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 ملخص 

لمحط  والموثوقة  الفعالة  المراقبة  في هذه   (PV) الكهروضوئية  الشمسية  الطاقةات  تعتبر  المرغوبة.  بالمواصفات  المولدة  الطاقة  للحفاظ على  ضرورية 

كيلو واط باستخدام جهاز الحصول على    9.54بقوة    ةكهروضوئي  لمحطةنظام مراقبة    صميم( لت VIنقترح طريقة تعتمد على الأجهزة الافتراضية )  الرسالة، 

. نظام المراقبة المصمم قادر على قياس وعرض وتحليل وتسجيل جميع البيانات الإعلامية للنظام الكهروضوئي  LabVIEW( وبرنامج DAQالبيانات )

يتعلق الجزء  .واجهة بديهية وسهلة الاستخدام في الوقت الفعلي. تمت معايرة القياسات جيداً باستخدام أجهزة مرجعية  عبر (GCPVS) متصل بالشبكةال

ئي، وقد تم التحقق النظام الكهروضو  للمولد الكهروضوئي والعاكس من أجل تقدير إنتاج الكهرباء وتحليل أداء  الاعتباريةبالنمذجة    الثاني من هذه الأطروحة

. تم تصميم واجهة مستخدم لنمذجة وتحليل أداء نظام المقاسةمن صحة النتائج التي تم الحصول عليها من النماذج التجريبية ومعايرتها من خلال البيانات  

 .  LabVIEWباستعمال   الكهروضوئية

هذه   من  الأخير  الطاقة    امخصص  كان الرسالةالجزء  نظام  في  تحدث  التي  الأعطال  وتحديد  اكتشاف  أجل  من  وفعالة  بسيطة  تشخيصية  أداة  لتصميم 

يتم    الأعطال، باستخدام طريقتين لاكتشاف    الزوائدالكهروضوئية. تم حساب القيم المتبقية باستخدام النماذج البارامترية واللامعلمية. بينما يتم إجراء تحليل  

م التقنية الأولى  )تنفيذ  فقدان الأداء  المتوسط   كهربائية، ( لأربعة مؤشرات  PLRن خلال تحليل معدلات  الثانية باستخدام مخطط  التقنية  يتم تحقيق  بينما 

لنظام  االكهربائية التي تحدث في    المحيطية والأعطالالتغيرات  عدة عينات من  أخذ    تم  لتقييم التقنيات المقترحة،   .(DEWMAالمتحرك الأسي المزدوج )

 قد تم تحقيقها بنجاح.للأعطال   أظهرت النتائج التي تم الحصول عليها أن عملية الكشف والتعريف. روضوئي المتصل بالشبكةالكه

 

 : الأنظمة الشمسية الكهروضوئية، القياس، المراقبة، النمذجة، تحليل الأداء، كشف الأعطال، الذكاء الاصطناعي. الكلمات الدالة

Résumé 

Un monitoring efficace et fiable d’un système photovoltaïque (PV) est indispensable pour maintenir la puissance 

générée aux spécifications souhaitées. Dans cette thèse, nous proposons une méthode basée sur l'instrumentation 

virtuelle (VI) permettant de réaliser un système de monitoring pour une installation PV de 9,54 kWc en utilisant à la 

fois un instrument d'acquisition de données (DAQ) et le logiciel LabVIEW. Le système de monitoring réalisé est 

capable de mesurer, afficher, analyser et enregistrer toutes les données informatives d'un système PV connecté au 

réseau (SPVCR) via une interface intuitive et conviviale en temps réel. Les mesures ont été bien calibrées avec des 

instruments de référence. La deuxième partie de cette thèse porte sur la modélisation comportementale du générateur 

PV et de l'onduleur afin d’estimer la production électrique et d’analyser les performances du SPVCR. Les résultats 

obtenus à partir des modèles empiriques ont été validés et calibrés utilisant des données expérimentales. Une interface 

utilisateur de modélisation et d’analyse de performance d’un système PV sous LabVIEW a été conçue.  

La dernière partie de cette thèse est consacrée à la conception d'un outil de diagnostic simple et efficace afin de détecter 

et d'identifier les défauts survenant dans le système PV. Les résidus ont été calculés avec des modèles paramétriques 

et non paramétriques. Alors que l'examen des résidus est effectué à l'aide de deux techniques de détection de défauts . 

La première technique est effectuée par l'analyse du taux de pertes de performance (PLR) des quatre indicateurs 

électriques, tandis que la seconde technique est réalisée à l'aide d'un schéma à double moyenne mobile pondérée 

exponentiellement (DEWMA). Afin d'évaluer les techniques proposées, différents défauts électriques et anomalies 

environnementales survenant dans le SPVCR ont été pris en compte. Les résultats obtenus montrent que la détection 

et l'identification des défauts ont été réalisées avec succès. 

 

Mots clés : Systèmes photovoltaïques, mesure, monitoring, modélisation, analyse de performance, détection de 

défauts, intelligence artificielle. 

Abstract 

Efficient and reliable monitoring of a photovoltaic (PV) plant is essential to maintain the power generated at the desired 

specifications. In this thesis, we propose a method based on Virtual Instrumentation (VI) to realize a monitoring system 

for a 9.54 kWp PV system using both a Data Acquisition (DAQ) device and LabVIEW software. The implemented 

monitoring system is able to measure, display, analyze and record all the informative data of the Grid Connected PV 

System (GCPVS) via an intuitive and user-friendly interface in real-time. The measurements were well-calibrated with 

reference instruments.  The second part of this thesis concerns the behavioral modeling of the PV generator and the 

inverter in order to estimate the electricity production and analyze the performance of the GCPVS. The results obtained 

from the empirical models were validated and calibrated by experimental data. A user interface for modeling and 

analyzing the performance of a PV system under LabVIEW has been designed.   

The last part of this thesis is dedicated to the design of a simple and efficient diagnostic tool in order to detect and 

identify faults occurring in the PV system. The residuals were calculated with parametric and nonparametric models. 

While the analysis of the residual is performed using two fault detection techniques. The first technique is carried out 

by analyzing the Performance Loss Rates (PLR) of four electrical indicators, whereas the second technique is achieved 

using the Double Exponentially Weighted Moving Average (DEWMA) scheme. In order to evaluate the proposed 

techniques, different electrical faults and environmental anomalies occurring in the GCPVS were taken into account. 

The obtained results show that the detection and the identification of faults were successfully achieved. 

 

Keywords: Photovoltaic systems, Measurement, Monitoring, Modelling, Performance analysis, Fault detection, 

Artificial intelligence. 
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Introduction 

Global renewable energy capacity additions in 2020 and 2021 reflect unprecedented momentum 

for the energy transition. Despite the COVID-19-induced economic slowdown, the world added 

more than 265 gigawatts (GW) of renewable energy in 2020, and over 256 GW in 2021 reaching 

a total installed capacity of 3064 GW [1]. In most countries, generating electricity from solar 

photovoltaic (PV) is now more cost-effective than generating it from coal and gas-fired power 

plants. These cost reductions have led to record bids in the bidding processes [2].  

The solar PV market in recent years has seen strong expansion with at least 175 GWdc added in 

2021, reaching a total installed capacity of 942 GWdc [3]. This growth is due to innovations and 

competitiveness in the solar PV market, electricity demand, low maintenance costs and rapid return 

on investment [4]. 

A PV system comprises one or several PV modules connected to either an electricity network 

(Grid-connected PV) or to a series of loads (Off-Grid). It comprises various electric devices aiming 

at adapting the electricity output of the modules to the standards of the grid or to the load: inverters, 

charge controllers and batteries. The inverter is essential for grid-connected systems and is required 

for most off-grid systems. The storage battery and charge controller are necessary for off-grid 

systems but also are increasingly needed for grid-connected PV systems [3]. According to IRENA 

the total installed capacity of solar PV in the world at the end of 2021 is estimated at 849 GW 

including 844 GW (+ 99%) for Grid-connected PV, while off-grid system represents only 4.9 GW 

of total installed capacity (+0.57) [1].  

New PV system designs are being developed in order to increase the added benefit of the energy 

produced by either lowering the installation costs, increasing the efficiency, or adding functions to 

the system. Some of these innovations include advanced power electronics to optimize the 

performance ratio of PV systems. Some new PV systems have additional functions, such as 

coupling PV energy with storage and power grid, including storage for electromobility, agricultural 

PV and floating PV systems [5]. 

As the share of solar PV in terms of its contribution to overall electricity generation is strongly 

increasing, the reliability of PV electricity generation is becoming more important. National grid 

managers require high availability and a high level of predictability from PV energy suppliers [6]. 

However, Solar PV systems like all power generation systems can be prone to various failures 

during operation affecting PV system components (i.e., modules, inverters, batteries, cables or 

protections) [7]. The most general effect of faults is the loss of produced energy, caused by one or 

more independent faults. Knowing that the performance of PV installations depends on many 

parameters, including environmental conditions, and the efficiency of each component of the PV 

system. In the absence of a reliable monitoring system, the PV system can operate with poor 

performance for several months before the detection and identification of anomalies. This can lead 

to a significant loss of income [8]. Therefore, reliable and accurate monitoring of the PV system 

is highly recommended.  

According to IEC 61724  standard [9], a reliable monitoring system allows for measuring all 

environmental and electrical parameters that influence system performance. The sensors and data 

acquisition (DAQ) instruments must be selected according to the standard recommendations. IEC 

61724 Standard gives a description of terminology, equipments and methods for performance 

monitoring and analysis of PV systems. In the IEC 61724 standard, version 2017 there are three 

classes (A, B and C) regarding the precision. In the 2021version, there are only two classes, class 

A (high accuracy) and class B (Medium accuracy), knowing that calibration of the measures is 

crucial for accurate monitoring.  

Great recommendations and guidelines about procedures measurement and monitoring in PV 

systems are well reported by reputable institutions [8], [10]–[13]. Furthermore, the integration of 

the PV system behavior models allows creating reference thresholds for the monitoring system, 

which makes it possible to quantify power losses and analyze performance in order to ensure a 

reliable operation of any PV system and to send alerts in the event of a drop in performance.  
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Power losses can be minimized by sending real-time alarms to the operator at the location of the 

fault in order to take maintenance action.  

Many important reports were published by IEA-PVPS Task 13 [14], which gives constructive 

guidelines, methods and models designed for analytical monitoring and performance of PV 

systems.  

Numerous fault detection techniques have been proposed in recent years, making it possible to 

monitor performance, detect malfunctions and identify the type of fault present on the DC or AC 

side of the PV system [15]–[18]. 

The integration of intelligent fault diagnosis techniques in monitoring software allows the 

detection and identification of the various faults affecting the PV system in order to improve the 

reliability and safety of PV systems.  

 

The main aim of this thesis is to present a research work on the design and development of a PV 

monitoring interface under LabVIEW enhanced by adding accurate empirical models, advanced 

performance analysis and integration of an intelligent fault diagnostic algorithm in order to detect 

multiple faults occurring in grid-connected PV systems (GCPVS). 

There are three principal objectives of this research which are: 

1) Design of an accurate and robust monitoring system based on data logger and LabVIEW 

software in order to monitor and to analyze the measured parameters of the PV system 

installed at the CDER.  

2) Modeling the energy output of the grid-connected PV system (GCPVS) with performance 

analysis. 

3) Developing PV fault detection and identification techniques based on empirical models and 

statistical analysis techniques. 

 

In this thesis, we have proposed a complete supervision solution of a 9.54 kWp GCPVS using a 

user-friendly monitoring interface under LabVIEW. The monitoring interface includes: 

1) Measurements and calibration of all necessary parameters according to IEC 61724. 

2) Development of the real-time monitoring interface which allows the recovery, visualization, 

and recording of measurements. 

3) Simulation of the electrical behavior of the GCPVS with validation of PV array and inverter 

models, as well as performance analysis. 

4) Diagnosis of some real faults and anomalies using two fault detection techniques. 

The thesis is organized into four chapters and a conclusion: 

Chapter 1 presents a literature review of PV systems. This chapter contains four sections: 1) Trend 

and generalities of PV systems, 2) measurement and data monitoring techniques in PV systems, 3) 

overview of the existing model for a PV system from irradiance to AC power, and 4) the possible 

faults occurring PV system with detection and diagnosis techniques. 

Chapter 2 describes the design and the development of the monitoring system installed in the 

GCPVS. The proposed monitoring interface is based on the Virtual Instrumentation (VI) under 

LabVIEW software in order to monitor and analyze the measured parameters of the PV system by 

the DAQ device. It is worth noting that all installed sensors are well calibrated with reference 

sensors and instruments. 

In addition, some case studies carried out at the CDER concerning measurement and monitoring 

were presented as follows:  

✓ Case 1: LabVIEW-based monitoring for an off-grid PV system. 

✓ Case 2: Monitoring & control of a PV water pumping test bench using LabVIEW. 

✓ Case 3: I-V characterization and test of PV modules using PVPM 2540C device. 

✓ Case 4: Advanced electrical measurement of the grid-connected PV system using a three-

phase network analyzer. 
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The principal goal of Chapter 3 is to model and analyze the performance of the 9.54 kWp Grid 

Connected PV System. Accurate parametric performance models were proposed in order to 

simulate the electrical behavior of GCPVS. The parameters of behavioral models were identified 

using MATLAB curve fitting toolbox. Additionally, a non-parametric model based on Principal 

Component Analysis was proposed. Furthermore, several models were selected and compared to 

choose the best models. These models were well calibrated with experimental data in order to 

minimize errors as much as possible. Finally, a user interface for modeling and performance 

analysis of the PV system under LabVIEW was designed.  

Finally, in Chapter 4, we present two fault diagnostic techniques. The first technique is based on 

an accurate parametric behavioral model to calculate the residuals. The residual analysis of four 

electrical indicators (i.e., DC current, DC voltage, DC Power and AC power) is carried out by the 

assessment of performance loss rates (PLR), allowing the detection and the identification of the 

fault type occurring in the PV system. Six types of faults and nine cases were considered in this 

section: 1) Open circuit Fault 2) PV string Fault, 3) partial shading of pylons, 4) soiling on the PV 

array, 5) short circuit fault with four cases (i.e., 2, 3, 4 and 6 PV Modules short-circuited) and 6) 

DC -AC efficiency faults. Finally, these faults were detected and identified under a friendly user 

interface with other additional features. The second technique consists of developing a simple and 

efficient diagnostic method based on parametric models and the double exponentially weighted 

moving average (DEWMA) scheme. The residuals were calculated with parametric and 

nonparametric models. Whereas the residuals quantification is performed using the DEWMA 

technique in order to detect and identify faults occurring in the PV system. Six environmental and 

electrical faults in the 9.54 kWp grid-connected PV system were considered to evaluate the 

feasibility of the designed detection methods. These faults were successfully identified. 

A conclusion completes this research with a summary of the achievements of this thesis and the 

recommendations for further work. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 

Review on PV Systems: 

Monitoring, Modeling  

and Fault Diagnosis   
 

 

 

 

 

 

 

 

 

 



21 

 

Chapter 1 :  Review on PV Systems: Monitoring, Modeling and Fault Diagnosis   

This chapter contains 1) a literature review on PV systems, 2) measurement and data monitoring 

techniques in PV systems, 3) an overview of the existing model for a PV system from irradiance 

to AC power and 4) a review of possible faults occurring in a PV system with detection and 

diagnosis techniques. 

1.1 PV Systems; trend and generalities.  

1.1.1 Solar PV trend 

Before we turn to Solar Photovoltaics (PV), we would allocate it into the family of renewable 

energies. The term renewable (or regenerative) means that the supply of energy is not used up. The 

Sun rises every day, the wind blows every year, and plants grow again after the harvest. 

As Figure 1.1 shows, the actual primary energies of renewable energies are the movements of the 

planets, the heat of the Earth, and solar radiation.  

Solar radiation is the basis for a surprising range of energies. Thus, the use of hydropower is only 

possible by the condensation of water and subsequent precipitation onto land.  

The atmospheric movement originates mostly due to solar radiation, which is also the basis for the 

use of wind power. In the case of biomass products, it is again sunlight that causes photosynthesis, 

and thus the growth of biomass is conditioned by it. Solar radiation can also be used directly for 

the generation of heat, for instance in a thermal collector for domestic water. Thermal solar power 

stations generate and process heat from concentrated sunlight in order to drive generators for the 

production of electricity. 

Thanks to the photovoltaic effect, irradiance is directly converted into electrical energy without 

complicated intermediate processes and the use of mechanical converters [19]. 

 

Figure 1.1 Various possibilities for the use of renewable energies [19] 

Despite the economic downturn caused by COVID-19 in 2020 and 2021, the capacity of renewable 

energies has increased much more than in recent years. Most of the expansion has taken place in 

China. Most other countries continued to increase their renewable energy capacity at a rate similar 

to the preceding years. At the end of 2021, the global renewable energy production capacity stood 

at 3064 GW. Renewable generation capacity increased by 257 GW (+9.1%) in 2021, China was 

the biggest contributor, adding 121 GW to the continent’s new capacity.  
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Solar power continued to dominate capacity expansion, with an increase of 133 GW (+15.6%), 

followed closely by wind power with 93 GW (+11.3%). Renewable Hydropower capacities 

increased by 19 GW (+1.54%) and bioenergy by 10 GW (+7.2%). Geothermal energy increased 

by 1.6 GW (+10%). Solar and wind power continued to dominate the expansion of renewable 

energy capacity, together accounting for 88% of all net renewable energy additions in 2021 [1]. In 

most countries, producing electricity from solar PV and wind is now more cost-effective than 

generating, it from coal and gas power plants. These cost declines have led to record-low bids in 

tendering processes [2]. Figure 1.2 illustrates trends in installed renewable energy capacity around 

the world through the end of 2021. 

According to Lazard’s latest LCOE report- version 15, the cost of onshore wind and utility-scale 

solar continues to be competitive with the marginal cost of coal, nuclear and combined cycle gas 

generation. The former values average $27/MWh for utility-scale solar and $25/MWh for utility-

scale wind, while the latter values average $42/MWh for coal, $29/MWh for nuclear and $24/MWh 

for combined cycle gas generation [20].  

In [21], National Renewable Energy Laboratory (NREL) Annual Technology Baseline (ATB) 

provides a consistent set of technology cost and performance data for energy analysis. ATB metrics 

include capital expenditure (CAPEX), operation and maintenance (O&M) expenditure, capacity 

factors, and levelized cost of energy (LCOE) [22]. The ATB includes current and projected 

estimates based on technology innovation for land-based wind, offshore wind, utility-scale PV, 

commercial PV, residential PV, concentrating solar power, geothermal, hydropower, utility-scale 

PV-plus-battery, fossil energy technologies and other technologies. 
 

 
Figure 1.2 Installed renewable energy capacity trends in the world (2012-2021) 

Faced with this major energy transition in the world, Algeria has revised its ambitious program 

which was launched in 2011, with the aim of installing a power of renewable origin with a capacity 

of 22 GW over the period 2015-2030. Solar PV took a part with a power integration of 13.5 GW 

[23]. According to the International Renewable Energy Agency (IRENA), the total capacity of 

solar PV installed in Algeria until the end of 2021 remains fixed at 423MWp, and the wind capacity 

is only 10MWp [24]. 

Solar PV technology has shown an ever-increasing market growth thanks to technology and price 

development. Solar PV will play a key role in the energy transition. This trend is already visible 

when looking at the evolution of renewable energy technologies as shown in Figure 1.3.  
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Figure 1.3 Evolution of Renewable Energy Annual Installations (2010-2021). 

Despite the second year of the COVID-19 pandemic, preliminary reported market data shows that 

the global solar PV market again grew significantly in 2021. At least 175 GW of PV systems have 

been installed and commissioned in the world, reaching a total electricity capacity of 942 GWdc 

at the end of 2021. The CO2 savings resulting from existing PV installations reached 1100 million 

tons of CO2 [25]. 

According to Lazard’s LCOE report [20], version 15 noted that the LCOE of unsubsidized large-

scale PV based on crystalline silicon was estimated at a range of $30–$42 per MWh, while thin-

film solar plants were estimated at $28–$37 per kWh, in China the lastest LCOE is $22 per MWh. 

The report included statistics for the LCOE for residential PV as well, which were $147–$221 per 

MWh. Commercial and industrial rooftop solar was a bit better, $67–$180 per MWh, and 

community solar was even better, $59–$91 per MWh [26], [27].  

Solar PV manufacturing capacity will continue to grow, with new technologies joining the mix, 

significant factories for new cell technologies such as tunnel oxide passivated contact (TOPCon) 

and heterojunction will be built in 2022 [28]. Photovoltaic cells represent the smallest unit in a PV 

power producing device. Wafer sizes, and thus cell sizes have progressively increased, Nowadays, 

cell sizes range from 156,75 x 156,75 mm2 (named M2) up to 210 x 210 mm2 (named M12). In 

general, cells can be classified as either wafer-based crystalline silicon c-Si (Monocrystalline and 

Multicrystalline), compound semiconductor (thin-film), or organic.  

PV modules are typically rated from 290 W to 800 W, depending on the technology and the size. 

Specialized products for building integrated PV (BIPV) systems exist, sometimes with higher 

nominal power due to their larger sizes. Crystalline silicon modules consist of individual PV cells 

connected and encapsulated between a transparent front, usually glass, and backing material, 

usually plastic or glass. Thin-film modules encapsulate PV cells formed into a single substrate, in 

a flexible or fixed module, with transparent plastic or glass as the front material. Their efficiency 

ranges between 9% (OPV), 10% (a-Si), 17% (CIGS and CIS), 19% (CdTe), 25% GaAs (non-

concentrated) and above 40% for some CPV modules [3]. The price of the PV module depends on 

the efficiency, reliability and technology chosen, according to the Energy Trend website the low 

price is $0.23/Wp for 280/335W Multi-Module and $0.26/Wp for  365/440W Mono PERC Module 

and $0.29/Wp for M12 Mono PERC Module [29]. 

In Figure 1.4 NREL presents a chart of the highest confirmed conversion efficiencies for champion 

modules for a range of PV technologies, plotted from 1988 to 2020. 
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Figure 1.4 chart of the highest confirmed conversion efficiencies for champion modules for a range of PV 

technologies, plotted from 1988 to 2020. 

The last year has seen a surge in manufacturers releasing more efficient solar PV modules based 

on high-performance N-type heterojunction or HJT cells. For the first time, the efficiency of the 

recent modules is now above 21%. SunPower and LG modules using IBC cells still lead the pack, 

but only just, as the new Panasonic EverVolt H and REC Alpha Pure modules featuring N-type 

HJT cells are very close to the level of the leading IBC cells. Next-generation modules featuring 

multi-busbar (MBB) half-cut P-type cells from Trina Solar, JinkoSolar, and the new shingled cells 

from Hyundai have helped increase modules efficiency above 21% [30]. Figure 1.5 shows the 

Solar cell type and most efficient solar PV modules in 2020. 

 

Figure 1.5 Solar cell type and most efficient solar PV modules in 2020. 

 

https://www.cleanenergyreviews.info/blog/hyundai-solar-panels-review
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More efficient modules using N-type cells also benefit from a lower rate of light-induced 

degradation or LID, which is as low as 0.25% of power loss per year. The industry standard is 80-

84% retained power output after 25 years. However, some high-end manufacturers, such as 

Sunpower, LG, Panasonic and REC guarantee as much as 88% to 92% remaining power output 

on most modules after 25 years of use [31].  

A PV system consists of one or several PV modules connected to either an electricity network 

(Grid-connected PV) or to a series of loads (Off-Grid). It comprises various electric devices aiming 

at adapting the electricity output of the modules to the standards of the grid or the load: inverters, 

charge controllers or batteries. A wide range of mounting structures has been developed especially 

for BIPV; including PV facades, sloped and flat roof mountings, integrated (opaque or semi-

transparent) glass-glass modules and PV tiles. Single or two-axis tracking systems have recently 

become more and more attractive for ground-mounted systems, particularly for PV utilization in 

countries with a high share of direct irradiation. By using such systems, the energy yield can 

typically be increased by 10-20% for single-axis trackers and 20-30% for double-axis trackers 

compared with fixed systems [3].  

Bifacial modules have a growing competitive advantage despite higher overall installation costs. 

Indeed, recent competitive projects in desert areas boosted the market confidence in bifacial PV 

performance and production lines are increasingly moving towards bifacial modules.  

Balance of system (BOS) component manufacturers and suppliers represent an important part of 

the PV value chain and BOS components are accounting for an increasing portion of the system 

cost as the PV module price is falling. Accordingly, the production of BOS products has become 

an important sector of the overall PV industry. The inverter technology has become the focus 

since it is increasingly considered as the core of the PV system, supporting grid stability with new 

grid codes. Since these new grid codes require the active contribution of PV inverters to ensure 

grid management and grid protection. Furthermore, new inverters are now being developed with 

sophisticated control and interactive communications features [32]. With these functions, the PV 

power plants can actively support the grid management, for instance, by providing reactive power 

and other ancillary services [33]. In the case of distributed PV systems, advanced inverters play a 

key role in storage battery management, communication, monitoring, controlling home appliances, 

as well as charging EVs [3]. 

Solar PV inverter manufacturers strive for continuous technological developments, including 

optimized product operations, flexibility, and efficiency. This factor is expected to create immense 

opportunities for the solar PV inverter market in the near future. According to the latest reports, 

the companies Huawei, Sungrow, SMA, Power Electronics, and ABB hold more than 50% of the 

market [34]. Today grid-connected inverters have achieved excellent efficiencies (e.g., SolarEdge 

HD Wave "99.2%", Huawei Smart String Inverter "99.0%", SMA Sunny Tripower CORE2 

"98.6%"… etc.)    

Some inverter manufacturers started using digital technology such as the Internet of Things (IoT) 

and Artificial intelligence (AI) techniques. Most recent grid-connected inverters are equipped with 

sophisticated and smart monitoring, this monitoring generally includes 1) accurate measurement 

of electrical quantities, 2) performance analysis, 3) fault detection and diagnosis (i.e., string fault, 

arc fault, ground fault, partial shading, dust accumulation, potential induced degradation (PID) and 

other faults) and 4) sending alarms and reports. The application of machine learning for failure 

detection or optimization of electricity generation contributed to the lowering the cost of O&M. 

String inverters with multiple MPPT inputs allow 1) combining multiple configurations of installed 

modules/strings, 2) managing different module technologies, tilt, orientation, mismatch and 

shading and 3) detecting faults in an inverter for performance efficiency and optimal. Moreover, 

other inverters even incorporate an I-V curve measurement with an online diagnostic [35] [36]. 

Despite this progress, many challenges remain to be solved before solar PV can become a major 

source of power generation worldwide, this leads to a sustainable energy future [37]. 
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1.1.2 PV System Types 

In this section, we have briefly presented the general information on PV systems. PVEducation 

Website [38] gives general notions on solar photovoltaics with brief explanations, equations, and 

even interactive graphs. A Photovoltaic reference book on system design and practice that contains 

a detailed description of PV plants system technology  was published in [39]. In [19] the author 

has written a book on the photovoltaics fundamentals, technology and practice, this book contains 

well-organized technical information and concepts, as well as very user-friendly diagrams about 

design, on-site measurement and performance in PV systems. Recently Yaman and Eklas have 

published in [40] a guide to provide a hands-on approach to learning about solar PV systems 

fundamental for students and professionals. A project developer's guide of utility-scale solar PV 

power plants was reported in [8], this guidebook focuses on aspects of project development that 

are specific to solar. From this perspective it covers all aspects of the overall project development 

process including site identification, plant design, energy yield, permits/licenses, contractual 

arrangements, and financing. In [41] authors have explained  step-by-step the design of large-scale 

PV power plants with a brief definition and simple schematic.  

PV modules are the key components for every PV power plant from tiny roof-top systems of a few 

kilowatts to plants in the gigawatt range which may demand millions of modules. [42] describes 

the entire solar PV supply chain, starting in the early chapters with detailed discussions of the basic 

ingredients and the manufacturing processes of silicon-based PV systems, and concluding with 

chapters that discuss the multitude of applications of PV systems being used today. PV Modules 

are required to efficiently, safely, and sustainably convert solar irradiance into electric power over 

a service life of decades. For such long operational times, reliability is the dominating property of 

a product [43]. An overview of the  technological development of PV Module in the last year was 

reported in  [44]. 

Most solar modules are made up of many silicon-based PV cells which generate direct current 

(DC) electricity from sun irradiance using what is known as the photovoltaic effect. It is sunlight 

or irradiance, not heat, which produces electricity in PV cells. The PV cells are linked together 

within the solar module. PV modules are generally connected together in ‘strings or panels’ to 

create a PV array.  

Plane of array (POA) irradiance is a well-known term used to quantify the incident irradiance on 

a PV module. It is the parameter most directly related to the power output and is used extensively 

in PV performance analysis and modeling of PV arrays [45]. POA irradiance is defined as the sum 

of the direct normal (DNI) and diffuse (DHI) irradiance components incident on a surface with a 

given tilt and angle of incidence (AOI) [46]. Note that GReflected  is often called reflected 

horizontal radiation (RHI) [47] (see Figure 1.6). PV module can generate energy during cloudy 

and overcast weather, but the amount of energy depends on the 'thickness' and height of the clouds, 

which determines how much irradiance can pass through.   

 

Figure 1.6 Irradiance component, Including Albedo, on a Bifacial PV Module [47]. 

Bifacial PV modules collect irradiance on both sides of the modules with monofacial PV, 

calculating and measuring RHI component is important when using bifacial PV modules. When 

mounted on a surface which albedo reflects enough light, the energy production increase is 

estimated to a maximum of 15% with structure, and possibly up to 30% with a single-axis system.  

Among the advantages of bifacial PV modules are: 1) high efficiency 2) less space & modules 
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required, 3) high durability, 4) energy production during bad weather, and 5) angle of installation. 

While the disadvantages are: 1) the high cost associated and 2) heavyweight. Figure 1.7 (a-d) 

illustrates the installations possibilities of bifacial modules and (e) a comparison of power 

generation curves for monofacial and bifacial modules for four configurations; Slanted 

South/North (S/N), Horizontal Bottom/Top (B/T), Vertical East/West (E/W) and tracked E/W [48]. 

 
Figure 1.7 (a–d) possibilities for installations of bifacial modules and (e) a comparison of power generation curves 

for monofacial and bifacial modules [49]. 

The energy generation from the PV module depends on the environmental conditions to which it 

is exposed during its lifetime. Usually, PV modules are tested at Standard Test Conditions (STC) 

where the electrical efficiency is often perceived as a conclusive indicator of their quality. STC 

rating is useful to compare the performance of different technologies in conditions that can be 

easily recreated in a laboratory environment, however it fails in giving accurate information on 

how much energy it can generate for long-term operations. The energy rating allows the customer 

to compare not only similar products from different manufacturers but also completely different 

technologies. It should also provide a realistic estimated energy value for the region of installation 

and should be simple, accurate, repeatable, and agreed in terms of methodology for its calculation.  

The solar modules operating efficiency is dependent on many external factors. Depending on the 

local environmental conditions these various factors can reduce module efficiency and overall 

system performance. The main factors which affect solar modules efficiency are 1) in-plane 

irradiance, 2) operating cell temperature, 2) shading, 3) soiling, 4) tilt & orientation, 5) location 

and 6) time of year and another factor. To include all the parameters affecting the performance of 

a PV module in terms of energy generation, the International Electrotechnical Commission (IEC) 

has designed a standard IEC 61853 divided into four different parts. [50]. 

Figure 1.8 illustrates the I-V curve of 670W Trina-solar bifacial module (a) at various irradiances 

with fixed module temperature of 25°C and (b) at various module temperatures with constant 

irradiance of 1000 W/m2. we can see clearly the impact of the irradiance and cell temperature on 

the PV modules power rating.  
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Figure 1.8 I-V curve of 670W Trinasolar bifacial module (a) at various irradiances with fixed module temperature of 

25 ∘C and (b) at various module temperatures with constant irradiance of 1000 W/m2. 

PV systems are mainly classified according to their application. The main classifications are stand-

alone systems and grid connected PV systems. PV systems can be designed to supply DC and AC 

loads. These systems can also be connected with energy storage systems and other energy sources. 

Figure 1.9 gives a brief classification of PV system configuration. Depending on the configuration, 

PV systems are divided into three categories as briefly explained below. 

Solar PV system types

Grid connected
On Grid 

Stand alone
 Off Grid 

Hybrid sources 

PV-Wind

PV -Grid

With Battery 
(e.g. house, industries, 

sophisticated equipment) 

Without Battery 
PV water pump

(Hydraulic storage)  

Residential 

Commercial & 
industriel

Large scale
>MWp   

Microgrid

Pico application
Gadget and Small load

PV -Diesel

PV -multiple 
sources 

Grid tied With 
batteries   

 
Figure 1.9 Classification of PV system categories. 

Grid-connected PV system 

Grid-connected PV system (GCPVS) are usually connected to the power network. The schematic 

diagram of a GCPVS is shown in Figure 1.10. The GCPVS can be installed almost anywhere. 

Based on the installation location, the GCPVS are divided into three main categories: 1) residential, 

2) commercial and industrial and 3) utility-scale. For a GCPVS, the grid acts as an energy storage 

system [41]. 

 
Figure 1.10 Schematic diagram of a grid-connected PV system. 

(a) (b) 
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Inverters are the most critical part of a solar system, in grid-connected PV systems, an inverter is 

used to convert electricity from direct current (DC) as produced by the PV array to alternating 

current (AC) that is then supplied to the electricity network. The typical weighted conversion 

efficiency is in the range of 95% to 99%. Grid connected inverters have special functions adapted 

for use with PV arrays, including  MPPT , anti-islanding protection , low voltage ride through, 

active power limiting and other features [32]. In the GCPVS, there are three main types of inverters 

; 1) central inverter, 2 ) string inverter, and 3 ) micro inverter [33] [19].   

Central inverter can be used for the whole PV array using DC combiner (500kVA-5MVA), this 

type of inverter is used only for utility-scale power plant. String inverter with rated power from 

1kVA to 250KVA can used for residential, commercial, industrial and utility PV installations. The 

new string inverters are equipped with several MPPT inputs with a voltage up to 1500 VDC; the 

MPPT number increases according to the inverter power. Residential inverters are usually 

equipped with 1 to 2 MPPT inputs (e.g., Fronius primo and SMA sunny boy...etc.). The string 

inventers intended for commercial and utility installations contains up to 12 MPPT inputs (e.g., 

SMA Sunny Tripower CORE2 and Sungrow SG250HX). Ingeteam Enterprise recommends string 

inverters for projects <10MW, and central inverters for even larger projects >10MW [51].  

PV modules with integrated inverters, usually referred to as “AC modules”, can be directly 

connected to the electricity grid with the permission of the grid operator, they offer better partial 

shading management, installation flexibility and accurate monitoring for each module. Similarly, 

micro-inverters, connected to one (1) module up to four (4) also exist, despite their higher initial 

cost, they present some advantages where array sizes are small and maximal performance is to be 

achieved. 

In the residential, commercial and industrial PV system, the generated electricity is either 

consumed immediately by local loads or is sold to electricity supply companies.  While for the 

utility-scale PV plant all produced power is injected into the electrical grid, this is called a grid-

connected centralized PV system.  

When the GCPVS produces insufficient power or it is unable to produce electricity, the solar PV 

can be compensated by another source of electricity according to the demand in the smart grid. 

The commercial, industrial, and utility-scale PV plants can be installed as: 1) ground-mounted, 2) 

floating on a water surface, building-integrated, rooftop mounted, and agrivoltaics [41].  

A ground-mounted PV plant is installed on a land, whereas a floating PV plant is installed on a 

water lake. In a building-integrated PV (BIPV) system, solar modules are placed in the facade of 

a building. BIPV products can take various shapes, colors and be manufactured using various 

materials, although a vast majority use glass on both sides. They can be assembled in way that they 

fill multiple functions usually devoted to conventional building envelope solutions. An agrivoltaics 

or agrophotovoltaics plant is installed in a greenhouse or agricultural farm and a rooftop mounted 

PV system is installed on roof of a house, building, or factory. 

New utility-scale PV plants are increasingly using trackers to maximize production and in parallel, 

the use of bifacial PV modules increases relatively fast as well. The addition of storage systems 

also becomes a trend in some countries [3]. 

The new utility-scale PV-plus-battery configuration represents a DC-coupled system in which one-

axis tracking PV and 4-hour lithium-ion battery storage shares a single bidirectional inverter 

(Figure 1.11). For example the PV-plus-battery technology is represented as having a 130-

MWDC PV array, a 50-MWAC battery, and a shared 100-MWAC inverter [52]. 

 

Figure 1.11 Schematic diagram of a grid-connected PV system plus battery. 
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Stand-alone PV systems 

The stand-alone or off-grid PV systems are used in the remote areas (households and villages) and 

other applications that have no access to the power grid. A stand-alone PV system operates 

independently of the grid, with part of the produced energy stored in energy storage systems such 

as batteries.  A schematic diagram of a stand-alone PV system is shown in Figure 1.12. A stand-

alone PV system includes PV modules, charge controller, batteries and inverter [53].  

Batteries used for solar energy storage are available in two main types, lead-acid (AGM & Gel) 

and lithium-Ion.  There are several other types available such as redox flow batteries and sodium-

ion. Battery capacity is generally measured is either Amp hours (Ah) for lead-acid, or kilowatt 

hours (kWh) for lithium-ion. The lifetime of a battery varies, depending on operating regime and 

conditions battery technology and cycle life, but is typically between 5 and 10 years Most modern 

energy storage systems use rechargeable lithium-ion batteries and are available in many shapes 

and sizes which can be configured in several ways, most lithium batteries come with a 10-year 

warranty [54]. 

