
République Algérienne Démocratique et Populaire

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

École Nationale Polytechnique d’Alger

Département du Génie Industriel

A thesis submitted in partial fulfillement of the requirements

for the industrial engineering degree, option:

Data Science And Artificial Intelligence

Modeling Extruder’s Behavior as
Multivariate Time Series for Deep

Learning-Driven Forecasting

Internship Host School: ICAM Nantes

Presented By:
Mrs. Amira SOUILAH

Supervised by:
Mr. Hakim FOURAR LAIDI(ENP)
Mr. Jérome ROCHETEAU (ICAM)

Mrs. Hala GHAZI (ICAM)

Publicly defended on September 17, 2023

Board of Examiners
President Iskander ZOUAGHI MCA (ENP)
Examiner. Salah Eddine TACHI MCA (ENP)
Supervisor Hakim FOURAR LAIDI MCA (ENP)

ENP 2023

République Algérienne Démocratique et Populaire

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

École Nationale Polytechnique d’Alger

Département du Génie Industriel

A thesis submitted in partial fulfillement of the requirements

for the industrial engineering degree, option:

Data Science And Artificial Intelligence

Modeling Extruder’s Behavior as
Multivariate Time Series for Deep

Learning-Driven Forecasting

Internship Host School: ICAM Nantes

Presented By:
Mrs. Amira SOUILAH

Supervised by:
Mr. Hakim FOURAR LAIDI(ENP)
Mr. Jérome ROCHETEAU (ICAM)

Mrs. Hala GHAZI (ICAM)

Publicly defended on September 17, 2023

Board of Examiners
President Iskander ZOUAGHI MCA (ENP)
Examiner Salah Eddine TACHI MCA (ENP)
Supervisor Hakim FOURAR LAIDI MCA (ENP)

ENP 2023

République Algérienne Démocratique et Populaire

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

École Nationale Polytechnique d’Alger

Département du Génie Industriel

Mémoire de projet de fin d’étude en vue de l’obtention du diplôme

d’ingénieur d’Etat en génie industriel, option:

Data Science et Intelligence Artificielle

Modélisation du Comportement de
l’Extrudeuse en Série Temporelle

Multivariée pour la Prédiction grâce à
l’Apprentissage Profond

Ecole d’acceuil: ICAM Nantes

Presenté par:
Mme. Amira SOUILAH

Encadré par:
M. Hakim FOURAR LAIDI(ENP)
M. Jérome ROCHETEAU (ICAM)

Mme. Hala GHAZI (ICAM)

Présenté et soutenu publiquement le 17 September, 2023

Composition du Jury
Président Iskander ZOUAGHI MCA (ENP)
Examinateur Salah Eddine TACHI MCA (ENP)
Promoteur Hakim FOURAR LAIDI MCA (ENP)

ENP 2023

YÒmÌ'@ ½Ê
	
¯ , é

�
J
�
�

�
K. P ø

	
YË@ Q�

	
ª�Ë@ A

	
K

@ ú

æêË @

YÒmÌ'@ ½Ê
	
¯ , é

�
JK
ñ

�
¯ ø

	
YË@

	
­J
ª

	
�Ë@ A

	
K

@ ð

YÒmÌ'@ ½Ê
	
¯ , é

�
J�

	
J
	
«

@ ø

	
YË@ Q�

�
®
	
®Ë @ A

	
K

@ ð

YÒmÌ'@ ½Ê
	
¯ , é

�
JÒÊ« ø

	
YË@ ÉëAm.

Ì'@ A
	
K

@ ð

. . . é<Ë @ AK
 Qº
�
�Ë@ ð YÒmÌ'@ É¿ ½Ê

	
¯

DEDICATION

Iwould like to dedicate this work to my family. Without their unconditional love, constant
support, and encouragement, I could never have accomplished this memorable experience.
I have always been someone who feared stepping out of their comfort zone and trying new
things due to a fear of failure. However, thanks to their encouragement and positive
influence, I was able to overcome this fear and embark on this adventure.
PAPA, I am infinitely grateful for everything you have done for me. You have been a
pillar of strength and wisdom, always there to guide and support me.
MAMA, thank you for your generosity and love. I am deeply grateful for all the times
you took care of me through your delicious dishes. Each bite was a true explosion of
flavors, a testament to your culinary talent and unconditional love.
Kenza, thank you for sharing your valuable advice with me; you are a true treasure in
my life.
Keltoum, thank you for helping me when I was on the verge of giving up; your presence
gave me hope.
Fatma Zohra, thank you for your messages that brightened my darkest days.
Rokia, thank you for your unwavering support and comforting presence.
Zineb, thank you for taking the time to talk to me, listen to me, and share your own
experiences, which made me feel less isolated and more confident in this unfamiliar envi-
ronment.
Mohamed Ali, your presence in my life is trully a blessing, thank you for being the
coolest brother and friend anyone could ever ask for.
Manar,my beautiful little sister, thank you for the way you affectionately call me "BIBO"
every time you hear my voice. Your attitude brings so much joy and love into my life,
and I cherish it dearly.
Lydia, my best friend, thank you for supporting me throughout these 7 years, always
being there for me, no matter the circumstances. Your presence and unwavering support
have been a source of strength and inspiration.
Wafaa, my cousin and childhood friend, thank you for your messages that bring a glim-
mer of hope and positivity in the difficult moments I have gone through.
To all of you, I want to say that "I love you GUYS". Thank you for encouraging and
supporting my sometimes strange behavior. Your unwavering love and support have been
crucial factors in the realization of this work.

Amira SOUILAH

ACKNOWLEDGEMENT

Words sometimes seem insufficient to translate the depth of my feelings and the grati-
tude I feel towards the people who have provided me with their invaluable support in the
completion of this work.

First and foremost, I would like to express my sincere gratitude to you,Mr. Iskander
Zouaghi, for believing in me and offering me an opportunity that I never thought pos-
sible. Your confidence in my abilities has deeply touched me and has been an invaluable
source of inspiration.

I would also like to extend my sincere thanks to my supervisors: Mr. Jérôme
Rocheteau and Mrs. Hala Ghazi, for their constant guidance and encouragement
throughout my journey. Without your unwavering support, I could never have accom-
plished this work with such success. Your benevolent presence has been a true source of
motivation for me.

I sincerely thank Mr. Hakim FOURAR LAIDI for accepting to mentor and sup-
port me throughout the internship. I want to express my utmost admiration and gratitude
to him.

Lastly, I extend my profound gratitude to the jury members for dedicating their
time and energy to examine and evaluate my work.

�
	
jÊÖÏ @

ø

	
YË@ , (Recyplast-Demo) �

IjJ. Ë @ ¨ðQå
�
�Ó ú

	
¯ A

�
ÖÞ�Ag @ �PðX I. ªÊK
 (DT) ù

Ô
�
Q̄Ë @ Ð

@ñ
�
JË @ Ðñê

	
®Ó

ÉJ

�
JÖ
�
ß ZA

�
�
	
� @

úÍ@

ù

Ô
�
Q̄Ë @ Ð

@ñ
�
JË @ Q�

�
��
 . èQK
ðY

�
K XAªÖÏ @ ½J

�
��CJ. ÊË h. @Q

	
j
�
J�B@

�
éJ
ÊÔ

« �
é�@PX úÍ@

	
¬YîE

�
HAJ.�
J.k ÈA

	
gX@

�
éJ
ÊÒªË@ ÉÒ

�
��
 . h. @Q

	
j
�
J�B@

�
éË
�
@ ,

�
éËAmÌ'@ è

	
Yë ú

	
¯ð , ù

�
®J

�
®k ÐA

	
¢
	
JË ú

×A
	
JK
Xð ú

æ
	
�@Q

�
�
	
¯ @

H. ð
	
Y
�
K . 	á

	
j�

�
Ó ÉJ
ÓQK. É

	
g@X ¼Qm× PAÒ�Ó

�
é¢�@ñK. ½Ë

	
X YªK. ÐY

�
®
�
J
�
K ú

�
æË @ ,

�
éË
�
B@ úÍ@

½J

�
��CJ. Ë @

�
éK
Aî

	
DË @ ú

	
¯

�
éJ.�

�
�ºÓ ,ÉJ
º

�
�
�
� I. ËA

�
¯ ÈC

	
g 	áÓ AëPðQÓ ZA

	
J
�
K

@ H. @

	
YÓ ½J

�
��CK. úÍ@

Èñj

�
J
�
Kð

�
HAJ.�
J. m

Ì'@

. ù

KAî

	
DË @ AêÊ¾

�
�

�
HAJ
ÊÔ

« È@ñ£
�
é
�
JK. A
�
K Õæ

�
®K.

�
è
�
@QÒÊË

�
èP@QmÌ'@

�
ék. PX

�
H@X@Y«@

ð ¼QjÖÏ @

�
é«Qå�

	á�
J
ª
�
K Õ

�
æK
 , A

�
J
Ë Ag

 A
�
®
	
K

�
�J

�
®m�

�
' úÍ@

ø

X

ñK
 AÜØ ,

�
èQ
�
®
�
J�Ó ù

�
®J.
�
K ½J

�
��CJ. Ë @

�
HAJ.�
J.k �

�A�

	
k

	
à

@

	
�Q��

	
®
�
K
 . h. @Q

	
j
�
J�B@

¡
	
ª

	
� ú

æ�J

KP É¾

�
��.

