used as a base to build a simulation model that
proved to be valid when compared to the one given by the manufacturer [20]. Afterwards,
three mathematical models were identified: a linear integer-order representation which
consists of a traditional transfer function, a linear fractional-order representation which
is a fractional-order transfer function and a nonlinear integer-order representation by a
state-space model. Several challenges were faced when trying to apply traditional identi-
fication techniques for fractional estimation, where they call for some adjustments of the
algorithms’ structure. Simulations of the identified models show that the fractional-order
transfer function approximated the real system more accurately than its integer-order
representation. However, both linear representations were flawed due the high-order non-
linearity of our system, therefore we proceeded using the state-space model in the rest
of the project. Methods for nonlinear fractional-order modeling were discussed, but not
applied due the complexity of their application in the TRMS and satisfying results offered
by the integer-order state-space.
In the control part, we focused on PID control. Two versions of PID controllers were
designed: a traditional integer-order PID and a fractional-order PID (FOPID). Due to
the nonlinear nature of the system, we used the Particle Swarm Optimization (PSO)
algorithm in order to find the optimal gains of our controllers (and fractional-orders as
well for the FOPID) that result in the best control. Both controllers achieved their goal
where the two subsystem converges to the desired reference, but with different control
quality where the FOPID proved a superiority in control quality in the following aspects:
oscillation and overshoot dampening, reference tracking, robustness to modeling errors,
input signal smoothness and flexibility of design. Results of simulation showed as well
that the PID controller needed a feedforward to get a control quality similar to that using
a FOPID for the TRMS.

Throughout this project, fractional-order systems proved their efficiency in model-
ing and controlling nonlinear systems like the TRMS and showed huge flexibility when it
comes to controller’s design.
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