A charge controller (or regulator) is used to maintain the battery at the highest possible state of 

charge (SOC) and provide the user with the required quantity of electricity while protecting the 

battery from deep discharge or overcharging. Some charge controllers also have integrated MPP 

trackers to maximize the PV electricity generated [55].  

If there is a requirement for AC electricity, a “stand-alone inverter” can supply conventional AC 

appliances. The inverter converts the DC power generated by the PV modules to the AC power for 

AC loads. In recent off-grid inverter two main functions are taken into consideration, the 

management of the battery discharge and the charging of the battery via the electrical network or 

other AC source, this product is called Inverter/chargers (e.g., Victron Energy MultiPlus and 

Quattro). Some all-in-one product combines an MPPT Solar Charge Controller and 

inverter/charger for easy installation and minimum of wiring (e.g., Victron Energy EasySolar) 

[56]. 

 

Figure 1.12 Schematic diagram of a stand-alone PV system. 

Stand-alone PV system provides electricity for lighting, refrigeration and other low-power loads 

such as smartphones and PCs to meet the energy needs of off-grid communities. 

There are several other non-domestic applications such as satellite, military equipment, 

telecommunications, vehicle integrating PV, etc. Among the most profitable and reliable 

application the water pumping, where the PV array is directly connected to the pump controller 

(e.g., GRUNDFOS [57], Lorentz [58]) .The pump can only operate in the presence of irradiation, 

the water flow is proportionally related to the amount of sunshine received by the PV array, and 

instead of storing energy electric, the water is usually stored in a tank. 

 

Hybrid PV systems 

In the hybrid PV system, more than one type of generator is exploited. In this type of system, solar 

PV array is the main generator. The other generators can be wind turbine, diesel engine generator, 

or the utility grid. The schematic diagram of a hybrid-connected PV plant is shown in Figure 1.13. 

The system can provide electricity for both DC and AC loads [41].  

PV-diesel hybrid systems combine the advantages of PV and diesel generator in micro grids. They 

allow mitigating fuel price increases, deliver operating cost reductions, and offer higher service 

quality than traditional single-source generation systems.  
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The combining of technologies provides new possibilities to provide a reliable and cost-effective 

power source in remote places such as for telecom base stations for instance.  

In PV-grid hybrid system, the DC power can be stored in a battery or converted by a solar inverter 

into AC power which can be used to run home appliances. Depending on the type of system, excess 

solar energy can either be fed into the electricity grid for credits, or stored in a variety of different 

battery storage systems. The hybrid inverters operate in bidirectional mode DC to AC and AC to 

DC [59]. Recently, various hybrid inverter topologies have been developed, manufacturers offer 

several features and configurations depending on the type of hybrid system (e.g., SMA Sunny 

Tripower Smart Energy, Fronius Primo GEN24 Plus…etc.). Large-scale hybrids system can be 

used for decentralized microgrids in villages powered today by diesel generators, for example in 

Central Africa. The large-scale hybrid system can combine several renewable sources with lithium-

ion battery storage. 

 
Figure 1.13 Schematic diagram of a hybrid  PV system. 

1.2 Data acquisition and monitoring in PV system  

1.2.1 Introduction  

Data acquisition (DAQ) is the measurement, recording, analyzing, and presentation of real-world 

phenomena. It includes electrical measurements such as voltage, current, power as well as 

measurements through sensors and transducers including irradiance, temperature, humidity, wind 

speed, precipitation, pressure, flow, level, strain, acceleration, and more parameters [60]. DAQ 

systems are used to collect and store data for performance evaluation. Data acquisition systems 

differ according to following parameters: 1) channels number, 2) measured signals from sensors, 

3) sampling rate, 4) control option, 5) data transfer protocol, and 6) program development software.  

The DAQ systems are currently used in PV systems for monitoring performances and controlling 

operations, indeed an accurate and reliable assessment of the PV systems is essential for a 

sustainable development. For manufacturers, performance evaluation is a key criterion for the 

quality of their products. On the other hand, for research surveys, it is a crucial indicator for 

identifying future challenges. For end customers, a reliable performance assessment can simplify 

the monitoring of its installation and better generate energy [61]. 

In large scale PV power plant, an effective Operation and Maintenance (O&M) service allows the 

PV system production to reach its expected level of efficiency; which therefore increases the 

confidence of end users, while the O&M costs are significant [62]. In [63] a solution to reduce 

these costs was proposed. The O&M contract generally includes the following core services; 1) 

Continuous monitoring of the plant operation and periodic reporting, 2) Preventive maintenance 

and 3) Corrective maintenance [7], [64]. Figure 1.14 present an overview of O&M aspects and 

services for PV power plants during their technical life cycle. 
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Monitoring of PV systems is mandatory to provide information that allows 1) maintaining, 

operating and controlling PV installations, 2) reducing costs 3) and avoiding undesirable power 

outages. The main characteristics of any monitoring systems are categorized into following types: 

(i) monitored parameters and sensors, (ii) data acquisition and control device, (iii) data transfer 

mechanism, (iv) program development software, (v) and monitoring method [65]. 

According to [66], plant size, system criticality and O&M costs determine the adequate monitoring 

system. On the other hand, plant size is important for monitoring system design. Adopting wired 

sensors in small plants is economic and less complex. While, wireless networks are more 

convenient for medium and big sized plants.  

Basic monitoring PV system consists in measuring of essential quantities of the PV installation 

and providing reports to end users. For advanced monitoring system it mainly composed by 1) 

sensors (environmental and electrical), 2) accurate data acquisition system with reliable 

communication protocols, 3) metrics for data analysis 4) algorithms for fault diagnosis and 5) 

forecasting models for prevision of future energy. 

The three main areas of best practices for system monitoring are the following: 1) data presentation, 

2) quality of monitoring equipment, and 3) transparency of measurement protocols and procedures. 

The monitoring approach and associated cost depends on the revenue linked with the 

performance of the asset. IEC 61724 classifies monitoring systems (A, B, C); the O&M service 

related to monitoring depends on the system class (Table 1.1). 

The objective of monitoring is to provide enough information in order to accomplish an “energy 

balance” accounting for the amount of solar resource available, and the losses in each energy 

conversion process up to delivery at the point of interconnection. A monitoring system should 

account for clipping of output due to high DC-to-AC ratio, interconnect limits, and called-for 

curtailment or any other reason. 

With the increased interest in monitoring PV system, more and more papers related to these 

systems are emerging. Most of them deal with one part of the monitoring system such as: sensors, 

data acquisition, performance analysis, fault detection…etc.  

Several important reports were published by IEA- Photovoltaic Power Systems (PVPS) in Task 

13 (i.e., Performance, Operation and Reliability of Photovoltaic Systems) [14], this report give a 

constructive guidelines, methods and models that may be designed for analytical monitoring of PV 

systems. Numerous recommendations and standards for measurement and monitoring in PV 

system are reported by renowned institutions [8], [10]–[13]. 

A good review on the state of the art of data acquisition and monitoring of PV systems have been  

reported in the literature [61], [65], [67], [68]. In [67], [69] authors presented an overview of 

remote monitoring solutions for PV system along with the main proposals, commercial products 

and international experiences. Data acquisition system, and data storage are overviewed in [65], 

[67] as well as monitored parameters with sensors used and data transmission methods in [65]. 

Data transfer mechanisms, wired, wireless, and power line communication systems are introduced 

in  [70]. Moreover, data analysis methods for PV systems are presented in [65], and dedicated 

software for monitoring systems in [67].  

Over the past decade, various aspects of PV monitoring systems have been reported in a wide range 

of publications. The modern architecture of remote monitoring system consists of three levels: 1) 

measurement and acquisition, 2) pretreatment and recording and 3) Storage and Web services. In 

the literature several authors have conducted studies on the design and development of data 

acquisition (DAQ) and monitoring systems for PV installations [71]–[74]. Recently , In [75] a wide 

comparison of commercial PV monitoring software around the world presented in a compact 

overview containing all the features with a cost analysis. 
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Figure 1.14 Overview of operations and maintenance (O&M) aspects and services for PV power plants during their 

technical life cycle (source: CEA-INES). 

Table 1.1 Monitoring System Classifications. 

Features  Class A Class B Class C 

Precision  Greatest Medium-level Basic 

Typically, targeted PV system size  Utility-scale Commercial& 

Industrial 

Residential and small 

commercial 

Suitable applications 
 

System performance assessment  ● ● ● 

Documentation of a performance guarantee  ● ● 
 

Forecasting performance  ● ● 
 

Electricity network interaction assessment  ● ● 
 

Monitoring integration of distributed 

generation, storage, & loads  

● ● 
 

System losses analysis  ● 
  

PV technology assessment  ● 
  

PV system degradation measurement  ● 
  

1.2.2 Analytical monitoring solution for PV systems 

The monitoring of a PV installation makes it possible to evaluate the performance of PV 

systems. A monitoring system is usually composed of sensors, data acquisition and software. There 

are various solutions to monitor the electrical production and performance of PV systems, [76]. 

The main criteria for classification and selection of the monitoring system according to the 

standard IEC 61724-1 [77] : 

• The parameters to be measured according to the size and application of the PV system. 

• Sample measurement, accuracy of measure, presentation and analysis of data. 

• The quality and cost of the DAQ system. 

• The transparency of protocols and measurement procedures. 

It is possible also to classify the different monitoring systems according to the information 

dependence that comes from the components constituting the PV system. 

1.2.2.1 Full Turnkey PV monitoring systems. 

This monitoring technique is used to monitor and collect data from solar PV system. the PV 

monitoring manufacturers offer a full turnkey system, equipped with (DAQ hardware, software, 

web interface and optional meteorological sensors), the electrical sensors are integrated in the 

power converter or measured by power meter.  
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This kind of monitoring system gives reliable and continuous data with low maintenance, but is 

limited in terms of configuration, calibration, and personalization of the DAQ system. There are 

two types of turnkey PV monitoring system; monitoring designed by inverter manufacturers and 

Multi brand monitoring. 

1) Monitoring PV designed by inverter manufacturers.  

Monitoring and control systems from inverter manufacturers are usually the cheapest solution to 

evaluate performances of solar systems. Most of inverter's manufacturers provide free portals and 

softwares that allow to monitor PV system (e.g., SMA Sunny Portal, Fronius Solar Web, Huawei 

Fusion Smart PV…etc.) [78], [79]. PV inverter manufacturers also provides sophisticated 

monitoring products, which makes it possible to measure meteorological quantities with the 

connection of several inverters and other products of inverter manufacturers using RS 485 or 

Ethernet protocol as shown in Figure 1.15 [80].  

 
Figure 1.15 Monitoring & control from SMA inverter manufacturer. 

2) Multi brand solar monitoring (non-inverter dependent). 

The multi-brand solar datalogger gathers all the indicators of the inverters, the electricity meters, 

the environmental sensors (i.e., irradiance, temperature, wind speed, etc.) and other devices using 

RS485 protocol. This solution is an inverter-independent energy management system where 

datalogger can monitor solar power plants with up to 100 inverters and also offers many other 

useful functions (e.g., Solar-Log dataloggers are compatible with over 2,300 inverter models and 

with over 130 different component manufacturers [81]). Figure 1.16 illustrate the multi brand 

monitoring & control system proposed by Solar-Log company. 

 

Figure 1.16 Multi brand monitoring & control system (Solar-log). 

1.2.2.2 Custom monitoring system  

However, for more accuracy, flexibility and, customization, it is recommended for Education, 

Research and metrology to use a custom monitoring system, where the user can select sensors, 

data acquisition hardware and application software. Indeed, this PV monitoring system is based on 

the parameters measurement influencing on the performance of the PV system, mainly the 

meteorological and electrical parameters. In this type of monitoring, the electrical parameters are 

measured by external voltage and current sensors in DC/AC side, The hardware and software data 

acquisition and control are flexible and customizable. Using this solution, an additional sensors or 

actuators can be added, as presented by the Figure 1.17. 
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Figure 1.17 Synoptic scheme of the external PV monitoring using DAQ and software. 

Solar irradiance, temperature, voltage and current is the important parameters to monitor PV 

systems. Then, it depends on whether the PV system is grid connected or not. Selecting the ideal 

data acquisition depends on the application. Typical factors include sample rates, channel 

scalability, signal conditioning, sensor types, analysis capability, mobility, and environmental 

conditions [60]. Table 1.2 describe different types of data acquisition and control instrument. 

Figure 1.18 illustrates some type of DAQ device (a) Arduino DUE, (b) PC-based DAQ Keithley 

6510 and (c) Real-time DAQ (NI- CompactRIO). 

Table 1.2 Type of data acquisition and control instruments.  

DAQ Type Description  

Microcontroller 

kit 

Can acquire voltage signal from 0-5V, the signal from sensors, must be conditioned before 

being measured.    

PC-based 
provide electrical and physical measurement capabilities for engineers who need a 

customizable, accurate, yet cost-effective way of conducting benchtop measurements. 

Embedded 

Real-Time 

provide real-time processing capabilities and sensor-specific conditioned I/O, which is ideal 

for stand-alone data logging, industrial monitoring, and control applications. 

High Speed 
combine the advantages of an oscilloscope with a DAQ system. can measure signal from kS 

and MS with triggers, signal conditioning, and simultaneous sampling,  

Portable 
fully integrated, data acquisition and display stations with secure, built-in data storage and 

network connectivity.  

Wireless 
allows to collect data from entire site without the high cost of wiring points to remote or 

unpowered locations. 
 

 
(a) Open devlopement kit based 

Microcontroller (Arduino DUE) 

 
(b) PC-based DAQ (Keithley 6510) 

 
(c) Real-time DAQ (NI - CompactRIO) 

Figure 1.18 some type of DAQ instrument 

Various sampling intervals were proposed from seconds up to one hour. Nevertheless, basing on 

the IEC 61724 standard, this interval should be selected based on parameter types. For example, 

for parameters that depend on irradiance, sampling period should be 1 min or less, and for 

parameters with high time sample, it should be between 1 and 5 min. The DAQ instrument can 

control actuators based on decisions using 0-5V digital signals or 0-12V relay board.  

Offred Software by DAQ manufacturers allow to acquire, report, and analyze data from data 

acquisition and controller with a range of easy to use and cost-effective software tools. Turnkey 

software offered by DAQ manufacturers are limited by an executable interface with fixed and non-

modifiable functionality. For a test bench, several instruments of different brands are used.  
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So, it is highly recommended to use a single data acquisition and control environment. For 

programming microcontroller, C language is commonly used, LABVIEW software is usually used 

as data acquisition and system design and it provides comprehensive measurement and control 

tools. For calculation and analysis, generally MATLAB is the most popular choice. Data analysis 

is a powerful tool for understanding PV system performance, but it is fundamentally limited by the 

quality of sensors and models being used, in addition to the condition of the array.  

1.2.3 Parameters description for analytical monitoring. 

Usually, the performance of a PV module is measured at the factory under Standard Test 

Conditions (STC), according to IEC 60904. However, the indoor measurement of the STC PV 

performance reveals the power production of the module at only one particular measurement 

condition. The labeled STC performance values do not automatically reveal the real PV power 

production at the site-specific meteorological and environmental conditions (e.g., lower irradiance, 

high temperatures, dust and snow…etc.), in these conditions the module label values might 

overestimate the PV power production at this location. To avoid unpleasant surprises, the 

measurement of meteorological and electrical parameters makes it possible to evaluate the 

performance of the installation under outdoor conditions in a specific location.   

Furthermore, the data acquisition of essential parameters is the key for predicting the prospective 

energy yields and the operation and maintenance costs incurred by environmental conditions that 

might impair the operation of large-scale solar power plant. 

International standards set the parameters for PV systems measurements and monitoring. The IEC 

61724 presents guidelines for analysis and monitoring PV systems performances [82]. Figure 1.19 

illustrates major elements comprising different PV system types, especially for grid-connected 

systems without local loads, energy storage, or auxiliary sources, as shown by the bold lines, and 

presents an example for IEC standard application on PV system and illustrates the electrical and 

environmental data to measure [9].  

 

Figure 1.19 Possible elements of PV systems. (source: IEC 61724 standard) 
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Table 1.3 illustrates the principal parameters to measure according to IEC 61724 standard for Performance 

Monitoring of both grid-connected and stand-alone PV system.  

Table 1.3 Principal parameter according to IEC 61724 standard for PV System Performance Monitoring 

Meteorology 

– Total irradiance, in the plane of the array 

– Ambient air temperature 

– Wind speed 

 

Photovoltaic array 

– Output voltage 

– Output current 

– Output power 

– Module temperature 

– Mounting / tracker 

characteristics Load 

– Load voltage 

– Load current 

– Load power 

Energy storage 

– Operating voltage 

– Current to/from storage 

– Power to/from storage 

Utility grid 

– Utility voltage 

– Each phase - Current to/from utility grid 

– Power to/from utility grid 

Back-up sources 

– Output voltage 

– Output current 

– Output power 

As monitoring budgets increase, measurement data sources can be expanded allowing for 

additional analysis options and backups. Table 1.4 gives recommended parameters to measure in 

the PV system depending on the selected monitoring class. 

Table 1.4 Recommended Measured Parameters in PV system. 

Category  Parameter  Symbol  Units  Required parameters for  

Class A  Class B  Class C 

Irradiance  In-plane irradiance  Gi  W/m2  ● ● ● 

In-plane direct beam irradiance  Gi,b  For concentrator systems 

In-plane diffuse irradiance  Gi,d  For concentrator systems 
 

Global horizontal irradiance  GG  ● o  
 

Diffuse horizontal irradiance  Gd  ● 
  

Environmental 

Factors 

Ambient air temperature  Tamb  °C   ● ● ● 

PV module temperature  Tmod  ● ● 
 

Soiling ratio  SR   ● 
  

Wind speed  WS  m/s  ● ● 
 

Wind direction  WD  degrees  ● 
  

Tracker system Tracker tilt angle  φT  Degrees   ●  

Tracker azimuth angle  φA  ● 

PV array output  voltage (DC)  VA  V  ●   

current (DC)  IA  A  ●   

power (DC)  PA  kW  ● ●  

Inverter output  voltage (AC)  Vinv  V  ●   

current (AC)  Iinv  A  ●   

power (AC)  Pinv  kVA  ● ● ● 

power factor  λinv  
 

●   

System output  Output voltage (AC)  Vout  V  ●   

Output current (AC)  Iout  A  ●   

Output power (AC)  Pout  kVAr  ● ● ● 

System power factor 
  

●   

However, sensor manufacturers are constantly improving their products and designing innovative 

sensors to keep pace with new standards with better reliability and performance. 
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1.2.4 Environmental measurement 

1.2.4.1 Irradiance measurement  

Good quality, reliable radiation data is extremely important for all activities in the solar energy 

sector. Photovoltaic (PV) and concentrating solar power (CSP) thermal systems may have slightly 

differing requirements, but they need accurate solar radiation information for the same reasons.  

For outdoor PV performance measurements, a reference cell and pyranometer can be used to 

measure the POA irradiance [83] .   

Pyranometers 

Pyranometers are always used if as accurate as possible global radiation measurement data are 

required. For this purpose, various classes of accuracy are defined in the ISO Standard 9060 (see 

Table 1.5). A pyranometer costs between 600€ and 2000€, depending on the class. In the market 

there are two types of pyranometers: thermopile pyranometers and silicon cell pyranometers. 

thermopile pyranometers are more accurate where manufacturers offer models for all three classes, 

however for silicon cell pyranometer it is offered only for class C with a low cost [19]. 

Table 1.5 pyranometers classes according to ISO 9060 [19]. 

Property Secondary standard (A) First class (B)  Second class (C)  

Quality Excellent Good  Fair  

Cost  High  Medium  low 

Accuracy (daily sum) (%) ±2 ±5 ±10 

Resolution (W m-2) ±1 ±5 ±10  

Long-term stability (%) ±0.8 ±1.5 ±3 

Response time (s) <15 <30 <60 

Thermopile Pyranometer 

For thermopile pyranometers (Figure 1.20), a thermopile is used within the instrument as the 

sensor, and the thermal gradients are measured across hot and cold areas (black and white). The 

radiation intensity is proportional to the temperature differences between the two sensing areas. 

Accuracy depends upon the sensitivity of the material used in the sensors, the response time, and 

the distortion characteristics of the material constituting the dome covering the sensors. 

The voltage signal output by the thermopile is very small, typically around 10 mV with full Sun 

irradiance (1000 W/m2).  

In plane irradiance, recorded at the same plane as the PV array, which is measured using 

pyranometers or calibrated reference device. Horizontal irradiance data may be measured, in order 

to compare with standard meteorological information from other locations. If reference cells or 

modules are used, they should be calibrated and maintained following IEC 60904-2 or IEC 60904-

6 standard. According to IEC 61724-1:2017 standard for PV monitoring systems [82], The class 

is not only determined by the hardware that is used, but also by quality checks and measurement 

procedures. The standard contains detailed specifications at monitoring system component level.  

IEC 61724-1:2017 standard specifies for each class of monitoring system the pyranometer class 

that must be used, including required instrument heating, azimuth and tilt angle accuracy. It also 

defines cleaning and calibration intervals for pyranometers. The standard also defines requirements 

for measurement of module- and air temperature, wind speed and direction, soiling ratio, and (AC 

and DC) current and voltage. In the report IEA-PVPS T13-03:2014 "Analytical Monitoring of 

Grid-connected Photovoltaic Systems" an interval of 1 to 2 weeks is recommended for 

pyranometers cleaning. A recalibration is recommended at least every 3 years. 
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Silicon-cell Pyranometer 

Silicon-cell pyranometer (Figure 1.21) is compact and cost-effective designed for routine 

measurement of solar radiation, it is especially designed for photovoltaic system monitoring. It can 

be used under all weather conditions. For silicon photocell pyranometers, electric current is 

generated by a photo-sensitive diode in proportion to solar intensity. Ordinarily, silicon photocell 

pyranometers are not fully sensitive to the full spectrum of visible light, and they cannot “see” a 

certain portion of the electromagnetic spectrum such as under cloudy conditions or vegetative 

canopies. The class of most of Si- pyranometers is C. however, In full sunlight conditions they are 

calibrated to properly output solar radiation measurements [84]. 

 
Figure 1.20 Thermopile Pyranometer SR20 

(Class A). (Source : Hukseflux) 

 
Figure 1.21 Silicon-cell Pyranometer rt1 

(Class C). (source: kipp & zonen) 

PV Reference cells  

Measuring the radiation from PV reference cells sensors is an economical alternative. For a price 

range between 100€ and 500€, with accuracy from ±5% to ±10%. Especially designed for the 

monitoring of PV systems. To measure the irradiance, the solar cell is short-circuited with a low-

ohmed shunt resistor, and the voltage drop at the shunt is measured. As the short-circuit current of 

a solar cell is proportional to the irradiance, a simple arrangement is possible. The temperature 

dependency of ISC can be compensated for by building in a temperature sensor together with a 

downstream temperature-dependent voltage amplifier. Therefore, solar cell sensors are mainly 

used for continuous monitoring of a PV system. For this, they are mounted on the module plane 

so that they receive the exact radiation available for the PV installation. indeed, it is highly 

recommended that the reference cell be of the same technology (E.g., c-Si, a-Si, CdTe ... etc.) as 

the modules installed. In this case, the limited spectral sensitivity of the sensors is an advantage as 

they correspond exactly to that of the monitored modules [19]. Figure 1.22 illustrates some 

commercial PV reference cells for PV installation and research application.  

   
PV Reference Cell with cell temperature 

measurement from IMT solar 

Bifacial Reference Cell (rear face) 

from ReRa Systems 

Very accurate Outdoor Reference Cells for 

calibration from Fraunhofer ISE 

Figure 1.22 PV Reference cell sensors. 

Table 1.6 summarizes the advantages and disadvantages of both types of sensors. In [85], [86] a 

comparison between  Pyranometers and PV reference cells for outdoor PV system performance 

monitoring are reported. 
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Table 1.6 Comparison of pyranometers and PV reference cell sensors [19]. 

Pyranometer PV reference cell 
-  Expensive 

+ High accuracy 

+ Sensitivity independent of  𝜆 

-  Sluggish  

+ Hardly direction dependent 

 

Use: Measurement of global radiation for 

comparing various sites 

+ Economical 

-  Low accuracy 

-  Strong spectral dependency 

+ Small response time (<1 s)  

-  Strong directional dependency 

+ Behaves as a solar module 

Use: Measurement of radiation in module 

level for plant monitoring 

Measuring direct and diffuse radiation: For an accurate yield estimate, the separation of the 

global radiation into direct and diffuse radiation is necessary. The direct radiation, is measured 

using a pyrheliometer, it must continuously track the Sun (Figure 1.23). 
In the case of diffuse radiation, one uses a normal pyranometer in which the direct radiation is 

carried out by a tracker shade ball (Figure 1.24).  

A solar monitoring station includes a set of instruments to measure the different components of 

solar radiation that are of importance to solar energy production; global horizontal irradiance 

(GHI), direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI) (Figure 1.25). 

Albedo measurement: Bifacial PV modules generate power using both the global solar radiation 

and the reflected solar radiation. The measurement of albedo, or ground surface reflectance, is 

performed using an albedometer kit that measures both global and reflected solar radiation.  As 

illustrated in Figure 1.26 the Albedometer is composed of two pyranometers, both installed 

horizontally, the downfacing one measuring reflected solar radiation. 

 
Figure 1.23 Pyrheliometer measurement comparison 2018.  

(Source: NREL) 

Figure 1.24 Sensor for 

measuring diffuse radiation. 

 

 
Figure 1.25 Solar monitoring station (a) Kipp & Zonen SOLYS2 

Sun Tracker and (b) EKO STR-21G-S2. 

 

Figure 1.26 Albedometer  

Kipp & Zonen CMP11. 

Satellite-based irradiance measurement 

Services are available that take data from satellites and process them with models to 

create an estimate of ground-level irradiance at a site. Although less accurate than a well 

maintained and calibrated on-site pyranometer, satellite measurements can be more accurate than 

an on-site pyranometer that is dirty, out of calibration, or installed incorrectly. 

(a) (b) 
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1.2.4.2 Temperature measurement 

Electrical temperature measurement is used in a wide variety of industries. From melting steel to 

baking cookies, the environment, required measurement resolution and accuracy, and temperature 

ranges can vary greatly and the type of sensor used to measure these temperatures must be chosen 

accordingly. This application note discusses the fundamentals of selecting and interfacing to 

temperature sensors [87]. 

In a PV system the ambient air temperature and back-of-module temperature measurements are 

taken outdoors. For this, different types of temperature sensors are used, the most used sensors are 

1) Thermistors 2) Resistance Temperature Detectors (RTD) and 3) Thermocouples. Note that the 

semiconductor-based temperature sensor is usually incorporated into integrated circuits (ICs). 

Thermistors are the best option for measurements below 150°C and for more information you can 

see [88].  

Ambient air temperature 

The ambient temperature sensor should be mounted in a location representing the conditions of the 

PV array. Ambient temperature sensors are mounted in the solar radiation protection shield, the 

uncertainty, including instrumentation, should be less than 1°C. Figure 1.27 shows the ambient 

temperature Pt 1000 probe and the radiation shield. Generally, in the weather station the radiation 

shield is offered with air temperature and relative humidity sensors inside. 

 
 

(a) Ambient Temperature Sensor with 

Analog Output (10 V / 20 mA / Pt1000) 

(b) Weather and Radiation Protection Shield for 

Ambient Temperature Sensors 

Figure 1.27 Ambient temperature probe with radiation shield. 

Module Temperature measurement   

In general, the module temperature does not exceed 70°C, so a 100°C sensor does the trick. The 

most used sensors for measuring the temperature of PV modules are RTD and thermistors, thanks 

to their higher accuracy. it is strongly recommended to use Class A sensors (±0.2°C) especially in 

large-scale installations and research applications, in order to have an uncertainty including 

instrumentation less than 1°C [82]. 

The surface shape of the sensors used must be flat so that it is well attached to the back sheet of 

the module. The location of sensor on module are given in IEC 61829 method A (center of back 

surface of module in center of PV array). the difference of temperature between operating modules 

is between 2°C to 5°C, so it is better to measure the temperature of several modules in PV array. 

To determine the temperature of the PV cell/module without temperature sensor, the equivalent 

cell/module temperature can be obtained by measuring of VOC using potential divider sensor at a 

level of accuracy below than 0.5% according to IEC60904-5. 

Figure 1.28 shows a Pt 100 surface temperature sensor with analog output, specially proposed to 

measure the temperature of PV modules. Figure 1.29 illustrates the mounting of Pt 1000 surface 

temperature sensor (Apogee CS240) in the back sheet of PV module using Kapton tape. 
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Figure 1.28 Surface PV Module Temperature Sensor                     

with box connection from IMT Solar company. 

 
Figure 1.29 Pt 1000 sensor (Apogee CS240) 

mounted in back of a PV module. 

1.2.4.3 Wind sensors 

In a PV system, it is recommended to measure the wind speed, because its influence on the cooling 

of the temperature of the PV modules during production, which slightly increases the efficiency, 

while measuring the wind direction is not really important. Wind speed should be measured at 

height (10 meter) and at the same array conditions. [82]. Wind speed sensors accuracy should be 

higher than 0,5 m/s for values measured for less than 5 m/s. And should be higher than 10% of 

reading for wind speed values greater than 5 m/s. Two main types of wind sensors exist on the 

market, the traditional models based on the mechanical rotation of the miniaervane (Figure 1.30 a-

b), and recent models based on ultrasonic probes (Figure 1.30-c). 

   
Wind speed sensor anemometer 

from MB-Control 

Wind speed and direction 

from YOUNG 

wind speed and direction Ultrasonic 

sensor from Campbell Scientific 

Figure 1.30 Wind speed & direction sensors. 

1.2.4.4 Dust and snow sensors 

Monitoring of the light transmission loss caused by dust on PV modules using sensor provides the 

information for solar energy plant management systems which helps to plan exactly when and 

where to perform the cleaning.  This solution is maintenance-free, water-free, easy to install. The 

alarms can be set in system software to indicate when a certain soiling ratio has been reached and 

cleaning is needed [89] [90]. the use of soiling sensors allows to determine and monitor soiling 

rates for performance analysis in order to optimize washing schedules for best return-on-

investment. Figures 1.31 display a commercial soiling sensors (a) DustIQ Soiling monitoring 

system Offred by Kipp & Zonen and (b) Mars optical soiling sensor From Atonometrics. 

  
(a) DustIQ Soiling Monitoring System 

from Kipp & Zonen 

(b) Mars Optical Soiling Sensor           

From Atonometrics 

Figure 1.31 Commercial Soiling Sensors. 

 

(a) (b) (c) 
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1.2.4.5 Weather monitoring station. 

Solar resource assessment refers to the analysis of a prospective solar energy production site with 

the end goal being an accurate estimate of that facility’s annual energy production. 

Weather Monitoring Stations (WMS) is a modular platform that contain multiple high end 

pyranometers and weather sensors combined as a turnkey solution for PV monitoring applications. 

Standard measurement parameters (POA Irradiance, Horizontal Irradiance, PV back-panel 

temperature, Relative humidity, Barometric pressure, Ambient temperature, Wind speed and 

direction, Rain Gauge). This station is compact and simple to install and to connect to any inverter 

or SCADA system using RS-485 Modbus interface or other interfaces. However, The WMS offers 

a complete set of instruments for the rooftop and utility-scale photovoltaic project developer. 

However, Apogee instruments company offers a selection of accurate sensors specially dedicated 

for the monitoring of a PV system [91]. In [92] "NRG Systems provider" groups comprehensive 

line of different environmental sensors from different manufactures for resource assessment and 

site monitoring station. 

Besides, other sensor manufacturers provide a turnkey weather monitoring station with hardware 

and software DAQ designed specifically to measure critical environmental parameters of the PV 

plant to better analyze performance (e.g.,  1) Kipp & Zonen  RT1 Smart Rooftop Monitoring 

System [93], [94] 3) EKO PVmet stations [95]). For utility scale PV system and research test 

system, an advanced performance analysis is very recommended, this analysis requires the use of 

Class A sensors and instrument as well as the measure of additional parameters such as dust 

accumulation, albedo and other (e.g., SunScout Class A Solar Resource Assessment System [96] 

and SOLAR1000  Solar Monitoring Station [97] proposed by Campbell Scientific company). 

Figure 1.32 displays some commercial weather monitoring stations. 

 

  
METSENS600 6 parameters 

from Campbell Scientific 

Weather station for PV system 

from SMA 

SOLAR1000 up to 18 parameters for 

utility scale PV from Campbell Scientific 

Figure 1.32 Commercial Weather monitoring stations. 

1.2.5 Electrical measurement  

1.2.5.1 Voltage and current measurement:  

Voltage and current values may be measured either on DC side (i.e., PV module, string or PV 

array, DC/DC controller and battery bank) or AC side (i.e., AC module, inverter, transformers, 

loads). Voltage and current sensors accuracy, including signal conditioning, should be higher than 

1% of the reading [82]. The voltage and current can be measured by sensors or transducers [98]. 

In [99] authors present an overview of different principle techniques to measures current and 

voltage signals.   
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In  [100] LEM company offers a variety of voltage and current transducers technologies (e.g., Hall 

Effect, Fluxgate and Air-Core and other technology), each technology was presented with main 

feature and principle of measure. Fluxgate technologies offer a higher accuracy, high performance 

with a larger bandwidth, while closed-loop (C/L) Hall Effect and air-core are cost-effective and 

versatile solutions for measuring voltage and current.  

Voltage sensors   

Depending on the type of configuration and size of the PV system, voltage sensors are used to 

measure various voltage levels (i.e., low, medium and high) at various points, for reliable and 

efficient operation. The typical range of voltage measurement in the PV system is 0-1500V in 

DC side and 0-690V in AC side.  

A resistive potential divider based on resistor is typically used for DC voltage measurement. 

Voltage Transformer (VT) based on electromagnetic induction principle are used to measure the 

AC voltage, this type of sensors does not require power supply VT present a low-cost solution to 

measure the AC Voltage (Figure 1.33-a).   

Voltage can be measured using current transducer to measure the small current flowing due to 

the voltage applied to a circuit with a large resistance. This current can be measured by an 

optimized Hall Effect or fluxgate sensor or an air-core transducer based on digital technology. 

So. The use of voltage transducers to allow isolated measurement. 

The figure 1.33-b display transducer for sensing voltage in single-phase installations. This 

transducer is applicable on circuits of 120V, 208V, 240V, 277V, and 480V, and provide a fully 

isolated, 4-20 mA output proportional to rated voltage in both sinusoidal and non-sinusoidal 

signals, compact, easy-to-install DIN rail mounted enclosure. 

Figure 1.33-c shows the famous voltage transducer LV 25-P based on closed loop Hall effect, the 

range measurement is from 10V to 500V. Figure 1.33-d displays CV 3-2000 transducer for 

medium voltage measurement with very high accuracy (±0.2%), the voltage output is 10 V for 

2000V. These two sensors are designed by LEM company for the electronic measurement of 

voltages: DC, AC, pulsed, with galvanic separation between the primary circuit and the secondary 

circuit. Voltage hall effect transducers have excellent accuracy, low thermal drift, low common 

mode disturbance, good linearity and good immunity to external interferences. 

    
(a) AC voltage 

transformer 230V-6V 

(b) AC voltage rail mounting 

In 500V out 4-20mA 

(c) DC/AC Voltage Hall 

effect sensors LEM LV-25P 

(d) DC/AC Voltage 

CV 3-2000 

Figure 1.33 Different voltage sensors for DC /AC measurement. 

Current sensors    

The information of current flow is essential for health monitoring system, in order to improve its 

stability. Many current measuring techniques are available depending on the type of application 

and its requirements in terms of precision, cost, size, and bandwidth. So, it is important to 

understand the working principles and technical limitations of various current measuring 

techniques. To measure DC current there are two main methods using shunts resistor or current 

transducers. The price for both methods depends on their accuracy and range, which requires an 

in-depth study to determine the price for each case. Using shunts resistor (Figure 1.34-a) is quietly 

simple and does not require an extra power supply unlike current transducers. The AC current can 

be measured using current transformers (CT), this type of AC sensor produces an output in 

proportion to the current flowing through the primary winding.  
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The AC current is also measured using Rogowski Coil current sensor. Figure 1.34-b displays LEM 

split-core AC Rogowski Coil current sensor, the measuring range is from 10 to 10000 A with a 

Class accuracy of 0.5 according to IEC 61869. The current transformers and Rogowski Coil do not 

require a power supply, it's self-powered.  

The use of current transducers requires a power supply and can measure both DC and AC current. 

Current transducers have excellent accuracy, low-temperature drift, good linearity, optimized 

response time, good immunity to external interference, no insertion loss and current overload loss 

[70]. Figure 1.34-c displays the LEM LA100P current sensor based on the C/L Hall effect, the 

measuring range is 0 to ±150 A for DC and AC, and the accuracy is around 0.45%.  

Figure 1.34-d shows a LEM LESR sensor based on the C/L Hall effect performing at the level of 

Fluxgate technology without the added cost, the accuracy is ± 0.5 %, and the operating temperature 

is from -40°C to + 105°C, this type of sensor is specially designed to be integrated into electronic 

cards (e.g., solar inverter, meter, battery management system… etc.). in LESR series four sensor 

models are proposed with the nominal current ranges 6, 15, 25 and 50A, the price is around $20.  

Figure 1.34-e illustrates a split-core current transducer offered by ACUAMP company for DC or 

AC signals, it is combined Hall effect sensor and signal conditioner with an industrial output of 4 

to 20 mA or ±10 V, this type of sensor is reliable but expensive, approximately $200.   

  
   

(a) Shunt DC sensor 

from Victron 

(b) split-core Rogowski 

Coil AC sensor 

(c) DC/AC C/L Hall 

effect sensor 

(d) DC/AC C/L hall 

effect Fluxgate level 

(e) DC/AC Hall effect 

split core sensor 

Figure 1.34 some commercial current sensors for DC /AC measurement. 