	á�
Ê
	
ª
�
�ÖÏ @ ZB

ñë I.

�
¯@QK
 .

�
éË
�
B@ ú

Î
	
ª
�
�Ó ÉJ.

�
¯ 	áÓ AêÊK
Yª

�
K XQj. Öß.

�
èQ
�
®
�
J�ÖÏ @

	á�
J
ª
�
JË @

. É
�
JÓ

B@ h. @Q

	
j
�
J�B@ Z@X

@
	
àAÒ

	
�Ë ¼QjÖÏ @ Ð 	Q«ð

�
èP@QmÌ'@

�
ék. PXð X@ñÖÏ @ h. @Q

	
k@

AÜØ , X@ñÖÏ @ �

�A�

	
k ú

	
¯

�
H@Q�
J

	
ª
�
K Õç'
Y

�
®
�
K ú

	
¯ èQK
ðY

�
K XAªÖÏ @ ½J

�
��CJ. Ë @ Ð @Y

	
j
�
J�@ I. �.�

�
�K
 , ½Ë

	
X ©Óð

¼QjÖÏ @
�
é«Qå�

	
­J
J
º

�
K ø

PðQå

	
�Ë@ 	áÓ iJ.��
 @

	
YË .

�
é
�
JK. A
�
JË @ A

�
®
	
JË @ð P@Q

�
®
�
J�B@

	
�@Q

�
�
	
¯B A

�
K
Ym

�
�
' É¾

�
��

Ð 	Q«ð
�
èP@QmÌ'@

�
ék. PXð X@ñÖÏ @ h. @Q

	
k@

¡
	
ª

	
� É

�
JÓ ÉÓ@ñ« úÍ@

@
�
XA
	
J
�
��@ ú

×A
	
JK
X É¾

�
��.

�
è
�
@QÖÏ @

�
èP@Qk

�
ék. PXð

ù

�
®J

�
®mÌ'@

�
I

�
¯ñË@ ú

	
¯ ø

ðP Q

	
¯ñK

�
IJ
k ,

�
éÒJ

�
¯ ù

Ô
�
Q̄Ë @ Ð

@ñ
�
JË @ éJ

	
¯ iJ.��
 ø

	
YË@

	
àA¾ÖÏ @ ñë @

	
Yë . ¼QjÖÏ @

�
I

�
¯ñË@ ú

	
¯ h. @Q

	
j
�
J�B@ 	PAêm.

Ì'@ ¼ñÊ� Ñê
	
¯ ÈC

	
g 	áÓ . ú

¾J

�
��CJ. Ë @ h. @Q

	
j
�
J�B@ 	PAêm.

Ì'@ ¼ñÊ� Èñk

X@ñÖÏ @ �

�A�

	
k ú

	
¯

�
H@Q�

	
ª
�
JË @ 	áÓ Ñ

	
«QË@ úÎ«

�
èQ
�
®
�
J�Ó i.

�
J
	
JÖÏ @

�
èXñk. úÎ«

	
 A

	
®mÌ'@ A

	
J
	
JºÖß
 , ù

�
®J

�
®mÌ'@

�
Im�

�
' h. @Q

	
j
�
J�B@ 	PAêm.

Ì'@ Z @X

B

�
�J

�
¯X Õæ

J

�
®
�
K

	á�
ºÖ
�
ß ù

Ô
�
Q̄Ë @ Ð

@ñ
�
JÊË 	áºÖß
 , ½Ë

	
X úÍ@

�
é
	
¯A

	
�B

AK. .

�
éÊ

	
g@YË@

.
�
é
	
®Ê
�
J
	
m×

�
HA

�
¯AJ
�ð

	
¬ðQ

	
£

�
HA

	
KAJ
K. Aî

	
E

@ úÎ«

�
HA�AJ

�
®Ë @

	á�
ÊÓAªÓ ,h. @Q
	
j
�
J�B@ 	PAêm.

Ì'@ ¼ñÊ�Ë
�
CJ
Êm

�
�
' A

	
JK
Qk.

@ ,

�
é�@PYË@ è

	
Yë ú

	
¯

QK
ñ¢
�
�ð h. @Q

	
j
�
J�B@ 	PAêm.

Ì'@ ¼ñÊ�Ë
�
�Ô«

@ Ñê

	
®K. A

	
JË iÖÞ� ÉJ
Êj

�
JË @ @

	
Yë .

�
H@Q�

	
ª
�
JÖÏ @

�
èXYª

�
JÓ

�
éJ

	
JÓ 	P É�C�

é
	
JºÖß

�
éJ
�ñ

�
K ÐA

	
¢
	
� QK
ñ¢

�
� 	áºÖß
 , h.

	
XñÒ

	
JË @ @

	
Yë úÎ«

�
ZA
	
JK. ð . h. @Q

	
j
�
J�B@

�
éJ
ÊÔ

« ©
�
¯ñ
�
JË ú

»
	
X h.

	
XñÖ

	
ß

.
�
éJ
ÊJ.

�
®
�
J�ÖÏ @ ÈAÔ«

B@ ú

	
¯

�
HAg@Q

�
�
�
¯@ð

�
éÒJ

�
¯ ø

ðP Õç'
Y

�
®
�
K

�
èQ» @

	
YË @ , (MTS) �

H@Q�

	
ª
�
JÖÏ @

�
èXYª

�
JÓ

�
éJ

	
JÓ 	P É�C� , (DT) �

éJ
Ô
�
Q̄Ë @ Õç

' @ñ

�
JË @ : �

éJ
��

KQË @

�
HAÒÊ¾Ë@

h.
	
XñÖ

	
ß , (RNN) �

èXA«B

@ ©Ó

�
éÊÓAªË@

�
éJ
�.�ªË@

�
éºJ.

�
�Ë@ , (LSTM) YÓ

B@

�
èQ�
�

�
¯ - YÓ

B@

�
éÊK
ñ£

. (VAR) ú

�
G@
	
X ø

P@Ym�

	
' @ éj.

�
JÓ , (E_D) ½

	
®Ë@ð

	Q�
Ó
Q��Ë @

Résumé

Le concept de jumeau numérique (JN) joue un rôle crucial dans le projet de recherche
Recyplast-Demo, visant à étudier le processus d’extrusion du plastique recyclé. Un jumeau
numérique fait référence à la création d’une représentation virtuelle et dynamique d’un
système réel, dans ce cas, la machine d’extrusion. Le processus implique l’alimentation
en pelets de plastique dans la machine, qui sont ensuite propulsées en avant par une vis
motorisée à l’intérieur d’un cylindre chauffé. Les pelets fondent et se transforment en
plastique fondu en passant à travers une filière de formage, acquérant ainsi leur forme
finale. Actuellement, la vitesse du moteur et les réglages de température du chauffage
sont fixés à des valeurs constantes tout au long des opérations d’extrusion. On suppose
que les propriétés des pelets de plastique restent stables, conduisant à des valeurs de
consigne cohérentes une fois ajustées par les opérateurs de la machine. Ces opérateurs
surveillent principalement la pression de sortie du matériau, la température et le couple
moteur pour garantir des performances d’extrusion optimales. Cependant, l’utilisation
de plastique recyclé introduit une variabilité dans les propriétés du matériau, remettant
en question l’hypothèse de stabilité et de valeurs de consigne constantes. Il devient donc
crucial d’adapter dynamiquement la vitesse du moteur et la température du chauffage en
fonction de facteurs tels que la pression de sortie du matériau, la température et le couple
moteur. C’est là que le jumeau numérique devient précieux, car il fournit des informa-
tions en temps réel sur le comportement de l’extrudeuse en plastique. En comprenant
le comportement en temps réel de l’extrudeuse, nous pourrions maintenir une qualité de
produit constante malgré les variations dans les propriétés du matériau d’entrée. De plus,
le jumeau numérique permet une évaluation précise des performances de l’extrudeuse dans
différentes conditions et contextes. Dans cette étude, nous avons mené une analyse du
comportement de l’extrudeuse, traitant les mesures comme des données de séries tem-
porelles multivariées. Cette analyse nous a permis d’approfondir notre compréhension du
comportement de l’extrudeuse et de développer un modèle intelligent pour la prévision du
processus d’extrusion. De plus, sur la base de ce modèle, un système de recommandation
peut être développé pour fournir des informations précieuses et des suggestions dans les
futurs travaux.

