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Résumé

Dans cette thèse, le problème de l’estimation d’état des systèmes multi-agents est étudié. Différents
observateurs d’état distribués ont été comparés et simulés.

Cette thèse étudie deux types de systèmes multi-agents (SMA) et passe en revue leur littérature dans
le domaine de l’observation. Enfin, une approche pour la correction d’erreur de capteurs dans les
systèmes multi-agents a été proposée et testée sur un SMA de quadrotors.

Mots clés : Systèmes multi-agents, Observation distribuée, Estimation d’état, Correction d’erreur
capteur.

Abstract

In this thesis, the problem of state estimation of multi-agent systems is studied. Different distributed
state observers have been compared and simulated. This thesis studies two types of multi-agent
systems (MAS) and reviews their literature in the field of observation. Finally, an approach for sensor
error correction in MAS has been proposed and tested on a multi-agent quadrotor system.

Keywords: Multi-agent systems, Distributed observation, State estimation, Sensor fault correction.
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CHAPTER 1

INTRODUCTION

In recent years, multi-agent systems (MAS) have attracted the interest of scientists in many fields.
This is because they have appealing properties: they are scalable, efficient, and each agent is usually
inexpensive. In a MAS, it is relatively simple to work with each agent, and the focus is usually on
the characteristics of the system as a group rather than on the individual agents. For instance, in
control system theory, as in many other fields, the tendency is to design distributed algorithms that
each agent can implement on its central unit. This is in contrast to the centralized techniques that
were initially favored.

Distributed observers have emerged due to the increase in multi-agent systems. Therefore, during the
last decades, several studies have been carried out to advance research in this field; many algorithms
have been proposed in this sense starting with the various contributions of the Luenberger distributed
observer [1], [2], [3] to distributed optimal observers [4]. Each of these research papers has contributed
to making this area a trend in control system theory. As the focus in multi-agent systems is not
on individuals but the group, individual agents are prone to several defects. Our goal throughout
this thesis is to use distributed observation algorithms to estimate the states of faulty agents, using
information sent to them by their neighbors in addition to some coupled or relative measures. Thus,
we have designed a solution to correct sensor defects in multi-agent systems by estimating the states
of the failing subsystems.

Since quadrotor swarms have sparked a lot of attention during the last decade as they are frequently
used in critical situations such as rescue missions, surveying, mapping, or agriculture. We have decided
to test the proposed algorithm and the different distributed estimators on a multi-agent quadrotor
system.

In conclusion, we can summarize the work done throughout this thesis in three distinct points: the
study of existing distributed estimators in the literature, the implementation of these observers in
Python through a package that we have developed, and finally, the proposal of an application of these
distributed algorithms for the correction of sensor defects in a multi-agent system.

1.1 Thesis outline

This thesis is organised as follows:

Chapter 2 It presents the necessary preliminaries for the thesis.

Chapter 3 It introduces three distributed observers and presents a comparison between them.

15



1.1. THESIS OUTLINE 16 Mathematical background

Chapter 4 It presents distributed observers applied to multi-agent systems containing coupled or
relative measures.

Chapter 5 It is devoted to the presentation of observation algorithms used to correct sensor faults.

Chapter 6 It is dedicated to the simulation of the algorithms presented in chapter 5 on a multi-agent
quadrotor system.

Chapter 7 It presents the Python package that was designed to implement distributed observers.

Chapter 8 It contains the general conclusion of the thesis, as well as future perspectives.

.
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CHAPTER 2

MATHEMATICAL BACKGROUND

2.1 Introduction

In this chapter, we go over some of the mathematical foundations employed in the formulation and the
study of multi-agent estimation laws. We introduce graph theory, state observation, and multi-agent
systems.

2.2 Graph theory

Graph theory is a field of mathematics commonly used in optimization. It provides key concepts to
model, analyze and design network systems and distributed algorithms and defines the interactions
between a system of agents.

2.2.1 What is a graph

A graph G = (V,E) consists of a set of nodes (vertices) V and edges E ⊆ V×V. The edges define
the link between the vertices. If there exists an edge that connects vertex A to vertex B, then B is
said to be in the neighborhood of A, it is denoted (A,B) [5].

If all the edges link two vertices symmetrically (i.e. if A being in the neighborhood of B is equivalent
to B being in A’s), we say that the graph is undirected. Otherwise, it becomes a digraph (directed
graph). The set of neighbors of a vertex A is denoted NA.

Figure 2.1: Examples of a graph and a digraph

17



2.2. GRAPH THEORY 18 Mathematical background

2.2.2 Connected graphs

A graph G is connected if there is a path between any two nodes. If the graph is directed, the directions
of the edges are to be taken into account and we say that G is strongly connected. On the other hand,
we say that G is weakly connected if the undirected version of the digraph is connected.

2.2.3 The adjacency matrix

The adjacency matrix of a given weighted digraph G = (V,E, ae∈E) is a non-negative matrix A ∈ Rn×n

defined so that each coefficient (i, j) of A is the weight a(i,j) of the edge (i, j), and all other entries of
A are equal to zero [6].

 a(i,j) > 0 (i, j) ∈ E
a(i,j) = 0 otherwise.

(2.1)

Figure 2.2: An example of a weighted digraph

Consider the case of an unweighted graph, if (i, j) is an edge of G then a(i,j) = 1, this matrix is called
the binary adjacency matrix.

2.2.4 The degree matrix

Consider a weighted digraph with an adjacency matrix A. The degree matrix D is a diagonal matrix,
it is computed by summing the weights of each neighbor’s vertex.

D = diag(A1n) (2.2)

2.2.5 The Laplacian matrix

Given a weighted digraph with an adjacency matrix A and a degree matrix D, the Laplacian matrix
of G is defined as follows.

L = D−A (2.3)

It is a positive semi-definite matrix, that is, all its eigenvalues are non-negative.

18



2.3. KRONECKER PRODUCT 19 Mathematical background

Consider the following graph.

Figure 2.3: An example graph

The adjacency matrix, the degree matrix and the Laplacian matrix are defined as follows.

A =

0 1
1 0

 D =

1 0
0 1

 L =

 1 −1
−1 1

 (2.4)

2.3 Kronecker product

The Kronecker product is an operation on two matrices: Cm×n ⊗ Cp×q → Cpm×qn such that:

A⊗B =


a11B . . . a1nB

... . . . ...
an1B . . . annB


With aijB being the product between the scalar aij and the matrix B.

The Kronecker product is bilinear and associative but not commutative, that is, for three matrices A,
B, and C, and a scalar k:

A⊗ (B + C) = A⊗B +A⊗ C

(B + C)⊗A = B ⊗A+ C ⊗A

A⊗ (kB) = (kA)⊗B = k(A⊗B)

A⊗ (B ⊗ C) = A⊗B ⊗A⊗ C

A⊗ 0 = 0⊗A = 0

The inverse of a Kronecker product is given by:

(A⊗B)−1 = A−1 ⊗B−1

Its transpose is given by:
(A⊗B)T = AT ⊗BT

2.4 State observers

2.4.1 State-space representation

A state-space representation of a system in control engineering is a mathematical model written as a
set of inputs, outputs and state variables. This model is derived from the differential equations that
govern the physical system.
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2.4. STATE OBSERVERS 20 Mathematical background

 ẋ = Ax+Bu

y = Cx
(2.5)

With x ∈ Cn, u ∈ Cm, and y ∈ Cp, and with A, B and C matrices with the appropriate dimensions.

2.4.2 Observability

Let us use the definition proposed by R. Kalman in his article "On the general theory of control
systems".

Definition: A plant is said to be observable if its exact value at time 0 x(0) can be determined from
measurements of the output signal y(t) over the finite interval 0 ≤ t ≤ t2 [. . . ] if every state is
observable, we say that the plant is "completely observable" [7].

Observability deals with the problem of restoring the state vector x(t) from partial and possibly
inaccurate measurements called observations, which have been collected during a given time [8]. A
linear system is observable if and only if the following observability matrix has a rank(R) = n, where
n is the number of states in the system.

R =


C

CA
...

CAn−1

 (2.6)

The rank of this matrix is called the observability index. It defines the number of observable states
in the system.

2.4.3 Detectability

Detectability is weaker than observability; we consider a system detectable if all its unobservable
states do not affect its stability and the ability of its output to reach a given state. Let us borrow the
definition from [9].

Definition: A plant is said to be detectable if all its unobservable states are stable.

2.4.4 Observability sub-spaces

Let’s recall the definition of the undetectable subspace of a matrix pair (C, A) as defined in equation
2.5. Let αA(s) denote the minimal polynomial of A (The polynomial whose roots are the eigenvalues
of matrix A). The undetectable subspace of (C,A) is defined in equation 2.7.

C = ∩n
l=1Ker(CAl−1) ∩Ker(α+

A(A)) (2.7)

With α+
A(s) the divisor of αA(s) such that α+

A(s)’s zeros are in the open left half-plane of the complex
plane.
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2.4. STATE OBSERVERS 21 Mathematical background

As for the unobservable subspace, it is defined in equation 2.8.

O = ∩n
l=1Ker(CAl−1) (2.8)

2.4.5 Canonical decomposition

We will borrow the definition from Julio H. Braslavsky lecture on Control systems design [10]:

Definition: "The Canonical Decomposition of state equations will establish the relationship between
[. . . ] Observability , and a transfer matrix and its minimal realisations."

Throughout this document, we will mainly focus on observability. Thus, let us define the Staircase
Observable/Unobservable Decomposition.

Consider a system defined as in equation 2.5, with an observability index of nO. There exists a
transformation matrix T that is orthonormal and decomposes the system into the observable and
unobservable states: x̄ = Tx.


˙̄x =

 ˙̄xŌ

˙̄xO

 =

ĀŌ Ā12

0 ĀO

 x̄Ō

x̄O

 +

B̄Ō

B̄O

u
ȳ =

[
0 C̄O

]
x̄

(2.9)

All the matrices and arrays with a O as a subscript are observable and those with a Ō are unobservable.

Computing the staircase decomposition can be done in Matlab or using Harold’s package in Python
using the obsvf(.) function. This function applies the Staircase Algorithm introduced by H.H. Rosen-
brock in 1970.

Consider a control system as defined in equation 2.5, with the matrices A,B, and C defined as follows.

A =

3 0
0 2

 B =

0 1
1 −1

 C =
[
0 1

]
(2.10)

This system has an observability index of 1, that is, only one of its states are observable. Applying
the staircase algorithm, we find.

Ā =

2 0
0 3

 B̄ =

−1 1
0 1

 C̄ =
[
0 1

]
T̄ =

0 −1
1 0

 (2.11)

2.4.6 State observer

In control theory, an observer gives an approximation or estimate of the internal state of a system
from measurements of its input and output. It is a mathematical tool to correctly estimate the values
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2.5. PERFORMANCE STUDY 22 Mathematical background

of the state vector x at a higher convergence rate than that of the system. The most known observer
is the Luenberger observer.

Consider the linear system 2.5 without the control u. An observer of that system can be chosen as: ˙̂x = Ax̂+ L(y − ŷ)
ŷ = Cx̂

(2.12)

Finding the value of the gain L is equivalent to solving this observation problem, thus estimating the
states.

Obviously, in order for the observer in 2.12 to exist, the system 2.5 has to be observable.

2.5 Performance study

To conduct a system performance study, we must first select a few criteria on which to base our
investigation. These factors will help us determine the optimal solution later on. This latter will be
"the finest" based on the criteria we have picked, not in absolute terms.

Before we define the criteria we just mentioned, let’s us define "robustness", a critical attribute of a
controller or estimator.

Robustness: It refers to the ability to meet requirements and to withstand parameter fluctuations,
as well as disturbances and noises induced by the system’s surroundings [11].

We can now review the performance indices we will be using throughout this thesis.

The integral square error: It provides a clear picture of current and past inaccuracies while en-
suring that values do not cancel out: J =

∫ tf

0 e2dt.

Steady-state error: It is the difference between the control system output and the expected response
[12].