1.2.5.2 Power measurement 

Power data can be on DC or AC side or both sides. It can be measured directly using power sensors 

or calculated in real-time as sampled voltage and current values [82] [98].  

The power meters on the AC side take into consideration the power factor and harmonic distortion. 

Power meter's accuracy including signal conditioning should be greater than 2% of the reading. 

Figures 1.35 illustrate some power meters models existing on the market from standard to high 

accurate power analyzers. For more information and feature check the manufacturer's datasheet. 

The high-performance benchtop power analyzer is used in the test and certification labs of PV 

inverters and other accurate application measurements thanks to their precision and high speed in 

measurement. 

   
 

(a) Low-cost standard power 

meter (Schneider PM3200) 

(b) smart meter For 

PV system (Fronius) 

(c) Power Quality Meters 

(Siemens 9810) 

(d) High-Performance benchtop Power 

Analyzer (Yokogawa WT1800E) 

Figure 1.35 Some power meters devices exist on the market from standard to high performance. 
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1.2.6 On-site measurement techniques for PV array 

Because of the inherent inaccuracies of data monitoring alone, it is common to implement a 

secondary check of the DC array to detect string- and module-level faults through periodic 

inspection and testing [19].  Uncertainties such as weather variability, soiling or shading, the causes 

can also lie in wiring issues in the PV array or underperforming PV modules.  

In addition to real-time monitoring, an on-site performance assessment may be required to identify 

and correct potential problems. Such measures contribute to a good understanding of the operating 

conditions and enable more accurate production forecasts. On-site measurements are used for 1) 

fault detection of PV arrays and 2) identifying degraded or defective PV modules. Various on-site 

inspection techniques based on portable test equipment are used, ranging from PV output power 

characterization to imaging techniques for localizing cell cracks or open-circuit failures, to 

spectroscopic methods for materials analysis. Two groups of methods can be differentiated: a) 

inspection methods for PV strings and b) inspection methods for single PV modules.  

In [101], ten on-site inspection methods were reported : 
1. Drone-mounted electroluminescence & thermal infrared imaging of PV arrays 

2. Daylight I-V measurement of PV strings and PV modules 

3. PV module characterization with mobile PV test centers 

4. Dark I-V measurement of PV strings and PV modules 

5. PV plant testing vehicle for PV strings 

6. Electrical impedance spectroscopy of PV strings 

7. Daylight electroluminescence imaging 

8. Ultraviolet fluorescence imaging 

9. Outdoor photoluminescence imaging of field-deployed PV modules 

10. Spectroscopic methods for polymeric materials. 

Figure 1.36-a illustrates an I-V curve tracer (PVA-1500T PV Analyzer from Solmetric) for PV 

modules, strings and arrays, up to 1500Vdc and 30Adc. Figure 1.36-b displays an unmanned aerial 

vehicle (drone) that carries a thermal camera, this drone can also carry an electroluminescence 

camera, in order to make an inspection on the PV arrays as soon as possible. Figure 1.36-c shows 

a mobile quality inspection for PV module (Mobile PV-Testcenter), which 1) takes power 

measurements of PV modules according to EN60891, 2) conducts electroluminescence inspections 

to highlight possible problems - cracks on the module cells, and 3) uses thermal imaging of the 

modules to identify hotspots. 

  

 
▪ Power measurement 
▪ Electroluminescence 

▪ Thermal imaging 

(a) IV-curve tracer for PV modules / 

strings / arrays, up to 1500V / 30A 

PV Analyzer Solmetric 

(b) Drone-mounted 

electroluminescence & thermal 

infrared imaging of PV arrays 

(c) Mobile quality inspection in PV 

plant 

Figure 1.36 Some PV on-site inspection & performance assessment methods. 

Figure 1.37 represents the methodology for quality control in a PV plant with a mobile PV testing 

Lab. The process of quality control initiates with identifying the modules to be tested. 

Identification of the least-performing PV string is done with the help of real-time monitoring 
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system. Depending on the performance of the string least and medium performing strings are 

selected for testing.  

Visual Inspection of 10% modules from each plant has been performed. Furthermore, 20 sample 

modules from each type were selected from these inspected modules and were gone through Flash 

Testing. IR image of the PV module and string is taken to check the hotspot, faulty string, bypass 

diode failure affected module. After IR thermography inspection, the sample PV modules are 

tested in STC using on-site PV mobile. The I-V measurements are taken in Sun Simulator and 

compared with reference Module characteristics to evaluate the degradation of the PV module. EL 

image of the module is taken in the mobile lab which is used to detect defects in PV cells. A 

correlation between the results of the I-V curve, IR image, EL & visual inspection of the PV 

module is obtained in order to identify the problems in field and proof to claim replacement of the 

modules if warranty conditions are not satisfied [102]. 

Identification of least 
performing PV (based on  

monitored data)

Visual Inspection of PV 
modules

Selection of modules to 
be tested (sampling) 

IR image of  PV module 
(string level and   
modules level)

I-V measurement of 
module in STC condition 

in PV lab mobile 

Electroluminescence (EL)
Imaging of PV module 

Co-realting results of I-V 
module, IR image ,EL & 

Visual inspection 

Identifying problems in 
field by co-realtion 

Reporting failure state of 
modules and remedies 

 
Figure 1.37 Methodology for Quality control in PV plant with mobile PV testing Lab [102]. 

1.3 Modeling and performance in PV systems. 

1.3.1 Introduction  

PV performance models are used to predict or estimate the output power of a PV system, which 

typically includes PV modules, DC/DC converter, DC/AC converter, and other Balance of System 

(BOS) components. 

The energy output of PV models depends on the geographic location of the PV installation, in 

order to determine the amount of solar irradiance received on the Plane of Array (POA). The 

weather data for a given location will vary depending on latitude, season and climate change; being 

able to accurately determine the production profile due to these changing variables allows a better 

match of the system load with the expected production [103]. 

Some models make general assumptions about system components and ratings. While other more 

complex models take into account the manufacturer's parameters given in the datasheet, the 

physical parameters (i.e., electrical, thermal and optical) [104] and the empirically derived data. 

In this section, we cannot describe all the PV performance models, but we will just give some 

references. In the literature, many authors carried out studies dealing with the behavioral 

modelization of the PV system [45], [105]–[111].  

[45] report the various PV performance models and software developed and utilized by researchers 

at Sandia National Laboratories (SNL), in addition to PV performance models, hybrid system and 

battery storage models are discussed. 

In the PV modeling field, two main techniques are used to predict solar PV power, namely, 

techniques based on parametric models and nonparametric models [112], [113].  

The parametric model designs the PV system as a white box where each subsystem can be modeled 

using a set of parameters. This method requires detailed information about the characteristics and 

the behavior of each relevant component of the PV system.  

The non-parametric or data-driven models design the PV system like a black box. These models 

are based on statistical and machine learning techniques [114]–[118], they do not assume any 

knowledge of the internal characteristics and processes of the PV system.  
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Indeed, these models estimate the behavior of the PV system from a historical time series of inputs 

and outputs. the accuracy of a nonparametric model depends mainly on the quality of the data. 

Both PV modeling techniques may share the same inputs (irradiation, ambient temperature, wind 

speed etc.) and the same output (AC power generated by the PV system). [119] proposes an 

analytical model to investigate the effects of solar irradiance, cell temperature and wind speed on 

the performance of a PV system. 

Using parametric and non-parametric PV models, we distinguish three main applications:  

1)     Design and sizing:  This step is carried out before the installation of the PV system, according 

to the desired power consumption demands, the sizing and design tools  help to size your adequate 

power for each component of the system and to make a techno-economic study [45], [120]. The 

core of the energy yield estimation process is the PV yield modeling tools. PV yield modelling 

tools are used by developers and independent consulting engineers during the design phase of the 

PV project to estimate the expected energy yield of the system. A variety of tools and software 

programs are available on the website  (e.g., PVGIS, SAM, RETScreen, PVsyst and PVSol ...etc.) 

[121], [122]. The output of any PV modeling software strongly depends on the underlying model 

algorithms and the chosen input parameters. These parameters include the 1) solar resource and 

weather related parameters, 2) system design configuration, 3) technical characteristics of the 

components and 4) several additional inputs that are often based on user estimates or assumptions. 

Soiling, mismatch, cabling and other field related losses or derating factors are examples of the 

many user estimates required during the PV energy yield modelling process. 

2)  Performance monitoring and fault diagnosis: The PV models are used to 1) assess 

performance, 2) detect anomalies, 3) identify faults and 4) send alarms. The PV models provide a 

baseline against which to compare with real-time measurements of the PV system, from small 

residential rooftop to large utility-scale systems [123]. In general, these models are incorporated 

in the power converter unit or in the monitoring software [75], [124]. 

3)  Forecasting of future energy: in this application, the models are used to forecast the irradiance, 

weather data and PV power, to manage and control the flow of production by renewable and fossil 

sources in the smart grid. Forecast resolutions are available at 5-to-60-minute time frames, 

extending up to 7 days in advance [116], [125]. This forecast is shared with 1) grid operators, 2) 

owners of renewable power plants (who are required to notify grid operators in advance of the 

amount of energy their system will produce) and 3) energy traders. In addition, future peer-to-peer 

(P2P) PV markets will require PV energy prediction forecasts for efficient energy trading [6].  

However, the performance of PV systems depends on static metadata (i.e., tilt, azimuth) and 

dynamic weather data. [50] shows that, rather than finding annual performance data, a better 

approach is to obtain PV system metadata (module tilt and azimuth, installed capacity), and use 

representative, regionally resolved distributions to calculate specific annual performance 

distributions based on annually varying weather information. 

1.3.2 Modeling steps 

The parametric modeling approach relies on a set of sub-models to predict AC power injected into 

the electrical grid [105] (Figure 1.38). 

Irradiance and 
Weather data

PV Module 
Output modeling

PV array 
output

DC to AC 
Conversion  

AC system output and 
performance metrics

1 2 3 4 5

 
Figure 1.38 Main steps of PV performance modeling. 

1) Irradiance and Weather data 

Obtaining irradiance and weather data is typically the first step in setting up and running a PV 

performance model. Historical data is typically used to estimate the output of PV systems, while 

real-time measurement data is used to model the output expected from an operating system to 

validate that it is functioning properly. 
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Historical irradiance and weather data – This step consists in selecting a data source to define 

the irradiance and the meteorological conditions expected for a chosen site. Typical sources 

include 1) Typical Meteorological Years (TMY), 2) data derived from satellites, 3) on-site 

measurements, etc. There are many possible approaches to choosing meteorological data for 

performance modeling studies. 

Incident Irradiance – This step aims to translate horizontal measured irradiance to beam and 

diffuse components on the plane of the PV array. There are numerous algorithms available to make 

these translations.  

Shading, Soiling, and Reflection Losses – If the PV array is partially shaded or the modules are 

soiled then the amount of the incident irradiance that is available for conversion to electrical energy 

is reduced. Various algorithms exist to calculate shading and its effect on the system.  Fewer 

methods exist to predict the amount of soiling on the PV array with time. usually, this step is treated 

with a constant derate factor. So, effective irradiance is the total plane of array (POA) irradiance 

adjusted for the angle of incidence losses, soiling, and spectral mismatch. 

2) PV Module Output modeling 

This part describes the models of the PV module, including methods for measuring and estimating 

model parameters. The PV module model depends on many electrical and meteorological 

parameters [50]. In general, all models of the PV module using as input tilted irradiation and cell 

temperature.  

PV modules models: In the literature, several models were developed to reproduce the electrical 

behavior of PV modules [45]. The PV models make it possible to predict in different weather 

conditions either: 1) DC voltage and DC current in detail using several parameters (E.g., Sandia 

PV Array Performance Model (SAPM) [126], one diode model with 5 parameters [127]..etc.) or, 

2) directly estimate the DC power using a simple model like (PVWatts by NREL [128]). 

Indeed, there are different types of models that have been applied either in the sizing tools or in 

the monitoring and diagnostic techniques citing, for example, the physical model [129] semi-

empirical [126], empirical [130], statistical and machine Learning [114], [118], [131]. 

The estimation of the model's parameters is strongly required to validate the model and to calibrate 

it so that it approximates better to the real measurements under the conditions without faults [132]. 

[133] present a detailed procedures for determining model coefficients using outdoor electrical and 

meteorological measurements, which contributes to uncertainty in the resulting models. Recently 

the parameters estimation is carried out using several artificial intelligence techniques to improve 

the accuracy of the models  [115], [134], [135]. 

Cell/module Temperature – The PV cell/module temperature is influenced by a number of 

factors, including 1) module materials and construction, 2) mounting and racking configurations, 

3) the incident irradiance (modified by shading and soiling), 4) the wind speed, 5) and ambient 

temperature.  

Note that the operating temperature of PV cells / modules is obtained using several measurement 

techniques [136] or models, generally either: 

a. Measured using a temperature sensor (e.g., RTD, thermocouple etc.…) mounted on the 

back sheet of the module [77]. 

b. Measured using infrared instruments [136]. 

c. Obtained from open circuit voltage (VOC) measurements of the module [137]. 

d. Estimated using behavioral models [138], [139]. 
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3) PV array output 

Mismatch Losses  

When mismatch is present, either due to inherent performance differences between series modules 

and parallel strings, heterogeneous irradiance or temperature on the PV array, or even differential 

wiring losses across the PV array. This fact means that any combined value of current and voltage 

may not equal the maximum power point (MPP) for all modules in the array.  

This step aims to calculate the magnitude of this loss. Few performance modeling applications 

include this loss explicitly, except by means of a scalar derate factor. Treating this part of the 

performance modeling problem is especially important in order to accurately represent 

performance of PV array technologies designed to reduce such mismatch losses  

DC to DC Maximum Power Point Tracking  

The performance of an PV array is characterized by the system’s I-V curve. To harvest power from 

the system, the voltage must be adjusted in order to maximize the power. This function is called 

Maximum Power Point Tracking (MPPT).  

Most if not all performance modeling applications of the PV system assume that the DC voltage 

can be held at the MPP at all times. While there are differences between MPPT algorithms that are 

implemented in inverters and DC/DC converter components. A control system is used to find the 

MPP, which changes with varying irradiance and cell temperature.   

Few of current performance models can distinguish between the effectiveness of different MPPT 

algorithms or represent performance under non-maximum power-point conditions. As PV systems 

become more prevalent, utilities will begin to require inverters to operate the arrays off the MPP 

in order to help support grid operations. Current performance models cannot represent performance 

under such conditions. 

4) DC to AC Conversion   

Power Conversion from DC to AC allows injecting the PV power to the AC grid.  This step 

accounts for the conversion efficiency of the inverter. This efficiency can vary with environmental 

parameters such as temperature and well as electrical conditions, such as DC voltage and DC power 

level.  There are a number of inverter models that are used to estimate this conversion efficiency 

[140], [141]. As more PV systems are added to the electrical grid, the requirements for 

interconnection are changing.  New PV inverters are needed to offer advanced functions to help 

support the robust operation. These functions include [142]: 

• Volt-VAr (voltage regulation) 

• Commanded Power Factor (voltage regulation) 

• Frequency-watt (frequency regulation) 

• Commanded Maximum Power (frequency regulation) 

• L/H Voltage Ride-Through 

• L/H Frequency Ride-Through 
 

5) AC system output and performance metrics 
 

AC Losses – Once the power has been converted to AC, it must be transmitted to a point of 

interconnection. The value of energy produced by the PV system needs to include all losses before 

the utility meter. Any losses along this transmission path (wire losses, transformer losses, etc.) are 

accounted. For a residential PV system, these losses can likely be neglected, but for utility-scale 

plants these losses can be significant and should be included in a performance model. Few existing 

models represent this process in any detail [143]. 
 

System Performance Over Time – Monitoring of PV system output can help to identify 

anomalies (e.g., degradation, electrical faults in DC and AC side, etc.). There are a number of 

metrics used to evaluate performance of PV system (e.g., performance ratio, yield metrics, etc.) as 

defined in IEC 61724 [77] [82].  
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However , the  PVPMC  web site gives more than one model for each step modeling  and provide 

PV-lib toolbox for MATLAB and python platforms [105]. In many cases, existing PV performance 

models neglect one or more of these steps by making an assumption or adding a derating factor. 

As PV system design options become more and more complicated with new components.  

1.3.3 Performance analysis  

Continuous monitoring of the PV system is essential during the operational phase, while a good 

monitoring solution makes it possible to acquire and analyze a number of parameters and to 

compare them with the simulation results in order to ensure the reliable and stable operation of any 

PV system and to send alarms in the event of a drop in performance. 

The performance of the PV system depends on many parameters, including 1) environmental 

condition (i.e., effective irradiance on the plane of array, ambient temperature and wind speed),   

2) efficient of the PV system components (PV modules, inverters and cables) and 3) O&M 

services. To include all the parameters affecting on the performance of a PV module in terms of 

energy generation, the International Electrotechnical Commission (IEC) has designed a standard 

IEC 61853 divided into four different parts [50]. Several works have been published on the 

performance analysis of grid connected PV system with different characteristics in different 

locations using different techniques [111], [144]–[152]. 

Recently in [153] a performance evaluation of an MW-Size grid-connected PV power plant 

considering the tilt angle impact using PVsyst was reported , in [154] a detailed performance 

analysis of a 19 MWp commercial solar PV power plant installed in India with three different 

configurations of fixed-tilt, adjustable-tilt and horizontal single-axis tracker at a single location, is 

carried out. A performance assessment of 28 kWp rooftop grid-connected PV system under 

desertic weather conditions in Adrar has been presented in [155]. 

The calculation of the expected energy yield is typically provided by a cascade of specific models, 

each solving a particular question regarding energy conversion.  The energy rating allows to 

compare not only similar products from different manufacturers, but also completely different 

technologies. It should also provide a realistic estimated energy value for the region of installation 

and should be simple, accurate, repeatable, and agreed in terms of methodology for its calculation.  

Figure 1.39 illustrates the energy flow from sunlight to the consumer of electrical power for a 

typical grid-connected PV system highlighting the different sub-models and the related 

uncertainties in the different steps. The character of each sub-model and the freedom to select input 

parameters varies considerably depending on the simulation tool in use and the experience of the 

user. The performance analysis are based on the evaluation of metrics performance of PV systems 

defined in standard IEC 61724-1:2021 RLV Photovoltaic system performance - Part 1: Monitoring 

[77]. In general, the expected energy production or final system yield (Yf), is reported together 

with the performance ratio (PR), which quantifies the overall efficiency of energy conversion of 

the PV system. The PR represents the ratio between the system yield (Yf) and the solar energy 

input or reference yield (Yr), and should be accompanied by an uncertainty [7]. Table 1.7 displays 

the suggested calculated parameters with symbols and units. 
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Figure 1.39 Energy flow diagram in a grid-connected photovoltaic system. In black the calculated parameters and in 

blue the related uncertainties [7]. 

Table 1.7 Suggested calculated parameters with symbols and units. 

Parameter Symbol Unit 

Irradiation 

In-plane irradiation GPOA kWh⋅m–2 

Electrical energy 

PV array output energy EA 

kWh Inverter output energy Einv 

Energy output from PV system Eout 

Array power rating 

Array power rating (DC) P0 kWp 

Yields and yield losses 

PV array energy yield YA 

kWh⋅kWp–1 

Final system yield Yf 

Reference yield Yr 

Array capture loss LC 

Balance of system (BOS) loss LBOS 

Efficiencies 

Array efficiency ηA 

None System efficiency ηf 

BOS efficiency ηBOS 

Table 1.8 summarizes various anomalies that affect PV systems with the derating factors and 

estimated uncertainty, this table contain data values only, with no reference to the source of this 

information. The numbers and associated uncertainties are most likely chosen by the modelling 

engineer by 1) considering the energy yield 2) modelling tool used, 3) experience from previous 

modelling and model validation activity and 4) the availability of information for the specific 

project in question. It is therefore likely, that some input values may be selected based on 1) general 

assumptions, 2) modelling experience or 3) traditionally accepted convention. Some loss elements 

may be lumped together into a single generic loss due to lack of project specific information. 
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Table 1.8 Technical and system design data. 

Loss Expected loss rate and uncertainty 

Soiling  Amount of soiling to be expected is often provided and ranges from 1.0% to 3.0% with most values 

between 1.0 and 1.5%. The uncertainty of this value is often provided and is given as ±1.0 percentage 

point with only one exception where a value of ±3.0 % is used. 

Shading  Expected amount of shading is provided with typical values of 0.6%, 0.7%, 1.4%, 2.7%, 2.8%, 3.3% 

and 3.6%. However, most installations expect 0% shading loss. 

The uncertainty in this estimate is given as ±0.5% in most examples and as ±1.0% and ±2.0% in two 

specific projects. 

Reflection  Expected amount of loss due to reflection from the module surface (also known as Incidence Angle 

Modifier (IAM) loss) is provided with typical values of 2.8%, 2.9%, 3.0%, 3.2%, 3.6% or alternative 

with a value of 0.0%. The uncertainty in this estimate is always given as ±0.5% when stated. 

Thermal  Yearly loss as compared to operation under Standard Test Conditions (STC i.e., irradiance of 1000 

W/m2, air mass (AM) of 1.5 and module temperature of 25 °C) has been calculated as 0.1%, 0.3%, 

0.8%, 1%, 1.2%, 4.9%, 5.4%, 11.3% or 14.5 % with uncertainties stated as either ±0.2%, ±0.5% or 

±1.0%. 

String 

mismatch  

Calculated to values of 0.4%, 0.7%, 0.8 %, 0.9%, 1.0%, 1.10% or 2.1% with uncertainty stated as ±0.5% 

(except for one example of ±1.0%). 

DC/AC 

cable  

Calculated as 0.1%, 0.2%, 0.6%, 0.7%, 0.9 %, 1%, 3.4%, 6.2% or 7.4 %, always with an estimated 

uncertainty stated as ±0.2%. 

Inverter  Calculated as 1.1%, 1.6%, 1.7 %, 1.9%, 2.0 %, 2.2 %, and 3.2%, always with an estimated uncertainty 

stated as either ±1.0% or ±2.0%. 

Transformer Calculated as 1.0% and 1.3% with one value at 2.0% and always given with an un certainty of ±0.5%. 

Grid access  For all systems where the information is provided, the full production is expected to be delivered to the 

grid with no other loss (Power Factor = 1). The combined overall uncertainty in the calculated energy 

yield is then provided as ±3.2%, ±4.5%, ±5.1%, ±5.9%, ±6.1%, ±6.8% or ±7.3%. 

1.4 Fault detection and identification. 

Fault detection is defined as “the indication that something is wrong with the monitored system”. 

In addition to fault detection, fault classification or identification can automatically identify and 

recognize the type of fault. To further assist maintenance personnel in fault finding, fault location 

can estimate the exact location of the fault in (module, cable, junction box, etc.) to speed up system 

recovery in the its safe state after a fault and exploit the maximum performance of the PV plant. 

So, fault detection, identification, and localization are essential to monitor and identify unexpected 

anomalies in PV systems [156].  

1.4.1 Faults affecting the PV systems 

Solar PV systems like all electricity production systems can be subject during exploitation to a 

miscellaneous faults that affect the components of the PV system such as PV modules, cables, 

protections or inverters [7]. In recent years, several researchers have focused on the Fault Detection 

and Diagnosis (FDD) of PV systems; this has allowed to create a large publication database with 

diverse representations (I.e., texts, tables and diagrams) on the definition and classification of the 

different faults that falling the electricity production yield and lifetime of the PV systems [157], 

[158]. However, The faults occurring in the PV system can be classified according to diverse 

considerations [157], although the classification according to the DC or AC side of the fault 

occurring in the PV installation is the most used. In the DC side of the PV system, most faults are 

located in PV array (e.g., temporary and permanent mismatch, short circuit, open circuit, line-line 

and line-ground faults …etc.), other faults are due to Balance of System (BOS) components (e.g., 

cable, fuses, switches and DC/DC converter). Whereas, in the AC side, two types of faults can be 

noted: total blackout and grid abnormalities mainly due to unbalanced voltage and lightning [16].   

Figure 1.40 displays common faults with distribution in different sides of a grid-connected or 

stand-alone PV system. While Figure 1.41 shows the tree classification of the various faults that 

can occur in a typical PV system. Another detailed faults classification was given in Figure 1-A. 

A statistical study with power loss evaluation and clustering of faults affecting the installed PV 

systems in different climate zones in the world, allows to reduce the number of faults in new 

systems to be installed [159]. A short description for each loss power, anomaly or fault are given 
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in Table 1 Appendix A. Recently IEA PVPS published a new report about quantification of 

technical risks in PV power systems [160], They presented PV Failure Sheets (PVFS) which 

contain photos and severity level of many risks and faults in the operation and installation of 

modules and inverters (Figure 2- Appendix A).  

 
Figure 1.40 Typical PV schematic to show fault occurrences [157]. 

 
Figure 1.41 Classification of faults in PV Systems [157]. 
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1.4.2 Faults Detection Techniques  

In order to diagnose the anomalies and failures in the PV system, many FDD techniques have been 

proposed in recent years, allowing to monitor performances, detect the malfunctions and identify 

the type of fault present in the  DC or AC side of the PV system, [15]–[18], these techniques help 

to increase the system reliability and lifetime of the PV installations. Recently, IEA PVPS Task 13 

[6] has published new report that provides an easy introduction to those in the field who are not 

trained in new diagnosis techniques and are just starting to learn PV performance monitoring, as 

well as the report provides a handy reference guide for experts that summarizes in detail Twenty-

two (22) research papers studied on the use of advanced algorithms in PV failure monitoring. A 

variety of fault detection methods are used by different researchers to identify and classify faults, 

including; 1) Identifying electrical signatures, 2) Comparing historical data to current PV system 

behavior, 3) Comparing a simulated PV system to actual measured performance and 4) Comparing 

performance of different components or subsystems. In implementing the methods listed above, a 

number of approaches are used: 1) Applying statistical tests to infer faults, 2) Applying machine 

learning algorithms to detect and identify faults, 3) Specification of instructions and rules to be 

programmed into a fault detection system when data suggests a fault occurrence and 4) Simulating 

electrical behavior of the PV system using empirical models. Furthermore, in some cases, a 

combination of two or more methods or approaches are used by a fault diagnosis system.  

More than one approach can also be used for implementing the method such as by the use of 

machine learning algorithms and statistical tests [6]. Figure 1.42 illustrates the Faults Detection 

and Identification techniques investigated in this sub-section. 

 
Figure 1.42 Faults Detection & Identification techniques investigated in this section. 

During operation of PV system, the PV modules may develop defects and failures (E.g., soiling, 

hot spot, breaking, browning, discoloration and delamination) [161], which can be repaired if they 

are detected in time. To ensure the safe operation of PV modules without power losses, reliable 

and fast diagnostic methods to assess the performance of PV modules are required during the 

production process [162]. In first time a visual inspection is recommended, because is the most 

effective and quickest method. Indeed, there are several techniques that allow an advanced 

inspection with localization and assessment of specific failure modes affecting the PV modules. 

[101] report ten (10) on-site inspection techniques using mobile test equipment ranging from PV 

output power characterization, to imaging techniques for localizing cell cracks or open-circuit 

failures to spectroscopic methods for materials analysis. 

1) Infrared (IR) and electroluminescence (EL) imaging inspections. 

Most O&M companies offer regular Infrared (IR) and Electroluminescence (EL) imaging 

inspections of PV plants to ensure the best performance and safety of the PV array [163]. The IR 

and EL imaging are non-destructive measurement techniques which can provide in real-time high-

resolution images of PV modules. However, not all defects of PV modules lead to a temperature 

increase, for this limitation a combination of IR and EL measurement techniques are necessary in 

order to identify the most common defects in the PV modules with high accuracy [164]. In recent 

years, several Machine Learning (ML) techniques are used to automatically process the sequence 

of images acquired by IR and EL cameras attached on board of an Unmanned Aerial Vehicle 

(UAV) [165]–[168], in order to greatly minimize inspection times and to accurately analyze 

various forms of defects and failures in PV array. Figure 1.43 shows the imaging inspection process 

using IR camera attached to the drone board to detect and locate anomalies and failures occurring 

in the PV array.   
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The IR and EL imaging are complementary techniques, and each have their own strengths and 

weaknesses, [163]. While these techniques require sophisticated equipment’s. 

 

Figure 1.43 imaging inspection process using IR cameras attached on UAV for PV fault localization. 

 

2) I-V Curve Analysis (I-VCA) 

However, a robust and reliable FDD tools should be as simple in structure, flexible and economic 

and must incorporate an intelligent algorithms that can detect, distinguish and localize the majority 

of faults that occur the PV system accurately in real-time [169].  Indeed, the FDD methods based 

on electrical measurements unlike to IR and EL imaging techniques seem more appropriate to 

integrate inside the power converter. Among the old [170] and most methods used to diagnose 

faults appearing in the PV module, string or array [161], the static analysis of current and voltage 

(I-V) characteristics by the comparison between experimental I-V curve measured by an I-V curve 

tracer device and the excepted one based on models of the PV module [126], [171], and this under 

diverse measured values of in plane irradiance and PV module temperature.  This type of FDD 

methods is based on mathematical models with accurate parameters identification using advanced 

techniques.   

Chen et al.  [172] presents an accurate modeling of PV modules using a one-dimensional deep 

residual network based on large datasets of measured I-V characteristic. A new analytical method 

based on the one-diode model are proposed in [173] to extract five-parameter of PV module under 

multi-peak conditions and other conditions. In [174] authors have extracted the parameters of PV 

array model using reinforcement learning approach. Das et al. [175] have used a metaheuristic 

optimization approach to detect and identify differentiate among the open and short circuited PV 

modules in solar PV array under non-uniform distribution of irradiance and temperature. An 

intelligent Fault Diagnosis (FDi) of PV arrays based on optimized kernel extreme learning machine 

(KELM) and parameters extraction from I-V characteristic curves have been realized in [176], in 

order to detect and classify accurately short and open circuit faults, degradation fault and partial 

shading condition. 

Based on I-V characteristic and climatic data, a deep residual network FDD approach are proposed 

in [177]  to detect different types and levels of most common faults of PV array, including partial 

shading, open circuit fault, short circuit fault and degradation. In [178]  a novel degradation 

diagnosis method for PV modules that employing a xenon flash lighting system and a capacitor 

were proposed, the obtained results confirm the performance and practicability of proposed method 

for commercial PV modules. Chine et al. [179] have implemented a FDi technique into a Field 

Programmable Gate Array (FPGA) circuit based on combination of signal threshold approach and 

Artificial Neural Network (ANN) approach, using both simulated and measured current voltage of 

I-V characteristics of a number of PV strings. A fault detection (FDe) algorithm for PV systems 

based on Multi-Resolution Signal Decomposition (MRSD) for feature extraction, and two-stage 

Support Vector Machine (SVM) classifiers for decision making, is proposed in [180] to improve 

the detection accuracy for Line-Line fault scenarios. In [181] a Principal Component Analysis 

(PCA) method have used to train PV model based on I-V experimental data, in order to detect and 

classify the shading fault. The technological development of PV inverters in recent years has made 

it possible to integrate the online measurement of I-V curves of the PV strings connected to the 

inverter input, what makes these methods flexible to be functional in inverters with a low 

integration cost [182].  



57 

 

A low-cost I-V curve tracer dedicated to tracing I-V characteristics and to diagnose the faults of 

PV modules under real operating conditions is implemented in [183]. A recent commercial solution 

based on smart I-V Curve diagnosis was proposed in [184], this solution is able to carry out online 

I-V curve analysis every 5 minutes using advanced diagnosis algorithm, in order to automatically 

identify different failure types in PV the strings, while the sampling time for 128 point is very fast 

lower than 1 second (see Figure 1.44) . In  [101] IEA-PVPS  gave an interpretation of the deviations 

between the measured I-V curve and the predicted I-V curve, the deviation represents the faults in 

PV array or degradation of PV modules.  

 

Figure 1.44 Smart I-V Curve diagnosis proposed by Huawei [184]. 

3) Signal processing methods 

In [185] an Earth Capacitance Measurement (ECM) method was applied in order to estimate the 

disconnection location in PV strings by comparing the earth capacitance measures of the failed 

string with that of the good string, knowing that this method could be applied to locate the 

disconnection position in the string without the irradiance presence. Another FDD techniques using 

the Spread Spectrum Time Domain Reflectometry (SSTDR) technique has been presented by [186] 

for detecting ground faults in PV arrays. In [187] a detection method for series DC arc faults in a 

PV system based on time and frequency characteristics of a parallel capacitor current has been 

proposed. Wang et al [188] have studied the performance of the Fast Fourier Transform (FFT) arc 

detection method compared to the wavelet method by using synthetic waveforms, from the test 

results, wavelet analysis is more efficient than the traditional Fourier transform approach. In [189] 

three-year research program at Sandia National Laboratories (SNL) are summarized to improve 

PV ground faults, the authors have presents the suggested changes to ground fault standards and 

gave a good recommendations for array safety and operation.  

However, ECM and SSTDR approaches do not require irradiance and meteorological data, but for 

their implementation, external signal hardware is required, which increase significantly the 

installation cost.  In the solar PV market, various electronic devices have been proposed for FDD, 

especially for line-line faults, arc faults and ground faults, but most of them cannot detect and 

locate other faults occurring in PV systems. Figure 1.45 illustrates the fault detection diagram 

based on the analysis of the output signal to detect anomalies and classify the faults occurring in 

the PV system. 
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Figure 1.45 Signal processing technique for fault detection. 

4) Analytical Monitoring approaches 

However, continuous monitoring of the PV system is essential during the operational phase to 

ensure rapid detection of faults, reduce downtime, maintain long-term profitability and exploit its 

full power. According to IEC 61724 standard a better monitoring system is split into three 

important areas:  1) measurement, 2) data exchange and 3) performance analysis.  

With technological development in recent years, the use of the Internet of Things (IoT) technique, 

is recommended to check the performance and the system evolution in real-time [18], [190] while, 

the integration of intelligent FDD techniques in the monitoring software allow to increase 

reliability and safety of PV systems. 

A monitoring system allows to measure the PV system yield and to compared it with simulation 

results in order to raise warnings daily if there is a performance shortfall. The key to a reliable 

monitoring and FDD strategy is to have good simultaneous and accurate measurements of the both 

meteorological and electrical parameters of the PV system. Without a reliable monitoring system, 

the PV system can operate with poor performance for several months before the fault is detected 

and identified. This can result in a major loss of income [8] . So, the power losses can be minimized 

by sending real-time alarms to the operator about the location of failure allowing them to take 

maintenance actions.  

Several FFD techniques have been studied in the last ten years to accurately detect and identify 

faults in grid connected PV systems [16]. These techniques are generally based on the processing 

and analysis of data measured from PV system, where the experimental data are measured and 

recovered using data acquisition system (DAS) essentially composed by sensors, data acquisition 

and software application [65]. The FDi process is determined by comparison between both normal 

and faulty data for each type of failure. while, the classification of failure is the most important 

step of the failure routine process. Many authors have used the comparison technique between the 

simulation and experimental data based on diverse algorithm, where the simulation data of the PV 

array are given using parametric models [134], [191] or non-parametric models [114] [192]. 

Generally, FDD techniques that exploit the analytical monitoring data are based on one of the 

following methods: 1) Real-time difference measurement, 2) Statistical analysis and Signal 

processing, and 3) Machine learning, although the combination of these methods offers quicker 

and very accurate detection. Indeed, each data analytic technique used for the FDD in monitored 

PV systems, has its own advantages and limitations. Hence, the decision for the most cost effective 

and more appropriate FDD solution depends on numerous factors [16], [193]. 

Recently IEA PVPS Task 13 [194] reports on a benchmarking study of the various approaches for 

calculating the Performance Loss Rates (PLR) of commercial and research PV power plants in 

diverse climatic zones. PLRs are calculated with weather and power data from the PV systems. 

The PLR is used by power plant owners, operators, and investors to determine the expected power 

output of a PV system over its installed life. Therefore, discrepancies in various calculation 

methods can have a significant impact on the finances of a PV installation. The benchmarking 

study is necessary due to the inconsistency in reported PLR results based on the many different 

approaches currently used to calculate the PLR of PV systems. This comparative study is focused 

on identifying which of the various approaches produce similar results and what causes 

inconsistencies between these different methods. The findings of the study lead to a PLR 

framework which defines the basic four steps common to PLR determination.  
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After initial exploratory data analysis and data quality grading, the four steps are 1) input data 

cleaning and filtering, 2) performance metric selection, corrections, and aggregation, 3) time series 

feature corrections, and 4) application of a statistical modeling method to determine the PLR value. 

 

Real-time difference measurement (RDM) 

Many large PV systems use analytical monitoring and performance analysis to avoid economic 

losses due to malfunctions problems [11]. Chouder and Silvestre [195] have presented an 

automatic supervision and Fault Detection procedure in DC side of the PV systems, analyzing both 

power losses and deviation of the DC current and DC voltage under MATLAB & Simulink 

environment.  An evaluation of Current indicator (Ci) and Voltage indicator (Vi) at MPP for 

automatic detection of main faults occurring the PV systems were performed in [196], this method 

is simple and can be integrated in the inverter, for a real-time supervision of the PV system. In 

[197], a level online FFD technique based on Power Losses Analysis (PLA) for solar PV systems 

was proposed. [198] presents a remote supervision and FDi of Grid Connected PV (GCPV) 

systems using PLA method by means of the Open Platform Communications (OPC) technology-

based monitoring. Madeti and Singh [199] proposes an online monitoring FDe technique based on 

Vi analysis allow to reduces the sensors number using power line communication (PLC), with an 

economic analysis of GCPV systems. In [200] two indicators named power ration (Pr) and voltage 

ratio (Vr)  are defined, in order to determine the fault type, time and the location of failure. A 

review of main strategies for automatic FDD based on PLA at the AC side, and both Ci and Vi at 

the DC output of the PV array is reported in [201]. Chaibi et al. [202] presents a simple and efficient 

approach to detect and to identify most common faults in PV systems as well as short and open 

circuit faults , partial shading condition  and inverter disconnection, three indicators are used to 

give information on the state of the PV system regarding normal and faulty operation. In the 

literature few studies that exploit satellite data instead of on-site data measurements in order to 

estimate the PV energy production, Drews et al [203] have used the satellite-derived solar 

irradiance data analyzed by  PLA method to remotely detect failure in a PV system. The main 

advantage of automatic FDD method based on Real-time Difference Measurement (RDM) that 

they can practically identify the common faults that occurring in the PV array.  