Mot-clés: Jumeaux Numériques, Séries Temporelles Multivariées, Cellule De Longue
Mémoire à Court Terme, Réseau De Neuronnes Récurent, Modèle Encodeur-Décodeur,
Modèle De Vecteur Autoregressif

Abstract

The concept of a digital twin (DT) plays a crucial role in the Recyplast-Demo research
project, aiming to study the extrusion process of recycled plastic. A digital twin refers
to the creation of a virtual and dynamic representation of a real system, in this case, the
extrusion machine. The process involves feeding plastic pellets into the machine, which
are then propelled forward by a motor-driven screw inside a heated barrel. The pellets
melt and transform into molten plastic as they pass through a shaping die, ultimately
acquiring their final form.
Currently, the motor speed and heater temperature settings are set to constant values
throughout the extrusion operations. It is assumed that the properties of the plastic pel-
lets remain stable, leading to consistent setpoints once adjusted by machine operators.
Those operators mainly monitor material output pressure, temperature, and motor torque
to ensure optimal extrusion performance.
However, the use of recycled plastic introduces variability in material properties, chal-
lenging the assumption of stability and constant setpoints. Therefore, it becomes crucial
to dynamically adapt the motor speed and heater temperature based on factors such as
material output pressure, temperature, and motor torque. This is where the digital twin
becomes valuable, as it provides real-time insights into the behavior of the plastic ex-
truder.
By understanding the extruder’s real-time behavior, we can maintain consistent product
quality despite variations in input material properties. Additionally, the digital twin en-
ables accurate evaluation of the extruder’s performance under different conditions and
contexts.
In this study, we have conducted an analysis of the extruder’s behavior, treating the
measurements as multivariate time series data. This analysis allowed us to gain a deeper
understanding of the extruder’s behavior and develop an intelligent model for forecasting
the extrusion process. Moreover, based on this model, a recommendation system can be
developed to provide valuable insights and suggestions in the next works.

Keywords: Digital Twins, Multivariate Time Series, Long-Short Term Memory, Rec-
curent Neural Network, Encoder Decoder Model, Vector AutoRegression Model.

Contents

List of Figures

List of Tables

Abbreviations

1 Introduction 14

2 Theoretical Foundations 16
2.1 Introduction . 16
2.2 Time Series . 16

2.2.1 Definition . 16
2.2.2 Time Series Types . 17
2.2.3 Stationary Time Series . 18
2.2.4 The Augmented Dickey-Fuller (ADF) Test 18
2.2.5 Differencing To Achieve Stationarity 18

2.3 Multivariate Time Series Forecasting Models 19
2.3.1 Statistical Methods: Vector AutoRegression Model 19
2.3.2 Deep Learning . 20

Neural Network . 20
Training a Neural Network . 20

2.3.3 Recurrent Neural Network (RNN) 23
2.3.4 Long Short Term Memory (LSTM) 25
2.3.5 Encoder Decoder Seq2Seq Model 26
2.3.6 Attention Mechanism . 27

2.4 Evaluation Metrics . 27
2.4.1 Mean Squared Error (MSE) . 28
2.4.2 Root Mean Squared Error (RMSE) 28
2.4.3 Mean Absolute Error (MAE) . 28
2.4.4 Coefficient of Determination (R2) 28

2.5 Implementation Tools . 29
2.5.1 Python . 29
2.5.2 TensorFlow . 29

2.5.3 Keras . 30
2.5.4 Google Colab . 30

2.6 Conclusion . 30

3 Related Work 31
3.1 Statistical Methods . 31
3.2 Neural Networks . 31
3.3 Hybrid Models . 31
3.4 Limitations in Existing Research . 32

4 Dataset 33
4.1 Introduction . 33
4.2 Study Case . 33
4.3 Data Exploration . 34

5 Modeling and Implementation 38
5.1 Introduction . 38
5.2 VAR model . 38

5.2.1 Checking Stationarity . 38
5.2.2 Lag Order Determination . 39
5.2.3 Model Fitting . 40

5.3 Long Short Term Memory (LSTM) Model 40
5.4 Encoder Decoder Model . 42
5.5 Long Short Term Memory (LSTM) Model And The Attention Mechanism 43

6 Results 46
6.1 Introduction . 46
6.2 VAR Model . 46
6.3 Long Short Term Memory (LSTM) Model 49
6.4 Encoder Decoder Model . 51
6.5 Long Short Term Memory (LSTM) Model With The Attention Mechanism 52
6.6 Discussion . 55

7 Conclusion 57

Bibliography 58

List of Figures

2.1 Pressure Time Series Data . 17
2.2 A multivariate time series that contains 2 variables. 17
2.3 Stationary And Non-Stationary Time-Series cited in [1] 18
2.4 Schematic of a neural network . 20
2.5 Backpropagation Neural Network mentioned in [2] 21
2.6 Gradient Descent cited in [2] . 22
2.7 Activation Functions In Neural Network 22
2.8 Open Source Structure of RNN . 24
2.9 Types of RNNs mentioned in [3] . 24
2.10 LSTM Cell by Guillaume Chevalier, CC BY-SA 4.0 25
2.11 An Encoder-Decoder Simple Seq2Seq model 27

4.1 Extrusion process . 33
4.2 Corralation Matrix . 35
4.3 Reduced Dataset . 36
4.4 Statistical Summary of Extrusion Process Parameters 36

5.1 Adfuller Test Results . 39
5.2 Lag Order Determination . 39
5.3 LSTM model . 41
5.4 a summary of the model architecture . 43
5.5 LSTM model+Attention Mechanism . 45

6.1 VAR Summary . 47
6.2 Impulse Response Function :"pression_matiere" 47
6.3 Impulse Response Function :"temperature_matiere" 48
6.4 Plots of the LSTM forecasting model . 49
6.5 Behavior Of Loss Function Over The Training Epochs 52
6.6 Learning Curve . 53
6.7 Plots of the LSTM with the attention mechanism forecasting model 54

List of Tables

6.1 VAR model results . 49
6.2 LSTM model results . 50
6.3 Encoder Decoder model results . 51
6.4 LSTM model with the attenstion mechanism results 53
6.5 Performance Comparison (LSTM with Attention vs. Encoder-Decoder

Model) . 55
6.6 Performance Comparison (LSTM vs. VAR Model) 55

Abbreviations

Acronym Signification

DT Digital Twins
TS Time Series
MTS Multivariate Time Series
DL Deep Learning
LSTM Long Short Term Memory
GRU Gated Recurrent Unit
VAR vector autoregression
ARIMA AutoRegressive Integrated Moving Average
SARIMA Seasonal ARIMA
ADF The Augmented Dickey-Fuller
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
HQIC Hannan-Quinn Information Criterion
FPE Focused Prediction Error
IRF Impulse Response Function
MSE Mean Square Error
RMSE Root Mean Square Error
MAE Mean Absolute Error
R2 Coefficient of Determination
NN Neural Network
Tanh Tangent Hyperbolic function
σ(x) Sigmoid Function
ML Machine Learning
Adam Adaptive Moment Estimation
ANN Artificial Neural Network
BPPTT Backpropagation Through Time

Chapter 1

Introduction

A plastic extruder is a sophisticated machine that plays a vital role in manufacturing
plastic products by melting and shaping plastic materials. Its efficiency and product
quality heavily depend on various critical parameters, including temperature, pressure,
motor speed, heaters and motor current [4]. Due to the dynamic nature of these param-
eters, which exhibit variations over time and mutual interdependencies because Changes
in one parameter can affect others, for instance, altering the temperature can influence
the viscosity of the plastic material, which in turn can affect pressure and motor cur-
rent, comprehending and analyzing the behavior of a plastic extruder presents itself as a
multifaceted multivariate time series (MTS) challenge.

The central focus of this study revolves around forecasting the forthcoming values of
the essential parameters by leveraging historical data. By achieving accurate predictions
(minimize the error between the predicted values and the real values), we can optimize the
extrusion process, enhance product quality, and enable proactive measures for predictive
maintenance.

Several methods are commonly used for forecasting multivariate time series (MTS),
each with its strengths and limitations. Statistical time series models, such as AutoRe-
gressive Integrated Moving Average (ARIMA) [5], Seasonal ARIMA (SARIMA) [6], and
Vector autoregression (VAR) [7], have been widely employed for their ability to capture the
temporal dependencies and interrelationships between variables. However, these meth-
ods may struggle to handle large-scale datasets with high dimensionality and complex
nonlinear patterns. Additionally, they may not effectively capture long-term dependen-
cies present in the data. On the other hand, advanced deep learning techniques [8], like
Long Short-Term Memory (LSTM) [9] and Gated Recurrent Unit (GRU) networks [10],
have shown promise in capturing long-term dependencies and complex temporal patterns,
making them suitable for forecasting multivariate time series [11, 12]. Nevertheless, these
methods often require a substantial amount of data for training, and they may be more
susceptible to overfitting, especially in cases with limited historical data. Furthermore,
the interpretability of deep learning models may pose challenges, hindering a clear un-
derstanding of the underlying relationships among the variables. While both classical
and deep learning methods offer valuable insights, striking a balance between accuracy,

14

scalability, overfitting with the use of regularization techniques [13], interpretability [14]
remains an ongoing challenge when forecasting multivariate time series.

This work is structured into five chapters, introduction and a conclusion. Chapter 2
serves as the theoretical foundations, exploring the concepts of multivariate time series
forecasting. Chapter 3 delves into related works, examining previous research in the
field. Chapter 4 comprises the case study and data exploration. Chapter 5 presents the
implementation section, providing a detailed account of the data preprocessing steps while
chapter 6 represents results obtained. Finally, the concluding chapter draws insights from
a comprehensive comparison, addressing the limitations and findings derived from the
preceding chapters.