Settling time: It is the time it takes for the response to approach values close to the steady-state
value while remaining within a specified error band [13].

Overshoot: It is the difference between the maximum peak and the steady-state value. A system
with a fast response will often have a higher overshoot value [14].

2.6 Multi-agent systems (MAS)

Nature has always been the first inspirational factor for human creations, and this is no different for
multi-agent systems whose principles were inspired by bird flocking, fish schooling, ant colonies, bee
swarm, and even bacterial growth. In this section, we will introduce the multi-agent control theory.
However, before diving into the mathematics of our topic, let us consider two examples.

Consider the flocking behavior that many animal species like birds exhibit. Modeling this behavior in
a decentralized manner, we consider a simple “alignment rule” for each animal to steer towards the
average heading of its neighbors.

We consider each bird to be a node capable of sensing the heading θj of its neighbors Ni and aligning
itself with the detected average heading. Using this definition, we can write a mathematical model
(see equation2.13) for the movement of the birds [6].
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θ̇i =
∑

j∈Ni

θj − θi (2.13)

Figure 2.4: Bird flocking

In addition to being ubiquitous in nature, multi-agent systems are widely used in fields such as robotics.
One of the examples of multi-agent control that we can mention is "the coordination of robots".

Consider a group of robots that can move in a plane such that ṗi = ui, with pi the position of the
robot. The robots’ task is to find each other at a common point using only onboard sensors. In most
cases, this is achieved using a cycling pursuit where each robot picks a neighbor and pursues it. This
pursuit is carried out by choosing the following control law: (2.14).

ui = pj − pi (2.14)

With j chosen from Ni.

2.6.1 Definition

A multi-agent system is a group of agents that meet a set of requirements. These requirements allow
them to interact with the environment and to operate autonomously in it. According to [15], an agent
needs to have the following properties:

- Autonomy: the ability to perform tasks without any human intervention.

- Perception: the ability to sens the changes in its environment.

- Interaction: the ability to interact with other agents from its environment.

- Reactivity: the ability to react to the changes of its environment.

- Pro-activeness: the ability to take action to fulfill its mission.

2.6.2 The state-space model of MAS

Consider a group of m agents that can communicate with each other. Each agent has a set of neighbors
with which it can share information. This relationship is defined through a directed or undirected
graph G = (V,E). This latter has no self-arcs (namely (i, i) ̸∈ E). A, D, and L are the adjacency
matrix, the degree matrix and the Laplacian matrix of the graph G, respectively.
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2.6. MULTI-AGENT SYSTEMS (MAS) 24 Mathematical background

Each agent is defined using a state-space model. If all the agents of the system have the same model,
we say that the MAS is homogeneous. Otherwise, it is heterogeneous. Throughout the document, we
will only consider linear systems or linearized models of non-linear systems.

 ẋi = Aixi +Biu

yi = Cixi

(2.15)

With x ∈ Rni and i ∈ {1, 2, . . . ,m}.

We can also consider each agent to be a sub-system of a larger plant. The sub-systems have access to
some of the outputs of the plant.  ẋ = Ax+Bu

yi = Cix
(2.16)

With x ∈ Rnm, m is the number of agents and n the number of states of each system, for i ∈
{1, 2, . . . ,m}.

In this case, x is the global state of all local states of each agent, and u is the control of the global
plant.

2.6.3 The consensus algorithm

The consensus problem is a fundamental problem in formation control theory, its goal is for the
different agents to converge to the same value or agree on a result, we say that the system has reached
consensus [16].

In control theory, the most common continuous-time consensus algorithm for a group of agents con-
nected through the topology of a graph G = (V,E) is given by the following equation.

ẋi = −
m∑

j=1
aij(xi(t)− xj(t)) (2.17)

With the adjacency matrix of the graph G given by A = [aij ] for all i, j ∈ {1, 2, . . . ,m} and x ∈ Rn.

ẋi = −
m∑

j=1
aijxi(t) +

m∑
j=1

aijxj(t)

ẋ = −



∑m
j=1 aij 0 . . . 0

0 ∑m
j=1 aij . . . 0

...
... . . . ...

0 0 . . .
∑m

j=1 aij

x(t) +


a00 . . . a0j . . . a0m

a10 . . . aij . . . a00
...

...
...

am0 . . . amj . . . amm

x(t)

ẋ = −Dx(t) + Ax(t) = −Lx(t)

We considered a group of 10 agents with x ∈ R3 and simulated the system using the consensus
algorithm with a random adjacency matrix and a random initialization of x with x(t = 0) ∈ [−3, 3],
we obtained the following results.
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2.7. SOFTWARE 25 Distributed observation of a system of agents

Figure 2.5: Example of a system reaching consensus

All the three state-space variables of each agent reach the same value after less than 2 seconds.

2.7 Software

To implement the different solutions, we have used a variety of software tools that will be introduced
in this section.

Python: It is a dynamically semantic, interpreted, object-oriented high-level programming language.
Its high-level built-in data structures, as well as its dynamic typing and binding, make it ideal for
rapid application development as well as for use as a scripting or glue language to link existing
components [17].

Numpy It is the most important open-source Python library for scientific computing. Numpy or
Numerical Python can be used as a multidimensional container for generic data in addition to
using it for scientific applications. [18].

Scipy It is the abbreviation for Scientific Python. It provides several utility functions for optimization,
statistics, and signal processing. Like NumPy, SciPy is open-source [19].

Matplotlib It is a Python package dedicated to creating static, animated, and interactive visualiza-
tions [20].

Control The Python Control Systems Library is an open-source Python module that requires NumPy,
Scipy, and Matplotlib. It implements basic operations for the analysis and design of feedback
control systems [21]. For instance, we can compute the observability matrix of a state-space
system using the function obsv().

Harold This package is an open-source systems and controls toolbox for Python3 with the purpose
of being a control engineer’s/student’s/daily researcher’s workhorse. It makes use of scientific
Python tools like NumPy and SciPy. For example, it includes the staircase decomposition
function, which is missing from the control library. It was created by Ilhan Polat [22].

.
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CHAPTER 3

DISTRIBUTED OBSERVATION OF A SYSTEM OF AGENTS

3.1 Introduction

In recent years, there has been tremendous progress in control engineering in general, and multi-agent
systems research in particular. When decisions are made by independent and individual agents rather
than a central body, there are many benefits, particularly regarding computation time. However, that
also introduces additional difficulties and unsolved problems. Such challenges have been identified
as important study topics in state estimation and control [23]. For this reason, there is currently
considerable interest in designing a distributed observer for locally estimating the states of a plant.
The most attractive feature of this type of observers is its structure, which depends only on local
estimates and information exchanged between agents. These observers offer great flexibility and are
often needed when the observability or detectability of a system can only be achieved by bringing
together a group of agents.

3.2 Problem statement

Throughout this chapter, we are interested in a fixed network of m agents which can communicate
with their neighbors. The connections between the agents are defined using a graph G = (V,E). We
won’t consider each agent to be its own neighbor; that is, G has no self-arcs. The plant is modeled
using a linear time-invariant state-space representation:

ẋ = Ax+Bu (3.1)

With x ∈ Rn, and u ∈ Rr the input of the system.

Here, all the agents are part of the same plant; x is the global state of all local states of each agent,
and u is the control applied to the plant in its entirety.

Each agent can measure a linear combination of the plant states:

yi = Cix (3.2)

With i ∈ {1, 2, . . . ,m}, and yi ∈ Rqi , with qi the number of outputs of agent i.

The goal is to define a suitable group of observers that can jointly estimate the states of the plant.
There are generally three objectives that we try to accomplish [24]:
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- Obtain an observation error that is exponentially stable with a preassigned convergence rate.

- Reduce the information exchanged between the neighboring agents.

- Reduce the dimensions of the observers.

3.3 Distributed observers

A distributed observer provides an estimate of the internal states of a plant that forms a multi-agent
system using measurements of inputs and outputs of all or parts of the plant [8, Chapter 5]. These
observers are not centralized. Therefore the measurements are made separately by each agent. Indeed,
each agent computes an approximation of the states of the system as a whole. Thus, getting a correct
estimation of the plant states would mean reaching a consensus between all subsystems.

In this section, we will go through three different types of distributed observers that have been found
in the literature. The most extensively used estimator, the distributed variant of the Luenberger
observer (DLO), will be mentioned first. Then, we will present a tweaked version of the DLO. Finally,
we will introduce a distributed observer based on decentralized control principles.

3.3.1 The distributed Luenberger observer (DLO)

The distributed Luenberger observer (DLO) is inspired from the Luenberger observer and the consen-
sus problem, it estimates the states of the plant while ensuring a consensus in the estimated values.
It was first proposed in [25].

Consider an agent i that can communicate with its neighborhood and receive output values yj

such that j ∈ Ni, the estimate xi of the plant states x is made by each agent i using the following
law.

˙̂xi = Ax̂i + Li(yi − Cix̂i) + γM−1
i (ki)

∑
j∈Ni

αij(x̂j − x̂i) (3.3)

For all i ∈ {1, 2, 3, . . . ,m}, with αij the elements of the adjacency matrix A of the graph G. Li and
Mi are gain matrices, and γ and ki are parameters such that ki > 0, γ > 0. Each agent, therefore,
has an observer of the size of the plant.

We considered that the system is not under the influence of any control law: u = 0. This assumption
is reasonable since we are interested in the state observation only, in this case, the system would evolve
depending only on its initial conditions. We may later add an observer-based control to our system.

The term (yi − Cix̂i) ensures that each estimate converges to the real values of the states while the
term ∑

j∈Ni
(x̂j − x̂i) ensures that all the estimated states converge to the same value.

The parameters Li and Mi are chosen using the intrinsic properties and matrices of the system. For
each agent, we define Ti as the orthonormal transformation matrix that transforms the system into
its observability staircase form (that depends on the output matrix Ci) [3], [2].

Consider the observable/unobservable decomposition of the state-space system defined in equation
3.1, such that x̄i = Tixi. For all i ∈ {1, . . . ,m}.
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
˙̄xi =

 ˙̄xiŌ

˙̄xiO

 =

AiŌ Ai12

0 AiO

 x̄iŌ

x̄iO

 +

BiŌ

BiO

u
ȳi =

[
0 CiO

]
x̄i

(3.4)

Let us rewrite the parameters Li and Mi as follows to uncouple their impact on the observable and
unobservable states.

Li =Ti

 Lid

0n−vi×qi

 , Mi(ki) = Ti

kiMid 0
0 Ivi×vi

T T
i (3.5)

With vi the dimension of the said unobservable subspace.

Using a well-chosen Lyapunov function, it is possible to choose the gain matrices Li and Mi to ensure
the convergence of the observer [2]. It has also been shown that for sufficiently large values of γ and
ki, the estimates x̂i(t) always approach x(t) exponentially at preassigned rate [3]. This rate is
defined by assigning the right eigenvalues when determining the parameters Li and Mi. Indeed, they
must be chosen according to the following conditions:

- The following matrix must have eigenvalues with negative real part.

AiO − LidCiO (3.6)

- The parameter Mid is the solution to the following equation.

(AiO − LidCiO )TMid +Mid(AiO − LidCiO ) = −I (3.7)

3.3.2 The Distributed Finite-Time Observer (DFTO)

This observer is an enhanced version of the distributed Luenberger observer (DLO). It allows obtaining
the estimation in a finite time [26].

Consider a system as defined in equation 2.5, and suppose that the matrix A is given in the form of a
block diagonal matrix and the output matrices Ci are the ith unit vector, that is, the plant is in the
form of multiple chains of integrators.

A =


A1 0 . . . 0
0 A2 . . . 0
... . . . ...
0 0 . . . Am

 (3.8)

Ci =
[
0 . . . Ini . . . 0

]
(3.9)

With ni being the size of matrix Ai, while A is an N ×N matrix with N being the sum of the sizes
of the subsystems Ai such that N = ∑m

i=1 ni, for i ∈ {1, . . . ,m}.