The implementation is easy with minimal required components, detection time is improved and 

the FDe accuracy depend on the fixed threshold limits from behavior PV model. Despite the fairly 

low degree of complexity of RDM techniques, the data measurements acquired during faulty 

operation of the PV system were really necessary for better validation. Moreover, the empirical 

models are specific to the considered site, therefore, the model parameters must be adjusted for 

other installations using more advanced techniques. Figure 1.46 displays the diagram of FDD 

process based on real-time difference measurement used to detect and identify faults in both DC 

and AC sides of PV system. 

 

Figure 1.46 RDM technique process for fault detection and identification 
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Statistical Approach (SA) 

Recently, several statistical techniques were developed for performance monitoring and FDe 

mainly in the DC side of the PV system. The most implementations of statistical techniques, define 

thresholds for each monitored parameter and compare the measured value to the lower and upper 

limits in order to get a decision on normal or faulty operation [6], [112]. In [204], authors published 

a report which present four methods based on advanced statistical analysis used to improve 

efficiency and to offer quicker and exact alarms, particularly for the residential PV system. 

Garoudja et al [205] have  used statistical method  combining between the one-diode model to 

predict power produced from the PV array and the Exponentially Weighted Moving Average 

(EWMA) control chart based on residuals of output DC power to detect in real-time the presence 

of anomalies, a continuity of this work was published in [206] introducing the multivariate EWMA 

chart for fast detection fault combining with univariate EWMA to identify fault. Data from PV 

systems are measured in a noisy environment, which confuse the important features in the data and 

decrease the faults detection capability. In [207] a statistical robust FDe strategy is designed to 

monitor the DC side of a PV system, with ability to treat the measurement noise problem in the 

data by using multiscale representation. A PV FDe algorithm based on t-test statistical approach is 

proposed in [208], to identify DC side failures of 1.98 kWp GCPV system under LabVIEW in real-

time. A data-based statistical approach for detecting anomalies and partial shading occurring in 

PV system is proposed in [209], this method exploits the ability and flexibility of the PCA model 

to extract relevant features from multivariate time series data, and the aptitude for detection of 

multivariate charts (T2 and SPE) to monitor the DC and AC parts of a PV system. In addition [210] 

are used a modified local outlier factor method to evaluate fault degree and to identify the failure 

of PV array under MATLAB/Simulink, this method present several advantage : higher accuracy 

in all-scale PV system, economic and simple architecture .Mansouri et al [211] have developed a 

technique combining the advantages of Principal Component Analysis (PCA) and Wavelet 

optimized EWMA, to monitor fault in PV systems. An unsupervised approach based on functional 

PCA and modeling parameters, for autodetecting outliers of identical sets of PV solar arrays was 

proposed in [212]. A multi-level decomposition wavelet transformation method have used in [213]  

to detect the fault location and components of the inverter, this method are fast and accurate with 

a simple structure and low cost realization.  

[214] have proposed an online technique to identify the faults under low irradiance and partial 

shading from the faulty conditions based on the mean of wavelet packets, using Simulink and is 

experimentally tested on a 1.6 kW PV array. Indeed, the statistical techniques can detect quickly 

most faults in the PV array including e.g. (open-circuit, line-line, partial shading and degradation 

faults), but cannot detect the level of one faulty module from the PV array. the Statistical 

techniques are simple and easy to implement with minimum sensors (no requirement of 

meteorological data) and do not require any training process. While the noise in sampling signal 

affects the detection capability. Figure 1.47 illustrates the flowchart of the faults detection  process 

using a statistical approach to detect and classify faults affecting the PV system.    
 

 
Figure 1.47 Fault detection and identification process using statistical apporach. 
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Machine learning Techniques (MLT) 

Machine learning is a multidisciplinary field, it can be classified into two classes supervised and 

unsupervised supervised learning techniques are used for regression and classification which trains 

a model using input and output data, and predicts future responses. While unsupervised methods 

are mainly used for clustering data and it’s can group and interpret data based only on input data. 

These methods could be implemented for FDD in PV systems, thanks to their rapid detection 

response times and high accuracy. Recently a review on FDi of PV systems using Artificial 

Intelligence techniques (from 2003 to 2019) including machine learning and deep learning are 

reported in [18]. Garoudja et al  [215] have proposed an enhanced machine learning method based 

on probabilistic neural network (PNN) classifier to detect and diagnose DC side anomalies that 

occurs in the PV systems, the parameters extraction of the one diode model (ODM) and simulation 

of healthy operations of the grid-tie PV system are performed using a PSIM™/Matlab™ co-

simulation, three faulty operating cases were tested: three modules short-circuited, ten modules 

short-circuited, and a string fault, the efficiency of this approach is guaranteed from two short-

circuited PV modules. In [216] a learning algorithm based on ANN Laterally Primed Adaptive 

Resonance Theory (LAPART) was used to detect module level faults with minimal error, the 

results showed that the LAPART algorithm can quickly learn PV performance data (only 4 days 

of one minute data) and provide an accurate multi-level FDe. The k-nearest neighbors algorithm 

(kNN) is a non-parametric method used for classification and regression.  

In [217] four approaches based on kNN algorithm are designed to detect faults, kNN-based 

Shewhart and EWMA schemes (parametric and nonparametric), the results showed a high 

capability for detecting open circuit faults, short-circuit faults, and temporary shading,  whereas 

this algorithm cannot distinguish the partial shading among faults occurring in the DC side of the 

PV array. Another Real-time detection and classification technique based on clustering kNN rule 

has been proposed in [218], the proposed learning technique does not require any predefined 

threshold values for FDe, which are difficult to choose for PV systems, where the output power is 

highly dependent on climatic conditions. In [219] , a C4.5 decision tree (DT) approach is proposed 

to detect and diagnose the faults in a GCPV system using a non-parametric model by learning the 

task. In this work, SNL models were used to predict the power produced from PV array under 

normal operation condition (i.e., fault free). Then, the supervised decision tree algorithm is 

employed to classify four cases: 1) fault free, 2) string fault, 3) short-circuit fault, and 4) line–line 

fault. The results showed a high accuracy with 99.86% and 99.80% for the detection and diagnosis 

model respectively.  Hence, as a supervised learning technique, this method needs data, and a set 

of training examples to build a good classifier able to distinguish between faults.  

A PV FDe approach which combines both the statistical and numerical methods are proposed in 

[220], where the least squares method is used for comparison between measured data and simulated 

data from Bishop model, and the fault level classification was established by Fuzzy Logic (FL) 

technique. Moreover, Tadj et al. [221] have used GISTEL model, based on the satellite image 

improved by FL technique to detect the faults of PV system.  In [118], a machine learning 

technique (MLT) merged with statistical testing hypothesis to detect fault in PV systems.  

The MLT based on Gaussian process regression (GPR) method are used for modeling, while a 

generalized likelihood ratio test (GLRT) chart is applied to detect inverter disconnection and partial 

shading faults.  

Authors in [222]  present an PV FDe algorithm which includes both ANN technique and FL system 

interface. The proposed algorithm is tested to detect ten cases of faults either a combination 

between four cases of faulty PV modules (from 1 to 4) and two cases of low and high partial 

shading, the variations of the voltage and power of the studied PV system are used as input for 

both ANN and the FL system. Currently, most FDD methods for the PV arrays do not take 

advantage of the temporal-spatial distribution information contained in the operation data. Zhu et 

al [223] proposes a spatial-temporal composite function combined with fuzzy rules to diagnose 

array fault in large-scale PV power plant, the proposed method can identify effectively various 

faults just using the current data measurement of PV array.  
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In [224] authors present an FDD model for PV system using transformation of normalized 

sequential PV array current and voltage into Electrical Time Series Graph (ETSG), the fault 

features are automatically extracted by Convolutional Neural Networks (CNN). A graph-based 

semi-supervised learning (GBSSL) approach for fault detection and classification in solar PV 

arrays are proposed in [225] , the GBSSL model exploits the measurements available in existing 

PV systems, such as PV-array voltage and current, in plane irradiance and ambient temperature, 

so that no additional hardware installation is needed, only a few data points are necessary for self-

learning, the proposed technique can suitably detect and identify the open circuit faults and line–

line faults.  An unsupervised monitoring procedure for detecting anomalies in PV systems using a 

one-class SVM technique are proposed in [226], the one-diode model is used under PSIM™ to 

simulate healthy operation of the monitored PV array, while the one-class SVM method is applied 

to residuals between measured and simulation data for FDe. The ML techniques have a rapid 

detection response, make it possible to distinguish faults which have the same signature and to 

classify faults with high accuracy, the setting threshold limits is not required. The FDD accuracy 

depends proportionally with trained PV model to estimate the expected energy yield. Hence, these 

techniques require more advanced skills for real-time hardware and software implementation, as 

well as obtaining training dataset of all possible faults’ scenarios could be difficult. Figure 1.48 

shows the process diagram of model training and fault classification based on machine learning 

techniques. 

 

Figure 1.48 Regression model and fault classification using machine learning techniques. 

5) Other methods  

On the other hand, applying signal transmission method especially to the PV array, makes it 

possible to detect local disconnection of interconnect cables in PV modules and open-circuit failure 

of bypass diodes. the signal transmission device is small, lightweight, and inexpensive. It consists 

of two parts: a transmitter and a receiver [161]. The location of each faulty module in arrays help 

to identify the fault quickly, but this would involve a high investment cost due to the large number 

of sensors required. Pei et al. [227] proposes a fault-locating strategy to identify module blocks 

faults for large-scale arrays, using an improved voltage sensor placement method, that allow 

diminishing the number of voltage sensors, the investment cost and wiring complexity are 

significantly reduced, this method can accurately locate the single and multiple  module blocks in 

the different sub-arrays under open circuit, short circuit, partial shading and degradation faults, 

unfortunately this technique cannot properly identify other types of faults such as temporary 

soiling. Generally, monitoring of electrical DC & AC is performed by the inverter in a large-scale 

PV power plant. Although monitoring by central inverter can detect its own failure or a reduction 

in power generation amount, but the monitoring of each PV string is not supported. In [228], a new 

effective failure detection method is proposed to detect faults in PV strings by the measure of the 

DC current value of each string. The data collection is performed using wireless communication 

method, realizing easy installation.  

In [229] authors propose a fixed electrical reconfiguration (FER) technique for the modules of the 

PV array, that can reduce the mismatch and power losses caused by the non-uniform distribution 
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of the partial shading on the entire PV array. The technique proceeds with renumbering of the 

modules of the PV array according to the proposed algorithm followed by electrical rewiring.  

Table 1.9 summarize and discuses briefly the ability to detect, identify and localize some electrical 

fault (i.e., 1) Ground Faults, 2) Line-line faults 3) Open circuit faults 4) Mismatch Faults 5) DC-

arc faults) using  existing solutions [156]. 

 

Table 1.9 Summary of existing PV fault detection, identification and location [156]. 

Fault Type Method Detection? Identification? Location? 

Ground Faults 

(or line-line fault 

with ground point) 

Ground Fault Detection Interrupter (GFDI) ✓   

Insulation resistance monitor ✓   

(Residual Current Detector) RCD ✓   

Time Domain Reflectometry (TDR)  ✓ ✓ ✓ 

Spread Spectrum TDR (SSTDR)  ✓ ✓ ✓ 

I-V curve analysis  ✓ ✓  

Statistical method  ✓   

Line-line faults 

Overcurrent Protection Device (OCPD) ✓   

RCD  ✓   

TDR  ✓ ✓ ✓ 

I-V curve analysis  ✓ ✓  

Statistical method  ✓   

Performance comparison ✓   

Capture loss analysis ✓ ✓  

Performance ratio  ✓   

Machine learning  ✓ ✓  

Open circuit faults 

I-V curve analysis  ✓ ✓  

Performance comparison ✓   

Capture loss analysis ✓ ✓  

Performance ratio  ✓   

Machine learning  ✓ ✓  

Mismatch faults 

I-V curve analysis  ✓ ✓  

Performance comparison ✓   

Infrared (IR) thermography  ✓  ✓ 

Internal series resistance ✓   

Machine learning  ✓ ✓  

DC-arc faults 
Arc-Fault Circuit Interrupter (AFCI)  ✓   

Machine learning ✓   
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Chapter 2 :  Data Acquisition and Monitoring of PV Systems 

2.1 Introduction 

The data analysis from PV installed systems indicate that best Operation and Maintenance (O&M) 

could improve the average performance ratio from 88% to 94% [13]. Indeed, the O&M contract 

for PV plants generally includes the following basic services: 1) Continuous monitoring of the PV 

installation with performance reports and fault alerts, 2) Preventive maintenance, and 3) Corrective 

maintenance [7], [64]. 

However, PV power generation systems put into operation require continuous, reliable and accurate 

monitoring system to determine PV performance, in order to maintain the cost effectiveness of PV 

systems (PVS) over the long term and harnessing its full potential always. 

The performance of PV system depends on many parameters such as the 1) geographical location 

and climatic parameters, 2) efficiency of each component of the PVS, 3) monitoring solution chosen 

and 4) O&M services. 

The monitoring process should preferably cover the following areas: 

1) Measurement of meteorological and electrical parameters with calibration.  

2) Retrieval, recording and visualization of all relevant data. 

3) Performance analysis and report generation. 

4) providing alarms for faults and malfunctions using intelligent algorithms. 

5) forecasting based on accurate models for large-scale PV plants. 

 

On the other hand, the evaluation PV performances can be monitored according to various 

solutions, the main criteria for classification and selection of the monitoring system according to 

the standard IEC 61724 are: 1) parameters to be measured according to size and application of the 

PV system, 2) sampling rate and accuracy of measurement, 3) processing, visualization and 

analysis of data, 4) quality and cost of the DAQ system and 5) transparency of protocols and 

measurement procedures. So, monitoring is very important, it can acquire and analyze several 

parameters for performance evaluation, to ensure reliable and stable operation of the PV systems. 

Several recommendations and standards have been reported by renowned institutions (e.g.  NREL, 

SNL and IEA PVPS .etc.) [8], [10]–[13]. However a good review on the state of the art of 

monitoring PV systems have been reported in [61], [65], [67], [68]. 

Many performance monitoring applications under LabVIEW and other programming environments 

for of PV systems are developed  in [71], [230]–[236].  

In summary, the purpose of the monitoring is to provide sufficient information to achieve an "energy 

balance" representing the amount of available solar energy and losses in each component of the PV 

system until delivery to the grid connection point. 

This chapter describes the design and development of the monitoring system installed in the 

GCPVS. The proposed monitoring interface are based the Virtual Instrumentation (VI) under 

LabVIEW software to monitor and analyses the measured parameters of the PV systems by DAQ. 

Additionally, all installed sensors are well calibrated with reference sensors and instruments. 

In the second part we present some case studies carried out at CDER, it concerns the measurement 

and the monitoring applied to different types of PV systems. These case studies are as follows: 

✓ Case 1: LabVIEW based monitoring for an off-grid PV System. 

✓ Case 2: Monitoring & control of a PV water pumping test bench using LabVIEW 

✓ Case 3: I-V characterization and test of PV modules using PVPM 2540C. 

✓ Case 4: Advanced electrical measurement of the grid connected PV system using three phase 

electrical networks analyzer. 
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2.2 Description of GCPV System at CDER with its associated monitoring  

The GCPV system at Centre de Développement des Energies Renouvelables (CDER), Algiers, 

consists of a PV array of 90 modules (ISOFOTON I106-12) monocrystalline- Si technology 

(Figure 2.1). The PV array is composed of three identical PV sub-array of 3.18 kWp, with an 

inclination of 27° and an orientation of +20° to the southwest (200°). Each PV sub-array is 

connected in a way to have the following configuration: two strings in parallel of fifteen PV 

modules connected in series. Thereafter the PV sub-array is cabled through an electrical protection 

cabinet to the PV inverter (SMA Sunny Boy 3000TL-21) (Figure 2.2). The single-phase PV sub-

systems are assembled in three-phase and connected to the low-voltage electrical grid (Sonelgaz)  

[237]. 

 

Figure 2.1 Picture of PV Array of the GCPV system on the top-roof at CDER. 

 

Figure 2.2 Picture of the GCPV plant laboratory at CDER 

The main electrical characteristics of PV Sub-array and SMA SB-3000 inverter are given 

respectively in Tables 2.1 and 2.2. 

Table 2.1 Electrical Characteristic of PV Module and PV Generator Isofoton I106-12. 

Parameters VOC(V) ISC(A) VMPP(V) IMPP(A) PMPP(W) 

PV Module  21.6 6.54 17.4 6.1 106 

PV Sub-Array 324 13.08 261 12.2 3180 

Table 2.2 Electrical characteristic of PV Inverter SMA Sunny Boy-3000TL-21. 

Parameters 
PAC  

Nominal  

VMPP  

range  

Efficiency 

max  

VAC  

range  

Frequency  

range  

Value 3000 VA 175-500 V  97% 180-280 V 49.5-50.5 Hz 
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2.2.1 Description of SMA monitoring system  

All solar inverters come with some form of remote monitoring which and is an important tool 

needed to track system performance [79]. Without reliable and accurate monitoring, it’s difficult 

to know if a PV system is operating correctly or requires some form of maintenance.  

The monitoring of the GCPV system is ensured by SMA sunny Webbox data logger [238] via 

RS485 communication bus, allowing to communicate with an external sensor system SMA sunny 

sensorbox to measures the environmental data (in-plane irradiance, PV module Temperature, 

Ambient air temperature and wind speed).  

The electrical data of the three PV sub-systems (such as DC and AC rated currents, voltages and 

power, daily efficiency, network frequency and other performance parameters) are also retrieved 

from the PV inverters using SMA webbox via RS485 bus as shown in Figure 2.3.  

Figure 2.4 shows a Picture of SMA SUNNY WEBBOX with RS485-Power Injector. 

 

Figure 2.3 Synoptic diagram of the SMA monitoring system 

 

Figure 2.4 Picture of SMA SUNNY WEBBOX with RS485-Power Injector 
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In the GCPV system we have use two SMA sunny sensorbox with additional sensors, in order to 

measure the following parameters: 

• Tilted irradiances at 27° using 2 sensor (Figure 2.5) 

• Ambient air temperature (Figure 2.6) 

• Wind velocity Anemometer (Figure 2.7) 

• Temperature of three different modules in the PV array, the temperature of modules is 

measured with pt100 surface temperature sensors, the sensors are mounted in the back of a 

solar PV modules (Figure 2.8) 

  

Figure 2.5 SMA SUNNY SENSORBOX 

 

Figure 2.6 Ambient temperature box 4-wire. 

 

Figure 2.7 Wind velocity Anemometer. 

 

   

Figure 2.8  Three PT100 surface Sensors mounted to the back of modules. 

 

 

 

SENSORBOX 1 SENSORBOX 2 
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The Sunny WebBox is operated via an integrated user interface with a local IP address . Also, the 

user interface allow to visualize all measured data for each device in real time (Figure 2.9), and 

alow to saving average data value for 5 min, 10 min or 15 min.  

 

Figure 2.9 Detail real-time data for each installed devices. 

Sunny portal interface: Sunny Portal is a simple and efficient Internet portal for monitoring the 

PV plant as well as visualizing and presenting plant data (Figure 2.10). where the data is collected 

via SMA Sunny Webbox. With Sunny Portal, PV system operators and installers can access key 

system data anytime, anywhere. The Sunny Portal features almost infinite options for analyzing 

data and visualizing yields, via a data table or a diagram (Figure 2.11). The yields of all inverters 

in a plant are compared automatically, allowing for the detection of even the smallest deviations. 

The powerful reporting functions also provide regular updates via e-mail to help ensure yields 

[239]. 

 

Figure 2.10 Sunny Portal overview interface. 
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Figure 2.11 Sunny Portal Analysis Interface. 

2.3 Monitoring of the GCPV mini-plant using external monitoring system  

In this section we have implemented a monitoring system using PC-based data acquisition (DAQ) 

for a 9.54 KWp grid connected PV system (GCPVS).  

PC-based DAQ is one of the most popular measurement and control techniques used to monitor 

industrial systems and to perform testing and characterization in research applications. This 

technique uses a combination of modular hardware and flexible software to turn the PC into a user-

defined supervisory system. The requirements of IEC 61724 standard concerning performance 

monitoring of PV system can largely be achieved using PC-based DAQ. 

2.3.1 Description  

The PV Monitoring is applied for the three single phase PV sub-systems connected to the grid, it 

is based on the measurement of the quantities influencing the performance of the PV system, 

especially the environmental quantities (irradiance and temperature) and the DC/ AC electrical 

quantities (current and voltage). 

The elements constituting the acquisition system are (Figure 2.12): 

• Irradiance sensors and temperature sensors installed on the PV array (Table 2.3). 

• Voltage and current sensors installed inside DC and AC electrical cabinets (Table 2.4). 

• Data acquisition device.  

• LabVIEW software under windows with the necessary drivers for each data acquisition unit.  
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Figure 2.12 Synoptic diagram of the proposed PV monitoring system. 

2.3.2 Sensor's specification and calibration  

The specifications of the environmental and electrical sensors are summarized respectively in 

Tables 2.3 and 2.4. The calibration of the sensors was performed by comparison with other sensors 

and instruments used as a measurement reference. 

Table 2.3 Environmental used sensors, and their characteristics. 

Measured parameters Sym. Unit Sensor type Sensor Reference Accuracy 
Calibrating 

reference  

Calibration 

factor 

in-plane Irradiance _27° 

Gi,iso 

W/m² 

PV reference cell 
Isofoton 

5% SMA Sensors Box 
8550 

Gi,fr Spektron 210 14900 

Gip Pyranometer Kipp & zonen CM 11 2% 
Pyranometer 

CMP21 
201613 

Ambien air Temperature Tamb 

°C 

Pt100 probe 4-wire WZP-Pt100 0.5 % 

Thermometer & 

SMA Sensors Box 

Direct 

Measure 

 

PV module temperature 

PVM8/PVG1 
Tmod1 

Pt100 surface 4-wire TC-direct 0.5 % 
PV module temperature 

PVM12/PVG1 
Tmod2 

Table 2.4 Main characteristics of electrical sensors used for monitoring. 

Measured parameters Sym. Unit Sensor type Sensor Reference Accuracy 
sub-system  

N° 

Calibrating 

reference  

Calibration 

factor 

PV sub-array  

output DC voltage  

VDC 
V 

Voltage Divider 350V/5V 1% 1,2,3 

 

Clamp-meter 

(Extech MA220), 
SMA PV inverter, 

and Datasheets 

 

 

86.3 
VDC2 Hall effect LEM LV-25P 0.8 % 2 

PV sub-array  

output DC current 

IDC 
A 

Shunt Resistor  20A/0,5V 1% 1,2,3 200 

IDC2 Hall effect LEM LA-25P 0.95% 2 2.54 

Inverter  

output AC voltage 

VAC 
V 

Voltage 

transformer 

YHDC PE2818S 

(220V/9 V) 
1% 1,2,3 18.3 

VAC2 Hall effect LEM LV-25P 0.8% 2 60.26 

Inverter  

output AC current  

IAC 
A 

Current 

transformer 

YHDC TA12-200 

(5A/5mA) 
1% 1,2,3 9.78 

IAC2 Hall effect LEM LA-25P 0.95% 2 2.53 
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Irradiance sensors  

Figure 2.13 shows the irradiance sensors installed in the same plane on the array. 

 
a) PV Reference Cell Isofoton 

 

 
b) PV Reference Cell 

spektron 210 

 
c) Pyranometer 

kipp&zonen CM11 

Figure 2.13 Irradiance sensors installed in the matching plane on the PV modules. 

The pyranometer kipp&zonen (CM11) was calibrated by the CDER pyranometer calibration 

laboratory. This laboratory uses kipp&zonen CMP 21 as reference pyranometer with CR6 

measurement and control datalogger (Figure 2.14 & 3.15). 

 

Figure 2.14 Pyranometer kipp&zonen 

CMP21. 

 

Figure 2.15 Measurement and Control 

Datalogger Campbell Scientific CR6. 

The CMP21 pyranometer is designed to measure irradiance on a plane surface. This is a high-

performance research pyranometer and fully compliant with all Class A (ISO 9060 the highest 

possible pyranometer performance category). 

Temperature sensors 

Figure 2.16 (a) shows the measure of ambient temperature using PT 100 probe. The PV module 

Temperature is measured by PT100 surface sensors with 4-wire shielded output (Figure 2.16 b-c).  

The calibration of temperature measurement is carried out using a reference PT100 sensor with 

multimeter (Figure 2.17 a-b) or thermocouple with thermometer (Figure 2.17-c). 

a) Ambient Temperature 
b) PV module Temperature 

(PVM8/PVG1) 

c) PV module Temperature 

(PVM12/PVG1) 

 
2-wire PT100 probe 

  
Surface pt100, 4-wire shielded output 

Figure 2.16 Ambient temperature and PV module sensors. 
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a) Calibration with a 

reference PT100 sensor 

b) Measure of PT100 

resistance with multimeter 

c) Calibration with 

thermometer 

Figure 2.17 Calibration of PT100 sensors. 

Voltage & Current sensors  

The measurement of the electrical parameters at DC and AC sides of the PV system was carried 

out using two categories of sensors: 1) Low-cost sensors and 2) med-cost using Hall effect 

sensors (Figures 2.18 and 2.19). The low-cost sensors are mounted in all three sub-systems, they 

do not require a power supply. The Mid-cost hall effect sensors are just installed in subsystem 2, 

these sensors are isolated but require a ± 15-volt symmetrical power supply, and they can be used 

for DC&AC measurement. 

Measured 

parameters 
Symbol Low-cost voltage sensors Hall effect voltage sensors 

DC voltage VDC 

 
Voltage divider with fuse 350V/5V 

 
LEM (LV-25P) config for 390V 

AC voltage VAC 

 
Voltage transformer with fuse 220V/9 V 

 
LEM (LV-25P) config for 270V 

Figure 2.18 Voltage sensors realised for DC and AC side of the GCPV system. 

Measured 

parameters 
Symbol Low-cost current sensors Hall effect current sensors 

DC current IDC 

 
Shunt resistor 20A/0,5V 

 
LEM (LA-25) & R=390Ω 

AC Current IAC 

 
Current transformer 5A/5mA 

 
LEM (LA-25) & R=390Ω 

Figure 2.19 Current sensors realised for DC and AC side of the GCPV system. 
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Considering the absence of a regenerative power supply with a DC Electronic Loads (400V / 20), 

the calibration of DC voltage and DC current sensors are realized after their installation in the PV 

system. Figure 2.20 illustrate the calibration of AC voltages transformers using two multimeters 

to measure the signal upstream and downstream of the sensor. Figure 2.21 shows the Calibration 

of AC current transformers with clamp meter EXTECH MA220 using a) rheostat load or b) Oil 

filled radiator laod. Figures 2.22 and 2.23 show the monted sensors in the DC and AC cabinets. 

  

Figure 2.20 Calibration of AC voltage transformers with multimeter. 

  

Figure 2.21 Calibration of AC current transformers with clamp meter EXTECH MA220 using a) rheostat load and 

b) Oil filled radiator laod. 

 

Figure 2.22 mounted  sensors on DC cabinet. 

 

Figure 2.23 mounted sensors on AC cabinet. 

 

(a) (b) 
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2.3.3 Monitoring of GCPV sub-system using Agilent 34970  

Description of realized monitoring system  

The monitoring is applied for one PV sub-system (N°2) of the GCPV system, it is carried out to 

require, display and analyze the measured data by the sensors, while these sensors have used to 

measure both meteorological and electrical parameters during the system operating. 

The 34901A and 34902A channel multiplexer modules integrated in Agilent 34970A DAQ [240] 

board are used for measuring the signal at the output of sensors.  

Using this DAQ 30sec. is chosen as the sampling time according to standard norm IEC 61724, 

which gives 2880 samples per day.  The recovery of instantaneous measurements is performed by 

a graphical code developed under LabVIEW [241] environment using a user-friendly interface. 

Figure 2.24 shows the Monitoring system of the GCPVS based on sensors, Agilent 34970A DAQ 

and LabVIEW. 

 

Figure 2.24 Monitoring of the GCPV system using Agilent 34970A DAQ and LabVIEW. 

Figure 2.25 shows the graphical code can using Agilent LabVIEW driver to recover all measured 

data from Agilent 34970A.  

 

Figure 2.25 Sample of code diagram used to create PV monitoring interface. 

After developing the graphical code for data acquisition and other additional programs, we have 

created a user-friendly and flexible interface (Figure 2.26) with the following features: 

• Communication via GPIB or RS232 and Sampling frequency chosen by the user. 

• Numerical indicators and Real time chart with time stamp for measured quantities. 

• Record all data measurement in a CSV file. 

• Remote and online monitoring using TeamViewer. 
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Figure 2.26 Designed  monitoring interface under LabVIEW software and agilent 34970A. 

Figure 2.27 illustrates the dynamic evolution of measured meteorological quantities with 

instantaneous indicators. 

 

Figure 2.27 Tab_ dynamic evolution of measured meteorological quantities. 

Figure 2.28 shows the dynamic evolution of measured electrical quantities in DC and AC side of 

PV sub-system. 

 

Figure 2.28 Tab_ dynamic evolution of PV sub-system measured electrical quantities. 

Figure 2.29 shows the supervision interface shared using teamviewer software for on-line users. 
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Figure 2.29 On-line monitoring using teamviewer software. 

The results were very satisfactory (for data retrieval, display and recording). The measurement 

accuracy was acceptable, but for a performance monitoring and fault detection system, the sensors 

must be properly calibrated, for this a second calibration will be mandatory. 

Second calibration using SMA monitoring system 

The second calibration of the electrical sensors was performed using data from the SMA 

monitoring system based on inverter and sensor box measurements. 

As an example we present the monitoring results of all PV system parameters during a typical day 

on 19/08/2018 using external sensors, agilent 34970A and LabVIEW.  

SMA DAQ record data each five minutes, for this the measured data with agilent 34970A for 

t=30s, are  averaged for t = 5 m, and then compared with the  SMA data, and that to validate the 

measurements and optimize the calibration factor.  

Figures 2.30 to 2.38 shown the measurement evolution for each parameter characterizing the 

GCPV system, where: The external measures with Agilent and LabVIEW are represented in the 

waveform in red color with acronym  (X_Meas), and the SMA data are shown in blue color with 

acronym  (X_SMA). 

 

Figure 2.30 Global irradiance on the inclined and horizontal plane. 

 
Figure 2.31 Ambient Air Temperature. 



78 

 

 

Figure 2.32 PV module Temperature. 

 

Figure 2.33 PV sub-array output DC current. 

 

Figure 2.34 Inverter output AC current. 

 

Figure 2.35 PV Sub-Array output DC voltage. 

 

Figure 2.36 Inverter output AC voltage. 
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Figure 2.37 PV Sub-Array output DC Power. 

 

Figure 2.38 Inverter output AC power. 

The MAE and RMSE error metrics were used to prove the accuracy and reliability of the sensors 

installed in front of the SMA monitoring sensors. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑋_𝑆𝑀𝐴 − 𝑋_𝑀𝑒𝑎𝑠|

𝑛

𝑖=1

 (1) 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑋_𝑆𝑀𝐴 − 𝑋_𝑀𝑒𝑎𝑠)2

𝑛

𝑖=1

 (2) 

Table 2.5 give the calculation results of MAE and RMSE in percent and absolute values. 

Table 2.5 Calculation the calculation results of MAE and RMSE in percent and absolute values. 

Parameters Gi Tamb Tmod VA IA Vinv Vinvo Iinv PA Pinv 

MAE 17.31 0.84 1.80 1.14 0.10 1.22 0.25 0.08 21.55 17.00 

RMSE 25.27 0.96 1.95 1.84 0.15 1.30 0.32 0.12 33.84 28.04 

MAE (%) 1.24 0.84 1.80 0.33 0.40 0.44 0.09 0.67 0.72 0.57 

RMSE (%) 1.81 0.96 1.95 0.53 0.60 0.47 0.11 1.04 1.13 0.93 

For the measure of the in-plane irradiance we notice that the error exceeds 1.2% and it comes back 

to the rapid variation of the irradiance at the beginning of the day because of the clouds. The PV 

module temperature measurement error exceeds 1.8%, because the two sensors are not installed 

on the same PV module and are exposed to same condition (ambient temperature, wind speed, 

shading, dust). The external electrical measurements are very close to the data measured by the 

SMA SB-3000TL-21 inverter, the error is less than 1%. 

Globally From the obtained results, the measurements by the sensors installed in the GCPVS give 

the desired values with best accuracy and minimum error. As can be seen a good agreement is 

found with SMA reference measurement. 

2.3.4 Monitoring of GCPV system using Keithley 2700 

Due to data acquisition problems with unexpected bugs using the Agilent 34970A datalogger, we 

have used an older Keithley 2700 data acquisition with 40-multiplexer measurement module 

channels [242], this data logger is more reliable and ensures continuous monitoring. 

In this section the monitoring will be carried out for the three PV subsystems, the used sensors are 

mentioned in Tables 3.3 and 3.4. Twenty (22) sensors were connected to 7702 40-channel 

acquisition modules, Pt 100 sensors (3) will be connected in 4-wire circuit for best accuracy. 
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Figure 2.39 shows a picture of Keithley 2700 DAQ with PC. To recover the data measured by 

Keithley 2700 in the LabVIEW environment, we have used the driver with a measurements 

configuration according to the signal type at the output of the sensors, namely: 1) DC voltage, 2) 

RTD 4 wire, 3) thermocouple, and 4) AC voltage (Figure 2.40). 

 

Figure 2.39 Monitoring of GCPV system using Keithley 2700 DAQ under LabVIEW. 

 
Figure 2.40 Code diagram_Config channel and recording for keithley 2700 DAQ. 

After configuration, we have developed the graphical code for 1) scan channels, 2) calibrating and 

display measurement, and 3) recording data (Figure 2.41). 

 

Figure 2.41 Code diagram for Channel Scan, calibration, display and recording data for keithley 2700 DAQ. 

After developing and optimizing the graphical code for data acquisition and other additional 

programs, we have created a user-friendly and flexible interface with three main Tab namely:          

1) system config and indicators (Figure 2.42), meteorological parameters (Figure 2.43), and 

electrical parameters (Figure 2.44). 
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Figure 2.42 Designed  monitoring interface using LabVIEW and keithley 2700 DAQ for three sub-system of the 

GCPVS. 

 

Figure 2.43 Tab_Real time meteorological measurement. 

 

Figure 2.44 Tab_Real time electrical measurement for three PV sub-system. 

The results were very satisfactory for retrieval and recording data. The accuracy of measurement 

are very suitable for three PV sub-system , the visualization of the first tab are designed using new 

NXG indicators. However, no error timeout encountered during data acquisition using keithely 

2700, this device is very reliable under LabVIEW.  
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2.3.5 Monitoring of GCPV system using Fluke 2638A 

In order to improve data acquisition as well as become familiar with other DAQ units, we installed 

Fluke 2638A (Figure 2.45). This device has the same features of the previous DAQ units, plus the 

following features [243]: 

• Graphic color display with easy-to-use menus. 

• Real-time plotting of data from up to four channels simultaneously with history recall. 

• Built-in memory of 57,000 data records and configuration files, and a USB port allows 

collection and storage directly to a USB drive. 

• USB and LAN connection interfaces are available. 

• Complies with international category II security standards with two-level (administrator / 

authorized user). 

• delivered with a factory calibration report. 
 

 

Figure 2.45 Meteorological and electrical data monitoring measured using Fluke 2638A & LabVIEW. 

To recover the data measured by Fluke 2638A in LabVIEW, we used the driver with a 

measurements configuration according to the signal type at the output of the sensors, namely:              

1) DC voltage, 2) thermocouple K, 3) RTD 4-wire, and 4) AC voltage (Figure 2.46). 

 

Figure 2.46 Code diagram_ a) config channel and b) config recording for Fluke 2638A DAQ. 
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After configuration, we have developed the graphical code for a) scan channels, c) measurement 

indexing and calibrating e) measurement visualization, and f) data recording (Figure 2.47). 

 

Figure 2.47 Code diagram for channel c) scan, d) calibration, e) display and f) data recording for Fluke 2638A DAQ. 

After having developed and optimized for the third time the graphic code for the acquisition, 

visualization and recording of data, we have created a new version of the user interface based on 

NXG style with four main tabs namely:  
 

1) System config and overview of instantaneous measured data (Figure 2.48).  

2) Meteorological parameters and indicators clusters (Figure 2.49).  

3) Waveform chart for DC & AC electrical parameters (Figure 2.50).  

4) Real-Time analysis using ratio representation (Figure 2.51). 

 

 

Figure 2.48 GCPVS Home user interface updated with additional sensors. 
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Figure 2.49 Tab_real time meteorological measurement and numerical measurement cluster. 

 

Figure 2.50 Tab_real time electrical measurement _page1_ separated DC & AC waveform. 