15

Chapter 2

Theoretical Foundations

2.1 Introduction

Forecasting multivariate time series is an essential practice in various industries, provid-
ing valuable insights for preventing problems and understanding the behavior of industrial
machines. Statistical methods such as ARIMA [5] and VAR [7] have proven effective in
forecasting multivariate time series. However, the emergence of deep learning models [8, 9]
has revolutionized the field, providing unparalleled capabilities in capturing complex de-
pendencies between variables. This chapter describes the basic concepts of multivariate
time series forecasting, exploring the key techniques and methodologies employed to pre-
dict outcomes, leveraging the power of deep learning models. Additionally, it investigates
the evaluation metrics and explores the implementation tools.

2.2 Time Series

2.2.1 Definition

A time series is a sequence of data points that occur in successive order over time. It
shows all the data set variables that change over time [15]. Displays all dataset variables
[15] that change over time. Examples of time series data include minute-by-minute data
from sensors in industrial environments that record variables such as pressure (see figure
2.1).

16

Figure 2.1: Pressure Time Series Data

2.2.2 Time Series Types

1. Univariate Time Series: Only one variable is varying over time (see figure 2.1).

2. Multivariate Time Series: Several variables are varying as time progresses. Ex-
amples of time series data include minute-level data from sensors in an industrial
setting, recording variables like pressure and motor speed (see figure2.2).

Figure 2.2: A multivariate time series that contains 2 variables.

17

2.2.3 Stationary Time Series

A stationary time series is a time series whose characteristics mean, variance, and autocor-
relation structure do not depend on the observation time of the series. This is in contrast
to non-stationary data, where the mean, variance, and covariance of data points change
over time. That is, the data show trends, cycles, random walks, or some combination of
the three. In general, when it comes to prediction, temporal data are unpredictable and
cannot be modeled with [16]. (see figure 2.3)

(a) Stationary-Time-Series (b) Non-Stationary Time Series

Figure 2.3: Stationary And Non-Stationary Time-Series cited in [1]

2.2.4 The Augmented Dickey-Fuller (ADF) Test

There are various statistical techniques to check stationarity, such as: Augmented
Dickey-Fuller Test (ADF). The ADF test falls within the category of the unit root
test that tests whether a time series is not stationary [17]. In other words the presence
of unit root means the time series is non-stationary and defines the null hypothesis, and
the alternative hypothesis defines time series as stationary.

∆yt = δyt−1 + ut (2.1)

where:

• yt represents the variable y at time t.

• ∆yt represents the change in the variable y at time t.

• δ represents the coefficient that represents the effect of the lagged value of y on the
change in y at the current time period, t.

• ut represents a random error.

2.2.5 Differencing To Achieve Stationarity

Differentiation involves calculating the difference between successive observations within
a non-stationary time series in order to induce stationarity. As written in the following

18

formula:
y′t = yt − yt−1 (2.2)

Where:

• y′t : The differenced value of the time series at time.

• yt : The original value of the time series at time t.

• yt−1 : The original value of the time series at the previous time step, which is t-1.

2.3 Multivariate Time Series Forecasting Models

Multivariate Time series forecasting uses historical data of multiple related variables or
features gathered over a specific period of time, then a different techniques and algorithms
are applied to create a predictive model that offers insights of one or more of these variables
of what could happen in the future based on their past values as well as the past values
of other associated variables.

Several models are available for the purpose of forecasting multivariate time series. In
this section, we will concentrate on delving into two categories: deep learning techniques
and the VAR (Vector AutoRegression) model from the realm of statistical methods.

2.3.1 Statistical Methods: Vector AutoRegression Model

1. Defining VAR Model: Vector AutoRegression model is a statistical model used
to capture relationships between multiple quantities that change over time. Similar
to autoregressive models, each variable has an equation that models its change over
time. This equation contains the lagged (past) value of the variable, the lagged
values of other variables in the model, and the error term [18]. VAR model can be
defined as: (see the equation 2.3 cited in [19]).

yt = v +

p∑
j=1

Ajyt−j + ut (2.3)

where:

• yt : denotes the value of the time series at time t.

• v : constant term.

• Aj : represents the coefficient for the lagged value yt−j .

• ut : denotes the error term at time t.

2. Lag Selection: To determine the appropriate order that minimizes the potential
of overfitting while maximizing the model’s explanatory power, we rely on:
information criteria such as the Akaike Information Criterion (AIC), Bayesian

19

Information Criterion (BIC), Focused Prediction Error (FPE) and the Hannan-
Quinn Information Criterion (HQIC) [20].

2.3.2 Deep Learning

Various Deep Learning (DL) Models rooted in the Recurrent Neural Network (RNN)
framework, have been suggested to enhance predictive accuracy and mitigate the inter-
dependencies within multivariate time series data. In this section, we will lay down the
theoretical underpinnings of these artificial neural networks. Simultaneously, we will pro-
vide an overview of the relevant literature, which will be expanded upon in Chapter 3.

Neural Network

A Neural Network (NN) is made up of vertically stacked components called Layers. Those
layers are composed of small individual units called neurons that mimic the behaviour of
a biological neuron neurons that receive signal from other neurons, make some processing,
and produces an output [21]. There are three types of layers in a neural network:

1. Input Layer receives the raw input data and passes it on to the subsequent layers.
Each neuron in the input layer corresponds to a feature or input variable.

2. Hidden Layers are intermediate layers that come between the input and output
layers. They are responsible for learning and representing complex patterns in the
data.

3. Output Layer is the final layer of the neural network. It produces the network’s
predictions or outputs based on the patterns learned in the hidden layers.

Figure 2.4: Schematic of a neural network

Training a Neural Network

Training an artificial neural network (ANN) involves a series of carefully orchestrated steps
that enable the network to learn from data. It begins with seting up the initial condition

20

from which the ANN will start learning and that by initializing its weights randomly.
Subsequently, bias terms (constant values) associated with each neuron are initialized as
well. The bias is used to shift the result of activation function towards the positive or
negative side [22]. The next step involves around deviding the data into smaller batches
for efficient processing. Then, during a forward pass, the network computes outputs
based on its current weights and biases, and this output is compared to the expected
results, producing a measure of error, or loss. The next critical phase, weight adjustment,
relies on backpropagation. Here, gradients are computed to fine-tune the model’s weights
and biases, ensuring they adapt to the data. This process iterates over multiple batches
and epochs until the network converges or completes a preset number of iterations. The
dynamic adjustment of weights and biases enables the network to learn and generalize,
ultimately empowering it to make precise predictions on new, unseen examples [23].

1. Backprobagation and Gradient Descent

(a) Backpropagation
Backpropagation allows us to readjust our weights to reduce output error. The
error is propagated backward during backpropagation from the output to the
input layer. This error is then used to calculate the gradient of the cost function
with respect to each weight [24] (see figure 2.5).

Figure 2.5: Backpropagation Neural Network mentioned in [2]

(b) Gradient Descent is an optimization algorithm used to find the weights that
minimize the cost function. We need a gradient and a learning rate to lower the
cost function. Gradients help find the direction to reach the minimum point
of the cost function. The learning rate helps determine how fast the minimum
point is reached. After reaching the minimum point, gradient descent finds a
weight equal to the minimum point. [24] (see figure 2.6).

21

Figure 2.6: Gradient Descent cited in [2]

2. Activation Function of a node in an artificial neural network is a function that
computes the node’s output based on the inputs and the weights of each input [25].
Only two commonly used types of activation functions are presented (Figure 2.7).

(a) Sigmoid Function: This function takes any real value as input and produces
values in the range of 0 to 1. It is frequently employed in models that involve
predicting probabilities as their output [26], [27]. Mathematically, it can be
represented as:

σ(x) =
1

1 + e−x
(2.4)

(b) Tanh Function: Also known as the Tangent Hyperbolic function, it is a
mathematically shifted version of the sigmoid function. The key distinction is
that the range of the tanh function is from -1 to 1. Both functions share the
issue of vanishing gradients [26], [27]. Mathematically, it can be represented
as:

tanh(x) =
ex − e−x

ex + e−x
(2.5)

Figure 2.7: Activation Functions In Neural Network

22

3. Loss Function:
In Machine Learning (ML), a loss function serves as a metric that mesures the
degree of accuracy with which your ML model can predict the desired or expected
outcome. The lower the values produced by the loss function, the higher the level
of performance is achieved. The most commonly used loss function in ML is the
Mean Squared Error (MSE) which excels at ensuring that the trained model
doesn’t produce outlier predictions with significant errors.

4. Adam Optimization Algorithm Adaptive moment estimation is an algorithm
in the gradient descent optimization technique. This method is especially efficient
when dealing with large problems containing many data or parameters. It uses less
memory and is efficient. Intuitively, this is a combination of the "gradient descent
with impulse" algorithm and the "RMSP" algorithm [28]. She was introduced in an
article titled "ADAM: Methods of Stochastic Optimization"" by Diederik Kingma
and Jimmy Ray Ba, in 2015 [29].
Adam Optimizer can be expressed mathematically by the formula 2.6 below:

mt = β1mt−1 + (1− β1)

[
δL

δwt

]
vt = β2vt−1 + (1− β2)

[
δL

δwt

]2
(2.6)

where:

• wt weights at time t

• δL derivative of Loss Function.