The finite-time observer presented in [26] is a clever combination between the distributed Luenberger
observer (DLO) and the super twisting observer. As in the previous section, we denote agent i’s
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estimate by xi, and consider that the system is not controlled: u = 0. This assumption is reasonable
since we are interested in the state observation only, in this case, the system would evolve depending
only on its initial conditions. We may later add an observer-based controller to our system.

Consider an agent i that can communicate with its neighborhood Ni and receive output values yj such
that j ∈ Ni:

˙̂xi = Ax̂i + Li[yi − Cix̂i]γ +
∑

j∈Ni

αij [x̂j − x̂i]β (3.10)

With Li is a gain matrix, γ and β, two parameters that must be well chosen and αij the elements of
the adjacency matrix A of the graph G. In this case as well, each agent has an observer of the
size of the plant.

With [.]a the sign preserving element-wise exponentiation defined as follows

[x]a =
[
sign(x1)|x1|a sign(x2)|x2|a . . . sign(xn)|xn|a

]
The parameters γ and β are chosen according to the following law.

γ = 1 + v

1 + (N − 1)v (3.11)

β = 1 + v (3.12)

We choose v experimentally to obtain the desired convergence rate.

The gain matrix Li is chosen in such a way so that it only affects the observable states of the system.
Since it is obvious that the states observed by agent i are those multiplied by matrix Ai (see equation
3.8), Li is designed as follows.

Li =



0n1×ni

...
Lni

...
0nm×ni


(3.13)

With Lni an ni × ni gain matrix.

Finally, we can use pole placement to compute Lni by choosing the eigenvalues of Ai − LniCi. This
technique allows us to control the convergence rate of the observer by simply manipulating the eigen-
values.

3.3.3 The Distributed Observer for Time-Invariant linear systems
(DOLTI)

This observer uses an augmented state zi to estimate the states of the plant defined in equations 3.1
and 3.2. It assumes that the agents can communicate with one another, but the only information that
can be transmitted is the outputs yj and the augmented state zj , for j ∈ Ni.
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We denote the estimate of agent i as x̂i, such that x̂i ∈ Rn.

 żi = ∑
j∈Ni

(Hijzj +Kijyj)
˙̂xi = ∑

j∈Ni
(Mijzj +Nijyj)

(3.14)

With Hij ,Kij ,Mij , and Nij gain matrices with the appropriate dimensions, and with i ∈ {1, 2, . . . ,m}.

It is possible to simplify the observer by considering that the only information that can be transmitted
from one neighboring agent to another is zi.

żi =
∑

j∈Ni

(Hijzj) +Kiyi (3.15)

˙̂xi =
∑

j∈Ni

Mijzj (3.16)

Since the goal is to obtain x̂i = x, equation 3.16 must hold for any possible x ∈ Rn, that is, there exist
zi ∈ Rni which is the solution of equation 3.16 for any x ∈ Rn.

We write vi the solution of equation 3.16 when xT = ui, where ui is the ith unit vector. We stack all
these solutions and obtain:


1 0 . . . 0
0 1 . . . 0
... . . . ...
0 0 . . . 1

 =
∑

j∈Ni

Mij


...

...
...

...
v1 v2 . . . vn

...
...

...
...

 (3.17)

In =
∑

j∈Ni

MijVj (3.18)

Let us consider the observation error x − x̂i. From the equation above (3.18), we can deduce that
x = ∑

j∈Ni
MijVjx, furthermore, we know that ˙̂xi = ∑

j∈Ni
Mijzj . Therefore, we find that the

observation error is proportional to ei, such that ei = zj − Vjx.

x− x̂i =
∑

j∈Ni

Mijej (3.19)

Since designing the DOLTI comes down to finding the conditions that govern the different gain ma-
trices, we will study the dynamics of the error ei, which is proportional to the observation error.

ėi = żi − Viẋ =
∑

j∈Ni

(Hijzj) +KiCix− ViAx (3.20)

We add and substract to the equation above (3.20) the term ∑
j∈Ni

(HijVj)x, and obtain.
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ėi =
∑

j∈Ni

Hij(ej) + [
∑

j∈Ni

(HijVj) +KiCi − ViA]x (3.21)

Finally, to ensure the exponential stability of the observer, we can adopt the following assertions and
assumptions.

- The matrix ∑
j∈Ni

Hij must be Hurwitz.

- The matrix Vi = In, therefore, In = ∑
j∈Ni

Mij .

- The term multiplied by x in equation 3.21 is canceled, hence, A−KiCi = ∑
j∈Ni

Hij .

The problem reduces itself to finding the matrices Hij , Mij and Ki which respect the assumptions
defined previously. In order to achieve this, we will transform this observation problem into a decen-
tralized control that is well documented [27], [28].

Consider the matrix H = [Hij ] that can be written is as follows.

H = Im ⊗A+
m∑

i=1

∑
j∈Ni

BiFijCij (3.22)

With Bi = ui⊗In (ui is the ith unit vector), Cij = bij⊗In (bij is the column of the transpose matrix of
the graph G corresponding to the arc from j to i), Cii = CiB

T
i , and finally Fii = −Ki and Fij = Hij ,

for j ∈ Ni.

Finally, we can define the following multi-agent system, to which an output feedback control uij =
Fijyij is applied.

 ẋ = (Im ⊗A)x+ ∑m
i=1

∑
j∈Ni

Biuij

yij = Cijx
(3.23)

Choosing Fij that will stabilize the multi-agent system defined above (3.23) is equivalent to finding
Hij and Ki for which the observation error is exponentially stable.

The easiest approach to solve this decentralized stabilization problem is to find a gain matrix Fij for
which one channel of the system defined in equation 3.23 is controllable and observable [28]. According
to [24], the distributed observer is constructed in the following way:

1. Choose the matrices Mij that verifies In = ∑
j∈Ni

Mij .

2. Choose Fpq so that, for p ∈ {1, . . . ,m} and q ∈ Np, (H,Bp) is controllable with a controllability
index equal to the number of agents, and (Cpq, H) is observable. For simplicity, we will suppose
that p = m.

3. Build the following system by increasing the size of the estimator by m− 1.

H̄ =

H 0
0 I(m−1)×(m−1)

 (3.24)

Ū =

Um 0
0 I(m−1)×(m−1)

 (3.25)

C̄ =

Cmq 0
0 I(m−1)×(m−1)

 (3.26)
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4. Ensure that (H̄ + ŪKC̄) is Hurwitz, with:

K =
[
K0 K1 . . . Ki . . . Km

]
=

[
−F00 −F11 . . . −Fii . . . −Fmm

]

3.4 Simulations

We decided to put our observers to the test on a 2-chains integrator system composed of two agents
that can communicate depending on the undirected graph G = (V,E, ae∈E) presented in figure 3.1.

Figure 3.1: The communication graph.

The state-space of the 2-chain integrator system is defined in equation 3.27.

ẋ =

−2 0
0 −3

x+

1
1

u (3.27)

And we chose the output matrices defined in equation 3.28 to ensure the jointly observability of the
system.

C1 =
[
1 0

]
(3.28)

C2 =
[
0 1

]

This multi-agent system is stable but each agent on its own cannot ensure the observability of the
plant; each of them have an observability index of 1.

Figure 3.2: The step response of the system defined in 3.27

In order to start the simulations, we set the initial values of the estimates x̂ to randomly vary from
−3 to 3 for all the agents and implement all three observers earlier defined.

First, we start by simulating the chosen system without the addition of noise on the three observers
provided before. We will make a comparison between the different systems based on three criteria:
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- The settling time to a step J1 = t(error< 10−2) (time after which the observation error becomes
lower than 10−2).

- The vector containing the integrals of the square of the observation error of each agent

J2 =
[∫ tmax

0 ||y1 − ŷ1||22 . . .
∫ tmax

0 ||yi − ŷi||22 . . .
∫ tmax

0 ||ym − ŷm||22
]

- The vector containing the observation error of each agent at each time:

J3(t) =
[
||x1(t)− x̂1(t)||22 . . . ||xi(t)− x̂i(t)||22 . . . ||xm(t)− x̂m(t)||22

]

3.4.1 The distributed Luenberger observer (DLO)

The observer was implemented in Python using a package we have implemented (see chapter 7 for
more details). The parameters Li and Mi were chosen using the equations 3.7 and 3.6, and applying
the pole placement technique with the eigenvalues of AiO −LidCiO for i ∈ {1, 2} chosen as λL1 = −1.5
and λL2 = −2 (see equation 3.6). We took γ = 6 and took the values of both ki to 1, for i ∈ {1, 2}.

The results are illustrated in figure 3.3, with the estimates in colored solid curves and the real values
in blue dashed curves.

Figure 3.3: Trajectories of local estimates using the distributed Luenberger observer (DLO).

For this observer, we obtained a settling time to a step equal to J1 = 2, 12s.

We have illustrated the values of our criteria J2 and J3 in the following figures.
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Figure 3.4: The integral square obser-
vation error J2 using the DLO

Figure 3.5: The observation error J3
using the DLO

Table 3.1: DLO comparison criteria

settling time Integral square error Steady-state error Overshoot
(J1) (s) (||J2||∞) (J3(tmax))

1.89 0.122 0 0

3.4.2 The distributed Finite-Time Observer (DFTO)

The observer was also implemented in Python using the same library as before. We took v = −0.02
and obtained γ = 1 and β = 0, 98. As for Li, we chose the same eigenvalues as in the previous
simulation λL1 = −1.5 and λL1 = −2.

The results are illustrated in the figure shown below 3.9, with the estimates in colored solid curves
and the real values in blue dashed curves.

Figure 3.6: Trajectories of local estimates using the distributed Finite-Time Observer (DFTO).

For this observer, we obtained a settling time to a step equal to J1 = 1, 88s. We illustrated criateria
J2 and J3 in the following figures.
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Table 3.2: DFTO comparison criteria

settling time Integral square error Steady-state error Overshoot
(J1) (s) ( ||J2||∞) (J3(tmax))

2.13 0.533 0 0

Figure 3.7: The integral square obser-
vation error J2 using the DFTO

Figure 3.8: The observation error J3
using the DFTO

3.4.3 The Distributed Observer for Time-Invariant linear systems
(DOLTI)

The parameters of this final observer were defined using the equations defined in the last sections and
by implementing a decentralized control on the system 3.22.

The results are illustrated in figure 3.9. The estimates are in solid colors, the augmented state in solid
green, and x(t) is in blue dashed curves

Figure 3.9: Trajectories of local estimates using the Distributed Observer for Time-Invariant
linear systems (DOLTI)

We obtained a settling time to a step of J1 = 7, 14s for this observer.
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The estimations’ highest values range from 30 to 350 units, implying that the distributed LTI estima-
tor’s observation error is unquestionably larger than that of the other observers.

Figure 3.10: The observation error J3 of DOLTI

Table 3.3: DOLTI comparison criteria

settling time Integral square error Steady-state error Overshoot
(J1) (s) (||J2||∞) (J3(tmax))

7.14 – 0 350

3.4.4 Comparison between the different methods

3.4.4.1 Comparison criteria

According to the first criterion J1, the DLO is the fastest observer; it has the shortest one-step settling
time, followed by the DFTO, and finally the DOLTI, which is significantly slower than the other two
observers. Furthermore, the DLO produced the most satisfactory results by far according to the
second J2 and third criterion J3 (see figures 3.5, 3.4, 3.8, 3.7, and table 3.4).

Table 3.4: Results of the comparison of the different criteria.

DLO DFTO DOLTI
Settling time J1 (s) 1.89 2.13 7.14
Overshoot 0 0 350
Integral square error ||J2||∞ 0.122 0.533 –

3.4.4.2 Robustness

We began by assessing the robustness of the observers to parametric noise. When parametric noise is
introduced, all three observers converge, indicating that they are reliable concerning model inaccura-
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cies.

To compare these observers, we decided to evaluate the first criterion J1 in the presence of parametric
errors. The results are presented in figures : 3.11, 3.12 and 3.13.