 

Figure 2.51 Tab_real time analysis _page2_ratio data presentation in the same waveform for each sub-system with 

meteorological data . 
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As shown in the figures 2.48 to 2.51, The results were very satisfactory for retrieval and recording 

data. The measurement are very accurate for three PV sub-system, the all tabs are designed using 

NXG indicators and chart. A fourth tab is added to display and analyze all measurement in the 

same time using ratio factor for each measure.  Access to Fluke 2638A was very easy using the IP 

address. However, timeout error is encountered during data acquisition using Fluke 2638A with 

Ethernet communication, Maybe there is a driver programming problem, whatever the program 

needs to be revised and optimized especially if it will have problems on the communication 

network. In the other hand, no problem are noted using recording with USB drive. 

 

2.4 Measurement and monitoring in PV systems: cases study 

In this section, we present a data acquisition and monitoring case studies applied to different types 

of PV systems at CDER. 

Case 1:  LabVIEW based monitoring for an off-grid PV System. 

In this case, we present a monitoring of an off-grid PV system. The PV system are composed of 

two symmetrical subsystems, connected in the parallel to an 48V-1000Ah batteries bank. The PV 

array composed of two PV generators (Table 2.6), can generates a total peak power of 3.66 KWp 

(Figure 2.54).  
Table 2.6 Main features of PV generators. 

 Module technology Manufacturer Connection Total power 

PV generator 1 monocrystalline 155W 
condor 

4 modules in series 

3 strings in parallel 

1860Wp 

PV generator 2 Polycrystalline 150W 1800Wp 

 

Figure 2.52 Synoptic diagram of the off grid PV system with monitoring. 

Figure 2.53 shows the irradiance sensors using pyranometer for global horizontal irradiance and 

two PV reference cell to measure the tilted irradiance at 27° and 36°, the PV reference cell are 

equipped by an internal PT 100 sensor to measure the cell temperature. Figure 2.54 illustrates the 

temperature sensors using pt100 probe inserted in the radiation shield for air ambient measurement 

and pt100 surface sensor to measure the temperature of the module back sheet. Figure 2.55 shows 

the voltage and current sensors mounted in the DC cabinet. Voltage divider sensors are used to 

measure the DC voltage of PV generator and batteries. While the Open loop Hall effect sensors 

(LEM HAL-50) are used to measure the DC current of PV array, charge controller output, batteries 

and inverter input (load consumption).  
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Figure 2.53 Irradiance sensors including temperature cell measurement. 

 
Figure 2.54 Sensors for air ambient and PV module Temperature. 

 

Figure 2.55 Voltage and current sensors mounted in the DC cabinet. 

Figure 2.56 illustrates the voltage and current sensors mounted in the AC cabinet. Voltage 

transformer sensors are used to measure the AC voltage at the output of inverter and AC voltage 

from grid, while the current transformer sensors are used to measure AC current at the output of 

inverter and AC current from grid. 
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Figure 2.56 Voltage and current sensors mounted inside the AC cabinet. 

The specifications of the environmental and electrical sensors are summarized respectively in 

Tables 2.7 and 2.8. The calibration of the sensors was performed by comparison with other 

sensors and instruments used as a measurement reference. 

Table 2.7 Environmental sensors used, and their characteristics. 

Measured parameters Sym. Unit Sensor type 
Sensor 

Reference 
Accuracy Calibrating reference  

Calibration 

factor 

Global horizontal 

irradiance  
GHI 

W/m² 

Pyranometer 
Kipp & zonen  

CM 11 
2% Pyranometer CMP21 201613 

in-plane Irradiance _27° Gi,27 
PV reference cell 

imt-solar 

Si-mV-85-Pt100  

Class A 
IEC61724-1 

imt-solar datasheet  

multimeter 

17352 

in-plane Irradiance _37° Gi,37 17902 

PV cell temperature 27° T𝑐,27 
°C Pt100 4-wire 

Class A  

IEC 60751  

Calibrated by imt-solar manufacturer  

RTD measured by fluke 2638 PV cell temperature 37° T𝑐,37 

Ambient                                

air Temperature 
Tamb 

°C 

Pt100 probe  

4-wire 
WZP-Pt100 0.5 % 

Thermometer 

Multimeter  

Direct 

Measurement 

 Temperature of the 

Polycrystalline module 
Tmp 

Pt100 surface  

4-wire 
TC-direct 0.5 % 

Table 2.8 Main characteristics of electrical sensors used for monitoring. 

Measured parameters Sym. Unit Sensor type 
Sensor 

Reference 
Accuracy Cost (DZA) Calibrating reference sensor 

Calibration 

factor 

PV generator voltage V𝑝𝑣 
V 

Voltage  

Divider 
222V/2V 1% 50 multimeter 22.9 

Battery voltage V𝐵𝑎𝑡 

PV generator current I𝑝𝑣 

A 
Open loop  

Hall effect 

LEM  

HAL-50  

&  

HAS-50 

 

0.8 % 
 

5000 

Clamp-meter (Extech MA220), 

Victron charge controller and 

Datasheets 

 

12.5 

Battery current I𝐵𝑎𝑡 

Charge Controller 

current  
I𝐶ℎ𝑐𝑡 

Inverter input current I𝑖𝑛𝑣,𝑖 

Inverter output voltage  V𝑖𝑛𝑣,𝑜 
V 

Voltage 

transformer 

230V/9V 

 
1 % 

450 

 
multimeter 9.4 

Grid voltage  V𝑔 

Inverter output current  I𝑖𝑛𝑣,𝑜 

A 
Current 

transformer 

HWCT  

(5A/5mA) 
1 % 380 

Clamp-meter (Extech MA220), 

Victron charge controller and 

multimeter 

10.63 
Grid current  I𝑔 

Using fluke 2638A the chosen sampling time are 30 sec. for the whole of meteorological and 

electrical measurement according to standard norm IEC 61724, which gives 2880 samples per day.  

To recover the instantaneous data measured by fluke 2638A in the LabVIEW environment, we 

have used the driver with a measurements configuration according to the signal type at the output 

of the sensors, namely: 1) DC voltage, 2) RTD 4 wire, and 4) AC voltage (Figure 2.57). 

Figure 2.58 illustrates the code diagram for measure, calibration and visualization.  
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Figure 2.57 Code diagram for config measurement. 

 

Figure 2.58 Code diagram for measure, calibration and display. 

Following the graphical code development for data acquisition and other supplementary programs, 

we have designed the first version a user-friendly and flexible interface with three main Tab 

namely: indicators, config, and graphs (Figure 2.59). 

The second version showed in Figure 2.60 was designed with NXG style to measure only the 

meteorological and environmental data with fast sampling for 5 sec or 10 sec. 

The third version was designed by our colleagues at CDER, schematic monitoring represents all 

the components of the PV system with dynamic arrows showing the direction of the energy flow 

(Figure 2.61). 

 

Figure 2.59 Version 1 of designed monitoring interface for the off-grid PV system under LabVIEW. 
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Figure 2.60 Version 2 of designed monitoring interface for the off-grid PV system under LabVIEW. 

 

Figure 2.61 Version 3 of designed monitoring interface for the off-grid PV system under LabVIEW. 

As an example we present the measurement of one PV sub-system during one day (13/20/2020) 

using external sensors, Fluke 2638A and LabVIEW. 

Figures 2.62 to 2.67 shown the measurement evolution for each parameter characterizing the off 

grid sub system. 

Figure 2.62 shows the irradiance measurement for global horizontal and tilted irradiance at 27° 

and 36°. Figure 2.63 illustrates the temperature measurement for air ambient, PV cell temperature 

at 27° and 36°, and PV module back sheet.  

Figure 2.64 shows the DC voltage measurement of PV generator 2 and batteries. Figure 2.65 displays 

the DC current measurement of PV generator, charge controller output, batteries and inverter input. 

Figure 2.66 illustrates the AC voltage measurement at the output of inverter and from the electrical 

grid. Figure 2.67 shows the AC current measurement at the output of inverter and from the 

electrical grid. 
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Figure 2.62 Global irradiance measurement on the inclined plane at 27° (Gi27) and 36° (Gi36) as well as on the  

horizontal plane (Gh). 

 

Figure 2.63 Temperature measurement of air ambient (Ta), PV cell at 27° (Tc27), PV cell at 36° (Tc36), and 

polycrystalline modules at 27° (Tcp). 

 

Figure 2.64 DC voltage measurement of PV generator 2 (Vp2) and batteries (Vb2). 

 

Figure 2.65 DC current measurement of PV generator 2 (Ip2), charge controller output (Ic2), batteries (Ib2) and 

inverter input (Io2). 
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Figure 2.66 AC voltage measurement at the output of inverter (Vs2) and from the electrical grid (Vr2). 

 

Figure 2.67 AC voltage measurement at the output of inverter (Is2) and from the electrical grid (Ir2). 

As shown in the figures presented above, the designed interfaces are very user-friendly, the measurements 

of the environmental and electrical parameters were well calibrated. for measurements on the AC side, 

fluctuations are observed. 

Case 2: Monitoring & control of a PV water pumping test bench using LabVIEW 

In this case, we present data acquisition and control of a photovoltaic (PV) pumping system using 

LabVIEW.  

We would present this system because it contains several additional features from the other system 

regarding the following items: 

• Pressure level and flow rate sensors with 4-20 mA output 

• Actuators (On/Off pump controller, Pneumatic valve, regulation air valve). 

• Regulation of manometric pressure to simulate pump level by Control of valve. 
 

The first phase in this section deals with the electronic instrumentation, which includes the wiring 

of sensors and actuators to the data logger Agilent 34970A, then the conditioning and the 

calibration ensured by the latter. However, the second phase is dedicated to the development of a 

program under LabVIEW environment and design a convivial graphical user-interface to retrieve 

data measured by different sensors and control pneumatic valves installed in the PV system in real 

time. The software platform designed has served as a system of monitoring and control of 

photovoltaic pumping system. All data obtained from the user-interface were recorded and 

archived in a database. 

Description of PV Pumping System test bench 

Test bench should be equipped with different sensors for each variable (such as irradiation, 

temperature, pressure, flow, water level, voltage and current) to better represent operating status 

and performances of PV pumping system in real time, it will: 

✓ Test and evaluate PV pumping systems. 

✓ Realize a database for the motor-pump system. 

✓ Select the best pump for each application. 

✓ Modeling photovoltaic pumping systems (PV module, inverter, pump-motor). 
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The Experimental test bench (Figures 2.68 & 2.69) was made of stainless steel and is easily 

removable. We distinguish the following parts: 

• Water-Well 

• Water-air tank 

• Pump & inverter DC/AC 

• Discharge branch between the well and the tank 

• Discharge branch which includes the tank return to well 

• Air compressor 

• Sensors and transducers 

• Actuators (Pneumatic valves) 

• Control and display panel 

• Connection cabinet for external measurements with additional instrumentation 

• The PV array is composed of 30 modules A-75, for a total output 2.2 kWp 

• Agilent 34970A Data Acquisition / Switch Unit (Data Logger) for measure and control. 

• RS232 or GPIB cable 

The management of the tank pressure applied to the pump, allows us to simulate the heights 

pumping in the water-well (2m) going from 0m to 120m, and 0-30 m3/h   for the water flow pump. 

The pump inside water-well uses as power supply photovoltaic array 0 to 2.2 kW or programmable 

DC Power supply 0 to 3kW. 

 

Figure 2.68 Solar pumps Test bench picture. 

 
Figure 2.69 Solar pumps Test bench synoptic scheme with sensors and actuator’s location. 
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Table 2.9 display List and Characteristics of Sensors and transducers used in the solar PV 

Pumping test bench. 

Table 2.9 List and Characteristics of Sensors and transducers used in PV Pumping test bunch. 

Sensors 

N° 

Channel 

N° 34902 

Measured quantities Sensors type Output  

Signal 

S1 101 Pressure 0-10m IMT industrie 

messtechnik 

3276.69/76.001 

4-20mA 

 S2 102 Préssion  0-160m 

S3 103 Tank pressure 0-160m 

S4 104 Tank height TecfluidLE-70/TR420 

S5 105 well Height  Pressure sensors 

S6 106 DC Voltage  Voltage divider 0-5V 

S8 108 AC Voltage  

S7 107 DC Current  Shunt     4A/150mV 

            25A/150mV 

0-150mV 

S9 109 DC Current 

S10 110 Water flow diameter Ø50mm Contecesa 

TC50/TC32 

4-20mA 

 S11 111 Water flow diameter Ø32mm 

S12 112 Irradiance on the inclined plane 36 ° reference cell  (Atersa) 0-65mV 

S13 113 PV module temperature Termocouple (k) (-1)- 5mV 

 S14 114 ambient temprerature 

Actuators in this system are pneumatic valves as illustrated in Table 2.10. While (A7 to A10) are 

manual valves not controllable. 

Table 2.10  List and Description of Pneumatic valves used in PV Pumping System. 

N° valves N° Channel 

34903 

Description  

A1 201 Pneumatic valve 50mm diameter for branch repression 50 mm 

A2 202 Pneumatic valve 32mm diameter for branch repression 32 mm 

A3 203 pneumatic valve 50 mm diameter of the discharge branch 

A4 204 regulation valve air intake inside water-air tank 

A5 205 regulation valve air exhaust inside water-air tank 

A6 206 On-off pump controller 

Measure and control With Agilent 34970A 

The Agilent 34970A Data Acquisition / Switch Unit combines the advantages of measurement and 

control functions, with accuracy and multiple options for connecting signals for the systems testing 

and development. The measurement of different quantities characterizing our Test bench is 

performed by Agilent 34902A module 16 Channel Multiplexer, these measures require a good 

calibration using the information given by the manufacturer of each sensor or transducer, likewise, 

we can control the actuators installed in the system, using Agilent module 34903A 20 Channel 

Actuator. 

User-Interface Under LabVIEW for pump test 

This part is based on a LabVIEW software application that will allow us to recover the data 

measured by the sensors and control the actuators. After the development of a graphical code 

(Figure 2.70) for data acquisition, control and data recording, LabVIEW has allowed us to create a 

friendly and flexible user interface (Figure 2.71) with the following functionality: 

• Communication through either GPIB or RS 232. 

• Sampling frequency chosen by the user. 

• Numerical indicators and Real-time chart for measured quantities. 

• Remote control for actuators and regulation valves from the user interface. 

• Data recording in an Excel file or other format. 
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Figure 2.70 Sample of graphical code for monitoring and control of the PV test bench. 

 
Figure 2.71 User interface_tab configuration & description of system. 

The acquisition of measured data and remote control of pneumatic valves in real-time via the user 

interface under LabVIEW is friendly and reliable. 

Case 3: I-V characterization and test of PV modules using PVPM 2540C. 

I-V curve tracing is a performance verification method used in PV systems with traditional 

inverters. Performance verification is done by measuring current and voltage while varying an 

electrical load connected to a PV module string. 

The peak measuring device tracer (PVPM 2540C) with the characteristics listed in Table 2.11 is 

used for the measurement, can provide both I-V and P-V curves of 101 samples every 0.05s. 
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The PVPM2540C device provide the I-V-curve measurement with 101 samples almost in 5 

seconds for PV modules and small strings up to 250V and 40Adc, the device can also measure and 

calculate the peak power (Ppk), the series resistor (Rs) and the parallel resistor (Rp) from a single 

I-V-curve.  

Table 2.11 PVPM 2540C Measuring Range. 

Application 
DC Voltage 

(V) 

DC Current 

(A) 

Temperature 

(°C) 

Irradiance 

(W/m2) 

Period for single 

measurement (s) 

I-V curve 

samples 

PV modules & 

small strings 
25 / 50 / 100 / 250 2 / 5 / 10 / 40 

-40 to +120  

with Pt1000 
0 to 1300  
(Standard-Sensor) 

0.02 – 2 101 

 

Figure 2.72 illustrates a synoptic scheme for continuous I-V measurement for different PV module 

technology and power. Figure 2.73 display a picture of PV module (Sanyo 180Wp) in outdoor Tested 

condition. 

 

Figure 2.72 Synoptic scheme for continuous I-V measurement for different PV module technology and power. 

 

Figure 2.73 Picture of Tested PV module (Sanyo 180Wp). 
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Figure 2.74 shows an Example of I-V characteristics measured for Sanyo 180 PV module at 

13:21 under PVPM software. 

 

Figure 2.74 Example of I-V characteristics measured for Sanyo 180 PV module at 13:21. 

This method has several limitations: 

• No real-time monitoring - the procedure reports data from a single point in time. It is therefore 

heavily dependent on environmental conditions at the time of data capture and is not reproducible 

• Diagnostic information is not continuous - defects or underperformance can go undetected for 

long periods of time (until the next I-V curve tracing). Data presented is partial and 

unrepresentative of the long-term health of the PV system. 

• No module-level analysis - in PV systems with traditional inverters, modules are not analyzed 

individually, but are bundled with neighboring modules in the array. This lack of granularity leads 

to inaccuracies in error detection. 

• Requires costly labor & equipment – if I-V curve tracing indicates a possible fault, without real-

time and continuous diagnostic information, technicians are sent to the site to search for the 

problem with little direction or guidance.  This search becomes more difficult and costly as 

installation size increases. Additionally, expensive thermal imaging (IR) cameras and portable 

electro-luminescence (EL) equipment will have to be deployed to detect the reduced output power 

of a single solar module. 

Case 4: Advanced electrical measurement of the grid connected PV system using three-

phase electrical networks analyzer. 

In our GCPVS laboratory, we have used three-phase electrical network analyzer (Chauvin arnoux 

C.A 8336), in order to monitor the energy quality of PV production at the output of the three SMA 

inverters (Figure 2.75). On the other hand, the three-phase electrical network analyzer C.A 8335 

was installed to measure load consumption in laboratory and inverters output for the phase 2 

(Figure 2.76).  

Two type of clamp meter were used namely: 

1) E3N for DC & AC accurate current measurement (Figure 2.77). 

2) MN93 for AC current measurement (Figure 2.78). 
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Furthermore, the electrical network analyzer allows the study of phenomena related to the PV 

system connection to the grid, namely: power quality, reactive power, current THD and voltage, 

…etc. [237].   

In  [244] electrical parameters at the point of common coupling (PCC) were studied, including the 

impact of the PV installation on the grid.  

The C.A 8336 and C.A 8335 are equipped with 5 voltage measurement channels and 4 current 

measurement channels, the devices capture and records all parameters, transients, alarms and 

waveforms.  

The measurement uncertainty of this device is better than 1%, is also very flexible, with a choice 

of sensors allowing measurements ranging from a few milliamperes to several kiloamperes.  

It plays three roles and can be used to: 

• Measure the RMS values, powers, and perturbations of electric distribution networks. 

• Deliver a snapshot of the principal characteristics of a three-phase network 

• Track the variations of various parameters over time. 
 

 

Figure 2.75 C.A 8336 installed on PCC. 

 

Figure 2.76 C.A 8335 installed on load-lab. 

 

 

Figure 2.77 E3N DC/AC Current clamp. 
Figure 2.78 MN93 AC Current clamp. 

To retrieve data, we use DataView software, DataView is a tool for configuring and performing 

measurements, viewing data in real time, recovering recorded data and creating reports. As  

presented in Figure 2.79, All  retreived mesurements in DataView software are reliable and very 

accurate. The use of a three-phase electrical network analyzer allows advanced monitoring of the 

energy quality of PV power plants connected to the grid.  
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Figure 2.79 measured data by C.A 8336 viewed in DataView. 

2.5 Conclusion  

Comprehensive monitoring of all characteristic parameters adds value to the PV system allowing 

1) extended system life, 2) low maintenance requirements and 3) low operating costs in order to 

have an optimum performance in a cost-effective and reliable way. 

PC-Based measurement and control systems uses a combination with modular hardware and 

flexible software to turn computer into a supervisory system defined by the user. The external 

sensor realized and mounted in the GCPVS, are well calibrated with reference measurement and 

presents reliable and precise measurements. The use of sophisticated and accurate PC-based DAQ 

hardware (i.e., Agilent 34970A, Keithley 2700 and Fluke 2638A) with LabVIEW software creates 

a virtual instrumentation (VI) system useful for the acquisition, visualization, and analysis of 

measured data.  A user-friendly interface under LabVIEW is designed, making it possible to 

retrieve, display and record the measured data of the climatic and electrical parameters which 

characterize the GCPVS. knowing that  several versions were developed to design the final 

interface. Development using programming software is extensible for full functionality and 

application, The use and operation of the proposed monitoring platform is customizable, and can 

be applied to any size and type of the PV system, while the GCPVS presents one of the best 

applications for the monitoring system. The designed interface is thus extensible for modeling, 

performance analysis, and fault detection. 

In the last section of this chapter, some case studies carried out at CDER are presented, it concerns 

the measurement and the monitoring applied to different types of PV systems. These case studies 

are as follows: 

1) LabVIEW based monitoring for an off-grid PV System. 

2) Monitoring & control of a PV water pumping test bench using LabVIEW. 

3) I-V characterization and test of PV modules using PVPM 2540C. 

4) Advanced electrical measurement of the grid connected PV system using three-phase 

electrical networks analyzer. 

The results were very satisfactory, as we have already presented. 

However, carrying out monitoring for different systems and PV test benches has enabled us to: 

1) Know of new electrical and physical phenomena. 

2) Become familiar with new conditioning and measurement techniques. 

3) Handle multiple sensors, transducers, instruments, and software. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

  
Modeling and performance Analysis 

of Grid Connected PV System  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

 

Chapter 3 :  Modeling and Performance Analysis of Grid Connected PV System 

3.1 Introduction  

The performance of PV installations depends on many parameters, including weather conditions, 

the performance of each component of the PV system and grid parameters. Solar PV systems can 

be subjected during operation to various faults that affect components of the PV system such as 

modules, cables, protections or inverters [7]. 

The simulation of the PV system connected to the grid makes it possible to create reference 

thresholds for the monitoring system carried out, which makes it possible to analyze the 

performance and power losses in order to detect and identify the various faults affecting the PV 

system. 

The main goal of this chapter is to model and analyze the performance of the 9.54 kW Grid 

Connected PV System (GCPVS). Accurate parametric performance models were proposed in order 

to simulate the electrical behavior of GCPVS, the models' parameters were identified using 

MATLAB curve fitting toolbox. Additionally, a non-parametric model based on Principal 

Component Analysis was suggested. Furthermore, several models were selected and compared to 

choose the best model, this model are well calibrated with experimental data measurement in order 

to minimize errors as much as possible. Finally, a user-interface for modeling and performance 

analysis of the PV system under LabVIEW was designed.  

3.2 Parametric modeling of Grid-connected PV system  

The objective of the simulation of the GCPVS is to obtain the expected evolution of DC Power 

produced by the PV array as well as the AC power at the output of the PV inverter, considering 

real climatic conditions.  

The simulation of the GCPVS is based on the parametric models implemented and evaluated under 

the MATLAB environment (Figure 3.1). 

The modeling of some parts is optional in the performance monitoring and faults diagnosis 

applications. However, in this section, some modeling parts have not been established. As the 

irradiance on the plane of array was measured using pyranometer and PV cell reference sensors, 

the irradiance components were not modeled. Aging and mismatch losses were included in the 

models using derates factors. Shading and soiling are considered as fault for our system, so they 

are not modeled. The following figure illustrates the simulation diagram of the electrical generation 

behavior by the CGPVS from empirical models. 
 

 
Figure 3.1 Simulation diagram of the PV system under MATLAB. 
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3.2.1 PV array Model 

The behavioral model of a PV module depends on the many electrical and meteorological 

parameters. The PV cell or module temperature is usually obtained by prediction.  

PV cell temperature model 

The to estimate the temperature of the PV cell/module, numerous models have been introduced in 

the literature [138], [139], [171], [245], [246]. Among these models, eighth simple empirical 

models were selected; that are based on the Ross model, environmental parameters, or Nominal 

Operating Cell Temperature (NOCT) model. After comparing the simulation results of eight 

models with the measured PV module temperature data, the NOCT model appears the most 

suitable for our PV modules.  

The NOCT is defined by the IEC 61215 standard for crystalline silicon modules, is the temperature 

that the module reaches in the following conditions: 45° south facing, 800 𝑊/𝑚2 incident 

irradiance (𝐺𝑖 ), ambient temperature (𝑇𝑎) equal to 20 °C and wind speed  (𝑊𝑠 ) equal to 1 m/s. 

The NOCT is given in all PV module datasheets 

Here, the estimated PV cell temperature (𝑇𝑐𝑠) is computed using Eq. (3.1) based on NOCT model 

[247], which is proportional to the evolution of ambient temperature (𝑇𝑎) and tilted irradiance 

(𝐺𝑖 ) in 𝑊/𝑚2. 

Where, 𝑝0 is the NOCT coefficient of PV module temperature.  

DC current model at MPP 

The dynamic model of the estimated DC current 𝐼𝐷𝐶s  at MPP is expressed by Equation 3.2 [248]. 

 𝐼𝐷𝐶𝑠 = (𝑎. 𝑝. 𝐼𝑚0 + 𝑇𝐶𝑖 . (𝑇𝑐𝑠 − 𝑇0)).
𝐺𝑖 

𝐺0
 (3.2) 

 Where: 

𝑎: Aging factor for DC current of the PV array. 

𝑝 : Number of parallel PV string.  

𝐺0: Reference global irradiance at STC=1000W/m2. 

𝑇0: Nominal temperature at STC = 25°C. 

DC Voltage model at MPP 

The dynamic model of the estimated DC voltage 𝑉𝐷𝐶s  at MPP which is introduced in by [249]. 

𝑉𝐷𝐶𝑠 is inversely proportional to the evolution of the PV cell temperature (𝑇𝑐𝑠), and slightly 

proportional to the evolution of tilted irradiance (𝐺𝑖𝑝 ) ,as is shown in the following equations (3.3-

3.5). 

𝑉𝐷𝐶𝑠 = 𝑉𝑥 (1 + 𝑏. 𝑙𝑛 (𝑏 − 𝑏. 𝑒𝑥𝑝 (
−1

𝑏
))) (3.3) 

𝑉𝑥 = 𝑠.
𝐺𝑖

𝐺0
. 𝑇𝐶𝑣. (𝑇𝑐𝑠 − 𝑇0) + 𝑠. 𝑉𝑜𝑐𝑥 − 𝑠. (𝑉𝑜𝑐𝑥). 𝑒𝑥𝑝 (

𝐺𝑖

𝐺0
. 𝑙𝑛 (

𝑉𝑜𝑐𝑥 − 𝑉𝑜𝑐0

𝑉𝑜𝑐𝑥
)) (3.4) 

𝑉𝑜𝑐𝑥 = 𝑉𝑜𝑐0 + 1𝑒−10 (3.5) 

Where;  

𝑏 : Aging factor for DC voltage of the PV array 0.01 < b < 0.18.  

𝑉𝑥 : Vacuum voltage at all given 𝑇𝑚𝑠 and 𝐺𝑖𝑝  

𝑠 :  Number of PV module in series. 

𝑉𝑜𝑐𝑥 : Open circuit voltage at 25°C and more than 1200W/m². 

𝑇𝑐𝑠 = 𝑇𝑎 +
𝐺𝑖 

800 𝑊/𝑚2
 . ((𝑝0. 𝑇𝑁𝑂𝐶𝑇) − 20°𝐶)) (3.1) 
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3.2.2 PV Inverter model (Sandia) 

The Conversion of DC power into AC power allows this power to be tied to the AC grid with high 

efficiencies. To estimate this conversion, a behavioral model developed by Sandia National 

Laboratories (SNL) [140] were used. The used model is defined by the following equations. 

𝑃𝐴𝐶𝑠 = {(𝑃𝐴𝐶𝑜 (𝐴 − 𝐵)⁄ ) − 𝐶. (𝐴 − 𝐵)} (𝑃𝐷𝐶𝑠 − 𝐵) + 𝐶. (𝑃𝐷𝐶𝑠 − 𝐵)2 (3.6) 

𝐴 = 𝑃𝐷𝐶0. {1 + 𝐶1. (𝑉𝐷𝐶𝑠 − 𝑉𝐷𝐶0)} (3.7) 

𝐵 = 𝑃𝑆0. {1 + 𝐶2. (𝑉𝐷𝐶𝑠 − 𝑉𝐷𝐶0)} (3.8) 

𝐶 = 𝐶0. {1 + 𝐶3. (𝑉𝐷𝐶𝑠 − 𝑉𝐷𝐶0)} (3.9) 

 

The definition of the performance parameters is given below: 

PACS : Predicted AC-power output from inverter based on predicted DC power and voltage, (W). 

PDCS : Predicted DC-power input to inverter, equal to the PV array maximum power, (W). 

VDCs : Simulated DC-voltage input, equal to the PV array maximum power voltage, (V). 

PACO : Maximum AC-power rating for inverter at reference operating condition (ROC), (W).  

PDC0 : DC-power level at which the AC-power rating is achieved at the ROC, (W).   

VDC0 : DC-voltage level at which the AC-power rating is achieved at the ROC, (V).  

PS0 : DC power required to start the inversion process, (W). 

C0 : Parameter defining the curvature of the relationship between AC power and DC power (1/W). 

C1 , C2 and C3  are the empirical coefficient allowing respectively PDC0 , PS0 and C0 to vary linearly 

with DC-voltage input, (1/V). 

 

3.2.3 Validation of models and results. 

Validation the PV module Temperature model 

Here, the module temperature model is fitted with the experimental dataset of six days (Figure 

3.2), and for best fit with measured data of PV module the NOCT coefficient of PV module 

temperature (𝑐) was identified as 0.851. 

The NOCT coefficient of PV module temperature, c, was identified to be 0.851. The model 

describes the data well, as shown in Figure 3.2 Precisely, the model was calibrated with PV module 

(ISOFOTON I-106/12) temperature measurement data of six days recorded using an SMA 

SensorBox with a 4-wire pt100 surface temperature sensor located in the back sheet of the PV 

module. Indeed, SMA sunny SensorBox measures the irradiance on the tilted plane, ambient 

temperature, PV module temperature, and wind velocity. 

 
Figure 3.2 Evolution of the PV module temperature measured and estimated under MATLAB. 

Three representative statistical indicators are considered to assess the prediction performance and 

accuracy of behavioral models: the coefficient of determination (R2), root mean square error 

(RMSE), and mean absolute error (MAE). These metrics are computed as follows 
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𝑀𝐴𝐸 =
1

𝑛
∑|𝑌𝑖 −  𝑌�̂�|

𝑛

𝑖=1

 (3.10) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖 − 𝑌�̂�)

2

𝑛

𝑖=1

 (3.11) 

𝑅2 = 1 −
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1

∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1

 (3.12) 

Where 𝑌𝑖 are the actual values,  𝑌�̂� are the corresponding estimated values, �̅� refers to the mean 

value of 𝑌𝑖, and n is the number of measurements. The measurements of effectiveness for the used 

PV module temperature model listed in Table 3.1 confirm its good prediction performance. 

Table 3.1 Regression metrics for the used PV module temperature model. 

Indicator MAE RMSE MAE (%) RMSE (%) R2 

Values 1.19 °C 1.53 °C 1.99 2.56 0.97 

Validation of the electrical models 

To verify the prediction accuracy of the abovementioned electrical empirical models, we used 

measurements collected under normal operating conditions without any faults and power losses. 

Figure 3.3 (a-b) show clear sky day profile of measured tilted irradiance, measured ambient 

temperature and predicted temperature of PV module, used as input to simulate DC current and 

DC voltage of the PV sub-array at MPP, and AC power at the inverter output. 

 
Figure 3.3 Clear sky day profile of (a) measured tilted irradiance, and (b) measured ambient temperature and 

predicted PV module temperature. 

Here, the coefficients of the PV sub-array model and the inverter model were identified using a 

curve fitting toolbox under MATLAB software, where the fitting is based on nonlinear least 

squares method and trust-region algorithm (Figure 3.4).  
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Figure 3.4 Coefficients identification under MATLAB using curve fitting tool. 

Four parameters of the sandia inverter model were set in the following values based on datasheet 

specification of Fronius IG30 inverter: PAC0 = 2650W, PDC0 = 2850W, VDC0 = 280V and PS0 = 

27W, in order, to facilitate the parameters extraction process. Table 3.2 gives the identified 

coefficients values for predicted DC current, DC voltage of PV sub-array, and AC power at the 

output of the inverter. 

Table 3.2 Identified coefficients for predicted DC current, DC voltage and AC power. 

Estimated parameter 𝐈𝐃𝐂𝐬 𝐕𝐃𝐂𝐬 𝐏𝐀𝐂𝐬 

Identified coefficient  𝒂 𝒃 𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 

Band limits 0 to 1 0.01 to 0.18 -1 to 1 

Identified values 0.9302 0.1203 2.11e-04 2.41e-03 0.15 0.0238 

Figure 3.5 (a-d) show the simulation results using the identified parameters of DC current, DC 

voltage, DC power and AC power compared with measured data during one clear sky day. 

 
Figure 3.5 Measured and predicted plot of (a) DC current, (b) DC voltage, (c) DC power and (d) AC power for clear 

sky day. 

Figure 3.6 (a-d) show the scatter plots of (a) DC current, (b) DC voltage, (c) DC power and (d) AC 

power for clear sky day case. 
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Figure 3.6 Scatter plot of (a) DC current, (b) DC voltage, (c) DC power and (d) AC power for clear sky day. 

We observe from Figure 3.5 and 3.6 we see a good agreement of the measured and estimated DC 

current, DC voltage, AC power, and DC power.  

In addition, a second validation of the model was carried out using two other days with clear and 

cloudy skies, in order to evaluate the prediction accuracy of the empirical electrical models. Figure 

3.7 (a-b) illustrate the profiles of clear and cloudy days of (a) measured tilted irradiance and (b) 

measured ambient temperature with predicted temperature of PV module used as input to simulate 

DC current, DC voltage and DC power at MPP of the PV sub-array, and AC power at the output 

of the inverter using the identified coefficients mentioned in Table 3.2. 

 

Figure 3.7 Profiles of clear and cloudy sky days of (a) measured tilted irradiance, (b) measured ambient temperature 

and predicted PV module temperature. 

Figure 3.8 (a-d) display the simulation results of DC current, DC voltage, DC power and AC power 

from empirical models compared with the measured data during two days (i.e., clear and cloudy). 
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Figure 3.8 Measured and predicted plots of (a) DC current, (b) DC voltage, (c) DC power and (d) AC power for 

clear sky and cloudy sky day. 

Figure 3.9 (a-d) show the scatter plots of (a) DC current, (b) DC voltage, (c) DC power and (d) AC 

power for two days (i.e., clear and cloudy). 

 

Figure 3.9 Scatter plots of (a) DC current, (b) DC voltage, (c) DC power and (d) AC power for clear and cloudy sky 

days. 

The statistical prediction metrics for the electrical models to estimate DC current, DC voltage, DC 

power, and AC power calculated for the reference day and two other days are listed in Table 3.3 

Table 3.3 Regression metrics for used models to predicte DC current, DC voltage, DC power and AC power. 

 Reference day (clear sky) Validation days (clear and cloudy sky)  

Estimated parameter 𝐈𝐃𝐂𝐬 (A) 𝐕𝐃𝐂𝐬 (V) 𝐏𝐃𝐂𝐬 (W) 𝐏𝐀𝐂𝐬 (W) 𝐈𝐃𝐂𝐬 (A) 𝐕𝐃𝐂𝐬 (V) 𝐏𝐃𝐂𝐬 (W) 𝐏𝐀𝐂𝐬 (W) 

MAE  0.12 2.24 16.69 68.66 0.15  4.33  58.4  88  

RMSE  0.14 2.81 21.07 80.60 0.25  5.7  119.7  126.7  

MAE (%) 1.06 0.90 0.67 2.91 1.28 1.67 2.29 3.70 

RMSE (%) 1.29 1.12 0.84 3.42 2.09 2.19 4.70 5.32 

R2 0.998 0.83 0.998 0.94 0.99 0.49 0.96 0.94 
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Results in Table 3.3 indicate a satisfying agreement between the measured data and the predicted 

value of DC current, and DC power in both cases: clear day and clear and cloudy days 

(i.e., R2 greater than 0.95). We observe also that the prediction of AC power using the Sandia 

inverter model, based on predicted DC voltage and DC power, is in agreement with measured 

values (i.e., R2=0.94). The filtering of AC power measurement noise leads to a decrease of MAE 

and RMSE errors values. On the other hand, we observed that for the estimated DC voltage, 

the R2 is low, due to the dynamic DC voltage variation, especially on a cloudy day. A reasonable 

prediction of the DC voltage is achieved under clear sky day with an R2 of 0.83. It is also 

recommended to use the measured data of the PV modules temperature directly instead of the 

simulation in order to better predict the DC voltage. It should be noted that as fault detection is 

based on DC power residuals, the relatively moderate prediction of DC voltage will not have any 

impact on the performance of the proposed detection procedure. In summary, the above-described 

empirical models fit relatively well with the measured data. These models are constructed using 

fault-free data and will generate residuals of new arrival data for fault detection purposes. 

3.3 PCA-based non-parametric model.  

This modeling section was developed in collaboration with researchers affiliated with King 

Abdullah University of Science and Technology (KAUST) University.  

Principal Component Analysis (PCA), a dimensionality reduction approach, is becoming 

increasingly popular for learning relevant and important features from multivariate data [250]. 

PCA projects multivariate data into a lower-dimensional subspace to revealing the cross-

correlation inherent between process variables [251] [252]. 

This section consists in constructing a reference PCA model using data gathered from the PV 

system under normal conditions. First, the raw data collected from the monitored PV system (fault 

free data) is preprocessed by scaling every variable to have zero mean and unit variance. Then, to 

select the appropriate number of Principal Components (PCs) to maintain in the PCA model, the 

covariance matrix of the scaled data is computed and the eigenvalues and eigenvectors for the 

covariance matrix C are computed and sorted in decreasing order. Finally, the cumulative 

percentage variance (CPV) technique is utilized here due to its simplicity and efficiency. Thus, the 

number of maintained PCs, l, describing over that 90% of the variability in the data can be used to 

construct the reference PCA model (Figure 3.10). For more detail see [253]. 