• δwt derivative of weights at time t.

• mt aggregate of gradients at time t (initially, mt = 0).

• mt−1 aggregate of gradients at time t-1.

• vt sum of square of past gradients.

• β2 decay rate of average of gradients in the above two methods where:
β2 = 0.999.

• β1 decay rate of average of gradients in the above two methods where: β1 = 0.9.

• ϵ is a small positive constant introduced to avoid ’division by 0’ error when vt

approaches 0 (vt → 0). In this context, ϵ is typically set to a small value, such
as 10−8.

2.3.3 Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) is a special category of neural network that allows
information to flow in both directions. A RNN has short-term memory that enables it to
factor previous input when producing output. The short-term memory allows the network
to store past information and, hence, revealing relationships between data points that are
far apart. [30].

23

Figure 2.8: Open Source Structure of RNN

There are four types of RNN (figure 2.9):

1. One to one has one input and one output.

2. One to many has one input and multiple outputs.

3. Many to one has multiple inputs and a one output.

4. Many to many has many inputs and many outputs.

Figure 2.9: Types of RNNs mentioned in [3]

Problems of RNNs
RNNs work using Backpropagation Through Time (BPPTT). This will update the weights
of the current and previous input. Weights are updated by transferring the error from the
last time step to the first time step. As a result, the error for each time step is calculated.
RNNs can not to handle long-term dependencies.
Two main problems occure at very long time steps: Vanishing Gradients and Exploding
Gradients [30]. These issues can adversely affect RNN training and performance. When
the gradient vanishes, the network can no longer learn from the past and loses the abil-
ity to capture long-term dependencies. This can lead to poor generalization and poor
fitting. Explosive increases in the gradient make the network unstable and sensitive to
small changes in the input. This can lead to numerical overflow, erratic behavior, and
overfitting of [31].
Prevent or Mitigate the Vanishing and Exploding Gradient Problems
Various techniques can be used to prevent or mitigate the vanishing and exploding gra-
dient problem in RNNs. Gradient clipping is a simple technique for setting a threshold

24

for the maximum or minimum value of a gradient. Gradients above or below this value
will be clipped or rescaled. Weight initialization is another technique that involves choos-
ing appropriate values for the network’s initial weights and biases. A Long Short-Term
Memory (LSTM) cell or Gated Recurrent Unit (GRU) cell is a special type of RNN cell
with internal mechanisms that control information flow and gradients. It uses gates that
learn to open and close based on inputs and outputs, preventing irrelevant information
from accumulating and important information from fading out in cell states. Additionally,
these gates can control how much gradients are affected by previous inputs and outputs,
preventing them from disappearing or exploding [31] .

2.3.4 Long Short Term Memory (LSTM)

Long Short Term Memory networks (LSTMs) are a special kind of RNN, designed to avoid
the long-term dependency problem. They were introduced by Sepp Hochreiter and Jurgen
Schmidhuber in their article titled "LONG SHORT-TERM MEMORY" [32] published in
1997. The LSTM unit implements three gates: an input gate, a forget gate, and an output
gate. The LSTM cell is presented in figure 2.10.

Figure 2.10: LSTM Cell by Guillaume Chevalier, CC BY-SA 4.0

The state updates satisfy the following operations:
The first step in the LSTM is to decide what information is discard from the cell state.
This decision is made by a sigmoid layer called the Forget Gate Layer ft. Digging into
the previous hidden state of the LSTM cell h at time step t− 1 and the input x at the
time step t and outputs a number between 0 and 1 for each number in the cell state Ct−1

[33, 34].

• 1 : represents “keep this completely ”.

• 0 : represents “remove this completely”.

25

ft = σ(Wf [ht−1, xt] + bf) (2.7)

where:

• bf : denotes the bias term associated with the forget gate.

Next, a decision of what new information we need to store in the cell state is taken. This
consists of two parts, First, a Sigmoid layer called the input gate layer it decides which
value to update. The tanh level then creates a vector C‘t of new candidate values that
can be added to the state. In the next step, these two parts are combined to create an
update with status [33, 34].

it = σ(Wi[ht−1, xt] + bi) (2.8)

C ′
t = tanh(Wc[ht−1, xt] + bc) (2.9)

Then the old cell state Ct−1 is updated to the new cell state Ct. The old state is multiplied
by ft, forgetting what you decided to forget before. Then itC

′
t is added as [33, 34].

Ct = ftCt−1 + itC
′
t (2.10)

The next step is to determine the output. This output will be taken from our cell state
but in a more sophisticated format. Initially, we pass it to a sigmoid layer, which decides
which aspects of the cell state to free. Next, we apply tanh transformation (limiting
values to the range -1 to 1) to the subject the cell state and multiply it by the result
of the sigmoid gate. This process ensures generating output only based on the selected
components [33, 34].

ot = σ(Wo[ht−1, xt] + bo) (2.11)

ht = tanh(Wh[ht−1, xt] + bh) (2.12)

2.3.5 Encoder Decoder Seq2Seq Model

The encoder-decoder architecture is a deep learning architecture consists of two main
components: an encoder and a decoder. The encoder takes in an input sequence and
creates a fixed-length vector representation of it, often called a hidden representation.
This representation intended to capture the key information from the input sequence in
a compressed form. The decoder then takes the latent representation and produces an
output sequence based on it. The most basic components used to build the encoder-
decoder architectures are neural networks. Depending on encoder decoder architecture
[35], Different types of neural networks, including RNNs, can be used.

26

Figure 2.11: An Encoder-Decoder Simple Seq2Seq model

2.3.6 Attention Mechanism

The attention mechanism is a method of unequally weighting the contributions of different
input features to enhance the target learning. [36]. In the typical attention mechanism
[37, 38] within a RNN, The set of inputs is expressed by H = {h1, h2, . . . , ht−1} which
is determined based on previous states and the context vector vt is extracted from the
previous states. vt is the weighted summation of each column hi in H, capturing informa-
tion related to the current time step. vt is further combined with the present state ht to
make the prediction. Suppose a scoring function: f : Rm × Rm → R that computes the
relevance between its input vectors. Formally, we have the following formula to compute
the context vector vt [39]:

αi =
exp(f(hi, ht))∑t−1
j=1 exp(f(hj, ht)

(2.13)

vt =
t−1∑
i=1

αihi (2.14)

The purpose of this attention algorithm is to empower the model to direct its attention
toward particular segments of the input sequence (hi) while producing an output (vt).

2.4 Evaluation Metrics

In this section, we explore the concept of evaluation metrics, including Mean Absolute
Error (MAE), Mean Squared Error (MSE), Coefficient of Determination (R2), and Root
Mean Squared Error (RMSE). We are exploring these metrics because we are currently
working on predictive models to address a regression problem. These metrics are instru-
mental in assessing the performance of the models presented in chapter 6.

27

2.4.1 Mean Squared Error (MSE)

MSE calculates the average of the squared differences between the predicted and actual
values, offering an evaluation of how well the predictions align with the true values, on
average. As shown in the equation:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.15)

where:

• n is the number of data points in your dataset,

• yi denotes the actual (observed) value of the target variable at data point i,

• ŷi represents the predicted value of the target variable at data point i.

• (yi − ŷi)
2 calculates the squared difference between the actual and predicted values

for each data point.

It penalizes larger errors significantly, which can be useful when we want to heavily pe-
nalize large prediction errors.

2.4.2 Root Mean Squared Error (RMSE)

As indicated by its name, Root Mean Squared Error (RMSE) is a straightforward concept,
being the square root of the Mean Squared Error.

RMSE =
√
MSE (2.16)

2.4.3 Mean Absolute Error (MAE)

As indicated by its name, Mean Absolute Error(MAE) represents the average of the
absolute values of the errors, providing valuable insights into the magnitude of deviations
between predicted and actual values. As shown in the equation:

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.17)

2.4.4 Coefficient of Determination (R2)

R2 is a statistical measure utilized to evaluate how much of the variability in the dependent
variable can be attributed to the independent variables in a regression model.

The coefficient of determination is a value between 0 and 1. An R2 value of 1 means
that the model perfectly fits the data, while an R2 value of 0 means that the model does

28

not explain any of the variance in the dependent variable.

R2 = 1− SSR

SST
(2.18)

where:

• SSR represents the sum of squared errors.

SSR =
n∑

i=1

(yi − ŷi)
2 (2.19)

• SST denotes the total sum of squares.

SST =
n∑

i=1

(yi − ȳ)2 (2.20)

2.5 Implementation Tools

In this section, we introduce the key tools and frameworks utilized in our project’s im-
plementation. These tools are essential for various tasks, such as data analysis and deep
neural network training. Our focus centers on three primary tools: Python, TensorFlow,
and Keras, in addition to the cloud-based platform, Google Colab.