Figure 3.11: The settling time to a step
versus the added parametric noise for
DLO

Figure 3.12: The settling time to a step
versus the added parametric noise for
DFTO

Figure 3.13: The settling time to a step
versus the added parametric noise for
DOLTI

Despite the additional disturbances, the distributed Luenberger observer has the shortest settling
times. Up until the parametric error equals 80% of the parameter values, the DFTO’s results are
comparable to those of the DLO.

With a settling time beginning at 7s, the final observer produced the least desirable results. However,
the DOLTI always manages to converge without any steady state error unlike the DLO (see figure
3.14).
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Figure 3.14: The steady-state error versus parametric noise when implementing the DLO

In conclusion, the DOLTI is the most robust observer since its settling time does not increase expo-
nentially as a function of the parametric errors, unlike the other two observers.

However, it is important to note that, while the DOLTI can manage large parametric errors, it does
so at the expense of large input values, as shown by plotting the overshoot obtained by the estimates
against the proportion of parametric noise in figure 3.15. This type of overshoot is unbearable in
practice.

Figure 3.15: The overshoot of the estimates using the DOLTI versus the parametric noise

Furthermore, unlike the DOLTI, both the DLO and the DFTO are robust to output noise. The
observers’ estimates oscillate; this problem can be easily addressed by using an averaging filter.
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Figure 3.16: Trajectories of local estimates
using the DLO

Figure 3.17: Trajectories of local estimates
using DFTO.

Figures 3.16 and 3.17 show that the DLO’s estimation yields a less noisy outcome than the DFTO
estimation.

3.5 Conclusion

There are numerous approaches for observing a system of agents using distributed techniques. It
becomes a question of knowing our aims when deciding which one to use in a given situation. Our
goal can be to reduce the information sent between the agents if we have a large network for instance,
or to optimize the performance of the estimation, in this case, we have seen that the DLO is the
best choice for a linear system. In conclusion, deciding on the best distributed observer for a specific
situation boils down to goals and trade-offs. .
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CHAPTER 4

DISTRIBUTED OBSERVATION OF A MULTI-AGENT SYSTEM

4.1 Introduction

Multi-agent systems, in which each agent can make decisions and act autonomously, are becoming
increasingly popular among scientists. The MAS can obtain the desired behavior by accumulating the
various actions performed by each agent.

This field has spawned several control problems, including state estimation based on coupled or relative
measurements between agents. This one is a continuation of prior research on distributed plant
estimation.

In this chapter, we will cover existing approaches and algorithms for the distributed observation of a
multi-agent system.

4.2 Problem statement

Throughout this chapter, we are interested in a fixed network of m agents which can communicate
with their neighbors. The connections between the agents are defined using a graph G = (V,E). We
won’t consider the agent to be its own neighbor; that is, G has no self-arcs. The agents’ systems are
modeled using a linear time-invariant state-space representation:

 ẋi = Aixi +Biu

yi = Cixi

(4.1)

With xi ∈ Rni , yi ∈ Rqi , and ui ∈ Rri , the input of the system, with i ∈ {1, 2, . . . ,m}.

The goal is to define a suitable group of m observers that can jointly estimate the states of each agent
using the coupled measurements between each other [4].

We can distinguish two categories of this problem:

- the observation of a group of homogeneous agents; that is, all the agents are defined using
the same state-space model. Mathematically, A0 = A1 = · · · = Ai = · · · = Am and B0 = B1 =
· · · = Bi = · · · = Bm.
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- the observation of a group of heterogeneous agents; that is, the agents can have different
state-space models.

Agents may not be aware of the structures of agents that are not in their general neighborhood if the
system is heterogeneous. Hence, designing a group of observers that can perform estimation with this
constraint in mind would be a significant contribution. Therefore, this objective is included to the list
of goals specified in the previous chapter, section 3.2.

4.3 MAS state estimation

Let us examine how to convert a group of independent agents into a global system (MAS) and use
the algorithms specified in the previous chapter.

4.3.1 From a multi-agent system to a plant

Since there is a substantial literature on employing multiple output matrices to solve the plant obser-
vation problem, we will rewrite the group of agents as one global plant.

Consider x =
[
xT

0 xT
1 . . . xT

m

]T
and the system defined in 4.1.

ẋ =


ẋ0

ẋ1
...
ẋm

 =


A1 0 . . . 0
0 A2 . . . 0
... . . . ...
0 0 . . . Am




x0

x1
...
xm

 +


B1 0 . . . 0
0 B2 . . . 0
... . . . ...
0 0 . . . Bm




u1

u2

...
um

 (4.2)

Therefore, we can write.

ẋ = Ax+BU (4.3)

If the MAS is homogeneous, is equivalent to:

ẋ = (Im×m ⊗A0)x+ (Im×m ⊗B0)U (4.4)

with U =
[
u1T u2T . . . umT

]T
, and A and B defined by the correspondence between equations

4.3 and 4.2.

In addition to that, it is possible to write:

yi =
[
0 . . . 0 Ci 0 . . . 0

]
x = (ui ⊗ Ci)x (4.5)

with ui ∈ Rm being the ith unit vector.

Consider zi, the coupled measurement between the agents, we write zi =
[
Ci

0 . . . Ci
i . . . Ci

m

]
x.

Consider yi =
[
yiT zT

i

]T
.
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yi =

yi

zi

 =

 0 . . . Ci . . . 0
Ci

0 . . . Ci
i . . . Ci

m

x (4.6)

Let’s put.

Ci =

 0 . . . Ci . . . 0
Ci

0 . . . Ci
i . . . Ci

m

 (4.7)

Finally, we can write it as a MAS.  ẋ = Ax+Bu

yi = Cix
(4.8)

Finally, we can use the algorithms defined in the previous chapter as long as we write the DSS in
this format. The disadvantage of this approach is that carrying out an estimation requires knowledge
of all the mathematical models of the agents. In addition, this method is computationally intensive.
However, it can be sped up if the graph is sufficiently sparse and this is what we will examine in the
section 4.3.2

Example

Let us consider the following example with three different agents connected in a topology of a cyclic
graph (see figure 4.1). Let the individual dynamics of the agents be described by the state-space
models defined in the following equations.

Figure 4.1: The cyclic graph



ẋ1 =

 1 2
−1 0

x1 +

1
1

u1

y1 =
[
1 0

]
x1

z1 =
[
1 0

]
x2 +

[
2 −1

]
x3

(4.9)
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

ẋ2 =

 4 0
−2 1

x2 +

1
4

u2

y2 =
[
1 1

]
x2

z2 =
[
0 1

]
x1 +

[
−1 0

]
x3

(4.10)



ẋ3 =

1 0
0 −2

x+

−1
1

u3

y3 =
[
1 −1

]
x3

z1 =
[
−2 1

]
x1 +

[
0 −1

]
x2

(4.11)

The first step is to define the output matrices of each agent. As we have seen, this is done by
concatenating the output of the agents’ systems with the coupled measurements.

We define x as the concatenation of all the states x1, x2, and x3.

y1 =

y1

z1

 =

1 0 0 0 0 0
0 0 1 0 2 −1



x1

x2

x3

 = C1x (4.12)

y2 =

y2

z2

 =

1 1 0 0 0 0
0 0 0 1 −1 0



x1

x2

x3

 = C2x (4.13)

y3 =

y3

z3

 =

1 −1 0 0 0 0
0 0 −2 1 0 −1



x1

x2

x3

 = C3x (4.14)

Finally, we define the state-space model of the multi-agent system.
ẋ =


ẋ1

ẋ2

ẋ3

 = A


x1

x2

x3

 +B


u1

u2

u3


yi = Cix

(4.15)

With i ∈ {1, 2, 3}, and matrices A and B defined as follows.
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A



1 2 0 0 0 0
−1 0 0 0 0 0
0 0 4 0 0 0
0 0 −2 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −2


B =



1 0 0
1 0 0
0 1 0
0 4 0
0 0 −1
0 0 1


(4.16)

4.3.2 Cooperative Estimation of Multi-agent Systems With Coupled
Measurements

We can estimate the states of a multi-agent system using a cooperative observer that relies on the
state and parameters of the agent and its neighbors [4]. Each agent has access to the state-space
model of its neighbors’ and the measurements that are relative to them.

 ẋi = Aixi +Biu

yi = ∑
j∈(i∪Ni)Cjixj

(4.17)

The observer introduced in this section is a reduced size Luenberger observer; with each agent just
estimating their own state and that of their neighbors. The state-space models and the agent’s
estimated states are the only pieces of information that need to be transmitted. In summary, each
agent i estimates its own states and its neighbors’ x̂i

j∈(i∪Ni) using their neighbors’ estimations x̂j∈(i∪Ni)
i

[4].

Figure 4.2: The information sent between the agents

Consider the corresponding estimation vector made by the agent i:

x̂i =



x̂i
i

x̂i
n0
...
x̂i

nj

...
x̂i

nmi


(4.18)
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with nj ∈ Ni, j ∈ {1, 2, . . . ,mi} and mi = Card(Ni).

We apply the Distributed Luenberger observer on the state vectors defined in 4.18.

˙̂xi =


˙̂xi
i

˙̂xi
n0
...

˙̂xi
nmi

 =


Âi

i 0 . . . 0
0 Âi

n0 . . . 0
... . . . ...
0 . . . 0 Âi

nmi




x̂i

i

x̂i
n0
...

x̂i
nmi

 + Li(yi −
∑

j∈(i∪Ni)
Cjix̂j) +Ki


x̂n0

n0 − x̂
i
n0

...
x̂

nmi
nmi
− x̂i

nmi



˙̂xi = Aix̂i + Li(yi −
∑

j∈(i∪Ni)
Cjix̂j) +Ki


x̂n0

n0 − x̂
i
n0

...
x̂

nmi
nmi
− x̂i

nmi

 (4.19)

With i ∈ {1, 2, . . . ,m}.

Li and Ki are gain matrices that will determine the convergence rate of the observer.

The optimal control method H∞ is used to select the gain matrices, ensuring high performance in
terms of the given criterion. Consider the estimation error ei defined in the following equation.

ei =



xi − x̂i
i

xn0 − x̂i
n0

...
xnj − x̂i

nj

...
xnmi

− x̂i
nmi


(4.20)

The goal is to obtain a quadratically finite estimation error. Therefore, we choose to minimise the
error according to the following criterion [4].

m∑
i=0

∫ ∞

0
eiTW iei dx (4.21)

With W i weighting matrices that are positive semi-definite.

Using a well-defined Lyapunov function (V = ∑m
i=0 e

iTP iei)), it was proven that there exist optimal
gains Li and Ki that will allow the observation error to converge to 0 exponentially in the absence of
disturbances and noises [4] .

4.4 Conclusion

As in the case of estimating a plant using a distributed observer, there are several ways to estimate
the states of a multi-agent system. Building on what we saw in the previous chapter, These techniques
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have been improved to include cooperative measurements and maintain convergence while minimizing
the dimensions of each observer and the information transferred between agents. In this regard, the
cooperative observer is a remarkable improvement compared to the observers in the previous chapter,
as it yields much-reduced observers when the graph is sparse.

.
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CHAPTER 5

SENSOR FAULT CORRECTION USING DISTRIBUTED
OBSERVERS

5.1 Introduction

Sensors have become an essential aspect of modern technology with the introduction of robotics, IoT
and edge AI. These systems receive data from the environment via sensors and send it to a processing
unit that extracts important information and takes action. Since the performance of these systems is
highly dependent on the data collected, sensor corruption could have adverse implications [29]. This
problem can have an even larger impact on a multi-agent system, as a single agent can cause the
entire plant to malfunction. However, we know that the focus of a multi-agent system is not on the
individual systems but on the group’s ability to accomplish the task for which it was designed. Indeed,
agents do not need to be independently reliable, but the system as a whole does. In this chapter, we
will look at cooperative fault correction in multi-agent systems, and we will focus primarily on sensor
failures.

5.2 Problem statement

We are interested in a homogeneous network of m agents that can communicate with their neighbors.
An undirected graph G = (V,E) with no self-arcs, is used to define the connections among the
agents. The systems are modeled using a LTI state-space representation:

 ẋi = Axi +Bu

yi = Cixi

(5.1)

With xi ∈ Rn, and i ∈ {1, . . . ,m}.