 
Figure 3.10 Conceptual representation of PCA. 

To construct the PCA model, two days of data are gathered from the monitored PV system when 

running under nominal conditions. Nine collected variables are used to construct the reference 

PCA model: 1) irradiance, 2) ambient temperature, 3) cell temperature, 4) DC current, 5) DC 

voltage, 6) maximum DC power, 7) AC current, 8) AC voltage, and 9) AC power. To show 

relationships among measured variables and temporal records a Pearson correlation heatmap is 

delineated in Figure 3.11. The correlation heatmap indicates the strong correlation between solar 

irradiance and cell temperature with the electrical variables (Figure 3.11). 
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Figure 3.11 Heatmap of the correlation matrix of data. 

From Figure 3.11, it can be noticed that there a high correlation between the following parameters: 

Irradiance, cell temperature, DC current, AC current, DC power and AC power. There is a positive 

correlation between cell temperature, DC current, AC current, DC power and AC power. It should 

be noted that DC voltage has a low correlation with the parameters (ambient and cell temperature, 

DC current, AC current, DC power, and AC power). AC voltage has no negative week relation 

with other parameters. 

 

The cumulative person variance procedure is used to determine the optimum number of PCs in the 

PCA model. Three PCs describing 95.21% of the variability in the data are maintained to construct 

the PCA model (i.e., 77.45%, 11.40%, and 6.35%, respectively), see Figure 3.12. 

 
Figure 3.12  (a) Eigenvalues, (b) Explained variance and (c) Cumulative variance versus the number of PCs. 

The constructed PCA model is verified under three different conditions: data collected from the 

PV array in clear sky day, cloudy sky day and under low irradiance conditions. In the first scenario, 

the obtained PCA model is verified using a clear sky day (October 8). The measured and the 

predicted data via PCA model are illustrated in Figure 3.13 (a–f). We can see a good agreement 

between the measured and the predicted data from the PCA model. 
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Figure 3.13 Collected and estimated using PCA of (a) maximum dynamic DC power, (b) DC current, (c) DC 

voltage, (d) AC power, (e) AC current and (f) AC voltage. 

Furthermore, the PCA model has been tested with a cloudy day which has been collected in a 

different season Figure 3.14. Results illustrate the goodness of the PCA model in describing 

electrical measurements. 

 
Figure 3.14 Collected and estimated using PCA of (a) maximum DC power, (b) DC current, (c) DC voltage, (d) AC 

power, (e) AC current and (f) AC voltage. 
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The non-parametric or Data-driven models, see the inspected PV system as a black box without 

parameterization, it estimates the electrical behavior of the PV system from a time series of input 

and output data. Still, it requires a lot of historical data to develop a behavioral model. Data-driven 

models have become appealing due to the availability of big data. 

On the other hand, parametric models conceive the PV system as a white box, where each 

component can be modeled using a set of parameters related to empirical or electrical models. 

These models are specified in terms of power, type and size of the PV system. while model 

identification and calibration are mandatory for every PV installation. In addition, the accuracy 

and precision of the parametric model depend on 1) the performance of the model used, 2) the 

accuracy of the experimental data, and 3) the parameter estimation technique used. In our 

application, the three criteria mentioned above can be controlled and improved. Indeed, among the 

advantages of parametric models, are their simplicity and ease of implementation in any software 

and hardware environment. For this, the choice fell on parametric models.  

3.4 Accuracy improvement of parametric models 

The right choice of parametric models with a good calibration, are the key to minimize the error 

between measurement and simulation as much as possible in the normal operation of the PV 

system. 

3.4.1 Effective Irradiance 

Effective irradiance 𝐸𝑒 is total plane of array (POA) irradiance adjusted for angle of incidence 

losses, soiling, and spectral mismatch. In a general sense it can be thought of as the irradiance that 

is “available” to the PV array for power conversion. 

A simplified approach using a single irradiance sensor has been suggested, shown eq. (3.13).   

𝐸𝑒 =
𝐸𝑃𝑂𝐴

𝐸0
. 𝑆𝑓 (3.13) 

Where; 

𝐸0 is a reference irradiance (1000 𝑊/𝑚2 ) 

𝑆𝑓 is the soiling factor (=1 when clean). 

𝐸𝑃𝑂𝐴 is the plane of array irradiance. 

3.4.2 Cell/Module temperature model 

Following the proportional relationship, between the voltage of the module and its temperature, an 

accurate estimation of the cell temperature allows a good prediction of the voltage behavior. For 

this, three other models taking in addition the effect of the wind speed on the PV cell/module 

temperature, consequently they depend on three parameters: the solar irradiance incident on 

module surface ( Gi) in (W/m2), ambient air temperature (Ta) in (°C) and Wind velocity (𝑊𝑣) in 

(m/s). These models were simulated and calibrated with the measured data, in order to choose the 

most accurate model.  

NOCT model with wind velocity consideration.  

The NOCT model assumes that wind velocity is always 1 m/s. However, the NOCT-2p model 

[138] takes into account the impact of the wind velocity on the cell temperature, this model is 

based on three variables (𝑇𝑎 , 𝐺𝑖 , 𝑊𝑣) and two dimensionless parameters (𝑝1 , 𝑝2) as illustrated in 

eq. 3.14. 

𝑇𝑐𝑠 = 𝑇𝑎 + 𝑝1 (
𝐺𝑖

800
 ∙  (𝑇𝑁𝑂𝐶𝑇 − 20)) + 𝑝2 ∙ (𝑊𝑣 − 1) (3.14) 

Where: 

𝑝1, 𝑝2 take respectively into account the relationship between estimated cell temperature (𝑇𝑐) 

with 1) incident irradiance (𝐺𝑖) , and 2) wind velocity (𝑊𝑣). 

https://pvpmc.sandia.gov/modeling-steps/1-weather-design-inputs/plane-of-array-poa-irradiance/
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Faiman Module Temperature Model 

Faiman model [254] is based on simple heat transfer concepts.  The model is represented by 

equation (3.15).  

𝑇𝑚𝑠 = 𝑇𝑎 +
 𝐺𝑖

𝑓1 + 𝑓2 ∙ 𝑊𝑣
 (3.15) 

Where: 

𝑇𝑚𝑠 = estimated temperature of PV module (°C) 

𝑇𝑎 = ambient air temperature (°C) 

𝐺𝑖 = the irradiance incident on the plane of the module or array  (𝑊/𝑚2 ) 

𝑓1 = the constant heat transfer component  (𝑊/𝑚2𝐾 )  

𝑓2  = the convective heat transfer component (𝑊/𝑚2𝐾 )  

𝑊𝑣 = wind velocity (m/s) 

This model is validated with data experimental from seven different types of modules and fit the 

data to values of 𝑓1  and 𝑓2 .  All modules had front glass covers and Tedlar backs. 

Sandia Module Temperature Model 

To estimate back-surface module temperature ( 𝑇𝑚𝑠 ) in (°C), Sandia proposes an accurate model 

which depends on three parameters (Eq. 3.16):  solar irradiance incident on module surface ( 𝐺𝑖) 

in (W/m2), ambient air temperature (Ta) in (°C) and  Wind velocity (𝑊𝑣) in (m/s) [126]. 

𝑇𝑚𝑠 = 𝑇𝑎 + 𝐺𝑖 ∙ 𝑒𝑠1+𝑠2∙𝑊𝑣 (3.16) 

Where: 

s1 = Empirically-determined coefficient establishing the upper limit for module temperature 

at low wind speeds and high solar irradiance. 

s2 = Empirically-determined coefficient establishing the rate at which module temperature 

drops as wind speed increases. 

𝑎 and 𝑏 are parameters that depend on the module construction and materials as well as on the 

mounting configuration of the module.   

Sandia Cell Temperature Model  

The Sandia cell temperature model estimates cell temperature from module temperature, 𝑇𝑚 , plane 

of array irradiance, 𝐺𝑖, and a temperature difference parameter, 𝛥𝑇. This difference parameter 

defines the temperature difference between the module and cell temperature. 

The model form is represented by Eq. (3.17). 

𝑇𝑐 = 𝑇𝑚 +  
𝐺𝑖

𝐸0
. 𝛥𝑇 (3.17) 

ΔT  = parameter that depends on the module construction and materials as well as on the mounting 

configuration of the module [255]. In our PV array ΔT is fixed at 2°C. 

To calculate the PV module temperature from cell temperature model we use the next relationship: 

𝑇𝑚 = 𝑇𝑐 −  
𝐸𝑃𝑂𝐴

𝐸0
. 𝛥𝑇 (3.18) 
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3.4.3 Sandia PV Array Model 

In order to improve the accuracy of the DC voltage estimation, we have used a behavioral model 

of the PV array developed by sandia national laboratory [126]. The Sandia PV Array Model are 

presented by the following equations below 3.19, 3.20 and 3.21.  

DC Current model 
 

DC voltage model 

 

Improved DC voltage model 

A coefficient has been added to the DC voltage model in order to improve the accuracy, the model 

becomes (see Eq. 3.22 and 3.23). 

 

The DC power at MPP is calculated by the following relationship 

𝑃𝑚𝑝 = 𝑉𝑚𝑝‧ 𝐼𝑚𝑝 (3.24) 

Where; 

Imp = Current at the maximum-power point (A) 

𝐼𝑚𝑝_𝑆𝑇𝐶= Current at the maximum-power point at STC (A) 

𝑝 = 2 string in parallel 

Vmp = Voltage at maximum-power point (V) 

Vmp_STC= Voltage at maximum-power point at STC (V) 

𝑠 = 15  modules in series 

Pmp = Power at maximum-power point (W) 

Ns = Number of cells in series in a module’s cell-string 

Np = Number of cell-strings in parallel in module 

k = Boltzmann’s constant, 1.38066E-23 (J/K) 

q = Elementary charge, 1.60218E-19 (coulomb) 

Tc = Cell temperature inside module (°C) 

T0 = Reference cell temperature, typically 25°C 

Te = Tc − T0 
E0 = Reference solar irradiance, typically 1000 W/m2 

𝛿(𝑇𝑐) = ‘Thermal voltage’ per cell at temperature Tc. For diode factor of unity (n=1) and a 

cell temperature of 25ºC, the thermal voltage is about 26 mV per cell 

𝑐0, 𝑐1 = Empirically determined coefficients relating Imp to effective irradiance, Ee. equal to 1, 

(dimensionless) 

𝑐2, 𝑐3 = Empirically determined coefficients relating Vmp to effective irradiance (c2 is 

dimensionless, and c3 has units of 1/V) 

𝑐𝑡𝑖 = the normalized temperature coefficient for MPP current, equal to 2.3 mA/°C in datasheet. 

𝑐𝑡𝑣 = the normalized temperature coefficient for MPP voltage, equal to −74 mV/°C in datasheet. 

𝐶𝑣𝑒 = Empirically determined coefficients relating Vmp to effective irradiance. 

𝐼𝑚𝑝 = 𝑝 ⋅ (𝐼𝑚𝑝𝑝𝑆𝑇𝐶
⋅ 𝑁𝑝(𝑐0𝐸𝑒 + 𝑐1𝐸𝑒

2) ⋅ (1 + 𝑐𝑡𝑖 ⋅ 𝛼𝑚𝑝(𝑇𝑐 − 𝑇0))) (3.19) 

𝑉𝑚𝑝 = 𝑠 ⋅ (𝑉𝑚𝑝_𝑆𝑇𝐶 + 𝑐2𝑁𝑠 ⋅ 𝛿(𝑇𝑐) ⋅ 𝑙𝑛( 𝐸𝑒) + 𝑐3𝑁𝑠(𝛿(𝑇𝑐) 𝑙𝑛( 𝐸𝑒))2 + 𝑐𝑡𝑣 ⋅ (𝑇𝑐 − 𝑇0))  (3.20) 

With   

𝛿(𝑇𝑐) = 𝑛 ⋅ 𝑘 ⋅ (𝑇𝑐 + 273.15)/𝑞 (3.21) 

𝑉𝑚𝑝 = 𝑠 ⋅ (𝑉𝑚𝑝𝑆𝑇𝐶
+ 𝑐2𝑁𝑠 ⋅ 𝛿(𝑇𝑒) ⋅ 𝑙𝑛( 𝐸𝑒) + 𝑐3𝑁𝑠(𝛿(𝑇𝑒) 𝑙𝑛( 𝐸𝑒))2 + (𝑐𝑡𝑣 ⋅ 𝑇𝑒 . 𝐸𝑒) − (𝑐𝑣𝑒/𝐸𝑒))  (3.22) 

With  

𝛿(𝑇𝑒) = 𝑛 ⋅ 𝑘 ⋅ (𝑇𝑒 + 298.15)/𝑞 (3.23) 
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3.4.4 Parameters identification.  

For all used models, the parameters identification is done through curve fitting toolbox under 

MATLAB software, where the fitting is based on nonlinear least squares method and trust-region 

algorithm. In addition, the empirical models were validated and proved using experimental data 

collected from GCPV system. 

The empirical models used to predict module back surface temperature as a function of tilted 

irradiance, ambient temperature, and wind speed, are a function of three variable. Therefore,  we 

used the procedure given in [133] to decompose the temperature model equation into two equations 

in order to estimate the coefficients using curve fitting toolbox. 

Table 3.4 gives the identified coefficients used to predict module back surface temperature.  

The empirically identified coefficients used in order to predict DC current and DC voltage at MPP 

based on SAPM are given respectively in Table 3.5 and 3.6 for three Sub-arrays. 

In last section, the sandia inverter model used to predict AC power was presented with four 

parameters for one inverter. In this section, eight coefficients were identified for three inverters 

based on sandia inverter model as shown in Table 3.7.  

Table 3.4 Empirically identified coefficients used to predict module back surface temperature. 

Module Temperature Model 𝐍𝐎𝐂𝐓𝐖𝐯𝐟𝐨𝐫 𝐏𝐕 𝐂𝐞𝐥𝐥 𝐅𝐚𝐢𝐦𝐚𝐦 𝐒𝐚𝐧𝐝𝐢𝐚 

Coefficient p1 p2 TNOCT f1 f2 s1 s2 

Values 0.7061 -0.9818 46.5 37.71 4.694 -3.691 -0.08396 

Table 3.5 Empirically identified coefficients used to predict DC current using sandia model. 

Coefficient 𝐜𝟎 𝐜𝟏 𝐜𝐭𝐢 
Sub-array 1 0.961 -0.111 0.001 

Sub-array 2 0.9828 -0.1338 0.001 

Sub-array 3 0.9521 -0.1074 0.001 

Table 3.6 Empirically identified coefficients used to predict DC voltage using sandia model. 

Coefficient 𝐜𝟐 𝐜𝟑 𝐧 𝐜𝐯𝐭 𝐜𝐯𝐞 

Sub-array 1 0.1239 4.292 2.442 -0.0731 0.3758 

Sub-array 2 0.105 1.42 3.648 -0.07744 0.2891 

Sub-array 3 0.1317 3.155 2.584 -0.07403 0.302 

Table 3.7 Empirically identified coefficients used to predict AC power using sandia inverter model. 

Coefficient 𝐏𝐒𝟎 𝐕𝐃𝐂𝟎 𝐏𝐃𝐂𝟎 𝐏𝐀𝐂𝟎 𝐂𝟎 𝐂𝟏 𝐂𝟐 𝐂𝟑 

Inverter 1 15 269.8 2715 2574 -2.011e-05 0.00168 0.4418 0.1339 

Inverter 2 15.15 275.7 2770 2580 -4.172e-06 0.001387 0.3327 0.3249 

Inverter 3 15 262 2743 2563 -1.11e-05 0.003248 0.7455 0.3097 

3.4.5 Simulation result using sandia model for PV array 

The simulation of all behavioral models listed in Table 3.8 was performed under MATLAB 

environment (see Appendix B.2). Before the simulation, all models were well calibrated using 

experimental data for a reference day with following condition. 

o Clear sky day. 

o Medium ambient temperature 

o Without 1) measurement faults, 2) shading, 3) significant soiling, 4) electrical faults and other 

anomalies.   
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Table 3.8 Summary of selected models with thier references 

Model types Selected model with Reference  

 

PV cell/module  

Temperature model 

▪ Nominal Operating Cell Temperature (NOCT) model   [247] 

▪ NOCT model including the wind speed effect NOCTW  [138] 

▪ Faimen model for module temperature  [254]. 

▪ Sandia model to estimate module temperature  [126]. 

DC Current model ▪ Bellini [248] 

▪ Sandia PV Array Performance Model (SAPM) [126]. 

DC Voltage model ▪ Eduardo [249] 

▪ Sandia PV Array Performance Model [126]. 

AC power model ▪ Sandia Inverter model [140] 

Figure 3.15 illustrates the PV cell temperatures of measured and predicted from four models. 

The measurements of effectiveness for the used PV cell temperature models listed in Table 3.8 

confirm its good prediction performance.  

 

Figure 3.15 Measured PV cell temperature Vs. predicted  from four model. 

According to the regression metrics listed in Table 3.9, Sandia and Faimen models have almost 

the same performance, but sandia cell model is the best, in third position the NOCTW model with 

wind speed consideration.  

Table 3.9 Regression metrics for the used PV cell temperature models. 

Metrics/Param. NOCT NOCTw Faimen Sandia 

MAE 1.2043 1.0368 0.62246 0.61698 

RMSE 1.5523 1.2368 0.78094 0.77446 

MAE (%) 2.6958 2.3209 1.3933 1.3811 

RMSE (%) 3.4748 2.7685 1.7481 1.7336 

R-squared 0.94333 0.96402 0.98566 0.98589 

For the simulations results by way of example, we are satisfied to give just the graphs of sub system 

2, because the plots of subsystem 1 and 3 look very similar to sub-system 2, the other sub system 

will be compared in the regression metrics tables. 

Figure 3.16 shows the MPP current of the PV sub-array 2 measured and predicted from two 

models. Table 3.10 gives the regression metrics of two DC current models simulated for three sub-

arrays. We can see a good agreement between the measured and the predicted data from models 

for all subarrays. For the Bellini model the R2 is around 0.995, while sandia model is more accurate 

with an R2 of 0.999 for all PV subarrays. 
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Figure 3.16 Measured Vs. predicted MPP current of the PV sub-array N°2. 

Table 3.10 Regression metrics of DC current models simulated for three sub array. 

Metrics/Param. MAE (A) RMSE (A) MAE (%) RMSE (%) R-squared 

Idc1-Bellini 0.18 0.22 1.58 1.96 0.995 

Idc1-SNL 0.08 0.11 0.71 1.01 0.999 

Idc2- Bellini 0.20 0.24 1.74 2.09 0.994 

Idc2-SNL 0.09 0.10 0.76 0.92 0.999 

Idc3- Bellini 0.16 0.20 1.48 1.82 0.995 

Idc3-SNL 0.08 0.10 0.71 0.92 0.999 

Figure 3.17 shows the MPP voltage of sub-array 2 measured and predicted from two behavioral 

models. Table 3.11 gives the regression metrics of two DC voltage models simulated for three PV 

subarrays. We can see a good fitting between the measured and the predicted data from two models 

for all subarrays. For the Eduardo model the R2 is greater than 0.75, sandia model is more accurate 

with an R2 greater than 0.89 for three sub-arrays. We observe that for the predicted DC voltage, 

the R2 is low, due to the dynamic DC voltage variation, while the RMSE is less than 0.98% for 

Eduardo model and less than 0.66% for Sandia model as shown in Table 3.11.   

 

Figure 3.17 Measured and Simulated MPP voltage of the PV subarray N°2 . 

Table 3.11 Regression metrics of DC Volatge models simulated for three sub-array. 

Metrics/param. MAE (V) RMSE (V) MAE (%) RMSE (%) R-squared 

Vdc1-Ed 1.92 2.43 0.76 0.97 0.773 

Vdc1-SNL  1.33 1.63 0.53 0.65 0.899 

Vdc2-Ed 1.96 2.41 0.78 0.96 0.756 

Vdc2-SNL 1.34 1.62 0.53 0.64 0.891 

Vdc3-Ed 1.85 2.29 0.73 0.90 0.789 

Vdc3-SNL 1.16 1.38 0.46 0.54 0.924 
 

As we saw in the state-of-the-art section, that models of DC power based on direct estimation (i.e., 

one equation) are less accurate than models which are based on the product of DC current and DC 

voltage models. So, the DC power simulation results shown in the Figure 3.13 are based on the 

product of the estimated DC current and DC voltage. 
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Figure 3.18 displays the maximum DC power of sub-array 2 measured and predicted. Table 

3.12 indicates a satisfying agreement between the measured data and the predicted value of DC 

power using both models (i.e., R2 greater than 0.994). We notice that the simulation results of DC 

power are very close to those of DC current. 
 

 

Figure 3.18 Measured and Simulated Maximum power of the PV sub-array N°2. 

Table 3.12 Regression metrics of DC Power simulated for three sub-array. 

metrics/param. MAE (W) RMSE (W) MAE (%) RMSE (%) R-squared 

Pdc1-Cstm 37.4 52.8 1.38 1.95 0.994 

Pdc1-SNL  25.7 32.8 0.95 1.21 0.998 

Pdc2-Cstm 39.3 53.4 1.45 1.98 0.994 

Pdc2-SNL 23.4 27.0 0.87 1.00 0.999 

Pdc3-Cstm 33.9 48.5 1.26 1.81 0.995 

Pdc3-SNL 23.3 29.3 0.87 1.09 0.998 

We also observe that the prediction of AC power using the Sandia inverter model, based on the 

predicted DC voltage and DC power, agrees very well with the measurement data as shown in 

Figure 3.19, with an R2 greater than 0.999 and an RMSE that does not exceed 0.93% for the three 

simulated inverters (Table 3.13). 

 

Figure 3.19 Measured and Simulated AC power at the inverter output. 

Table 3.13 Regression metrics of AC Power model simulated for the three inverters of the GCPVS. 

Parameters  MAE (W) RMSE (W) MAE (%) RMSE (%) R-squared 

Pac1-SNL 18.9 24.1 0.73 0.93 0.999 

Pac2-SNL 7.8 9.86 0.30 0.38 1.000 

Pac3-SNL 17.2 24.0 0.66 0.92 0.999 

In summary, the above described empirical models fit well with the measured data. Note that the 

calibration of representative models is very important, in order to try to approximate the 

experimental reference data as much as possible and to accurately emulate the electrical behavior 

of all components of the PV system. These models are constructed using fault-free data and will 

generate residuals of new arrival data for fault detection purposes. 
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3.5 Model implementation under LabVIEW 

Figure 3.20 illustrates the process of integrating models calibrated in MATLAB into the LabVIEW 

environment. All behavioral models are implemented under LabVIEW code diagram using a 

graphical program combined with textual program (Figure 3.21), this is called a virtual instrument 

(VI). The detailed textual program of sandia models and performance metrics was given in 

Appendix B.2. 

The layout of the developed VI can be viewed in front panel for an interactive user-interface, 

including different tabs shown in Figures 3.22 to 3.26. 

-  Empirical Modeling & simulation 
-  Parameters identification
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Figure 3.20 Flowchart of modeling and validation using MATLAB and dynamic modeling under LabVIEW. 

 

Figure 3.21 sample of modelization code under LabVIEW block diagram. 
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Figure 3.22 Designed interface for dynamic modeling and performance analysis. 

 

Figure 3.23 Modeling  interface -Tab for instantaneous indicators. 

 

Figure 3.24 measurement graphs of tilted irradiances , ambient temperature and modules temperatures. 
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Figure 3.25  Measurement graphs of both measured and predicted DC& AC Electrical quantities. 

 

Figure 3.26 Modeling interface -Tab for Models calibration. 

As shown in Figures 3.22 to 3.26, the designed interface was very user-friendly, using modern 

indicators and waveform graphics. The modeling results were very satisfactory, with a better fit to 

the reference electrical measurements for all PV subsystems. 

3.6 PV System Performance  

The objective in this section is to evaluate and analyze the performances of a PV system connected 

to low voltage grid using LabVIEW platform. The main task is to model and evaluate different 

yields and other parameters for a PV system.  

In the modeling interface, we have developed a new tab dedicated for performance analysis that 

contains 4 sub-tabs (Figure 3.22). 

The Performance analysis is applied for a period of seven (7) days selected from April  to august, 

this analysis consists to calculating several indicators and performance metrics [148] [149].  

The daily irradiation received 𝐸𝑟 in (kWh/m2/day) measured on the horizontal and tilted planes 

as indicated by the equation 3.25. 

Er = ((Gr. Δt) + Er−1. bid)/1000 (3.25) 
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The average temperature Tav for ambient and PV cell each day according to the following 

equation 3.26. 

Tav = ((T. Δt) + Tav−1. bid)/Nsp (3.26) 

The DC and AC daily electrical energy Ee in (kWh /day) measured and simulated were 

represented by eq. 3.27. 

Ee = ((P. Δt) + Ee−1. bid)/1000 (3.27) 

where: 

Δt : sampling time in hours 

bid : Daily Initialization Bit 

Ns𝑝 : Number of samples during the day 

The yields of the PV system are expressed as: reference yield (Yr), array yield (Ya) and final yield 

(Yf) given in [hr], as well as the performance ratio (PR) expressed in [%], they can be obtained 

from the simulation results using the formulas (3.28 to 3.31) which are used in accordance the IEC 

61724  standard [77] to evaluate the performance of a GCPV installation. [151] [149]. 

𝑌𝑟 =
∫ 𝐺

𝛥𝑡

0 ℎ

𝐺0
 

(3.28) 

𝑌𝑎 =
∫ 𝐸

𝛥𝑡

0 𝑑𝑐

𝑃0
 

(3.29) 

𝑌𝑓 =
∫ 𝐸

𝛥𝑡

0 𝑎𝑐

𝑃0
 

(3.30) 

𝑃𝑅 =
𝑌𝑓

𝑌𝑟
=

 𝐸𝑎𝑐

 𝐸𝑑𝑐
 

(3.31) 

 

 

Figure 3.27 Designed performance analysis Tab. 
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The performance parameters and other indicators are plotted in graphics under LabVIEW interface 

with different representation, as shown in the Figures (3.28 to 3.32). 

Figure 3.28 illustrates Graphical representation of performance parameters for 7 days. Figure 3.29 

shows the histograms for daily analysis and indicators for the cumulated values of 1) received 

irradiation energy in (kWh/m2/day), 2) average of ambient temperature and PV cell temperature in 

(°C), 3) measured and predicted energy of DC & AC in (kWh/day), and 4) performance ratio. 
 

 

Figure 3.28 Graphical representation of performance parameters for 7 days. 

 

Figure 3.29 Histogram of irradiation energy, temperatures average, DC / AC Energy and performance ratio. 
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Figure 3.30 shows the histograms representation of 1) reference yield (Yr), 2) array yield (Ya) and 

3) final yield (Yf) given in [hr], as well as the 4) performance ratio (PR) expressed in [%] according 

to the IEC 61724-1. 

 

Figure 3.30 Histogram of all Performance parameters according to the IEC 61724-1. 

Figure 3.31 displays the histograms for daily analysis and indicators for the cumulated values of 

1) AC energy produced by PV system for one sub system in (kWh/day), 2) energy price analysis 

using Sonelgaz medium tariff (i.e., 4.179 DZD/kWh), 3) energy price analysis using feed-in tariff 

made for 1 to 5MWp PV power plant in Algeria (i.e., 15.94 DZD/kWh) and 4) avoided CO2 

emission using a PV power plant, Knowing that for 1 kWh produced by a gas-fired power plant 

we have 0.38 kg of CO2 emitted.  
 

 

Figure 3.31 Histogram of AC energy, sonelgaz KWh price, feed-in tariff price and avoided CO2. 
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The measured efficiency of the PV sub-system versus simulated are represented in Figure 3.32 for 

seven days. 

 
Figure 3.32 Measured and predicted efficiency of PV array, inverter and system. 

According to results, we can tell that the performance ratio of the GCPV system is above 93 %, 

The PV system efficiency varies between 8% and 12% from 200 W/m2 up to 1000 W/m2, and the 

comparison of efficiency between the experimental and the simulation, showed a good agreement 

especially for irradiance higher than 400 W/m2.  

 

 

3.7 Conclusion  

In this chapter, several models were selected and tested in order to choose the best for each 

modeling part. The results obtained by simulation were validated using reference data 

measurements of the 9.54 kWp GCPVS in MATLAB, the comparison showed good agreement, 

and that the models developed by SNL are the best (i.e., cell/module temperature model, SAPM to 

predict DC current and DC voltage and sandia inverter model to estimate AC power).  

For the non-parametric model based on PCA, we saw a good agreement between the measured and 

the predicted data, results illustrate the goodness of the PCA model, the generated residuals based 

on the developed PCA reference model will be evaluated by multivariate monitoring charts to 

detect fault. 

The user-interface developed under LabVIEW makes it possible to model the electrical behavior 

of GCPVS and to analyze the performance of meteorological and electrical data by calculating the 

performance ratio and the energy yields of the PV system, the interface also allows a dynamic 

visualization of all data and information with different scenarios. 

Note that the user-interface created is extensible to integrate multiple performance model and to 

analyze data using advanced techniques (e.g., Machine Learning, statistical methods and hybrid 

methods) for modeling, performances analysis and faults detection in a PV system. The deviations 

between the simulated and measured values represents a detection of the operation anomaly of PV 

system.
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Chapter 4 :  Fault Detection and Diagnosis of Grid Connected PV System 

4.1 Introduction  

Faults diagnostic in PV system is crucial for improving their resilience and ensuring the continuous 

delivery of electricity. In general, the fault diagnosis process is determined by comparison between 

both normal (i.e., predicted behavior by simulation) and faulty data for each type of failure (i.e., 

observed behavior by measurement) see (Figure 4.1). While, the identification or classification of 

faults is the most important step of the failure routine process. In another way, this method consists 

of comparing the amount of energy that a PV system is supposed to produce with the actual 

performance. 

As we saw in Chapter 3, that the performance simulation of a PV system is based on either 

parametric or nonparametric models. The two approaches can share the same inputs (e.g., 

irradiance, temperature, wind speed, etc.) and the same output which is the power produced by PV 

system. In most cases, meteorological data is measured by sensors installed on the site or retrieved 

from satellite measurements. Indeed, the prediction system consists of a behavioral model. The 

meteorological data are entered into the PV model, which then generates predicted behavior of PV 

installation. When the system performance is significantly lower than simulated, the fault detection 

system classifies the PV system as faulty. 

An inherent challenge of this method is knowing the accuracy of predictions by parametric models. 

Since the performance of the PV system is influenced by many parameters, it is highly essential to 

estimate the parameters of behavioral models in order to have a good calibration to experimental 

measurements under normal operating conditions without faults or any loss in performance. It is 

also recommended to auto-calibrate the predictions due to the gradual evolution of the parameters 

over time. In summary, prediction systems that monitor PV performance examine and compare 

current PV performance to predictions over time before concluding that the PV system is 

underperforming. The prediction method for identifying faults provides a variety of additional 

advantages for the PV market by expanding the possible applications of the fault detection system 

[6]. Figure 4.1 shows a block diagram of the general method used to identify faults using the 

prediction method. 

 

Figure 4.1 Block diagram of a PV fault detection system using the prediction method. 

Generally, Fault Detection and Identification (FDI) techniques that exploit the analytical 

monitoring data are based on one of the following methods: 1) Real-time difference measurement, 

2) Signal processing, 3) Statistical analysis or 4) Machine learning and deep learning, while the 

combination of these methods offers fast and accurate diagnosis. Indeed, each data analytic 

technique used for the FDI in monitored PV systems, has its own advantages and limitations. 

Hence, the decision for the most cost-effective and more appropriate FDI solution depends on 

numerous factors [16], [193].After carrying out the monitoring, calibration of models and 

performance analysis, the last step will be the detection and identification of faults occurring in a 

PV system connected to the grid.  
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In this chapter we present two fault diagnostic techniques. The first technique is based on accurate 

parametric behavioral model for calculate the residuals, the residue examination is performed using 

performance loss analysis of forth indicators that allowing the detection and the recognition of 

faults type occurring in the PV system. Six types of faults and nine cases were considered in this 

section: 1) Open circuit Fault 2) PV string Fault, 3) partial shading of pylons, 4) soiling on the PV 

array, 5) short circuit fault with four (4) cases (i.e., 2, 3, 4 and 6 PV Modules short-circuited) and 

6) DC -AC efficiency faults. Finally, these faults were detected and identified using a convivial 

user interface with other additional features. The second techniques consist in developing a simple 

and efficient diagnostic method based on parametric models and the Double Exponentially 

Weighted Moving Average (DEWMA) scheme. The residuals were calculated with parametric and 

nonparametric models. While residue quantification is performed using DEWMA technique in 

order to detect and identify faults occurring in the PV system. Six environmental and electrical 

faults from a 9.54 kWp grid-connected PV system were considered to evaluate the feasibility of 

the designed detection methods. these faults were successfully located. 

4.2 Detection and identification of fault based on Real-time Difference Measurement  

In this section, we have interested in the Real-time Difference Measurement (RDM) method. As 

we have seen in chapter 2, a PV system during operation, it can be subjected to several large 

power losses caused by different failures that can appear on the DC and AC sides of a PV system. 

Detecting faults and anomalies in a PV system is very important in order to 1) achieve the desired 

electrical power production, 2) avoid downtime and 3) minimize maintenance costs. In the last ten 

years, numerous works based on RDM method have been published. In [195] an automatic 

supervision and PV array fault detection procedure  was proposed under MATLAB environment, 

this method are based on power losses analysis and deviation examination of DC current and DC 

voltage.  In [196] an evaluation of both Current and Voltage indicators for automatic detection of 

main faults occurring in the PV systems was achieved, for real-time supervision this method can 

be  easily  integrated into inverter. In [200] two indicators named power and voltage ratio were 

used to identify faults in PV array. In [197], a level online Fault detection and diagnosis technique 

based on Power losses Analysis for PV systems was proposed. In [201] An overview of the main 

strategies for analytic fault detection and diagnosis methods based on power losses analysis, and 

Current-voltage (I-V) indicators  are reported. Recently a simple and efficient approach was 

proposed  in  [202] to detect and to identify most common faults in PV systems using three 

indicators of current voltage and power. 

4.2.1 Used faults for evaluation of the proposed method. 

The proposed fault detection and identification technique based on four indicators was evaluated 

using experimental data collected from a GCPVS at CDER, Algiers. Six types of faults have been 

considered in this section: F1) Open circuit Fault F2) PV string Fault, F3) temporary partial 

shading, F4) dust on the PV array, F5) short circuit Fault with four (4) cases (i.e., 2, 3, 4 and 6 PV 

Modules short-circuited) and F6) DC -AC conversion faults (Figure 4.2).  

Used Faults 

DC Side fault
PV array 

DC/AC 
conversion fault 

Open circuit 

PV string 

Partial shading

Soiling losses

Short circuit of 
PV modules (PVM) 

2 PVM  S-C

3  PVM S-C

4 PVM  S-C

6 PVM  S-C

F1

F2

F3

F4

F5

F6

a

b

c

d
 

Figure 4.2 Used datasets faults for PLR method evaluation. 
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Open circuit fault 

The purpose of this scenario is to investigate the ability of the proposed technique to identify an 

open circuit fault. An open circuit fault may appear if there is an instantaneous disconnection of 

the inverter or the switching off of the residual current circuit breaker (RCCB). 

The PV inverter disconnects if 1) the electrical characteristics of the output of the PV generator 

are outside the operating limit of the inverter or if there is a 2) grid instability. This fault pushes 

the shutdown of the system until a new reconnection of the inverter. If the residual currents (earth 

leakage) exceed 30mA or if an electrical fault occurs in the PV system, the RCCB switches off, 

causing the PV installation to shut down until it is manually switched on.  

Figure 4.3 illustrates the photos of the occurred open-circuit after the circuit breaker tripping or 

after inverter temporary disconnection. 

 

Figure 4.3 Photos of the occurred open circuit fault after the circuit breaker tripping or after inverter temporary 

disconnection. 

String faults 

The purpose of this case is to evaluate the ability of the proposed method to detect and locate PV 

string faults in a PV generator. Practically, string faults are one of the most common faults resulting 

in large loss of power produced on the DC side of the PV system. 

Frequently, this fault can appear if 1) the DC protection (i.e., DC circuit breaker, fuses) is damaged, 

2) there is a bad connection of the cables with the terminal blocks which generates arcs 3) or if a 

disconnection has produced between PV modules in series, (i.e., open circuit in the string).  

Here, this fault was created on purpose by turning off the DC circuit breaker of our GCPVS (Figure 

4.4-a) or by a real fault following an arc between the cable and the terminal block (Figure 4.4-b). 

 

Figure 4.4 Photos of the a) simulated and b) realist PV string fault. 
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Partial shading 

The purpose of this scenario is to analyze the ability of the proposed methods to distinguish partial 

shading from others anomalies. Partial shading is the uneven distribution of irradiation on the PV 

array. Shading losses occur due to several obstacles (e.g., pylons, tall building and trees…. etc.) 

[256]. The partial shading on the PV array at CDER is mainly due to the shading of two tall pylons 

(Figure 4.5-a) during a given period of the day, which depends on the sun height throughout the 

year. Figure 4.5-b illustrates the pylon shadow on the PV subarray 3. In this section, the shading 

is therefore not modeled, it is considered as an anomaly.  

 

Figure 4.5 photos of a) pylons around PV array and b) shading on the PV subarray 3. 