2.5.1 Python

Python is a high-level programming language known for its simplicity and readability. It
was created by Guido van Rossum and was first released on February 20, 1991. It has
gained immense popularity in various domains, including data analysis, machine learning,
and web development. It offers a vast ecosystem of libraries and frameworks that provide
powerful tools for different tasks, such as NumPy for numerical computing, pandas for
data manipulation, and scikit-learn for machine learning [40].

2.5.2 TensorFlow

TensorFlow is an open-source machine learning framework developed by Google. It pro-
vides a comprehensive ecosystem for building and deploying machine learning models,
especially deep neural networks. TensorFlow allows users to define and train complex
mathematical models by creating computational graphs. These graphs represent the flow
of numerical operations and can be executed on various devices, such as CPUs, GPUs, and
TPUs. TensorFlow offers a wide range of tools and APIs for different levels of abstraction,
allowing flexibility and scalability in model development [41].

29

2.5.3 Keras

Keras is a high-level neural network API that runs on top of TensorFlow (and other deep
learning frameworks like Theano and Microsoft Cognitive Toolkit). Keras aims to provide
a user-friendly and intuitive interface for building neural networks. It simplifies the model
creation and training process by abstracting away many low-level implementation details.
Keras offers a modular and flexible architecture for defining models, allowing you to easily
stack layers, connect inputs and outputs, and customize model behavior. It supports a
wide range of network architectures, including convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and transformers [42].

2.5.4 Google Colab

Google Colab (short for Collaboratory) is an online cloud-based platform provided by
Google for running and collaborating on Python code. It offers a Jupyter Notebook-like
environment where users can create and execute Python code in their web browser. Google
Colab provides several advantages, such as free access to powerful hardware accelerators
like GPUs and TPUs, pre-installed libraries like TensorFlow, and seamless integration with
other Google services. It allows users to easily share notebooks, collaborate with others
in real time, and run code without the need for local setup or hardware configuration.

2.6 Conclusion

This Chapter serves as the theoretical foundation for multivariate time series forecasting,
exploring recurrent neural networks like LSTM and Encoder Decoder Seq2Seq models,
along with the attention mechanism. We introduce essential evaluation metrics, including
MAE, MSE, R2 and RMSE to assess model performance. And we explore the key im-
plementation tools that enable us to build and deploy the forecasting models, including:
Python, TensorFlow, Keras and Google Colab.

30

Chapter 3

Related Work

Numerous old and recent studies [5, 6, 9, 10, 43, 44, 45], are proposed as a possible solution
to the problem of multivariate time series forecasting. Below is a selection of those works:

3.1 Statistical Methods

Saputro et al (2011), Diani et al (2013), Adenomon (2013) and Das (2013) used VAR
models to analyze the relationships between variables in the field of meteorology [46] while
Lemya Taha in [47] employed Vector Autoregressive Model to analysis the relationship
between two financial time series as well as forecasting.

3.2 Neural Networks

Yoga Estu Nugraha Nugraha, Ishak Ariawan and Willdan Aprizal Arifin in their article
[48] employed the LSTM neural networks to forecast future weather conditions and They
proceeded to assess the model’s effectiveness by employing the RMSE evaluation metric.
In [49] Qing Li, Jinghua Tan, Jun WangJun Wang and HsinChun Chen introduces a
tensor-based event-driven LSTM model that preserves the interrelations between different
data types, allowing for the capture of their combined effects on Stock Prediction Using
Online News.

3.3 Hybrid Models

Mogarala Tejoyadav, Rashmiranjan Nayak and Umesh Chandra Pati [50] suggested a hy-
brid VAR-LSTM model to predict the 04 water pollutants along with their water quality
index. They utilized a VAR model to capture the interrelationships among the various
water pollutants using multivariate time series analysis. Subsequently, the estimated val-
ues from the VAR model were fed into an LSTM model to explore the temporal patterns
and characteristics of the water quality data. This integration of models resulted in more
precise predictions of water quality compared to the outcomes achieved by using each
model individually.

31

In [43], the authors introduced a novel approach for multivariate workload predic-
tion using a combination ofthe Vector AutoRegressive (VAR) model and Stacked
LSTM neural network. The VAR model is employed to analyze multivariate time
series data and forecast their future values. Subsequently. the residues obtained from
the VAR model are computed and utilized as inputs for the subsequent stacked LSTM
model. This stacked LSTM model effectively forecasts future resource values while taking
into account the information captured in the VAR model’s residuals. However, the results
obtained from the proposed approach indicated lower values of Mean Square Error (MSE)
compared to the ARIMA-LSTM (CPU prediction), RNN-GRU and AR-MLP models.

Harya Widiputra, Adele Mailangkay and Elliana Gautama [51] developed a compos-
ite CNN-LSTM model for Financial Time-Series Prediction. By leveraging the feature
extraction capabilities of CNNs and the temporal modeling abilities of LSTMs, the com-
bined model effectively captures complex patterns and dependencies in the multivariate
time series data, leading to improved performance in forecasting tasks.

XIANYUN WEN and WEIBANG LI [44] introduced a framework called AT-LSTM
for forecasting financial time series that leverages the power of attention mechanisms
which selects the most relevant input features and effectively improves the accuracy of
prediction to a certain extent, and has skillfully captures longer time dependencies on
three real datasets.

In [45], the authors introduced a new model for financial time series prediction,
which combines Long Short-Term Memory (LSTM) with Multi-Layer Perceptron
(MLP) to map the original features into a latent space and a feed-forward attention
mechanism which assigns attention weights to emphasize important feature information

3.4 Limitations in Existing Research

Although there has been notable advancement in the domain of multivariate time series
forecasting through previous research, there remain various gaps and constraints that re-
quire further attention and resolution.
One of the main limitations in current research concerns the application of deep learning
techniques, which are characterized by high data requirements. These methods are poorly
suited for data-limited scenarios due to their insatiable appetite for large-scale training
data. Moreover, their inherent complexity often requires computationally intensive train-
ing, which can reduce their practicality in real-time applications and resource-constrained
situations.
A second notable limitation concerns the complex process of hyperparameter tuning.
Achieving optimal performance in a deep learning model requires careful tuning of hyper-
parameters, a process that can be time consuming. Moreover, preprocessing of multivari-
ate time series data can be complex, requiring careful handling of data transformation and
scaling. Moreover, choosing the right architecture for a particular prediction task remains
a significant task, further complicating the use of deep learning techniques in practice.

32

Chapter 4

Dataset

4.1 Introduction

This chapter primarily revolves around two key elements: the case study conducted and
the dataset utilized for the implementation of the study.

4.2 Study Case

The plastic extrusion process involves melting plastic materials and shaping them con-
tinuously using an extruder machine. Plastic pellets are fed into a hopper and driven
forward by a rotating screw powered by a motor. Inside the heated barrel, the plastic
undergoes melting, transforming into molten plastic. This molten plastic is then extruded
through a shaping die, resulting in the desired final shape (see Figure 4.1).

Figure 4.1: Extrusion process

Currently, the plastic extrusion process relies on fixed motor speed and heater tem-
perature setpoints, assuming consistent material properties from plastic pellets. These

33

static setpoints, determined by machine operators, remain unchanged during the extru-
sion process. Monitoring output material pressure, temperature, and motor torque serves
as the primary means of ensuring smooth operation.

However, integrating recycled plastic introduces variability in material properties, chal-
lenging the validity of the assumed constant setpoints. To address this challenge and
incorporate the process into the production line, the research project "Recyplast Demo"
has undertaken the task.

It is imperative to dynamically adjust the motor speed and heater temperature based
on real-time output material pressure in Bars, material temperatures in Celsius degrees,
motor speed, motor torque and 17 heaters. To achieve this, leveraging historical data
captured through an acquisition system to create a forecasting model for the plastic
extruder’s behavior becomes crucial. This forecasting model will accurately predict how
the extruder will perform under various conditions and contexts, allowing it to maintain
consistent output quality despite the varying input properties of recycled plastic.

4.3 Data Exploration

The dataset consists of 41,293 observations from three datasets collected by ICAM as
part of the Recyplast-Demo project, with the first recorded on November 25th, the sec-
ond on March 27st, and the third on April 24th. It contains valuable information on the
variations of 23 features, including material pressures (called Pression matière), tempera-
tures (called Température matière), motor torquee (called Moteur Courant), motor speed
(called Vitesse Moteur), and 17 heaters(called (zone1,zone2,..,zone17)) recorded over time.
These data points offer crucial insights into how these parameters change throughout the
given period.

To begin with, we first included the essential python libraries (such as pandas, NumPy,
matplotlib, seaborn) and then loaded the three datasets. During this step, we set the
timestamp feature as the index and converted its type into datetime format for better
handling of time-related data. Finally, we concatenated the three datasets into a single
dataset to facilitate further analysis and manipulation.