The agents’ models are such so that the system is observable. However, some lose one or more of
their sensors functionality, rendering their system unobservable. Therefore, we need to find a group of
agents and observers that can use relative measurements to estimate the states of the malfunctioning
systems.

Consider a graph that shows how a group of agents is connected. Assume that L agents are defaulting;
that is, one of the elements of their output matrix that was previously different from 0 has now been
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annulled (see equation 5.2 and 5.3). Then we would have to figure out the following:

- How many agents do we need to combine in a graph to estimate their states including the
defaulting ones? What is the structure of that graph?

- How to estimate the states of the defaulting agents using the least possible number of agents?

- What are the coupled or relative measurements we would need to have to perform the estimation?

The output matrix before the fault has occurred:

Ci =
[
Ci

0 . . . Ci
i ̸= 0 . . . Ci

n

]
(5.2)

The output matrix after the fault has occurred:

Ci =
[
Ci

0 . . . Ci
i = 0 . . . Ci

n

]
(5.3)

Note that if a multi-agent system contains only observable agents; then it is jointly observable.

5.3 Solution overview

5.3.1 Summary

To solve this problem, we will expand on what we have seen in previous chapters, but first, we must
identify the malfunctioning agents (this problem is sufficiently well documented [29] [30] [31]). The
identification of failed sensors in an agent is done through an algorithm implemented in the agent’s
CPU, which is intrinsically dependent on it. Given that all agents have observable systems, to begin
with, we are seeking means to find defective agents in the previously specified multi-agent system.
As a result, it is sufficient to check each agent’s observability and thus, identify those that are not
observable. The latter systems are thought to be defective. Indeed, if the loss of a sensor does not
render the system unobservable, it will be enough to estimate the states that are not directly accessible
using a simple observer as we know it.

Finally, each agent communicates its observability index to its neighbors, therefore ensuring that all
agents know which of their neighbors are deficient.

The next step is to estimate the states of the defaulting agents we identified beforehand. We will
employ the previously stated distributed observation methods. However, we must first determine the
relative measurements needed to design a jointly observable system (a necessary condition for applying
the solutions introduced in Chapter 3), as well as the minimal subgraphs of G to which we will apply
these algorithms.

5.3.2 Subgraphs definition

The sub-graphs are chosen locally; each defaulting agent searches for a group of agents in its neighbor-
hood that includes at least one fault-free agent. The latter will take care of the relative measurements,
and this set of agents will perform a distributed observation to estimate their states. The remaining
fault-free agents will be considered as a group on their own.

Each defaulting agent i will execute the algorithm defined below (algorithm 1) on its CPU to find the
sub-graph Gi of G that will be used to estimate its states. The defaulting systems apply algorithm
2; they look in their neighborhood for a non-faulty agent to group with.
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Let us consider a multi-agent system with m agents, nd of which have failed sensors. The relations of
the MAS are defined using a graph G = (E, V). The set of edges is associated to a set of integers of
same size E ↔ {1, 2, . . . , n}. The goal is to find a set of subgraphs {Gd1 , Gd2 , . . . Gdnd

}, one for each
defaulting agents. We will denote the set of faulty agents ED and the set of non-faulty agents END.
The group of edges Ei corresponding to the defaulting agent i is defined as follows.

Ei = {i,min(END ∪Ni)} (5.4)

We will later use this resulting subgraph to jointly estimate the states of the defective agents.

Algorithm 1: Algorithm for clustering the defaulting agents
Input: i /* index of the current agent. */

NDi /* the set non-defaulting agents in the neighborhood of i */
Output: Gi

Function Find_minimal_sub_graph_D_agents(i, NDi):
Gi ←− graph() /* initialize empty graph. */
if Length(NDi) ̸= 0 then

Gi.agents ←− [i,NDi[0]]
G.send_to_neighbors(Gi.agents)

else
Print ("It is impossible to jointly estimate the states of this multi-agent system.")
Break;

end
return Gi;

End Function

Non-defaulting agents i, on the other hand, receive the groups formed by their defaulting neigh-
bors ENi = {Edj

, . . . , Edk
, . . . , Edl

} with {dj , . . . , dk, . . . , dl} the defaulting neighbors of agent i. If
Card(ENi) > 1, that is, they are part of more than one group, they establish a new subgraph that
includes themselves and the agents that chose them to be a part of their group. Therefore, to find the
subgraphs, we simply group the different sets sent by the neighbors and remove the duplicates from
the resulting set.

Algorithm 2: Algorithm for clustering the non-defaulting agents
Input: i, Di

Output: Gi

Function Find_minimal_sub_graph_ND_agents():
list_G_i_neighbors = ←−G.receive_from_neighbors()
if i ∈ list_G_i_neighbors then

Gi ←− reduce_set(list_G_i_neighbors)
else

Gi ←− [i]
end
return Gi;

End Function

If these non-failing agents are part of a group, their states are estimated using a distributed observer.
Otherwise, the estimation is done centrally by the agent itself.
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Figure 5.1: The newly formed sub-graphs

5.3.3 Output matrices generation

This section is devoted to the algorithm to find the relative measurements required to obtain a jointly
observable system. To do so, we use the transformation matrices Ti of the staircase observability form
of each agent’s system. The last rows of this matrix represent the non-observable states. Hence we
can raise the system’s observability index by measuring them relative to their non-defective neighbors.

Consider the staircase transformation matrix Ti of a defective agent i. The agent has an observability
index of vi which means that the first vi lines of Ti represent the states combinations that can be
estimated or measured.

Applying the transformation matrix Ti on the system, we obtain x̄i = Tixi =
[
x̄T

iO x̄T
iŌ

]T
, and

yi =
[
CO 0

]
Tixi (see equation 3.4).

Tixi =



T i
11 . . . T i

1n
... . . . ...

T i
vi1 . . . T i

vin

T i
(vi+1)1 . . . T i

(vi+1)n
... . . . ...
T i

n1 . . . T i
nn





xi
1
...
xi

vi

xi
vi+1
...
xi

n


=



∑n
j=1 T

i
1jx

i
j

...∑n
j=1 T

i
vij
xi

j∑n
j=1 T

i
(vi+1)jx

i
j

...∑n
j=1 T

i
njx

i
j


=

x̄i
O

x̄i
Ō

 (5.5)

That means that the combination of states that can neither be measured nor estimated are x̄i
Ō

=[∑n
j=1 T

i
(vi+1)jx

i
j . . .

∑n
j=1 T

i
njx

i
j

]T
. Therefore, these are the ones that should be measured relatively

by another agent. Let’s consider the matrices {T i
(vi+1), . . . , T

i
n} such that T i

l =
[
T i

(vi+1)1 . . . T i
(vi+1)n

]
is lth line of the Ti.

The algorithm 3 generates the new output matrices Ci of the non-defaulting agents. It is done by con-
catenating the measurements of that agent (represented by matrix Ci) and the relative measurements
of the unobservable states of the defaulting neighbors x̄j

Ō
with j ∈ Ni.

Consider a non-defaulting agent i connected to two agents {j, k}.
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yi =

1 . . . k . . . i . . . j . . . m


0 . . . 0 . . . Cixi . . . 0 . . . 0
0 . . . x̄k

Ō
. . . −x̄i

Ō
. . . 0 . . . 0

0 . . . 0 . . . −x̄i
Ō

. . . x̄j

Ō
. . . 0

(5.6)

We can deduce the output matrix from equation 5.6, and x̄i
Ō

=
[∑n

j=1 T
i
(vi+1)jx

i
j . . .

∑n
j=1 T

i
njx

i
j

]T
.

yi =

1 . . . k . . . i . . . j . . . m


0 . . . 0 . . . Ci . . . 0 . . . 0
0 . . . T k

(vk+1)→n . . . −T k
(vk+1)→n . . . 0 . . . 0

0 . . . 0 . . . −T j
(vj+1) . . . T j

(vj+1)→n . . . 0


x1
...
xm

 (5.7)

With T i
vk→n the last n− (vk + 1) lines of the matrix Ti

Finally, the generated output matrix of the i non-defaulting agent that has two faulty neighbors
({j, k}) is deduced from equation 5.7.

Ci =

1 . . . k . . . i . . . j . . . m


0 . . . 0 . . . Ci . . . 0 . . . 0
0 . . . T k

(vk+1)→n . . . −T k
(vk+1)→n . . . 0 . . . 0

0 . . . 0 . . . −T j
(vj+1) . . . T j

(vj+1)→n . . . 0

(5.8)
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Algorithm 3: Algorithm for generating the matrices Ci

Input: A, Ci, observability_index_list, m, Di, max_iteration
Output: Ci

Function Find_output_matrix(A, Ci, observability_index_list, m, Di, max_iteration):
Ci ←− [ui ⊗ Ci]
foreach agent ∈ Di do

observability_index_agent = observability_index_i[agent]
Ci

agent ←− zero_matrix_of_shape((size(A)) - observability_index_agent,
nbr_columns(Ci)))
Ti ←− compute_staircase_transformation_matrix(A,Cagent)
Ci

agent ←− Ci
agent + Ti [observability_index_agent:, :]

observability_index_agent
←− (rank(compute_observability_matrix(A,[Ci, new_C_i]T )) == size(A))

it ←− it+ 1
if observability_index_agent < size(Ai) then

Print ("It is impossible to find a set of output matrices {Cij} (With
i ∈ {1, 2, . . . ,m} and j ∈ Ni) to jointly estimate the states of this multi-agent
system.")

Break;
end
Ci ←− [Ci, ui ⊗ (−Ci

agent) + uagent ⊗ (Ci
agent)]T

end
return Ci;

End Function

5.3.4 General algorithm

Using the algorithms for finding the subgraphs and defining the output matrices, we can use the
distributed observation techniques we have seen in chapter 3 to estimate the states of all the agents
of the MAS.

After finding the subgraphs Gi and updating the output matrices of the non-defective agents with the
coupled measurements, we can create a plant for each group using the techniques described in section
3, chapter 4. Each group estimates the states of all the agents that are part of its subgraph Gi.

Consider a group composed of three agents i, j, and k, two of which have faulty sensors j, k. Their
systems are mathematically modeled using the state-space representation. As for the plant model, it
is computed according to the following equations.

AGi
= diag(

[
Ai Aj Ak

]
) = Isize(Gi) ⊗A (5.9)

BGi
= diag(

[
B Bj Bk

]
) = Isize(Gi) ⊗B (5.10)

As mentioned earlier, the output matrices of the non-defective agents are computed using Algorithm
3. For agents with defective sensors, they do not perform any relative measurements. However,
since some distributed observers require output matrices with no null rows, we took the precaution of
eliminating all null rows of the output matrices of the defaulting agents. These rows and columns do
not affect the estimation anyway.
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Algorithm 4: General estimation algorithm for a homogeneous multi-agent system
Input: i, A, B, Ci, m, max_iteration
Output: x̂i

observability_index_i ←− (i, (rank(compute_observability_matrix(A,Ci)) == size(A)))
G.send_to_neighbors(observability_index_i == size(A)) /* sends its index and a
Boolean (True if it is faulty, False otherwise). */
NDi, Di, observability_index_list ←−G.receive_from_neighbors()
if observability_index_i < size(A) then

Gi ←− Find_minimal_sub_graph_D_agents()
Ci ←− remove_null_lines(Ci)

else
Gi ←− Find_minimal_sub_graph_ND_agents()
Ci ←− Find_output_matrix(A,Ci, observability_index_list, m, Di, max_iteration)

end
Aplant ←−Isize(Gi) ⊗A
Bplant ←−Isize(Gi) ⊗B
yi ←− sensors_outputs()
Gi.send_to_neighbors(yi)
yj∈Ni ←−Gi.receive_from_neighbors()
x̂i, x̂j∈Ni = ←− state_estimation(Aplant, Bplant, Ci, Gi, yj∈(i∪Ni), initial_conditions)

Algorithm 4’s state_estimation() function contains the estimator described in section 4.3.1 of the
chapter 4 (using any of the observers of chapter 3). Indeed, we will use the chosen observer on a
multi-agent system whose network is determined by the agents defined by Algorithms 1 and 2. The
output matrices from Algorithm 3 and the yj outputs measured by the non-faulty sensors are then
used to estimate the states.