Soiling losses 

Soiling power losses depend on 1) environmental conditions, 2) frequency of rainfall, 3) tilt of PV 

module, 4) cleaning schedule and others. Dust is one of the major problems with any solar PV 

system, especially in desert regions. Soiling can negatively impact the performances of PV systems 

by causing power losses up to 15% per year and conceivably higher in deserts  [8]. The 

accumulation of dust on PV modules is linked to several factors, such as PV module inclination, 

module type, and humidity (Figure 4.6) 

 

Figure 4.6 Factors influencing dust settlement. 

In the CDER's PV system, the soiling losses are due to accumulated dust and bird droppings 

(Figure 4.7). 
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Figure 4.7 Dust accumulation and bird dropping on PV subarray 1. 

Short-circuit fault. 

Short-circuit faults can be caused by bad wiring within PV modules. Also, aging, vibration, and 

PV modules abrasion represent key sources of short-circuit faults [257]. This kind of fault can 

cause damage or performance degradation of the PV Modules. Here, four cases are considered 

(i.e., 2, 3, 4 and 6 short-circuited PV Modules) in order to evaluate the method based on electrical 

indicators rating. The faults are intentionally created by short-circuiting the modules in the same 

string according to the desired case. Figure 4.8 shows some cases of short circuit fault in the PV 

modules. 

 

Figure 4.8 Photo of some scenarios of PV modules (PVM) in short circuit (S-C). 

DC/AC conversion fault  

Inverters convert energy from direct current to alternating current with an efficiency that varies 

according to the load of the inverter. Manufacturers are usually able to provide an inverter's 

efficiency profile for low, medium, and high voltages. The inverter may be affected by a drop in 

desired efficiency according to the profile indicated in the data sheet following electrical problems 

or degradation of the DC/AC conversion components. this last fault is simulated with conversion 

efficiency of 80% instead of 95%. 

4.2.2 Performance loss rate method using four electrical indicators  

In this section we propose a simple and reliable method for detection and localization of various 

faults in PV systems using four indicators (i.e., DC current, DC voltage, DC power and AC power), 

the upper and lower thresholds of four indicators are calculated using the simulation results of the 

parametric models already seen in chapter 3. 

 

 

 



130 

 

Eq 4.1 to Eq. 4.4 show the four used indicators depending on the following quantities DC current, 

DC voltage, DC power and AC power. 

𝐼𝑑𝑐𝑅 =
𝐼𝑑𝑐𝑆𝑖𝑚

𝐼𝑑𝑐𝑀𝑒𝑎𝑠
 (4.1) 𝑉𝑑𝑐𝑅 =

𝑉𝑑𝑐𝑆𝑖𝑚

𝑉𝑑𝑐𝑀𝑒𝑎𝑠
 (4.2) 

𝑃𝑑𝑐𝑅 =
𝑃𝑑𝑐𝑆𝑖𝑚

𝑃𝑑𝑐𝑀𝑒𝑎𝑠
 (4.3) 𝑃𝑎𝑐𝑅 =

𝑃𝑎𝑐𝑆𝑖𝑚

𝑃𝑎𝑐𝑀𝑒𝑎𝑠
 (4.4) 

For a first classification, the combination of the two indicators (𝑖. 𝑒. , 𝑃𝑑𝑐𝑅 & 𝑃𝑎𝑐𝑅) makes it 

possible to locate the side of the fault either DC or AC, and while the majority of the malfunctions 

occur on the DC side, the refinement of the classification of the faults in the side DC is realized by 

two other indicators (𝑖. 𝑒. , 𝐼𝑑𝑐𝑅 & 𝑉𝑑𝑐𝑅). A reference threshold has been established for four 

indicators. Each fault in DC side has well-defined losses either in current or voltage or in both 

indicators at the same time. Based on this, the most probable fault can be determined. Figure 4.9 

illustrate the Flowchart of the proposed fault detection and diagnosis strategy. 
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Figure 4.9  Flowchart of the proposed fault detection and diagnosis strategy. 

The fourth indicators have been calculated under LabVIEW, several thresholds have been set for 

each fault in order to distinguish and identify each type. Figure 4.10 shows the fault localization 

program based on Boolean function using graphical code under LabVIEW environment. 
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Figure 4.10 Fault classification program using graphical code under LabVIEW environment 

After developping graphical code under LabVIEW environment for fault detection and identification, a 

new tab was added to our interface this tab contain the following features (Figure 4.11): 

✓ DC& AC Energy loss indicators for 1 day and cumulated day 

✓ Four visual chart indicators (i.e., IdcFi, VdcFi, PdcFi, PacFi) with threshold limits 

✓ Boolean digital indicators (LED) for fault types classification and identification. 

 

 

Figure 4.11 designed fault diagnosis interface _Free fault case 29042020 sub system 1. 

 

4.2.3 Faults detection and identification results  

Open-circuit fault detection  

The used method can easily recognize this fault. because the current indicator is equal to zero (i.e., 

no production Idc = 0) and the voltage indicator is less than 0.95 (i.e., the voltage is in open circuit 

Vdc = Voc). The detection results with thresholds are illustrated in Figure 4.12. 
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Figure 4.12 recognition of open circuit fault in PV subsystem 2. 

PV string fault detection 

In our PV system the PV string fault causes a decrease in relatively 50% of the rated power because 

of the disconnection of the two strings. The proposed method can easily discover this severe fault. 

To identify this type of fault, we check the DC current and voltage indicators in (Figure 4.13). We 

can see after the appearance of the string fault that the DC current is almost currency in two because 

we have two strings in parallel, while the DC voltage does not change significantly. From this 

analysis, we conclude that the occurred fault is due to string fault. 

 

 

Figure 4.13 Identification of PV string fault in subarray 2. 

 

Partial shading detection 

This experiment is devoted to assess the capability of PLR monitoring technique to identify the 

temporary partial shading caused by pylons. 

To detect this fault, analysis of the dynamic behavior of both DC current and DC voltage indicators 

at the same time is essential.When a partial shading fault has occurred on the PV array, the DC 

current decreases according to the shading intensity and its distributed surface over the PV array, 

while the DC current is also linked to the series/parallel arrangement depending shading, the 

second sign is instability of DC voltage. So, to identify this fault, we use the combination of its 

two signs that appear. 
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As we can see in Figure 4.14 the DC current indicator well above the upper threshold (i.e., 

IdcR=1.65), up to this point, there is a possibility of three malfunctions (i.e., PV string fault, soiling 

losses and partial shading), for the soiling losses the IdcR is less than 1.2 and for string the IdcR is 

around 2, then, there remains only one defect which is the partial shading. the parametric approach 

can identify the shading faults but there is a possibility of non-distinction with other faults in DC 

side, which leads to false identification. The hybridization with other methods such as statistical, 

signal processing and machines learning can give a better precision and accuracy.  

 

Figure 4.14 Localisation of the temporary partial shading fault caused by pylon. 

Soiling losses detection 

In this scenario, we assess the performance of the proposed techniques in uncovering power losses 

caused by soiling chased by accumulation of dust and bird droppings. 

From Figure 4.15 we can see that the detection based on DC voltage indicator is in the confidence 

zone (i.e., 1.05 >VdcR > 0.95), while DC current and DC power indicators are slightly above the 

upper threshold (i.e., IdcR>1.053 and PdcR>1.07), which means the existence of a small 

accumulation of dust which generates a minor power loss of around 1 kWh per day. 

 

Figure 4.15 Identification of soiling losses caused by dust accumulation on the PV subarray 1. 
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Short-circuit fault detection. 

This case study is devoted to the evaluation of the potentials of the proposed method to detect and 

classify the level of short-circuit faults. For this we present 2 cases: two and four short-circuited 

PV modules. The DC electrical parameters affected by this fault are mainly the DC voltage and 

the DC power. The DC current are not affected by this fault. 

Figure 4.16 illustrates the detection results for two short-circuited PV modules, we can see that the 

DC indicator gives no sign of fault (i.e., IdcR=0.996), while the DC voltage and DC power 

indicators are above the upper limit of 1.05. (i.e., VdcR and PdcR >1.12), this situation corresponds 

for two short-circuited PV modules. this fault causes minor power losses. Note that recognizing a 

single module short circuit fault is a bit difficult. 

 

Figure 4.16 Identification of the 2 short-circuited PV modules. 

 

Figure 4.17 illustrates the detection results of four short-circuited PV modules, we can see that the 

DC indicator gives no sign of fault (i.e., IdcR=1.01), while the DC voltage and DC power 

indicators are above the upper limit. (i.e., VdcR =1.29 and PdcR =1.31), this situation corresponds 

to a voltage loss of four PV modules in series. this fault causes an important power loss. 

 

Figure 4.17 Identification of the 4 short-circuited PV modules. 
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DC/AC efficiency anomaly detection 

The final test evaluation is devoted to assessing the potentials of the proposed technique to identify 

the fault in AC side. In Figure 4.18 all DC Indicators are located between lower and upper 

thresholds limits, which means there are no malfunctions in DC side, the AC power indicator is 

equal to 1.24, it largely exceeds the high threshold, which strongly indicates the presence of an 

inverter performance anomaly. 

 

Figure 4.18 detection and classification of the DC/AC inverter efficiency fault. 

Figures (4.19, 4.20 and 4.21) summarize some faults on DC side, detected and identified using I-V 

indicators, which were produced respectively in PV sub-system 2 during two days (i.e., 31 august and 01 

September 2020) and in PV sub-system 3 during one day (01 September 2020). 

 

Figure 4.19 identified faults using I-V indicators occurring the PV sub-system 2 on 31/08/2020. 

 

Figure 4.20 identified faults using I-V indicators occurring the PV sub-system 2 on 01/09/2020. 
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Figure 4.21 Identified faults using I-V indicators occurring the PV sub-system 3 on 01/09/2020. 

In summary, in this section, the nine faults' cases were suitably identified and classified using a 

convivial user interface, along with other features that have been added to the interface. indeed, 

this method can identify only two modules in a short circuit, on the other hand, the losses of one 

PV module among fifteen in series are a little hard to quantify. The distinction of partial shading 

from other faults is difficult because it has large ranges of variation in losses over time, the use of 

time-series monitoring or other signal processing techniques can provide a solution to this problem. 

4.3 Fault detection using Double Exponentially Weighted Moving Average scheme 

with empirical models 

This section was developed in collaboration with  researchers affiliated with King Abdullah 

University of Science and Technology (KAUST) University, it presents a monitoring method 

based on parametric models and the Double Exponentially Weighted Moving Average (DEWMA) 

scheme, this method combines simplicity and flexibility, where the residuals are calculated with 

parametric and non-parametric models, nonparametric control limits are computed using kernel 

density estimation (KDE) to enhance its sensitivity compared to the parametric control limits. The 

strategy for detecting the faults that have occurred is carried out with the DEWMA technique. 

4.3.1 The proposed monitoring schemes 

The single EWMA considers the current input and previously received inputs to uncover 

abnormalities in the process mean [258]. This design makes the EMWA scheme sensitive to a 

small or gradual drift. EWMA monitoring scheme is well used in practice because it is more 

accessible to establish [259].  

In this study, the one-sided EWMA scheme, which uses the absolute value of EWMA statistic and 

only an upper control limit, will be used. For more details on the performance of the EWMA 

scheme, refer to [260]. To further enhance the capacity of the EWMA scheme to detect small 

changes in the process mean, the double EWMA (DEWMA) scheme is designed in [261] . The 

comparative study in  [262] reveals that DEWMA outperforms the EWMA scheme in detecting 

small changes that are smaller than one half of the process standard deviation. For moderate and 

large faults, the two techniques showed comparable performance. Here we used DEWMA with 

equal smoothing constant as recommended in  [262]. The anomaly detection can be achieved by 

plotting the DEWMA statistic with its upper and lower control limits, UCL, and LCL. 

An anomaly is flagged out when the DEWMA statistic exceeds the control limits. It is worth 

noticing that the detection threshold in the DEWMA approach is calculated by assuming the 

Gaussianity of data [263]. When the Gaussian assumption is not verified, the monitoring results 

would be inappropriate. To alleviate this limitation, the distribution of the DEWMA statistic could 

be estimated by using KDE [264], which is a nonparametric probability density estimation 

approach. At first, the distribution of the DEWMA statistic in Eq.  is estimated via univariate KDE 

using fault-free data. A nonparametric threshold of the DEWMA method is defined as the (1 - α)-

th quantile of the estimated distribution of DEWMA statistic obtained by KDE. A fault is flagged 

when the DEWMA statistic is above the decision threshold (Figure 4.22). 
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The DEWMA with nonparametric detection threshold is performed as follows: 

• Step 1: Computing DEWMA charting statistic for each observation. 

• Step 2: Estimating the probability density function for given DEWMA measurements via KDE. 

• Step 3: Setting-up the detection threshold based on the previously estimated distribution of 

DEWMA in a nonparametric. 

• Step 4: Flagging out a fault if the DEWMA statistic is above the detection threshold. 

 

 

Figure 4.22 Flowchart of DEWMA-driven detection strategy. 

4.3.2 Improved monitoring strategy using double exponential smoothing 

This subsection is devoted to introducing the structure of the proposed fault detection methodology 

to detect anomalies. This approach is employed to detect faults occurring on the DC and AC 

outputs of a PV system. As described previously, the use of the empirical models is due to their 

simplicity and capability to predict DC and AC outputs of a PV system appropriately.  

The empirical models are designed based on anomaly-free data and then adopted for monitoring 

new data. It is worth emphasizing that the models have been constructed based on standardized 

data. To this end, the raw data is standardized to have mean values is 0, and the standard deviation 

is 1. Specifically, each variable 𝑥𝑗 from the raw measurements gathered from the inspected PV 

array is auto scaled as; 

𝑋𝑗=

𝑥𝑗 − µ𝑗
0

𝜎𝑗
0 , 𝑗 = 1, … , 𝑚 (4.5) 

where m is the number of the collected variable (i.e., m = 7 in this case study).  
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µ𝑗
0 , 𝜎𝑗

0are the mean and standard deviation of the variable 𝑋𝑗 under fault-free conditions, 

respectively. 

Here, we merge these advantages of empirical models and the sensitivity of DEWMA schemes for 

detecting any abnormality in a PV array.  

Indeed, empirical models are used to generate residuals for anomaly detection (Figure 4.23)   

 

Figure 4.23 The framework of the proposed monitoring technique. 

The residuals, E = [e1, e2, …, en], are the difference between the DC and AC measurements outputs, 

(DC current 𝐼𝐷𝐶𝑡, DC voltage 𝑉𝐷𝐶𝑡, DC power 𝑃𝐷𝐶𝑡 and AC power 𝑃𝐴𝐶𝑡) and their corresponding 

prediction from the empirical model (DC current,  𝐼𝐷𝐶𝑡 , DC voltage, �̂�𝐷𝐶𝑡, and DC power, �̂�𝐷𝐶𝑡  
and AC power �̂�𝐴𝐶𝑡) from the PV array using measured tilted irradiance and ambient temperature. 

The residuals represented in Eq. 4.6 to 4.9, offer pertinent information about the presence of 

abnormal conditions. 

𝐸𝐼𝐷𝐶𝑡
  = 𝐼𝐷𝐶𝑡 − 𝐼𝐷𝐶𝑡 (4.6) 

𝐸𝑉𝐷𝐶𝑡
  = 𝑉𝐷𝐶𝑡 − �̂�𝐷𝐶𝑡 (4.7) 

𝐸𝑃𝐷𝐶𝑡
  = 𝑃𝐷𝐶𝑡 − �̂�𝐷𝐶𝑡 (4.8) 

𝐸𝑃𝐴𝐶𝑡
  = 𝑃𝐴𝐶𝑡 − �̂�𝐴𝐶𝑡 (4.9) 

The detection thresholds of the DEWMA schemes are computed using residuals of fault-free data. 

The acquired new measurements from the inspected PV array are standardized by subtracting the 

mean of the training data, μ0, and dividing the standard deviations, σ0. In the 

absence of anomalies, residuals fluctuate around zero, whereas in abnormal conditions, they 

diverge significantly from zero.  

Here, the DEWMA scheme is first applied to the residuals of DC peak power and AC power to 

sense anomalies. Then, if DEWMA uncovers an anomaly, the residuals of DC voltage and current 

are checked to identify the type of the flagged anomaly. 

Before assessing the effectiveness of DEWMA-based approaches, let us present the used 

evaluation indices in this study. Here, the commonly used metrics to verify the performance of 

anomaly detection, including true positive rate (TPR), false-positive rate (FPR), accuracy, and area 

under the curve (AUC), are used.  

Figure 4.24 depicts a confusion matrix and recapitulate formulas of the used metrics. Also, the 

measure of EER (Equal Error Rate) is used to evaluate the performance of the proposed method. 

EER is calculated as the following: 

𝐸𝐸𝑅 =
FPR + TPR

2
 (4.10) 
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Figure 4.24 Performance indices used in fault detection. 

4.3.3 Results and discussion 

This section is consecrated in assessing the performance of DEWMA based detection procedures. 

Specifically, we investigate the capacity of these detection procedures to sense faults in the DC 

and AC sides of a PV system. Table 4.1 shows the considered faults with its discrimination based 

on DC current and DC voltage indicators. 

Table 4.1  Faults discrimination based on DC current and DC voltage. 

 

String faults: 

Here, we illustrate the performance of the fault detection approach applied to the PV system with 

open-circuit faults. This kind of fault occurred if DC protection has deteriorated or there is a 

disconnection between PV modules in series. To this end, we generate a string fault by 

intentionally switch off the circuit-breaker of the PV system. Essentially, one string is not 

connected to the PV array. For PV array performance monitoring, at first, the residuals are 

generated using the empirical models of DC current, voltage and power, and AC power. The 

parametric and nonparametric DEWMA approaches are applied to DC power and AC power to 

sense the presence of energy losses. The outputs of the DEWMA methods, when applied to the 

faulty dataset, are illustrated in Figure 4.25. Results point out the occurrence of significant energy 

losses in the PV system. This fault causes a decrease in relatively 50% of the rated power because 

of the disconnection of the two strings. The two approaches can easily discover this severe fault. 

 

Figure 4.25 Illustration of the detection performance of the DEWMA charts applied to (a) DC power and (b) AC 

power dataset with a string fault. 
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To identify the type of fault, we check the DC current and voltage using the DEWMA scheme 

(Figure 4.26). We can see after the appearance of the string fault that the DC current is almost 

currency in two because we have two strings in parallel, while the DC voltage does not change 

significantly. From this analysis, we conclude that the occurred fault is due to string fault. 

 

Figure 4.26 Results from DEWMA with parametric and nonparametric threshold for (a) DC current and (b) DC 

voltage. 

The DEWMA scheme shows a slight superiority compared to the single EWMA (Table 4.2). The 

three schemes demonstrated a satisfying detection performance with lower FPR and the highest 

TPR, accuracy, and precision, because of the large magnitude of the string faults. 

Table 4.2 Detection results by procedure when string fault occurred. 
 

TPR FPR Accuracy Precision F-Measure AUC EER 

EWMA 1 0.039 0.984 0.973 0.986 0.981 0.016 

DEWMApa 1 0.065 0.973 0.956 0.977 0.967 0.027 

DEWMAnp 1 0 1 1 1 1 0 

Inverter disconnections: 

The focus of this case study is investigating the capacity of the DEWMA monitoring methods in 

sensing inverter disconnections. Essentially, inverter disconnections occurred when the electrical 

characteristics overpass the operating limits on the DC or AC part of the inverter. The operating 

limits are generally given in the datasheet. In the case of inverter disconnections, the PV system 

will shut down till reconnecting the inverter. Here, to show the detection performances of the 

considered methods, we choose one day of data that contains inverter disconnection faults. In this 

case study, the considered faults have resulted due to grid instability. The voltage and frequency 

of the grid have passed the operational limits of the inverter. Inverter disconnection faults are 

characterized by spike form and very short in time; this makes it quickly recognized from string 

faults and temporary shading. 

The detection results of the monitoring methods are summarized in Figure 4.27, Figure 

4.28 and Table 4.3. we can see that these anomalies are reflected in residuals of DC voltage and 

current. As this anomaly is easy to discriminate from the normal conditions, the DEMWA 

monitoring schemes showed good detection performance. The DEWMA scheme slightly improved 

the conventional EWMA scheme by achieving an AUC of 0.99 compared to 0.98 (Table 4.3). 

  

This means that all inverter disconnections are appropriately detected. These results indicate that 

for anomaly with a large magnitude, double and single EWMA are comparable. 
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Figure 4.27 Illustration of the detection performance of the DEWMA charts applied to (a) DC power and        (b) AC 

power dataset with inverter disconnections. 

 

Figure 4.28 Illustration of the detection performance of the DEWMA charts applied to (a) DC current and (b) DC 

voltage dataset with inverter disconnections. 

Table 4.3 Detection results by procedure when inverter disconnections occurred. 
 

TPR FPR Accuracy Precision F-Measure AUC EER 

EWMA 0.98 0.01 0.98 0.99 0.98 0.98 0.017021 

DEWMApa 0.99 0 0.99 1 0.99 0.99 0.005319 

DEWMAnp 0.99 0.01 0.99 0.99 0.99 0.99 0.004255 

Circuit breaker faults: 

Performance assessment in PV systems is an essential aspect of guaranteeing the safe operation of 

these systems. To ensure reliable performances and protect PV installation against sudden shock 

or electrical faults, using residual current circuit breaker (RCCB) with a miniature circuit breaker 

(MCB) is undoubtedly essential. Notably, the RCCB aims to protect people from electric shock, 

while the MCB is exploited for protecting a PV installation against overloads or short circuits. The 

RCCB automatically shuts off power if an electrical fault happened in the PV system. Here, this 

type of fault is generated for one hour based on measured data. The performance of the parametric 

and nonparametric DEWMA methods applied to the faulty dataset over time are displayed 

in Figure 4.29 (a-b). The two charts can recognize this large fault. The results of the DEWMA with 

parametric and nonparametric detection thresholds applied to DC current and (b) DC voltage 

datasets are presented in Figure 4.30 (a-b). 
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Figure 4.29 Illustration of the detection performance of the DEWMA charts applied to (a) DC power and (b) AC 

power dataset with a circuit breaker fault. 

 

Figure 4.30 Illustration of the detection performance of the DEWMA charts applied to (a) DC current and (b) DC 

voltage dataset with a circuit breaker fault. 

The effectiveness metrics of the nonparametric DEWMA, the conventional single, and double 

EWMA schemes are tabulated in Table 4.4. As expected, the nonparametric DEWMA shows 

superior detection performance compared to the traditional DEWMA and single EWMA charts. 

Indeed, when the assumed parametric form of the data distribution (i.e., Gaussian in this case) is 

invalid, results from the nonparametric DEWMA is more appropriate because of it an assumption-

free approach. In this case, detection results from the parametric DEWMA and EWMA schemes 

may not be effective as the detection threshold is fixed based on the normality assumption of the 

data. 

Table 4.4 Detection results by procedure when a circuit breaker fault happened. 
 

TPR FPR Accuracy Precision F-Measure AUC EER 

EWMA 0.939 0.066 0.934 0.5 0.653 0.937 0.066 

DEWMApa 0.985 0.100 0.906 0.409 0.578 0.942 0.094 

DEWMAnp 0.985 0.019 0.981 0.783 0.872 0.983 0.019 

PV system with shaded modules 

This experiment is devoted to an assessment of the capability of DEWMA-based monitoring 

approaches to detect partial shading. Partial shading can negatively impact the production of a PV 

system. As the power generated by a PV system is related to the received solar irradiance, when 

partial shading occurs, the power output will decrease proportionally as the shading heaviness 

increases. In general, shading losses can be caused by different elements, including pylons, 

building and trees. In this experiment, a partial shading is from two communication pylons on the 

inspected PV array (Figure 4.31), which can reduce the power yield of the PV array, are utilized 

for assessing the effectiveness of the DEWMA-based methods. This is done within the day. Here, 

the shading is treated as an abnormal event; then, it is not modeled. 



143 

 

 

Figure 4.31 PV array with shaded modules due to two communication pylons installed in front of this PV array. 

The DEWMA schemes with parametric and nonparametric detection thresholds have been applied 

to the residuals of DC and AC power to detect when partial shading occurred in the PV plant. Here 

the smoothing parameter ν is set to be 0.3. Results are depicted in Figure 4.32 (a-b). As can be 

noticed from Figure 4.33 (a), the nonparametric DEWMA scheme outperforms the parametric 

approach in terms of detection accuracy, and it gives precise detection of this shading without false 

alarms. Namely, the nonparametric threshold is computed more flexible without assumption on 

data distribution, while the parametric threshold is derived based on the assumption that data are 

Gaussian distributed. Using KDE to non-parametrically estimate the distribution of the residuals 

permits to get a more flexible and appropriate detection threshold, which leads to reduced false 

alarms and more accurate detection. As shown in Figure 4.33 (a-b), the partial shading of the two 

pylons causes a significant decrease in DC current and a small reduction in DC voltage with 

fluctuation. It is recommended to use DC current residues to diagnose this fault better. 

Furthermore, results indicate that the proposed algorithm can detect this anomaly and identify its 

type. 

 
Figure 4.32 Illustration of the detection performance of the DEWMA charts applied to (a) DC power and (b) AC 

power dataset when shaded modules happened. 

 
Figure 4.33 Illustration of the detection performance of the DEWMA charts applied to (a) DC current and (b) DC 

voltage dataset when shaded modules happened. 



144 

 

Results in Table 4.5 shows that the nonparametric DEWMA performed better than the 

conventional DEWMA and single EWMA schemes with lower FPR and the highest TPR, 

accuracy, and precision. The nonparametric DEWMA reaches an AUC of 0.984; the conventional 

DEWMA and EWMA schemes achieved an AUC of 0.932 and 0.65, respectively. The traditional 

methods flag this shading but with some false alarms and missed detection. Such results may 

suggest the nonparametric DEWMA rather than the conventional DEWMA, and EWMA charts 

for suitably uncover partial shading in a PV array. 

Table 4.5 Detection results by procedure when shading has occurred. 
 

TPR FPR Accuracy Precision F-Measure AUC EER 

EWMA 1 0.701 0.577 0.484 0.653 0.650 0.423 

DEWMApa 0.987 0.124 0.920 0.840 0.907 0.932 0.080 

DEWMAnp 0.968 0 0.987 1 0.983 0.984 0.013 

Soiling losses 

In this scenario, we assess the performance of the detection methods in uncovering power losses 

caused by soiling (accumulation of dust and bird droppings). The Layers of dust on the surface of 

the PV modules reduce the arrived sunlight to solar cells, which degrade the performance of PV 

modules and cause power losses.  Figure 4.34 illustrates an example of PV modules with 

accumulating of dust caused by sand accumulation.  

 

Figure 4.34 PV modules with dusty surface. 

Figure 4.35 (a-b) shows the performance of the parametric and nonparametric DEWMA charts 

when applied to the residuals’ DC power and AC power datasets collected from PV systems with 

dusty modules. The shaded area in Figure 4.35 (a-b) corresponds to the observation from the PV 

system with dusty modules, and the data corresponding to the non-shaded zone is from PV modules 

operating normally with cleaned PV modules. The two charts can recognize these large losses. The 

results show that the nonparametric DEWMA scheme offers better detection results without false 

alarms, and the parametric can detect these power losses but with few false alarms. 

 

 

Figure 4.35 Illustration of the detection performance of the DEWMA charts applied to (a) DC power and (b) AC 

power dataset from dusty PV modules. 
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The two monitoring schemes based on the DC current and DC voltage residuals are given in Figure 

4.36 (a-b). It can be seen that two charting statistics based DC current residuals are above the 

detection thresholds. The detection based on DC voltage residuals is not persistent over time. 
 

 

Figure 4.36 Illustration of the detection performance of the DEWMA charts applied to (a) DC current and (b) DC 

voltage dataset from dusty PV modules. 

Short-circuit fault 

The final experiment is devoted to assessing the potentials of the proposed techniques to detect 

short-circuit faults. Two cases are considered to assess the DEWMA-based methods; two PV 

modules short-circuited and five PV modules short-circuited. The electrical parameters affected 

by this fault are mainly DC voltage and DC power. 

Figure 4.37 (a-b) illustrates the detection results of the parametric and nonparametric DEWMA 

charts when applied to residuals of DC and AC power. Here, the residuals are obtained using the 

empirical models constructed previously. As it can be observed from Figure 4.37 (a-b), the two 

charts recognize this short-circuit fault. The nonparametric DEMWA chart provides accurate 

detection compared to its parametric counterpart, resulting in several false alarms. To further 

diagnose such faults, the results of the DEWMA charts applied to residuals DC current and DC 

voltage datasets are illustrated in Figure 4.38 (a-b). The charting statistics based on residuals of 

DC current are below the detection thresholds, which means that DC current does not change by 

much (Figure 4.38-a). In comparison, the charting statistics based on residuals of DC voltage are 

above the detection thresholds (Figure 4.38-b). Thus, we conclude that the occurred fault is a short-

circuit fault. The outputs of the three schemes: nonparametric DEWMA, and the conventional 

DEWMA and EWMA schemes are summarized in Table 4.6. 

 

 

Figure 4.37 Illustration of the detection performance of the DEWMA charts applied to (a) DC power and (b) AC 

power datasets with two short-circuited modules. 
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Figure 4.38 Illustration of the detection performance of the DEWMA charts applied to (a) DC current and (b) DC 

voltage datasets with two short-circuited modules. 

Table 4.6 Detection results by procedure when two modules are short-circuited. 
 

TPR FPR Accuracy Precision F-Measure AUC EER 

EWMA 1 0.039 0.983 0.972 0.986 0.981 0.017 

DEWMApa 0.998 0.065 0.971 0.953 0.975 0.967 0.029 

DEWMAnp 0.995 0 0.997 1 0.998 0.998 0.003 

 

To further assess the fault detection and diagnosis performance of the DEWMA-based approaches, 

in the second scenario, five modules have been short-circuited from the inspected PV system. 

Monitoring results of DEWMA charts based on the residuals of output DC power and AC power, 

DC current, and DC voltage are presented in Figure 4.39 (a-b) and Figure 4.40 (a-b), respectively. 

It is worth noticing that the nonparametric DEWMA approach exhibits better detection 

performance and can easily detect short-circuit faults without false alarms. We concluded that the 

DEWMA chart with the nonparametric detection threshold is a very efficient method for short-

circuit faults in PV systems. Also, the residuals generated by the empirical models provide capture 

useful information about abnormalities in the inspected PV system.  

 

Figure 4.39 Illustration of the detection performance of the DEWMA charts applied to (a) DC power and (b) AC 

power datasets with five short-circuited modules. 

The outputs of the three schemes: nonparametric DEWMA, and the conventional DEWMA and 

EWMA schemes are summarized in Table 4.7. The results underline the benefit of using the 

nonparametric DEWMA in terms of increasing the detection accuracy. It is worth pointing out that 

the DEWMA chart with a nonparametric threshold takes advantage of sensitivity DEWMA 

charting statistics and assumption-free in setting detection thresholds to improve fault detection 

and diagnosis performance in monitoring PV systems (see Figure 4.40). 

Table 4.7 Detection results by procedure when five modules are short-circuited. 
 

TPR FPR Accuracy Precision F-Measure AUC EER 

EWMA 1 0.039 0.982 0.967 0.983 0.981 0.018 

DEWMApa 1 0.065 0.970 0.946 0.972 0.967 0.030 

DEWMAnp 0.998 0 0.999 1 0.999 0.999 0.001 
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Figure 4.40 Illustration of the detection performance of the DEWMA charts applied to (a) DC current and (b) DC 

voltage datasets with five short-circuited modules. 

In summary, this section shows that amalgamating empirical models to describe MPP DC current, 

voltage, power, and AC power with the good detection capability of DEWMA, enabling an 

efficient detection of anomalies in DC and AC sides of a PV system. Also, results proclaim the 

superior efficiency of the DEWMA scheme with a nonparametric threshold compared to the 

parametric counterpart and the single EWMA. 

4.4 Conclusion. 

faults can affect performance of PV system and cause their power production to decrease from 

their desired specification significantly. Since anomalies and failures are inevitable in a PV system, 

they must be suitably identified and corrected.  

In this chapter, two techniques were investigated, In the first section, a simple technique for 

automatic diagnosis of the main faults in PV systems was proposed. This technique is based on the 

performance loss evaluation of four electrical indicators (i.e., DC current, DC voltage, DC power 

and AC power) based on sandia parametric models. The definition of both lower and upper 

threshold limits for each fault are established by faulty-dataset from 9.54 kWp experimental PV 

system. The nine faults' cases were properly detected and identified using a modest and convivial 

user interface, along with other features that have been added to this interface. The partial shading 

fault is well recognized, but there is a possibility of non-distinction with other faults in DC side, 

which leads to false identification, this problem can be solved by signal processing of a shading 

anomaly. The proposed technique is not complex and easy to integrate into the real-time 

monitoring program. 

In the second section of this chapter, we have presented a simple and efficient diagnostic method 

based on parametric models and the double exponential moving average (DEWMA) scheme. The 

empirical models of PV array and PV inverter are employed to generate residuals, a second 

approach based on nonparametric models computed by KDE are applied. The residue examination 

is performed by DEWMA technique in order to detect and identify faults occurring in the PV 

system. The capacity of the designed detection schemes is verified using six types of electrical and 

environmental faults in order to assess the detection performance. The results claim that the 

DEWMA scheme with a non-parametric threshold gives more precision and accuracy than that 

based on the parametric models. These techniques can be applied to real-time monitoring of PV 

system operating conditions. 

Despite the satisfying results achieved using the DEWMA-based procedure for fault detection 

purposes, this work can be further improved. Recently, deep learning-driven models have emerged 

as a promising line of research in modeling and forecasting time series data (Harrou et al., 2020, 

Harrou et al., 2020). In future work, we plan to develop advanced fault detection and diagnosis 

techniques by exploiting the extended capacity of deep learning models in modeling time 

dependencies in time-series data. In addition, the hybridization of techniques such as statistical, 

signal processing, machines learning and deep learning, can give a better precision and accuracy 

for fault diagnosis. 
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Conclusion and perspectives 

Conclusion 

Failures and anomalies in solar PV plants can affect their performance and cause their power 

production to decrease from their desired specification significantly, and since such faults are 

inevitable in a PV system, they must be properly detected, identified and well handled.  

A comprehensive monitoring of all characteristic parameters adds a great value to the PV system 

leading to: extended system life, low maintenance requirements and low operating costs in order 

to have an optimum performance in a cost-effective and reliable way. Indeed, an advanced 

monitoring system makes it possible to acquire and analyze a number of performance parameters 

of the PV system and to compare them with calibrated models using intelligent techniques to detect 

drops in performance with classification of the various faults that can affect a PV system. 

In chapter 2, we introduced the implementation of a real-time monitoring system for a 9.54 kWp 

grid-connected PV system (GCPVS), mainly composed of sensors, data acquisition instruments 

and LabVIEW graphical programming software. The external sensors mounted in the GCPVS 

were well calibrated with reference instruments and sensors and exhibit reliable and accurate 

measurements. The use of sophisticated and accurate PC-based DAQ hardware (i.e., Agilent 

34970A, Keithley 2700 and Fluke 2638A) with LabVIEW software creates a virtual 

instrumentation (VI) system which is very useful for the acquisition, visualization, and analysis of 

measured data. PC-based DAQ can largely meet the requirements of IEC 61724 for PV system 

performance monitoring. A user-friendly interface under LabVIEW is designed, making it possible 

to retrieve, display and record the measured data of the environmental and electrical parameters 

which characterize the GCPVS. Several versions were developed in order to design the final 

interface. The proposed monitoring platform is customizable, and can be applied to any size and 

type of the PV system. The designed interface is also extensible for behavioral modeling, 

performance analysis and fault diagnosis using different methods and techniques. 

In the last section of chapter 2, some case studies dealing with measurement and monitoring 

applied to different types of PV systems carried out at CDER, were presented. These case studies 

are: 

1) Monitoring of an off-grid PV system using LabVIEW. 

2) Monitoring & control of a PV water pumping test bench using LabVIEW. 

3) I-V characterization and test of different PV modules using an I-V tracer PVPM 2540C. 

4) Advanced electrical measurement of the grid connected PV system using three-phase 

electrical networks analyzer. 

The obtained results so far are very encouraging and promising, as already presented. 

Carrying out monitoring for different systems and PV test benches has enabled us to: 

• Acquire knowledge on new electrical and physical phenomena. 

• Become more familiar with new conditioning and measurement techniques. 

• Handle multiple sensors, transducers, instruments, and software. 

In chapter 3, several models were selected and tested in order to choose the best model for each 

modeling part. The results obtained by simulation were validated using reference data 

measurements of the 9.54 kWp GCPVS in MATLAB. The comparison showed good agreement, 

and that the models developed by SNL are the best (i.e., 1) cell/module temperature model, 2) 

SAPM to predict DC current, DC voltage and DC power and 3) SANDIA inverter model to 

estimate AC power).  

For the non-parametric model based on PCA, we saw a good agreement between the measured and 

the predicted data. Simulation results illustrate the good accuracy of the PCA model.  

The generated residuals based on the developed PCA reference model will be evaluated by 

multivariate monitoring charts to detect faults. 
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A user-friendly interface was designed and developed under LabVIEW in order to model the 

electrical behavior of GCPVS and to analyze the performance of environmental and electrical data 

by calculating the performance ratio and the energy yields of the PV system. The designed interface 

also allows a dynamic visualization of all data and information with different scenarios. 

Furthermore, the graphical program under LabVIEW is extensible to integrate multiple 

performance model and to analyze data using advanced techniques (e.g., Machine Learning, 

statistical methods and hybrid methods) for modeling, performance analysis and faults detection 

in a PV system. The difference between the simulated and measured values relates to a detection 

of the fault occurring in PV system. 