1 import pandas as pd
import numpy as np

3 import matplotlib.pyplot as plt
import seaborn as sns

5 df1 = pd.read_csv(’/content/Extrusion_2022 -11 -25 -20230609091145 - synchronized -.csv’,
delimiter= ’\t’,index_col=’timestamp ’,parse_dates=True)

df2 = pd.read_csv(’/content/Extrusion_2023 -03 -27 -20230609091553 - synchronized -.csv’,
delimiter= ’\t’,index_col=’timestamp ’,parse_dates=True)

7 df3 = pd.read_csv(’/content/Extrusion_2023 -04 -24 -20230609092228 - synchronized -.csv’,
delimiter= ’\t’,index_col=’timestamp ’,parse_dates=True)

concatenated_df = pd.concat ([df1 , df2 , df3], axis =0)

The next step is to inspect for any missing values.Fortunately, there were no null values
present, eliminating the need for imputation.
df.isnull ().sum()

34

The next step is examining duplicate entries. These duplicates correspond to identical
rows or observations in the dataset and can occur accidentally during the acquisition and
collection of process measurements. To ensure data cleanliness and avoid redundancy, we
promptly removed to retain only unique observations. As a result of this operation, the
dimension of the dataset consisted of 41293 entries was reduced to 17693 entries.

1 df.duplicated ()
df.drop_duplicates(inplace=True)

To gain a deeper insight into the connections between different features in our dataset,
we utilized a powerful visualization technique called heatmap. This heatmap is based on
the correlation matrix, which calculates the strength and direction of correlations between
each pair of features.
sns.heatmap(df.corr())

The figure presents the information derived from the visualization 4.2 Upon examining

Figure 4.2: Corralation Matrix

the corrrelation matrix, we make several key observations:

1. The variables "zone 1," "zone 2," "zone 3," "zone 4," and "zone 5" exhibit high
correlation coefficients among themselves, suggesting a strong similarity or close
relationship. These variables were grouped due to their high correlation.

1 df[’zone1_5 ’] = df[[’zone1 ’, ’zone2’, ’zone3’,’zone4’,’zone5’]]. mean(axis =1)

35

2. The variables "zone 7," "zone 8," and "zone 9" also demonstrated high correlation
coefficients among themselves, indicating a close relationship or similarity. They
were grouped accordingly.

1 df[’zone7_9 ’] = df[[’zone7 ’, ’zone8’, ’zone9’]]. mean(axis =1)

3. The variables "zone 10," "zone 11," "zone 12," "zone 13," "zone 14," "zone 15,"
"zone 16," and "zone 17" displayed high correlation coefficients among themselves,
justifying their grouping.

1 df[’zone10_17 ’] =df[[’zone10 ’,’zone11 ’,’zone12 ’,’zone13 ’,’zone14 ’,’zone15 ’,’zone16 ’
,’zone17 ’]]. mean(axis =1)

After grouping the variables based on their high correlation coefficients and subse-
quently dropping duplicates, the resulting dataset is now reduced in size and contains a
subset of unique observations. As illustrated in the figure 4.3.

Figure 4.3: Reduced Dataset

In the following table, we present statistical data for key parameters related to the extru-
sion process. This data provides valuable insights into the characteristics and variability
of these parameters. As illustrated in the figure 4.4.

Figure 4.4: Statistical Summary of Extrusion Process Parameters

We divide the dataset into the train part and the test part
1 from sklearn.model_selection import train_test_split

X_train , X_test = train_test_split(df, test_size =0.20, shuffle=False)

36

For the normalization of the data we will use Min Max Scaler to ensure the values
are scaled within the range of 0 to 1, such as: for every feature, the minimum value of
that feature gets transformed into a 0, the maximum value gets transformed into a 1, and
every other value gets transformed into a decimal between 0 and 1. The Min Max Scaler
equation is given by:

Xscaled =
X −Xmin

Xmax −Xmin
(4.1)

where:

• X is the original data,

• Xmin is the minimum value of the data.

• Xmax is the maximum value of the data.

• Xscaled is the scaled data between 0 and 1.

The code snippet for the Min Max Scaler in Python is as follows:
from sklearn.preprocessing import MinMaxScaler

2 scaler = MinMaxScaler ()
scaled_data = scaler.fit_transform(cc)

In order to address the multivariate time series data as a supervised learning problem,
we adopt the sliding window method. The sliding window approach is utilized in the
following part of the code:

1 # Define the window size for the LSTM model
window_size = 3

3 # Create the input sequences and labels
X = []

5 y = []
for i in range(window_size , len(scaled_data)):

7 X.append(scaled_data[i-window_size:i])
y.append(scaled_data[i])

9 X = np.array(X)
y = np.array(y)

We conducted an extensive exploration of various sliding window sizes, ranging from 3 to
25. However, in our final configuration, window_size is set to 3, and a for loop is used
to create input sequences (X) and corresponding labels (y) for training the LSTM model.
Each element of X is a sequence of three consecutive data points, and the corresponding
element in y is the next data point after the sequence. As the loop progresses, the window
slides through the data, creating overlapping sequences, which allows the model to learn
patterns and relationships in the time-series data. This transformation enables the model
to learn from historical patterns and predict future values based on previous observations.

37

Chapter 5

Modeling and Implementation

5.1 Introduction

The Experiments chapter focuses on the implementation of the solution and provides
specific steps taken to execute it.

5.2 VAR model

In this section, we will employ the VAR model to forecast our multivariate time se-
ries (MTS) data. First, we focus on evaluating the stationarity in the MTS data. If
non-stationarity is detected, a transformation method is employed to achieve stationar-
ity. Following this, our objective will be to establish an effective model, which involves
determining the optimal number of lag terms to include in our analysis.

5.2.1 Checking Stationarity

To initiate the training of our VAR model, our first focus should be on testing the station-
arity of our multivariate time series. This allows us to determine whether our variables
exhibit stable behaviors over time. To conduct this test, we employ the Augmented
Dickey-Fuller Test, which compares the original time series with a lagged version of itself
to ascertain the presence of non-stationary behavior. This concept has been elaborated
upon in chapter 2.
we Select the variables of interest

2 variables_of_interest = [’temperature_matiere ’, ’pression_matiere ’, ’vitesse_moteur ’,
’courant_moteur ’, ’zone7_9 ’, ’zone1_5 ’, ’zone6 ’, ’zone10_17 ’]

4 final_data = concatenated_df[variables_of_interest]

6 # we Create an empty DataFrame to store ADF test results
adf_results = pd.DataFrame(columns =[’Variable ’, ’ADF Statistic ’, ’p-value’, ’Is

Stationary ’])
8

we Perform ADF test for each variable in the dataset
10 for column in final_data.columns:

result = adfuller(final_data[column])
12 is_stationary = result [1] <= 0.05

adf_results = adf_results.append ({

38

14 ’Variable ’: column ,
’ADF Statistic ’: result [0],

16 ’p-value’: result [1],
’Is Stationary ’: is_stationary

18 }, ignore_index=True)

The test furnishes a test statistic and an associated p-value. Should the p-value be
lower than a predetermined threshold (0.05), we reject the null hypothesis indicating non-
stationarity.
The result of this test indicates that 4 series are stationary (temperature_matiere, pres-
sion_matiere, vitesse_moteur, courant_moteur), while the other 4 series are non-stationary
(zone1_5, zone6, zone7_9, zone10_17) as shown in figure 5.1. Therefore, a Differencing
transformation is necessary.
final_data.diff().dropna ()

Figure 5.1: Adfuller Test Results

5.2.2 Lag Order Determination

To determine the optimal lag order, we perform a sort of test where we identify when
the information criterion reaches its minimum value. We plot the the Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), Focused Prediction Error (FPE)
and the Hannan-Quinn Information Criterion (HQIC) values againt the lag orders as
illustrated in visualisation 5.2 below:

Figure 5.2: Lag Order Determination

In this case, a lag of five (5) is chosen because it represents the point at which the
information criterion (AIC, BIC) indicates the best balance between model complexity

39

and predictive accuracy. It signifies that a lag of 5 captures the relevant historical infor-
mation in the data without overcomplicating the model, making it an optimal choice for
forecasting purposes.

5.2.3 Model Fitting

The next step revolves around training the VAR model, using the training differencing
data, wherein the employment of the lagged values of the variables as input to generate
the appropriate predictions.

1 p = 5
model = VAR(train_diff)

3 var_model = model.fit(p)
var_model.summary ()

The Forecasting results will be provided in chapter 6.

5.3 Long Short Term Memory (LSTM) Model

We specify the model architecture as demonstrated in the figure 5.3 with the following
considerations:

• We create a sequential model, a linear stack of layers that simplifies the construction
of deep neural networks.

model1 = Sequential ()

• In our pursuit of optimizing the LSTM model, we conducted extensive training ex-
periments with varying numbers of epochs, including 25, 35, 40 and 100 epochs. The
results of our intensive experiments showed a clear trend. The model’s performance
peaked surprisingly early, after only 25 epochs. The model incorporates an LSTM
layer with 25 units and ’tanh’ activation. ’tanh’ activation is preferred in LSTM
networks due to its effectiveness in handling vanishing gradient problems compared
to sigmoid and other activation functions.

• The input shape is set to (n_steps, 8), where ’n_steps’ represents the number of
time steps in each sample, and ’8’ corresponds to the number of features in the
multivariate time series data. This allows the LSTM to process the input data
correctly, considering both temporal structure and feature dimensions.