Depending on the sparsity of the associated graph, and the objectives we wish to achieve, we may
choose different observers. It would be interesting to define an expert system that could choose for
the estimator to use depending on a given set of objectives and conditions.

5.4 Heterogeneous MAS

Let us now consider the case where the multi-agent system is heterogeneous, that is: ẋi = Aixi +Biu

yi = Cixi

(5.11)

To identify the appropriate algorithm for estimating the states of a heterogeneous multi-agent system,
we need to look at the results of the agent clustering algorithms defined in Algorithms 1 and 2.
From there, we deduce that any defaulting agent must have one and only one non-faulty neighbor
for estimating the states and that any group produced by these algorithms must have at least one
non-faulty agent. This leads us to only one possible configuration for groups containing a faulty agent:
a tree-like configuration containing only two levels with the non-faulty agent as the root of all other
defective agents that are part of that group (note that the defaulting agents can have edges between
each other).
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Figure 5.2: Examples of tree-like configurations for the agents groups

The tree configuration allows all agents in a group to access each other’s state-space models in only
two iterations, allowing the previous algorithm (4) to be used on a heterogeneous system.

Algorithm 5: General estimation algorithm for a heterogeneous multi-agent system
Input: i, Ai, Bi, Ci, m, max_iteration
Output: x̂i

observability_index_i ←− (i, (rank(compute_observability_matrix(A,Ci)) == size(A)))
G.send_to_neighbors(observability_index_i == size(A)) /* sends its index and a
Boolean (True if it is faulty, False otherwise). */
NDi, Di ←−G.receive_from_neighbors()
if observability_index_i < size(Ai) then

Gi ←− Find_minimal_sub_graph_D_agents()
Gi.send_to_non_defaulting_neighbors(Ai, Bi)
AGi , BGi ←−Gi.receive_from_neighbors()
Ci ←− Find_output_matrix(A,Ci, G.nbr_agents, NDi, max_iteration)

else
Gi ←− Find_minimal_sub_graph_ND_agents()
Aj∈Gi , Bj∈Gi ←−Gi.receive_from_neighbors()
Gi.send_to_neighbors(

[
Ai, AjNi∩Gi

]
,

[
Bi, BjNi∩Gi

]
))

AGi ←−
[
Ai, Aj∈Ni∩Gi

]
BGi ←−

[
Bi, Bj∈Ni∩Gi

]
Ci ←− remove_null_lines(Ci)

end
Aplant ←−diag(AGi)
Bplant ←−diag(BGi)
yi ←− sensors_outputs()
Gi.send_to_neighbors(yi)
yj∈Ni ←−Gi.receive_from_neighbors()
x̂i, x̂j∈Ni = ←− state_estimation(Aplant, Bplant, Ci, Gi, yj∈(i∪Ni), initial_conditions)

The previous algorithm (5) has been proposed to estimate the states of a heterogeneous multi-agent
system. It is based on Algorithm 4 with slight modifications to obtain the state-space model of the
whole plant. Indeed, in order to ensure that each agent receives the mathematical models for their
group and because the graph has a tree-like configuration, it is sufficient to do the following:

1. Non-defective agents receive the state-space models of defective agents that are part of their
group Gi and send this information back to all its defaulting neighbors.

2. Defaulting agents send their state-space model to the non-defaulting neighbor that is part of
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their Gi group and wait for it to send back the list of all state-space models of the agents in
their Gi group.

3. Using the list of state-space models of all the agents in the group Gi, determine the model of
the plant.

Figure 5.3: The steps that each agent must follow in order to obtain the state space model of
the entire multi-agent system

A second way to solve the problem of estimating heterogeneous and defaulting multi-agent systems is
to use the observer introduced in Chapter 4, section 4.3.2. Using that estimator makes the solution
more straightforward since there is no need to search for the plant model.

Consider a subgraph Gi defined in figure 5.4 output from the agent clustering algorithms

Figure 5.4: The subgraph Gi

The state-space model of the three agents are defined accordingly.

 ẋi = Aixi +Biu

yi = Cixi

(5.12)

With i ∈ {1, 2, 3}

The output matrix is updated so that the system defined in equation 5.12 resembles the one defined
in equation 4.17 of section 4.3.2, chapter 4. Consider the output matrix of the only non-defaulting
agent, agent 3.
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y3 = C3x =

C1
3 C2

3 C3
3


0 0 C3

T 1
(v1+1)→n −T 1

(v1+1)→n

0 T 2
(v2+1)→n −T 2

(v2+1)→n

x =
[
C1

3 C2
3 C3

3

] 
x1

x2

x3

 =
3∑

j=1
Cj

3xj (5.13)

The matrices C1 and C2 are simply computed by removing the null rows from the matrices C1 and
C2 respectively. Finally, we can use the cooperative observer defined in Section 1 of Chapter 4, with
agents 1 and 2 having observers of size 2 (this is the combination of agent 3 with one of them) and
agent 3 having an observer of size 3. Let’s take the example of agent 3’s oberver.

˙̂x3 = A3x̂3 + L3(y3 −
∑

j∈(3∪N3)
C3

j x̂j) +K3

x̂1
1 − x̂3

1

x̂2
2 − x̂3

2

 (5.14)

Algorithm 6: General estimation algorithm for a heterogeneous multi-agent system
using Cooperative Estimator of MAS With Coupled Measurements (see section 4.3.2)

Input: i, A, B, Ci, m, max_iteration
Output: x̂i

observability_index_i ←− (i, (rank(compute_observability_matrix(A,Ci)) == size(A)))
G.send_to_neighbors(observability_index_i == size(A)) /* sends its index and a
Boolean (True if it is faulty, False otherwise). */
NDi, Di ←−G.receive_from_neighbors()
if observability_index_i < size(A) then

Gi ←− Find_minimal_sub_graph_D_agents()
Ci ←− Find_output_matrix(A,Ci, G.nbr_agents, NDi, max_iteration)

else
Gi ←− Find_minimal_sub_graph_ND_agents()
Ci ←− remove_null_lines(Ci)

end
Ci ←− Find_output_matrix(A,Ci, G.nbr_agents, NDi, max_iteration)
Gi.send_to_neighbors(Ai, Bi)
Aj∈Gi∩Ni , Bj∈Gi∩Ni= ←−Gi.receive_from_neighbors()
yi ←− sensors_outputs()
Gi.send_to_neighbors(yi)
yj∈Ni ←−Gi.receive_from_neighbors()
x̂i, x̂j∈Ni ←− Cooperative_State_Estimation_Coupled_Measurements(Aj∈Gi∩Ni ,
Bj∈Gi∩Ni , Ci, Gi, yj∈(i∪Ni), initial_conditions)

5.5 Conclusion

Using the distributed observers we saw in the previous chapters, we provided a collection of algorithms
for estimating the states of agents with malfunctioning sensors that are part of a multi-agent system.
By introducing relative measurements, we have established an algorithm for clustering agents into
minimum groups while ensuring their joint observability. In summary, we have investigated the state
estimation of homogeneous and heterogeneous multi-agent systems while correcting sensor-related
defects.

Although the solution developed within the framework of this project is satisfactory, there are un-
doubtedly improvements to be added, particularly concerning the following points:
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- Take into account the case where the agents are not observable on their own but the system is
jointly observable.

- Allow groups containing only defaulting agents, if their failure is not due to the same sensor.

.
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CHAPTER 6

SOLUTION IMPLEMENTATION AND SIMULATION

6.1 Introduction

Because of their simplicity and adaptability, unmanned aerial vehicles (UAVs) have sparked a lot of
attention during the last decade. To the point where researchers and industries are now concentrating
on UAV swarms. They are frequently used in critical situations such as rescue missions, military
operations, or even outdoor shows in which they are surrounded by a huge number of civilians [32].
Therefore, they must be reliable as a group. Having a multi-agent system, on the other hand, raises
the chances of one agent failing. As a result, we feel that multi-agent UAV systems are a suitable
application of the sensor failure correction technique provided in the previous chapter.

In this chapter, we will use a quadrotor swarm to test the algorithm we provided in the previous
chapter and discuss the results.

6.2 The quadrotor model

A quadrotor is an unnamed aerial vehicle that has two rotors rotating clockwise and two counter-
clockwise [33]. They have several advantages, including their tiny size and stable hover. Recently,
the research community has shown increasing interest in them, especially when it comes to quadrotor
swarms.

The propellers are designed in such a way to control the quadrotor at six degrees of freedom. They
are placed in a crossed configuration. In this configuration, the opposing rotors rotate in the same
direction, which is necessary to allow independent control of yaw, pitch, and roll. These torques
(Uroll, Upitch, Uyaw) and the thrust force (Uthrust) are generated using the rotation speeds of the four
propellers (see figure 6.1) and are determined accordingly:



Uthrust = fl(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)
Uroll = fld(Ω2

4 − Ω2
2)

Upitch = fld(Ω2
3 − Ω2

1)
Uyaw = fd(Ω2

2 − Ω2
1 + Ω2

4 − Ω2
3)

(6.1)

With Ωi the rotation speed of motor i, fl and fd are the lift and drag factor respectively, d is the
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distance from the center of mass to the center of each rotor, and Uthrust, Uroll, Upitch, Uyaw are the
four control inputs.

Figure 6.1: Motors configuration needed to obtain the different movements

Using Newton’s second law of motion, we can easily define the nonlinear model of the quadrotor [34],
consider a quadrotor defined in the 3 dimentional space using the Euclidean position (x, y, z) and the
Euler angles (ϕ, θ, ψ).

Figure 6.2: Quadrotor model

We define
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m Total mass of the quadrotor.
g Force of gravity.
X ∈ R3 Position of the quadrotor (x, y, z).
V ∈ R3 Velocity of the quadrotor (ẋ, ẏ, ż).
Ω ∈ R3 Angular velocity of the quadrotor (p, q, r)
R Rotational matrix of the quadrotor from the inertial frame.
J ∈ R3×3 Inertia matrix diag(

[
Jxx Jyy Jzz

]
).

Ẋ = V (6.2)

mV̇ =


0
0
mg

 +R


0
0

Uthrust

 (6.3)

Ṙ = RΩ̂ (6.4)


Jxx 0 0
0 Jyy 0
0 0 Jzz

 Ω̇ + Ω×


Jxx 0 0
0 Jyy 0
0 0 Jzz

 Ω =


Uroll

Upitch

Uyaw

 (6.5)

Where .̂ is the hat map: R3 → so(3). Suppose that ΩT =
[
p q r

]
than:

Ω̂ =


0 −r q

r 0 −p
−q p 0


The rotational matrix R is the rotational matrix of the quadrotor from the body-fixed frame to its
inertial frame [35].

R =


cosϕ cos θ cosϕ sin θ sinψ − sinϕ cosψ cosϕ sin θ cosψ + sinϕ sinψ
sinϕ cos θ sinϕ sin θ sinψ + cosϕ cosψ sinϕ sin θ cosψ − cosϕ sinψ
− sin θ cos θ sinψ cos θ cosψ

 (6.6)

Finally, we can define the relation between the angular velocities in the inertial frame (p, q, r) and
those of the body-fixed frame (ϕ̇, θ̇, ψ̇).


p

q

r

 =


1 0 − sin θ
0 cosϕ sinϕ cos θ
0 − sinϕ cosϕ cos θ



ϕ̇

θ̇

ψ̇

 (6.7)
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
p

q

r

 = Rx→xUAV


ϕ̇

θ̇

ψ̇

 (6.8)

The inverse of matrix Rx→xUAV is used to define the dynamics of the angular velocities.