In chapter 4, two techniques were investigated. In the first section, a simple technique for 

automatic diagnosis of the main faults in PV systems were proposed. This technique is based on 

the performance loss rate (PLR) evaluation of four electrical indicators (i.e., DC current, DC 

voltage, DC power and AC power) based on SANDIA parametric models. The definition of both 

lower and upper threshold limits for each fault are established by faulty-dataset from 9.54 kWp 

experimental PV system. The nine faults' cases were properly detected and identified using a 

simple and convivial user interface, along with other features that have been added to this interface. 

The partial shading fault is well recognized, but there is a possibility of non-distinction between 

other faults in DC side, which leads to false identification, this problem can be solved by signal 

processing of a shading anomaly. The proposed technique is not complex and easy to integrate into 

the real-time monitoring program. 

In the second section of chapter 4, we presented a simple and efficient diagnostic method based 

on parametric models and the double exponential moving average (DEWMA) scheme. The 

empirical models of PV array and PV inverter are used to generate residuals. A second approach 

based on nonparametric models computed by KDE is applied. The residue examination is 

performed by DEWMA technique in order to detect and identify faults occurring in the PV system. 

The capacity of the designed detection schemes is verified using six types of electrical and 

environmental faults in order to assess the detection performance. The results show that the 

DEWMA scheme with a non-parametric threshold gives more precision and accuracy than that 

based on the parametric models. These techniques can be applied in real-time monitoring of PV 

system operating conditions. 

 

Recommendations for further work 

Despite the promising obtained results, this thesis could be improved with next features by: 

✓ Increasing accuracy and precision of environmental measurements by adding other class A 

sensors (pyranometer; PT 100, wind sensor). 

✓ Adding electrical sensors on the AC side of the PV system at the connection point to monitor 

the energy flow. 

✓ Adding filters to the DC and AC electrical quantity measurement cards. 

✓ Analysis of AC parameters (energies, frequencies, harmonics, etc.) 

✓ Improving the precision of the models used. In addition, we plan to test other models to get a 

better electrical prediction. 

✓ Using other fault detection techniques and making a comparative study of these methods. 

✓ Adding of IoT functionalities to the monitoring system. 

✓ Extending detection tests using other data from large-scale PV plants installed in Algeria. 

✓ Developing advanced fault detection and diagnosis techniques by exploiting the extended 

capability of deep learning models. 

✓ Integrating forecasting models 
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Appendix 

Appendix A 

 
Figure 0.1 Classification of various fault occurring in DC & AC side of the PV system 

Table 0.1 Description of losses occurring in a PV Power Plant. 

Loss Description 

Air pollution 

The solar resource can be reduced significantly in some locations due to air pollution from industry 

and agriculture. Air pollution reduces solar irradiance incident on the module and thereby reduces 

power output. This is more significant in urban and peri-urban locations, particularly in more recently 

industrialized nations. 

Soiling 

Losses due to soiling (dust and bird droppings) depend on the environmental conditions, rainfall 

frequency, and cleaning strategy as defined in the O&M contract.  

This loss can be relatively large compared to other loss factors. It has the potential to reach up to 15 

percent annually and potentially higher in deserts, but is usually less than 4 percent unless there is 

unusually high soiling or problems from snow settling on the modules for long periods of time. The 

soiling loss may be expected to be lower for modules at a high tilt angle as inclined modules will benefit 

more from the natural cleaning effect of rainwater. Tracking systems typically record similar soiling 

losses as fixed systems. As this loss can have an important impact on the PR, it is recommended that 

an expert is consulted to quantify the soiling loss. 

Shading 

Shading losses occur due to mountains or buildings on the far horizon, mutual shading between rows 

of modules and near shading due to trees, buildings, pylons or overhead cabling. To model near-shading 

losses accurately, it is recommended that a 3D representation of the plant and shading obstacles are 

generated within the modelling software. This loss can potentially be quite large; thus, it is important 

that the plant is modelled accurately. 

Electrical 

shading 

The effect of partial shadings on electrical production of the PV plant is non-linear and is modelled 

through partitioning of the strings of modules. Modules installed in landscape configuration for an 

orientation towards the equator will typically experience less electrical shading losses than modules 

installed in portrait configuration due to the connection of diodes. Similarly, some types of thin-film 

technology are less impacted than crystalline PV modules. Electrical shading effects can typically be 

set within the modelling software. This will be quantified differently depending on module 

configuration, chosen technology and the system type (i.e., tracking or fixed). 

Incident 

angle 

The incidence angle loss accounts for radiation reflected from the front glass when the light striking it 

is not perpendicular. For tilted PV modules, these losses may be expected to be larger than the losses 

experienced with dual axis tracking systems, for example. 

Low 

irradiance 

The conversion efficiency of a PV module generally reduces at low light intensities. This causes a loss 

in the output of a module compared with the Standard Test Conditions (STC) (1,000W/m2). This “low 

irradiance loss” depends on the characteristics of the module and the intensity of the incident radiation. 

Most module manufacturers will be able to provide information on their module low irradiance losses. 

However, where possible, it is preferable to obtain such data from independent testing institutes. 
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Module 

temperature 

The characteristics of a PV module are determined at standard temperature conditions of 25˚C. For 

every degree rise in Celsius temperature above this standard, crystalline silicon modules reduce in 

efficiency, generally by around 0.5 percent. In high ambient temperatures under strong irradiance, 

module temperatures can rise appreciably. Wind can provide some cooling effect, which can also be 

modelled. 

Module 

quality 

Most PV modules do not exactly match the manufacturer’s nominal specifications. Modules are sold 

with a nominal peak power and a guarantee of actual power within a given tolerance range. The module 

quality loss quantifies the impact on the energy yield due to divergences in actual module 

characteristics from the specifications. Typically, the module output power at STC is greater than the 

nominal power specified in the datasheets. As such, a positive quality factor can be applied to the 

energy yield. 

Module 

mismatch 

Losses due to "mismatch" are related to the fact that the real modules in a string do not all rigorously 

present the same current/voltage profiles; there is a statistical variation between them which gives rise 

to a power loss. This loss is directly related to the modules’ power tolerance. 

Degradation 

The performance of a PV module decreases with time (see Section 3.3.5). If no independent testing has 

been conducted on the modules being used, then a generic degradation rate depending on the module 

technology may be assumed. Alternatively, a maximum degradation rate that conforms to the module 

performance warranty may be considered as a conservative estimate. 

Inverter 

performance 

Inverters convert current from DC into AC with an efficiency that varies with inverter load. 

Manufacturers are usually able to provide an inverter’s efficiency profile for low, medium and high 

voltages; entering these into the modelling software will provide more accurate inverter losses. 

MPP 

tracking 

The inverters are constantly seeking the maximum power point (MPP) of the array by shifting inverter 

voltage to the MPP voltage. Different inverters do this with varying efficiency. 

Curtailment 

of tracking 

Yield losses can occur due to high winds enforcing the stow mode of tracking systems so that the PV 

modules are not optimally orientated. 

Transformer 

performance 

Transformer losses are usually quantified in terms of iron and resistive/inductive losses, which can be 

calculated based on the transformer’s no-load and full-load losses. 

DC cable 

losses 

Electrical resistance in the cable between the modules and the input terminals of the inverter give rise 

to ohmic losses (I².R). 
* These losses increase with temperature. If the cable is correctly sized, this loss should be less than 3 

% percent annually. 

Ohmic Loss is the voltage drop across the cell during passage of current due to the internal resistance of the cell 

AC cable 

losses 

AC cable losses are the ohmic losses in the AC cabling. This includes all cables post inverter up to the 

metering point. These losses are typically smaller than DC cable losses and are usually smaller for 

systems that use central inverters. 

Auxiliary 

power 

Power may be required for electrical equipment within the plant. This may include security systems, 

tracking motors, monitoring equipment and lighting. Plants with string inverter configurations will 

typically experience smaller auxiliary losses than central inverter configurations. It is usually 

recommended to meter this auxiliary power requirement separately. Furthermore, care should be taken 

as to how to quantify both daytime and nighttime auxiliary losses. 

Downtime 

Downtime is a period when the plant does not generate due to failure. The downtime periods will 

depend on the quality of the plant components, design, environmental conditions, diagnostic response 

time, and repair response time. 

Grid 

availability 

and 

disruption 

The ability of a PV power plant to export power is dependent on the availability of the distribution or 

transmission network. The owner of the PV plant relies on the distribution network operator to maintain 

service at high levels of availability. Unless detailed information is available, this loss is typically based 

on an assumption that the local grid will not be operational for a given number of hours/days in any 

one year, and that it will occur during periods of average production. 

Grid 

compliance 

loss 

Excessive loading of local transmission or distribution network equipment such as overhead lines or 

power transformers may lead to grid instability. In this case, the voltage and frequency of the grid may 

fall outside the operational limits of the inverters and plant downtime may result. In less developed 

regional networks, the risk of downtime caused by grid instability can have serious impacts on project 

economics. 
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Appendix B 

1) Modeling program under MATLAB for three sub-system of GCPVS 

 
%data calibration  
%variables  
Ge =(G./1000); 
T0=25; 
Wv=WindVel; 
sz= size(G); 
z=sz(1,1); 
 
% 29042020 day faults free  
%Temperature module Simulation---- 
TPV1=1.14.*(Ta-25)+0.0175.*(G-300)+30; %Based onenvironmentalparameters 
TPV3=30+0.0175.*(G-150)+1.14.*(Ta-25);%based on ross 
TPV4=Ta+(0.028.*G)-1;%based on ross 
TPV7=Ta+(G./800).*(44-25);%Model Noct Tnoct=47°C 
TPV6=Ta+(0.0155.*G)+0.7;%based on ross 
TPV8=(0.03.*G)+Ta; 
TPV2=Ta+(0.031.*G)-0.058; %based on ross 
TPV5=Ta+(0.031.*G);%based on ross 
 
%choosen model temp for noct 
  %NOCT modell---------------------------------------------  
 
%      f(Tamb,G) = Tamb+p0.*((G./800).*(Tnoct-20)) 
 
   Tnoct =  46.5 ;% (-3.86e+07, 3.86e+07) 
   p0 =      0.6149 ; %(-8.958e+05, 8.958e+05) 
   dTcm=2;%difference btw module and cell 1-3 
   Tc2=Tm2+(Ge.*dTcm); 
   Tc_noct=Tamb+p0.*((G./800).*(Tnoct-20)); %Model Noct Tnoct=47°C 
 
%Other Tempearature cell models  
%Model Based on NOCT model; Includes the impact of wind speed.with 2 parameters [98] 
% General model:  f(G,Wv) = p1.*((G./800).*(Tnoctw-20))+p2.*(Wv-1) 
 
       Tnoctw =        46.5;  %(-5.967e+07, 5.967e+07) 
       p1 =      0.7061;  %(-1.59e+06, 1.59e+06) 
       p2 =     -0.9818;    %  (-1.25, -0.7137) 
    
Xn=Tc2-Tamb; 
Tc_noctw=Tamb+p1.*((G./800).*(Tnoctw-20))+p2.*(Wv-1);%Based on NOCT model; Includes the impact of wind 
speed.with 2 parameters [98] 
%---------------------------------------------- 
%PV temperature SIMULATION   //Faimen 
% typical value U0=25; U1=6.84; 
%General model: f(Wv) = U0+(U1.*Wv) 
   U0 =       37.71  ;%(36.09, 39.33) 
   U1 =       4.694 ;% (4.25, 5.138) 
 
% Tm_faimen=Tamb+(Gi./(U0+(U1.*Wv))); % Tm_faimen=Tamb+(Gi./Xf); 
 
Xf=G./(Tm2-Tamb);   
Tm_faimen=Tamb+(G./(U0+(U1.*Wv))); 
Tc_faimen=Tm_faimen+(Ge.*dTcm); 
 
%--------------------------------------------- 
%sandia model module and cell 
% COEFFICIENTS FOR Glass/cell/glass AND Open rack/ a=-3.47; % b=-0.0594; 
% General model: f(Wv) = a+b*Wv 
       a =      -3.691 ;% (-3.71, -3.673) 
       b =    -0.08396 ; %(-0.08903, -0.0789) 
% Xs=a+bWv; 
% Tm_sandia=G.*(exp(Xs))+Tamb 
Xs=log((Tm2-Tamb)./G); 
Tm_sandia=G.*(exp(a+(b.*Wv)))+Tamb; % sandia Model 
 
%∆T temperature between Module and cell °C 
Tc_sandia=Tm_sandia+(Ge.*dTcm); 
T1=Tc_noct; 
T2=Tc_noctw; 
T3=Tc_faimen; 
T4=Tc_sandia; 
 
Tm_meas=Tm2;%Select temp of module Tm1 Tm2 or Tm3 
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Tc_meas=Tm_meas+(Ge.*dTcm);%convert data module to cell 
T5=Tc_meas; 
 
%Select temp for model T1, T2 , T3 , T4, T5 
T=T3;%T2=Tc_sandia; 
 
Te=(T-T0); 
%----------------------------------------------------------------------- 
%PVWATT MODEL 
Ctp1 =       -0.05;   % (-4.758, 4.658) 
cp1  =      0.8061 ; %(0.7856, 0.8267)     
Ctp2 =       -0.05 ;% (-4.809, 4.709) 
cp2  =      0.8076 ; %(0.7869, 0.8284)     
Ctp3 =       -0.05 ; %(-2.265, 2.165)  
cp3 =      0.8016 ;% (0.7834, 0.8199)       
pdcspw1=((cp1.*3180)+(Ctp1.*Te)).*Ge; 
pdcspw2=((cp2.*3180)+(Ctp2.*Te)).*Ge; 
pdcspw3=((cp3.*3180)+(Ctp3.*Te)).*Ge; 
%--------------------------------------------------------------- 
%Edouardo Model     
    %SUB ARRAY 1 
       ai1 =      0.8716;  %(0.8675, 0.8757) 
       cti1 =       0.001;  %(fixed at bound) 
       bv1 =     0.09667 ; %(0.09538, 0.09796) 
       ctv1 =    -0.08037; % (-0.08549, -0.07525) 
     %SUB ARRAY 2           
       ai2 =       0.872  ; %(0.8676, 0.8764) 
       cti2 =       0.001 ; %(fixed at bound) 
       bv2 =     0.09652; % (0.09525, 0.0978) 
       ctv2 =     -0.0784 ; %(-0.08348, -0.07333) 
       %SUB ARRAY 3 
        ai3 =      0.8638  ;%(0.8601, 0.8676) 
        cti3 =       0.001 ; %(fixed at bound) 
        bv3 =     0.09485 ;     %(0.09464, 0.09506) 
        ctv3 =    -0.07909 ;% (-0.07992, -0.07826) 
        
%DC current & voltage modelisation  
idcs1=((ai1.*2.*6.1)+(cti1.*Te)).*Ge; 
vdcs1=((log((1-exp(-1./bv1)).*bv1).*bv1)+1).*((Ge.*15.*Te.*ctv1)+(15.*21.6000000001)-
(exp(log((21.6000000001-21.6)./21.6000000001).*Ge).*(15.*21.6000000001))); 
pdcs1=idcs1.*vdcs1; 
 
idcs2=((ai2.*2.*6.1)+(cti2.*Te)).*Ge; 
vdcs2=((log((1-exp(-1./bv2)).*bv2).*bv2)+1).*((Ge.*15.*Te.*ctv2)+(15.*21.6000000001)-
(exp(log((21.6000000001-21.6)./21.6000000001).*Ge).*(15.*21.6000000001))); 
pdcs2=idcs2.*vdcs2; 
 
idcs3=((ai3.*2.*6.1)+(cti3.*Te)).*Ge; 
vdcs3=((log((1-exp(-1./bv3)).*bv3).*bv3)+1).*((Ge.*15.*Te.*ctv3)+(15.*21.6000000001)-
(exp(log((21.6000000001-21.6)./21.6000000001).*Ge).*(15.*21.6000000001))); 
pdcs3=idcs3.*vdcs3; 
 
%SANDIA PV ARRAY MODEL 
 
% Finding simulated values of Vmp and Imp using Sandia Model: 
s=15; %number of modules in series   
p=2;   %number of parallel string   
T0 = 25;     % reference temperature  
q = 1.60218E-19;  % elementary charge         
k = 1.38066E-23; %Boltzmann constant 
Imp0 = 6.1 ;   %STC value from data sheet 
Vmp0 = 17.4 ;   %STC value from data sheet      
Ns = 36;        %number of cell in PV module 
 
% parameter identification IDC AND  VDC for 29042020 day 
% Tci = 0.0023;  % temperature coefficient of Impp from data sheet 
%Tcv = -0.074;  % temperature coefficient of Vmpp from data sheet 
 
%subarray 1 
       Tci1 =       0.001; % (fixed at bound) 
       c01 =       0.961 ; %(0.952, 0.97) 
       c11 =     -0.1111 ; %(-0.1209, -0.1014)  
       Tcv1 =    -0.09755 ; %(-0.09867, -0.09642) 
       c21 =       0.116 ; %(-6149, 6149) 
       c31 =      -3.195 ; %(-3.386e+05, 3.386e+05) 
       n1 =       1.854 ; %(-9.825e+04, 9.826e+04) 
%subarray 2         
       Tci2 =     0.001; % (fixed at bound) 
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       c02 =      0.9828 ; %(0.9721, 0.9934) 
       c12 =     -0.1338 ; %(-0.1453, -0.1222) 
       Tcv2 =    -0.09567; % (-0.0961, -0.09524) 
       c22 =      0.0674 ; %(-1106, 1106) 
       c32 =      -2.184; % (-7.167e+04, 7.167e+04) 
       n2 =       2.418 ;% (-3.966e+04, 3.967e+04)        
%subarray 3         
       Tci3 =     0.001; % (fixed at bound) 
       c03 =      0.9521 ; %(0.9432, 0.9611) 
       c13 =     -0.1074 ; %(-0.1171, -0.09779) 
       Tcv3 =    -0.09343 ;% (-0.09447, -0.09238) 
       c23 =     0.06389 ; %(-3211, 3211) 
       c33 =      -2.103 ;% (-2.114e+05, 2.114e+05) 
       n3 =        2.34 ; %(-1.176e+05, 1.176e+05) 
   
%improved sandia voltage model  
       Tcv1c =     -0.0731 ;% (-0.07878, -0.06741) 
       c21c =      0.1239 ; %(-7090, 7090) 
       c31c =       4.292 ; %(-4.91e+05, 4.91e+05) 
       cvd1 =      0.3758 ; %(0.2948, 0.4568) 
       n1c =       2.442  ;%(-1.397e+05, 1.397e+05) 
       Tcv2c =    -0.07744 ;% (-0.08335, -0.07152) 
       c22c =       0.105 ; %(-7267, 7267) 
       c32c =        1.42 ;% (-1.966e+05, 1.966e+05) 
       cvd2 =      0.2891 ; %(0.2048, 0.3733) 
       n2c =       3.648  ;%(-2.524e+05, 2.525e+05) 
       Tcv3c =    -0.07403 ; %(-0.07913, -0.06893) 
       c23c =      0.1317 ; %(-8100, 8101) 
       c33c =       3.155 ; %(-3.882e+05, 3.882e+05) 
       cvd3 =       0.302 ;% (0.2295, 0.3746) 
       n3c =       2.584;%  (-1.59e+05, 1.59e+05) 
        
% Create variables, set them to 0 
Imp = 0 ; Vmp = 0; Vmt=0; 
%  Perform the calculations for the outputs 
Imp1 = p.*(Imp0.*((c01.*Ge)+(c11.*(Ge.^2))).*(1+(Tci1.*Te)));%sandia current model 
Vmp1 = s.*((Vmp0)+(c21.*Ns.*(n1.*k.*(Te+298.15)./q).*log(Ge))+(c31.*Ns.*((n1.* k.*(Te+298.15)/q).* 
log(Ge)).^2)+(Tcv1.*Ge.*Te)); %DC voltage with temp effect 
Vmp1C = s.*((Vmp0)+(c21c.*Ns.*(n1c.*k.*(Te+298.15)./q).*log(Ge))+(c31c.*Ns.*((n1c.* k.*(Te+298.15)/q).* 
log(Ge)).^2)+(Tcv1c.*Ge.*Te)-(cvd1./Ge));%DC voltage with temp effect and correction 
Vmt1 = s.*((Vmp0)+(c21c.*Ns.*(n1c.*k.*(298.15)/q).*log(Ge))+(c31c.*Ns.*((n1c.*k.*(298.15)/q).* 
log(Ge)).^2)); %DC voltage without temp effect 
 
Imp2 = p.*(Imp0.*((c02.*Ge)+(c12.*(Ge.^2))).*(1+(Tci2.*Te))); 
Vmp2 = s.*((Vmp0)+(c22.*Ns.*(n2.*k.*(Te+298.15)./q).*log(Ge))+(c32.*Ns.*((n2.* k.*(Te+298.15)/q).* 
log(Ge)).^2)+(Tcv2.*Ge.*Te)); %DC voltage with temp effect 
Vmp2C = s.*((Vmp0)+(c22c.*Ns.*(n2c.*k.*(Te+298.15)./q).*log(Ge))+(c32c.*Ns.*((n2c.* k.*(Te+298.15)/q).* 
log(Ge)).^2)+(Tcv2c.*Ge.*Te)-(cvd2./Ge)); 
Vmt2 = s.*((Vmp0)+(c22c.*Ns.*(n2c.*k.*(298.15)/q).*log(Ge))+(c32c.*Ns.*((n2c.*k.*(298.15)/q).* 
log(Ge)).^2)); %DC voltage without temp effect 
 
Imp3 = p.*(Imp0.*((c03.*Ge)+(c13.*(Ge.^2))).*(1+(Tci3.*Te))); 
Vmp3 = s.*((Vmp0)+(c23.*Ns.*(n3.*k.*(Te+298.15)./q).*log(Ge))+(c33.*Ns.*((n3.* k.*(Te+298.15)/q).* 
log(Ge)).^2)+(Tcv3.*(Ge).*Te)); %DC voltage with temp effect 
Vmp3C = s.*((Vmp0)+(c23c.*Ns.*(n3c.*k.*(Te+298.15)./q).*log(Ge))+(c33c.*Ns.*((n3c.* k.*(Te+298.15)/q).* 
log(Ge)).^2)+(Tcv3c.*Ge.*Te)-(cvd3./Ge)); 
Vmt3 = s.*((Vmp0)+(c23c.*Ns.*(n3c.*k.*(298.15)/q).*log(Ge))+(c33c.*Ns.*((n3c.*k.*(298.15)/q).* 
log(Ge)).^2)); %DC voltage without temp effect 
 
Vdcs1 = Vmp1C;%SELECT Vmp1 or Vmp1C 
Vdcst1=Vmt1; 
Idcs1 = Imp1; 
Pdcs1=Vdcs1.*Idcs1; 
 
Vdcs2 = Vmp2C;%SELECT Vmp2 or Vmp2C 
Vdcst2=Vmt2; 
Idcs2 = Imp2; 
Pdcs2=Vdcs2.*Idcs2; 
 
Vdcs3 = Vmp3C;%SELECT Vmp3 or Vmp3C 
Vdcst3=Vmt3; 
Idcs3 = Imp3; 
Pdcs3=Vdcs3.*Idcs3; 
 
%Pac SNL inverter model  based on PVAM sandia 
% General model:f(Vdcs,Pdcs) = ((pac0./((pdc0.*(1+C1.*(Vdcs-vdc0)))-(ps0.*(1+C2.*(Vdcs-vdc0)))))-
(C0.*(1+C3.*(Vdcs-vdc0))).*((pac0.*(1+C1.*(Vdcs-vdc0)))-(ps0.*(1+C2.*(Vdcs-vdc0))))).*((Pdcs-
(ps0.*(1+C2.*(Vdcs-vdc0))))+(C0.*(1+C3.*(Vdcs-vdc0))).*(Pdcs-(ps0.*(1+C2.*(Vdcs-vdc0)))).^2);        
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   % identification after improve dc voltage model      
       C01 =  -2.011e-05 ;%  (-1.208, 1.208) 
       C11 =     0.00168 ; %(-1.367, 1.37) 
       C21 =      0.4418 ; %(-8.753e+04, 8.754e+04) 
       C31 =      0.1339 ; %(-8045, 8045) 
       pac01 =        2574 ;% (-2.877e+06, 2.882e+06) 
       pdc01 =        2715 ;% (-5.116e+06, 5.122e+06) 
       ps01 =          15 ; %(-2.972e+06, 2.972e+06) 
       vdc01 =       269.8 ;% (-4.482e+05, 4.487e+05) 
              
       C02 =  -4.172e-06 ; %(-0.08124, 0.08123) 
       C12 =    0.001387;  %(-0.1023, 0.105) 
       C22 =      0.3327;  %(-6602, 6602) 
       C32 =      0.3249 ; %(-6320, 6321) 
       pac02 =        2580 ;% (-7.153e+05, 7.205e+05) 
       pdc02 =        2770 ; %(-9.985e+05, 1.004e+06) 
       ps02 =       15.15 ; %(-3.007e+05, 3.007e+05) 
       vdc02 =       275.7 ;% (-5.936e+04, 5.991e+04) 
 
       C03 =   -1.11e-05 ;% (-0.8359, 0.8359) 
       C13 =    0.003248 ; %(-3.352, 3.358) 
       C23 =      0.7455 ; %(-1.351e+05, 1.351e+05) 
       C33 =      0.3097 ;% (-2.333e+04, 2.333e+04) 
       pac03 =        2563; % (-3.216e+06, 3.221e+06) 
       pdc03 =        2743 ;% (-5.629e+06, 5.634e+06) 
       ps03 =          15 ; %(-2.719e+06, 2.719e+06) 
       vdc03 =         262 ; %(-2.429e+05, 2.434e+05)      
         
Pacs1=((pac01./((pdc01.*(1+C11.*(Vdcs1-vdc01)))-(ps01.*(1+C21.*(Vdcs1-vdc01)))))-(C01.*(1+C31.*(Vdcs1-
vdc01))).*((pac01.*(1+C11.*(Vdcs1-vdc01)))-(ps01.*(1+C21.*(Vdcs1-vdc01))))).*((Pdcs1-
(ps01.*(1+C21.*(Vdcs1-vdc01))))+(C01.*(1+C31.*(Vdcs1-vdc01))).*(Pdcs1-(ps01.*(1+C21.*(Vdcs1-vdc01)))).^2); 
Pacs2=((pac02./((pdc02.*(1+C12.*(Vdcs2-vdc02)))-(ps02.*(1+C22.*(Vdcs2-vdc02)))))-(C02.*(1+C32.*(Vdcs2-
vdc02))).*((pac02.*(1+C12.*(Vdcs2-vdc02)))-(ps02.*(1+C22.*(Vdcs2-vdc02))))).*((Pdcs2-
(ps02.*(1+C22.*(Vdcs2-vdc02))))+(C02.*(1+C32.*(Vdcs2-vdc02))).*(Pdcs2-(ps02.*(1+C22.*(Vdcs2-vdc02)))).^2); 
Pacs3=((pac03./((pdc03.*(1+C13.*(Vdcs3-vdc03)))-(ps03.*(1+C23.*(Vdcs3-vdc03)))))-(C03.*(1+C33.*(Vdcs3-
vdc03))).*((pac03.*(1+C13.*(Vdcs3-vdc03)))-(ps03.*(1+C23.*(Vdcs3-vdc03))))).*((Pdcs3-
(ps03.*(1+C23.*(Vdcs3-vdc03))))+(C03.*(1+C33.*(Vdcs3-vdc03))).*(Pdcs3-(ps03.*(1+C23.*(Vdcs3-vdc03)))).^2); 
 
%Calculate modeling metrics for all models 
 
e1=T5-T1;e2=T5-T2;e3=T5-T3;e4=T5-T4; 
S=T5-mean(T5); 
 
rs1 = 1 -((norm(e1).^2)./(norm(S).^2)); 
rs2 = 1 -((norm(e2).^2)./(norm(S).^2)); 
rs3 = 1 -((norm(e3).^2)./(norm(S).^2)); 
rs4 = 1 -((norm(e4).^2)./(norm(S).^2)); 
 
rs=[rs1 rs2 rs3 rs4]; 
 
namet=["Tcnoct" "Tcnoctw" "Tcfaimen" "Tcsandia"]; 
 
maxt=max(T2); 
ei=[e1 e2 e3 e4]; 
MAe =(sum(abs(ei))./z); 
RMSe =sqrt(sum((ei).^2)./z); 
MAep=MAe.*100./maxt; 
RMSep=RMSe.*100./maxt; 
%Maxtemp=45; 
vecnamet=["param"; "MAE" ;"RMSe"; "MAEp"; "RMSEp";"R-squared"]; 
errort= [namet; MAe ;RMSe; MAep; RMSep;rs]; 
Ert = cat(2,vecnamet,errort); 
 
%calculate error electrical value 
 
E1=Idc1-idcs1;E2=Vdc1-vdcs1;E3=Pdc1-pdcs1; 
E4=Idc2-idcs2;E5=Vdc2-vdcs2;E6=Pdc2-pdcs2; 
E7=Idc3-idcs3;E8=Vdc3-vdcs3;E9=Pdc3-pdcs3; 
 
S1=Idc1-mean(Idc1);S2=Vdc1-mean(Vdc1);S3=Pdc1-mean(Pdc1); 
S4=Idc2-mean(Idc2);S5=Vdc2-mean(Vdc2);S6=Pdc2-mean(Pdc2); 
S7=Idc3-mean(Idc3);S8=Vdc3-mean(Vdc3);S9=Pdc3-mean(Pdc3); 
 
 
Rs1 = 1 -((norm(E1).^2)./(norm(S1).^2)); 
Rs2 = 1 -((norm(E2).^2)./(norm(S2).^2)); 
Rs3 = 1 -((norm(E3).^2)./(norm(S3).^2)); 
Rs4 = 1 -((norm(E4).^2)./(norm(S4).^2)); 
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Rs5 = 1 -((norm(E5).^2)./(norm(S5).^2)); 
Rs6 = 1 -((norm(E6).^2)./(norm(S6).^2)); 
Rs7 = 1 -((norm(E7).^2)./(norm(S7).^2)); 
Rs8 = 1 -((norm(E8).^2)./(norm(S8).^2)); 
Rs9 = 1 -((norm(E9).^2)./(norm(S9).^2)); 
 
Rs=[Rs1 Rs2 Rs3 Rs4 Rs5 Rs6 Rs7 Rs8 Rs9 ]; 
name=["idc1" "vdc1" "pdc1" "idc2" "vdc2" "pdc2" "idc3" "vdc3" "pdc3" ]; 
maxmeas=[max(Idc1) max(Vdc1) max(Pdc1) max(Idc2) max(Vdc2) max(Pdc2) max(Idc3) max(Vdc3) max(Pdc3)]; 
Ei=[E1 E2 E3 E4 E5 E6 E7 E8 E9 ]; 
MAE =(sum(abs(Ei))./z); 
RMSE =sqrt(sum((Ei).^2)./z); 
MAEp=MAE.*100./maxmeas; 
RMSEp=RMSE.*100./maxmeas; 
error= [name; MAE ;RMSE;maxmeas; MAEp; RMSEp;Rs]; 
 
vecname=["param"; "MAE" ;"RMSe";"maxmeas" ;"MAEp"; "RMSEp";"R-squared"]; 
Er = cat(2,vecname,error); 
 
save data 
DB29042020=[time2,Tamb,T1,T2,T3,T4,T5,Te,G,Ge,Wv,Idc1,idcs1,Idcs1,Vdc1,vdcs1,Vdcs1,Pdc1,pdcspw1,pdcs1,Pdcs
1,Pac1,Pacs1,Idc2,idcs2,Idcs2,Vdc2,vdcs2,Vdcs2,Pdc2,pdcspw2,pdcs2,Pdcs2,Pac2,Pacs2,Idc3,idcs3,Idcs3,Vdc3,v
dcs3,Vdcs3,Pdc3,pdcspw3,pdcs3,Pdcs3,Pac3,Pacs3]; 
 

2. Integration of sandia models and performance formula under LabVIEW using Formula 

node 
//PV Array simulation 

Ge=G/1000; Te=T-25; 

Idcs = p*(Imp0*((c0*Ge)+(c1*(Ge**2)))*(1+(Tci*Te))); 

 

//DC voltage with temp. effect 

vth=n*k*(T+273,15)/q; 

Vdcs = s*(Vmp0+(c2*Ns*vth*ln(Ge))+(c3*Ns*(vth* ln(Ge))**2)+(Tcv*Ge*Te)-(cvd/Ge)); 

 

//DC voltage without temp. effect 

vtht=n*k*298,15/q; 

Vdct= s*(Vmp0+(c2*Ns*vtht*ln(Ge))+(c3*Ns*(vtht* ln(Ge))**2)-(cvd/Ge));  

 

Pdcs=Vdcs*Idcs; 

Pdcts=Vdct*Idcs; 

// PV inverter sandia model 

A=pdco*(1+C1*(Vdcs-vdco));B=pso*(1+C2*(Vdcs-vdco));C=C0*(1+C3*(Vdcs-vdco)); 

Pacs=((paco/(A-B))-C*(A-B))*((Pdcs-B)+C*(Pdcs-B)**2); 

 

//Measured power 
Pdcm=Vdcm*Idcm; 

if (Idcm<1) 

{Pacm=Pdcm*pr;}  

else  

Pacm=Vacm*Iacm; 

 

//Perforamnce Analysis 

 

//Simulated Energy 

Edcs=dt*Pdcs; Eacs=dt*Pacs; 

Edccs=(Edcs/1000)+Edccs; 

Eaccs=(Eacs/1000)+Eaccs; 

Edcds=(Edcs/1000)+(Edcds*select); 

Eacds=(Eacs/1000)+(Eacds*select); 

 

//Measured Energy 

Edcm=dt*Pdcm;Eacm=dt*Pacm; 

Edccm=(Edcm/1000)+Edccm; 

Eaccm=(Eacm/1000)+Eaccm; 

Edcdm=(Edcm/1000)+(Edcdm*select); 

Eacdm=(Eacm/1000)+(Eacdm*select); 

 

// Energy loss 

Edcce=Edccs-Edccm; 

Edcde=Edcds-Edcdm; 

Eacce=Eaccs-Eaccm; 

Eacde=Eacds-Eacdm; 

 

 

// PERFORMANCE PARAMETERs 

// REFERENCE YIELD 

Yr=G*dt/1000; Yrc=Yr+Yrc; Yrd=Yr+(Yrd*select); 

//simulated reference ARRAY YIELD  
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Pdcts=Idcs*Vdct; Edcts=Pdcts*dt; 

Yars=Edcts/pmax/1000; Yarcs=Yars+Yarcs; Yards=Yars+(Yards*select); 

//ARRAY YIELD 

Yas=Edcs/pmax/1000; Yacs=Edccs/pmax; Yads=Edcds/pmax;//Simulated 

Yam=Edcm/pmax/1000; Yacm=Edccm/pmax; Yadm=Edcdm/pmax;//Measured 

//FINAL YIELD 

Yfs=Eacs/pmax/1000; Yfcs=Eaccs/pmax; Yfds=Eacds/pmax;//Simulated 

Yfm=Eacm/pmax/1000; Yfcm=Eaccm/pmax; Yfdm=Eacdm/pmax;//Measured 

//PERFORAMCE RATIO 

PRs=Yfs/Yas; PRcs=Yfcs/Yacs; PRds=Yfds/Yads;//simulated 

PRm=Yfm/Yam; PRcm=Yfcm/Yacm; PRdm=Yfdm/Yadm;//measured 

 

//measured Efficiency  

Eam=(100*Pdcm)/(S*G);//PV Array ,surface of PV array S=25,6236 

Esm=(100*Pacm)/(S*G);//System 

Eim=(100*Eacm)/(Edcm);//Inverter efficiency 

 

//simulated Efficiency  

Eas=(100*Pdcs)/(S*G);//PV Array  

Ess=(100*Pacs)/(S*G);//System 

Eis=(100*Eacs)/(Edcs);//Inverter  

 

//losses inst 

Lam=Yr-Yam; Las=Yr-Yas; Lsm=Yam-Yfm; Lss=Yas-Yfs; 

 

//Co2 Emission 

Co2sc=Eaccs*C2c; Co2mc=Eaccm*C2c; Co2sd=Eacds*C2c; Co2md=Eacdm*C2c; 

//cost gained 

cgssd=Eacds*pg; cgsmd=Eacdm*pg;cgisd=Eacds*ps; cgimd=Eacdm*ps;//Daily 

cgss=Eaccs*pg; cgsm=Eaccm*pg; cgis=Eaccs*ps; cgim=Eaccm*ps;//cumulated 

 
//CAPTURE LOSSES 

Lcs=abs(Yr-Yas); Lccs=abs(Yrc-Yacs); Lcds=abs(Yrd-Yads);//Simulated 

Lcm=abs(Yr-Yam); Lccm=abs(Yrc-Yacm); Lcdm=abs(Yrd-Yadm);//Measured 

ELc=abs(Lcs-Lcm);//ERROR 

//THERMAL CAPTURE LOSSES 

Lcts=abs(Yars-Yas); Lctcs=abs(Yarcs-Yacs); Lctds=abs(Yards-Yads);//Simulated 

Lctm=abs(Yars-Yam); Lctcm=abs(Yarcs-Yacm); Lctdm=abs(Yards-Yadm);//Measured 

ELct=abs(Lcts-Lctm);//ERROR 

// MISCELLANEOUS CAPTURE LOSSES 

Lcms=abs(Lcs-Lcts); Lcmcs=abs(Lccs-Lctcs); Lcmds=abs(Lcds-Lctds);// Simulated 

Lcmm=abs(Lcm-Lcts); Lcmcm=abs(Lccm-Lctcs); Lcmdm=abs(Lcdm-Lctds);// Measured 

ELcm=abs(Lcms-Lcmm);//Error 

 