Finally, the nonlinear state-space model of the quadrotor can be deduced using equations 6.2 to 6.5
and rotation matrix Rx→xUAV . Matrix Rx→xUAV is introduced in equation 6.5 to obtain the dynamic
of the rotational angles in the inertial frame. To simplify the nonlinear model, we consider the Euler
angles to be close to zero. Therefore, we can consider p ≈ ϕ̇, q ≈ θ̇, and r ≈ ψ̇.



ϕ̈ = Jyy − Jzz

Jxx
θ̇ψ̇ + Uroll

Jxx

θ̈ = Jzz − Jxx

Jyy
ϕ̇ψ̇ + Upitch

Jyy

ψ̈ = Jxx − Jyy

Jzz
ϕ̇θ̇ + Uyaw

Jzz

(6.9)

Now, we can linearize the model by considering that the quadrotor is around an operating point. We
will use the approximations and the linear model designed by [36]. They considered the following
assumptions. 

p ≈ q ≈ r ≈ 0
sin(ϕ) ≈ 0
sin(θ) ≈ θ
sin(ψ) ≈ ψ

(6.10)

Using these approximations, we can now define the linear model of the quadrotor.


ẋ = Ax +B


Uthrust

Uroll

Upitch

Uyaw


y = Cx

(6.11)

Such that: x =
[
xT yT zT ϕT θT ψT ẋT ẏT żT ϕ̇T θ̇T ψ̇T

]T

With the state-space matrices are defined as follows.

A =



03×4 03×1 03×1 I3×3 03×3

03×4 03×1 03×1 03×3 I3×3

01×4 0 g 01×3 01×3

01×4 −g 0 01×3 01×3

04×4 04×1 04×1 04×3 04×3


(6.12)
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B =



08×1 08×1 08×1 08×1
1
m 0 0 0
0 1

Jxx
0 0

0 0 1
Jyy

0
0 0 0 1

Jzz


(6.13)

This drone usually contains several sensors to allow it to be fully observable and measure its position
and rotation in 3D space, that is y =

[
xT yT zT ϕT θT ψT ẋT ẏT żT

]T
, therefore, the

output matrix is written as follows.

C =
[
I9×9 09×3

]
(6.14)

This linearized model ensures that the system remains controllable and observable.

However, the quadrotor is not a naturally stable system, it will need to be stabilized.

For the purposes of our example, we have picked the following values for our drone’s constants:

J = diag(
[
0.0820 0.0845 0.1377

]
)

m = 4.34Kg
d = 0.315m

fl = 2× 10−4

fd = 7× 10−5

We borrowed these values from a UAV designed by [37].

6.3 Multi-agent UAV system

We will implement the approach proposed in the previous chapter on a multi-agent quadrotor system
that we will present in the current section.

Consider a set of three quadrotors that, according to a graph G, can communicate with their neighbors.
The network is static, that is it won’t change over time. Furthermore, the quadrotors are modeled
using the linearized state-space model defined in the previous section (see equation 6.12 and 6.13 ).
All the UAVs have the same mathematical model. Therefore, the MAS is homogeneous.

Figure 6.3: The graph associated with the set of quadrotors
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Agent 2 is the one that has defective sensors, and it is connected to both the other agents.

The groups depicted in figure 6.4 were created using the clustering algorithms 2 and 1 described in
the previous chapter. These algorithms generated two subgraphs G1 composed of agents 1 and 2, and
G2 composed of only agent 3.

Figure 6.4: The groups formed after applying algorithm 1 and 2

Quadrotor 2 has randomly selected one of its non-failing neighbors. The remaining two agents wait
for Quadrotor 2 to send them information about their cluster and reorganize a new one based on what
they received (see Algorithm 2). Finally, Quadrotor 1 receives a signal from the second agent, and
Quadrotor 3 receives no feedback and ends up in a cluster by itself.

6.4 Defaulting agent

The defaulting system has lost the functionality of several sensors; it cannot measure its position on
the x− and y− axes and its rotations θ and ψ. Its output matrix is defined in the following equation,
and the remaining outputs are y2 =

[
zT

2 ϕT
2 ẋT

2 ẏT
2 żT

2

]
.

y2 = C2

x1

x2

 (6.15)

C2 =

02×14 I2×2 02×2 02×3 02×3

03×14 03×2 03×2 I3×3 03×3

 (6.16)

The system (C2, A) is unobservable, it has an observability index 10, which means that the last two
lines of the staircase transformation matrix T2 of that system are used to define the states that need
to be relatively measured to obtain a jointly observable multi-agent quadrotor system composed of
quadrotor 1 and 2.

The transformation matrix T2 is defined as follows.
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T2 =



02×2 −I2×2 02×2 02×3 02×2 02×1

03×2 03×2 03×2 −I3×3 03×2 03×1

02×2 02×2 J2×2 02×3 02×2 02×1

02×2 02×2 02×2 02×3 I2×2 02×1

01×2 01×2 01×2 01×3 01×2 −1
J2×2 02×2 02×2 02×3 02×2 02×1


(6.17)

Using T2, we can finally deduce which states of the agent 2 should be measured relative to the agent
1. We find: y1 =

[
xT

1 yT
1 zT

1 ϕT
1 θT

1 ψT
1 ẋT

1 ẏT
1 żT

1 yT
2 − yT

1 xT
2 − xT

1

]
.

y1 = C1

x1

x2

 (6.18)

C1 =



1 0 01×7 0 0 01×7

0 1 01×7 0 0 01×7

07×1 07×1 I7×7 07×1 07×1 07×7

0 −1 01×7 0 1 01×7

−1 0 01×7 1 0 01×7


(6.19)

Measuring the position of a neighbor on the x- and y- axes is simple in practice. In fact, it is likely
that a quadrotor has a camera that can be used to quickly locate neighboring drones.

Figure 6.5: The relative measurements made by agent 1

Agent 3 has been clustered alone, so its output matrix does not change, it can measure its position
(x, y, z), its angular rotation (ϕ, θ, ψ), and its speed (ẋ, ẏ, ż).

C3 =
[
I9×9 09×3

]
(6.20)
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6.5 Distributed observer

Now it’s only a matter of deciding which distributed estimator to utilize in these conditions.

We chose to use the Distributed Luenberger Observer for its simplicity, speed, and robustness, as we
have seen in chapter 3.

Since the subgrapsh G1 and G2 are not sparse, the Cooperative Estimator Using Coupled Measure-
ments, which was presented in section 4.3.2, Chapter 4, does not reduce the size of the observer.
Hence, favoring simplicity and performance (see table 3.4), we have chosen to implement the dis-
tributed Luenberger observer. Finally, for the group containing a single agent, the observer is no
longer distributed. Therefore, the DLO becomes a simple Luenberger estimator.

In addition, since the quadrotor is an unstable plant, we implemented two simulations, one involving
the free system and the other containing an observer-based feedback controller. Furthermore, to
ensure that the estimated state values used in the controller, approximate the actual state values before
the controller takes effect, we made the dynamics of the observer faster than that of the controller.

It should be noted that the implementation of the feedback control is theoretical; in reality, this type
of control is not adequate for a UAV (see [38], [39], [40], and [41] for more detail on how to control a
UAV).

We define

(A, B) The state-space model of the quadrotor.
x̂j

i The estimate of agent i’s states made by agent j.
Ki The feedback controller gain, null matrix if the controller is not implemented.
Li,Mi, ki, and γ The parameters of the DLO (see equation 3.5 and section 3.3.1).
Ci The output matrices (see equation 6.19, 6.16, 6.20).

 ˙̂x1
1

˙̂x1
2

 = (I2 ⊗A)

x̂1
1

x̂1
2

− (I2 ⊗B)K1

x̂1
1

x̂1
2

 + L1(y1 − C1

x̂1
1

x̂1
2

) + γM−1
1 (k1)

x̂2
1 − x̂1

1

x̂2
2 − x̂1

2

 (6.21)

 ˙̂x2
1

˙̂x2
2

 = (I2 ⊗A)

x̂2
1

x̂2
2

− (I2 ⊗B)K2

x̂2
1

x̂2
2

 + L2(y2 − C2

x̂2
1

x̂2
2

) + γM−1
2 (k2)

x̂1
1 − x̂2

1

x̂1
2 − x̂2

2

 (6.22)

With Li, and Mi, i ∈ {1, 2} defined according to the laws introduced in chapter 3 (see equations 3.6,
3.7, and 3.5). Indeed, using the place() function from Scipy Python, we compute the value of the
gain Li.

˙̂x3 = Ax̂3 −BK3x̂3 + L3(y3 − C3x̂3) (6.23)

When implementing the observer-based controller, we chose the gains Ki for i ∈ {1, 2, 3} using the
place() function from Scipy Python. The eigenvalues were taken such that the dynamic of the
controller would be slower than that of the observer.

Note: In our case, we chose to work with the Luenberger distributed observer, but depending on the
size of the groups, the sparsity of the associated graphs, and the objectives we wish to achieve,
we may make a different choice. It would be interesting to define an expert system that could
choose for the estimator to use depending on some objectives and conditions.
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6.6 Simulations

We will present the outcomes of our simulations in this section.

6.6.1 Initialization

This table summarizes the initial values chosen for our drones and their estimates.

Table 6.1: Initial values of x(t) and (t)

i x (m) y (m) z (m) ϕ (◦) θ (◦) ψ (◦) x̂ (m) ŷ (m) ẑ (m) ϕ̂ (◦) θ̂ (◦) ψ̂ (◦)
1 0 0 0 0 0 0 -2 -3 -2.5 0 0 0
2 1.5 -3 -3 0 0 0 2.8 0 -1.5 0 0 0
3 0 0 0 0 0 0 -1 3 0.5 0 0 0

These values have been chosen so that the response x(t) is zero. Indeed, since the elements of the
matrix A are null when multiplied by the position (x, y, z), we can afford to modify the initial values
of the first three states, contrary to the others.

The parameters of the distributed observer were chosen according to the laws presented in section
3.3.1 of chapter 3. We took γ = 0.1 and ki = 0.1. While these parameters were chosen by calibration,
the matrix gains Li and Mi, for i ∈ {1, 2} were taken according to laws 3.6 and 3.7. We selected the
eigenvalues of the associated matrix (defined in equation 3.6) to randomly vary from -1 to -0.5, such
that

λL1 = [−0.559 − 0.819 − 0.571 − 0.972 − 0.760 − 0.707 − 0.632 − 0.887 − 0.728

−0.784 ].

λL2 = [−0.509 − 0.808 − 0.806 − 0.808 − 0.971 − 0.840 − 0.679 − 0.718 − 0.848

−0.5301 −0.833 −0.835 −0.605 −0.564 −0.657 −0.681 −0.785 −0.719 −0.994

−0.551].

On the other hand, Mi is computed using the gain Li through equation 3.7.

For the third quadrotor, these parameters are not needed, and L3 is computed by pole placement with
the eigenvalues randomly varying from -1 to -0.5.

λL3 = [−0.784 − 0.962 − 0.535 − 0.543 − 0.510 − 0.916 − 0.889 − 0.935 − 0.989

−0.899 − 0.730 − 0.890 ].
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6.6.2 Distributed observation

The results are illustrated in the figures below. The estimated trajectories x̂j
i , j, i ∈ {1, 2} are in

colored solid curves while xi(t), i ∈ {1, 2} are in blue dashed curves.

Figure 6.6: States x1(t) and their average estimates avg(x̂1
1(t), x̂2

1(t)) of quadrotor 1

Figure 6.7: States x2(t) and their average estimates avg(x̂1
2(t), x̂2

2(t)) of quadrotor 1

The observer converges, and we can see that the color curves overlap on the blue dotted lines. The
settling time of the state estimation of the first quadrotor is 63s, while that of the second is 176s
(settling time is the time after which the observation error becomes lower than 10−2).
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Figure 6.8: States x3(t) and their estimates x̂3(t) of quadrotor 3

6.6.3 Observer-based controller

Let us consider the same system and observer, and let us implement an observer-based controller to it.
The goal is for the system to reach a desired value at infinity, which is not the case when the system
is allowed to evolve freely.

We designed the controller by choosing the eigenvalues of I2 ⊗ A − (I2 ⊗ B)Ki, for i ∈ {1, 2, 3} to
randomly vary between −0.1 to −0.2

We took for the first two agents (i ∈ {1, 2}):

λKi = [−0.155 − 0.171 − 0.160 − 0.154 − 0.142 − 0.165 − 0.143 − 0.189...

−0.196 − 0.138 − 0.179 − 0.152].

for the third agent (i = 3):

λK3 = [−0.2097 − 0.2430 − 0.2206 − 0.2089 − 0.1847 − 0.2292 − 0.1875 − 0.2784...

−0.2927 − 0.1767 − 0.2583 − 0.2058].

For the group 1 − 2, the results are illustrated in the figures below. The estimated trajectories x̂j
i ,

j, i ∈ {1, 2} are in colored solid curves while xi(t), i ∈ {1, 2} are in blue dashed curves.
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Figure 6.9: States x1(t) and their average estimates avg(x̂1
1(t), x̂2

1(t)) of quadrotor 1

Figure 6.10: States x2(t) and their average estimates avg(x̂1
2(t), x̂2

2(t)) of quadrotor 2

Estimates and actual values overlap quickly for all variables, but rotation angles take more time. We
also see at the beginning the quadrotor rotating around itself, this is unrealistic. This is due to the
implementation of a control that is not appropriate for this type of systems (the problem of the control
of quadrotors is widely studied in the literature, see [38], [39], [40], and [41]).

For the system composed of agent 3, the estimation is straightforward, it is performed using a simple
Luenberger observer. The results are illustrated in figure 6.11.

We took the initial values of the Euler angles to be equal to (0, 0, 0) and kept the same initial values
as the one presented in table 6.1 for the remaining states. The estimated trajectories x̂3, j, i ∈ {1, 2}
are in colored solid curves while x3(t), i ∈ {1, 2} are in blue dashed curves.
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Figure 6.11: States x3(t) and their estimates x̂3(t) of quadrotor 3

6.6.3.1 Noisy outputs

In reality, relative measurements are often noisier than values measured by an onboard sensor. For
this reason, we decided to test the observer with measurement noise for the last two outputs of
the quadrotor 1 system (x2 − x1 and y2 − y1). We tested the observer with three levels of noise:
(±0.1m,±5◦,±0.1m/s,±5◦), (±0.2m,±10◦,±0.2m/s,±10◦), and (±0.5m,±25◦,±1m/s,±25◦) and
illustrated the observation errors in figures 6.15 to 6.17. It converges in the first two cases but with
oscillations around the final value. This can be corrected by using an averaging filter. As for the third
level, the output is too noisy, it might be too difficult to recover the estimates.

Figure 6.12: Observation errors of the quadrotor 1 in the first case of noisy relative measure-
ments
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Figure 6.13: Observation errors of the quadrotor 2 in the first case of noisy relative measure-
ments

Figure 6.14: Observation errors of the quadrotor 1 in the second case of noisy relative mea-
surements
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Figure 6.15: Observation errors of the quadrotor 2 in the second case of noisy relative mea-
surements

Figure 6.16: Observation errors of quadrotor 1 in the last case of noisy relative measurements
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Figure 6.17: Observation errors of quadrotor 2 in the last case of noisy relative measurements

6.6.3.2 Noisy parameters

Since the system is linearized, the mathematical model on which we tested the observer is not the
actual model. Therefore, to simulate the effect the observer would have on the nonlinear system, we
implemented parametric noise to the state-space model of the quadrotor. This is called a robustness
test, and we chose three levels of noise: 5%, 10%, and 20% of the parameters.

To obtain

We have illustrated the results in figures 6.18 to 6.23. In all three cases, the results converge, although
the system is unstable, and we have carried out a controller based on the observer. However, adding
noise slows down the convergence rate of the observer and the controller.
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Figure 6.18: Observation errors of quadrotor 1 in the case of noisy parameters (5%) noise

Figure 6.19: Observation errors of quadrotor 2 in the case of noisy parameters (5%) noise
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Figure 6.20: Observation errors of quadrotor 1 in the case of noisy parameters (10%) noise

Figure 6.21: Observation errors of quadrotor 2 in the case of noisy parameters (10%) noise
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Figure 6.22: Observation errors of quadrotor 1 in the case of noisy parameters (20%) noise

Figure 6.23: Observation errors of quadrotor 2 in the case of noisy parameters (20%) noise
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Table 6.2: Settling time when adding noise to the parameters

Parametric error
(% of the parameters)

5 10 20

Settling time
for observation (s)

80 105 124

Settling time
for control (s)

103 122 128

Note that for multi-agent systems evolving in the same environment, it is necessary to add an obstacle
avoidance algorithm to avoid collisions. Furthermore, none of the trajectories and controllers presented
in this section are feasible in practice. For example, speeds such as 1000deg/s are impossible to achieve,
and a quadrotor rotating indefinitely on one of its axes is unrealistic.

Consider Uthrust. It is the control that affects the motion of the UAV vertically. Since the motors are
all placed on one side of the quadrotor, it is impossible to create a negative thrust. However, using a
feedback controller cannot guarantee that this force always remains positive. We can see this for our
example in Figures 6.24 and 6.25 which represents the thrust applied to the quadrotor 1 and 2 for
a system without any noise, that the thrust is sometimes negative. Therefore, we can say that this
controller is impossible to achieve in practice.

Figure 6.24: The control Uthrust of the quadrotor 1 for a
system without any disturbances

Figure 6.25: The control Uthrust of the quadrotor 2 for a
system without any disturbances
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6.7 Conclusion

In this chapter, we have tested the algorithms and the sensor fault correction estimator presented in the
last chapter on a multi-agent UAV system. We first defined the mathematical model of the quadrotor.
Then, considering a MAS of 3 drones, we selected one of them to be defective and estimated the states
of the defaulting agent using relative measurements and a distributed observer on the clusters we have
generated. We have decided to use the Distributed Luenberger Observer for the estimations for its
simplicity and robustness and implemented an observer-based controller to stabilize the systems.

While testing the sensor fault correction algorithms and the distributed observer on a quadrotor,
we did not design a suitable controller for a UAV, as it would be too complex. Therefore, a future
perspective for this work would be to implement an observer-based controller based on Lie groups or
nonlinear techniques to test the robustness of this method and monitor its performance in practice.
Thus, to see if its settling time is short enough, for instance.

.

78



CHAPTER 7

PYTHON LIBRARY IMPLEMENTATION

7.1 Introduction

Scientific research is essential to generate new knowledge to understanding better a given phenomenon,
develop new ideas and build new technologies. It is more than crucial in today’s world. However, it
cannot evolve without the technological and computer tools to help it do so. Therefore, we decided
to develop a library in Python to assist control engineers, students, and researchers in distributed
observation.

In this chapter, we will present the Python module we created to simulate multi-agent systems and
the various existing distributed observers. We will review the packages we used and how the classes
and functions are organized in this package.

7.2 Overview of the library

To achieve our goal of supporting the scientific community, we have implemented a package in Python
that allows the simulation and testing of distributed observers and multi-agent systems. This package
is divided into several classes and was implemented using the software presented in section 2.7, chapter
2.

7.2.1 Graph

This class creates and manipulates graphs as defined in section 2.2.1. It can verify if the graph is
strongly connected and compute its incidence, adjacency, and degree matrices.

To create a graph, we need to call the class with the chosen number of nodes and optionally an
adjacency matrix. If no adjacency matrix were input to the object, this class instantiates a graph
with random weighted edges. Upon initialization, the degree matrix, the Laplacian matrix, and the
incidence matrix are calculated and can be referred to using the commands G.Deg, G.Lap and G.Incid
respectively.

This class includes many other methods. For instance, it contains a function that, given a set of
vertices, returns a subgraph containing only those vertices and their associated edges. It was designed
for the purposes of our project.
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To see an illustrative code, see the appendix, figure A.1.

7.2.2 Multi-agent system

This class defines a multi-agent system. It allows computing its joint observability, implementing a
multi-agent feedback controller, adding parametric noise, and testing it with different inputs (a step,
an impulse, etc). The two types of multi-agent systems defined in 4.8 and 5.1 can be designed using
this class.

The class is initialized with the state-space models of the agents and a graph G associated with the
MAS. It contains several functions that can test some of its properties. For instance, the step response,
the impulse response, and the forced response can be simulated by choosing parameters such as the
time of the simulation, the input u, and the initial values of the states (see figure 3.2, chapter 3).
Furthermore, the multi-agent system class can measure the observability index of each agent, define
which agents are faulty, and add a feedback controller to the system.

A code is presented in the appendix, figure A.2 to illustrate the functioning of this class.

7.2.3 Quadrotor

This class defines the quadrotor’s linear mathematical model, as defined in the previous chapter. It
can graph the trajectories and the rotational movements of a quadrotor.

Using parameters such as the mass of the quadrotor, its lift and drag factors, the distances between
its wings, its inertial matrix, this class can simulate a quadrotor on a 3D plane.

The way of creating a quadrotor as an object in Python using this class is illustrated in the appendix,
figure A.3.

7.2.4 Distributed observer

This class designs different types of distributed observers, calculates the necessary parameters to en-
sure exponential convergence of the observer, and adds an observer-based feedback controller to the
inputted multi-agent system. The distributed estimators can be tested, and their responses plot-
ted with and without parametric or output disturbances. This class also allows to measure some
performance criteria and display them.

An object from this class is initialized using an object from the multi-agent class and several other
parameters including the initial values of states and their estimates, the type of observer (DLO, DFTO
...), and the standard deviation of the parametric disturbances. The chosen distributed observer can
be run with an observer-based controller and with a noisy output.

When initializing the observer, the user enters the multi-agent system on which he desires to apply his
observer. He mentions the values of the parameters (these depend on the type of observer chosen) and
initializes the states and their estimates. Finally, the choice of noise rates is defined, and the observer is
run using the run_observer() command. If the system is unstable, an observer-based feedback control
law can be implemented in the system.

This class also allows the results of the different observers to be visualized (see figures 6.15 to 6.23,
chapter 6). Additionally, it makes it possible to retrieve performance indicators such as the settling
time, the steady-state error, or the observation error.

We have illustrated an example of the implementation on this class in the appendix, figure A.4. .
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CHAPTER 8

CONCLUSION

Over the last twenty years, scientists have become aware of the strength of multi-agent systems, and
much research has been carried out in this area. control system theory has not failed to adapt to this
trend, and several multi-agent control and estimation algorithms have been developed.

Throughout this thesis, we have focused our efforts on the distributed estimation of multi-agent
systems. In particular, we have worked on sensor faults correction in MAS; we have presented an
algorithm and tested it on a MAS quadrotor under different conditions.

In the first part of this work, we presented four distributed observers, each with its advantages and
drawbacks. Three of these estimators were originally designed to estimate the global states of a
multi-agent system. In contrast, the last one is a cooperative observer that introduces the notion of
coupled measurements. In addition, we proposed a technique to correct sensor faults in a MAS using
distributed estimators. We then examined the proposed solution for homogeneous and heterogeneous
multi-agent systems. Finally, we simulated our solution on a linearized quadrotor multi-agent system
and tested the robustness of the solution. The simulations were implemented in Python using a
package we wrote to complement the Python Control library with the distributed estimation problem.

In summary, our contribution is twofold:

- The realization of algorithms for correcting sensor faults in multi-agent systems, using different
distributed estimators existing in the literature.

- The realization of a package in Python for simulating multi-agent systems and their estimators.

Several additional studies can be carried out to complement this thesis, such as implementing a
distributed estimator that corrects for temporary sensor failures, performing distributed estimation
on a group of systems that are not individually observable, or developing an algorithm to define relative
measurements based on the availability of sensors in practice.
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APPENDIX A

PYTHON CODES

Figure A.1: Example of a code from the Graph class

Figure A.2: Example of a code from the Multi-agent System class
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Figure A.3: Example of a code from the Quadrotor class

Figure A.4: Example of a code from the Distributed Observer class

Figure A.5: Github QR code of the repository of the entire project
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