1 model1.add(LSTM(25, activation=’tanh’,input_shape =(n_steps ,8)))

• To address overfitting, we introduce a Dropout layer with a 0.10 dropout rate.
Dropout randomly sets a portion of input units to zero during training, promoting
robust representations and reducing reliance on specific features.

1 model1.add(Dropout (0.10))

40

• After the LSTM layer, we add a Dense layer with 8 units, matching the output size.
This final layer enables the model to produce predictions for the multivariate time
series data.

1 model1.add(Dense (8))

• We compile the model using the Adam optimizer, a popular choice for training
neural networks. Adam combines the benefits of AdaGrad and RMSProp, adjust-
ing learning rates for each parameter, leading to faster convergence and improved
performance compared to standard stochastic gradient descent.

• The loss function used during training is Mean Squared Error (MSE), measuring the
difference between predicted values and actual targets. Minimizing MSE encourages
accurate predictions and effective learning from the training data, making it suitable
for regression tasks like time series forecasting.

1 model1.compile(optimizer=keras.optimizers.Adam(learning_rate =0.001) ,loss=’mse’)

Figure 5.3: LSTM model

Finally, using the trained LSTM model, we perform multivariate series forecasting
on the test data. The predictions will be showcased in the "Results" section through
visualizations that demonstrate the forecasted values alongside the actual test data. Ad-
ditionally, we will provide a table containing Mean Squared Error (MSE), Mean Absolute
Error (MAE), and R-squared (R2) metrics for each feature, assessing the model’s perfor-
mance on various aspects.

41

5.4 Encoder Decoder Model

The initial phase involves importing essential modules from TensorFlow’s tensorflow.keras
package, including tools like regularizers to prevent overfitting, the Model class for creating
the model, and various layer types.

1 from tensorflow.keras.layers import Input , LSTM , concatenate , RepeatVector ,
TimeDistributed

from tensorflow.keras.models import Model
3 from tensorflow.keras import regularizers

Following this, we proceed by creating the input layer for the encoder. The input layer
will handle past data instances, where the specific case involves sequences with 20 time
steps and 8 distinct features.

1 n_past = 7
n_features = 8

3 encoder_inputs = Input(shape=(n_past , n_features))

The encoder consists of two LSTM layers: the first contains 32 units and the second
with 16 units. These layers process the input sequences while maintaining their internal
states. The states of the second layer are concatenated with the states of the first layer,
forming the context vector that retain the most relevant information. This context vector
is then repeated to match the number of time steps in the future predictions.

1 # Define the inputs
encoder_inputs = Input(shape=(n_past , n_features))

3 # Encoder LSTM layers
encoder_l1 = LSTM(32, return_sequences=True , return_state=True ,activation = ’tanh’)

5 encoder_outputs1 = encoder_l1(encoder_inputs)
encoder_states1 = encoder_outputs1 [1:]

7 encoder_l2 = LSTM(16, return_state=True)
encoder_outputs2 = encoder_l2(encoder_outputs1 [0])

9 encoder_states2 = encoder_outputs2 [1:]
Concatenate the encoder states

11 encoder_states = concatenate ([encoder_states1 [0], encoder_states2 [0]])

For the decoder, a RepeatVector layer duplicates the context vector for each time step
in the future prediction sequence. Two LSTM layers, with 32 and 16 units respectively,
process this repeated context vector. Worth noting is that these decoder LSTM layers
are fortified with L2 regularization, designed to curb overfitting, with a regularization
intensity of 0.05. The outcome of the second LSTM layer in the decoder undergoes a two-
step transformation: first through a TimeDistributed layer and then via a fully connected
(Dense) layer. This process ultimately gives rise to the final projected sequences.

1 # Decoder inputs
decoder_inputs = RepeatVector(n_future)(encoder_states)

3 # Decoder LSTM layers with L2 regularization
decoder_l1 = LSTM(32, return_sequences=True , kernel_regularizer=regularizers.l2 (0.05))(

decoder_inputs , initial_state=encoder_states1)
5 decoder_l2 = LSTM(16, return_sequences=True , kernel_regularizer=regularizers.l2 (0.05))(

decoder_l1 , initial_state=encoder_states2)
decoder_outputs2 = TimeDistributed(Dense(n_features))(decoder_l2)

7 model = Model(encoder_inputs , decoder_outputs2)
model.summary ()

42

Subsequently, The model is constructed using the Model class, and a model’s summary is
printed, displaying the shapes and number of parameters for each layer.(see figure 5.4)

Figure 5.4: a summary of the model architecture

We opt for the Adam optimizer and we set up its parameters the learning rate is estab-
lished at 0.008, the first-moment decay rate (beta_1) at 0.9, the second-moment decay
rate (beta_2) at 0.999, and the AMSGrad variant is engaged. The model is compiled
with the Mean Squared Error (MSE) as the chosen loss function. The training process
spans across 25 epochs, where each epoch involves processing batches of 32 samples.
opt = tf.keras.optimizers.Adam(learning_rate =0.0008 , beta_1 =0.9, beta_2 =0.999 , amsgrad=

True)
2 model.compile(loss=’mse’, optimizer=opt)

history=model.fit(X_train ,y_train ,epochs =25, validation_data =(X_test ,y_test),batch_size
=32, verbose =0)

In chapter 6, we will present the learning curve depicting the behavior of the loss
function over the training epochs. Additionally, we will include a table showcasing the
performance evaluation metrics.

5.5 Long Short Term Memory (LSTM) Model And The

Attention Mechanism

The model architecture is outlined as illustrated in Figure 5.5 We set up the necessary
libraries and modules to build LSTM model with the attention mechanism.

1 import numpy as np
import pandas as pd

3 from sklearn.preprocessing import MinMaxScaler
from keras.models import Model

5 from keras.layers import LSTM , Dense , Dropout , Input , Permute , Multiply , Activation ,
Lambda , Flatten

43

from keras import backend as K

In the next step, we split the data into training and testing sets while defining the
number of time steps to consider in each sample, which is n_steps = 7. This means that
the LSTM model will be trained to take 7 consecutive time steps as input to predict the
output for the next time step. After that we prepare the training data for both training
and evaluation of the LSTM model.
train_size = int(len(scaled_data) * 0.80)

2 train_data = scaled_data [: train_size]
test_data = scaled_data[train_size :]

4 n_steps = 7
#Prepare training data

6 X_train , y_train = [], []
for i in range(n_steps , len(train_data)):

8 X_train.append(train_data[i - n_steps:i, 2:]) # Select the last 6 columns for X_train
y_train.append(train_data[i, 2:]) # Select the last 6 columns for y_train

10 X_train , y_train = np.array(X_train), np.array(y_train)
#Prepare testing data

12 X_test , y_test = [], []
for i in range(n_steps , len(test_data)):

14 X_test.append(test_data[i - n_steps:i, 2:]) # Select the last 6 columns for X_test
y_test.append(test_data[i, 2:]) # Select the last 6 columns for y_test

16 X_test , y_test = np.array(X_test), np.array(y_test)

After that, we define the attention mechanism for the LSTM model that calculates
the attention weights using a dense layer with softmax activation, reshapes and expands
dimensions to align with input tensor, and then applies element-wise multiplication to
scale the input features according to their attention weights.
Define the attention mechanism

2 def attention(inputs):
attention_weights = Dense(n_steps , activation=’softmax ’)(inputs)

4 attention_weights = Permute ((2, 1))(attention_weights)
attention_weights = Lambda(lambda x: K.expand_dims(x, axis =3))(attention_weights)

6 attention_weights = Lambda(lambda x: K.repeat_elements(x, 18, axis =3))(
attention_weights)

return Multiply ()([inputs , attention_weights])

Finally, we construct the LSTM model with an attention mechanism with 18 units,
employing the (tanh) activation function. The attention mechanism is then invoked,
allowing the model to focus on relevant information within the sequences. To avoid
overfitting, a dropout layer is used with a dropout rate of 0.07 follows to regularize the
network. The output is then flattened, and a dense layer with 6 units is employed to
produce the final predictions, matching the number of six columns in the input data.
The model is then compiled with the Adam optimizer and the mean squared error loss
function. The model is trained using the training data for 25 epochs with a batch size of
32 and 20% validation split.

1 # Build the LSTM model with attention mechanism
inputs = Input(shape=(n_steps , 6)) # Adjusted to use 6 columns

3 lstm_out = LSTM(18, activation=’tanh’, return_sequences=True)(inputs)
attention_out = attention(lstm_out)

5 dropout_out = Dropout (0.07)(attention_out)
flatten_out = Flatten ()(dropout_out)

7 dense_out = Dense (6)(flatten_out) # Adjusted to use 6 columns

44

model3 = Model(inputs=inputs , outputs=dense_out)
9 model3.compile(optimizer=’adam’, loss=’mse’)

Train the model
11 history3 = model3.fit(X_train , y_train , epochs =25, batch_size =32, validation_split =0.20,

verbose =1)

Finally the predictions are done and the results are visualized in the results chapter.

Figure 5.5: LSTM model+Attention Mechanism

45

Chapter 6

Results

6.1 Introduction

In this chapter, we present the outcomes obtained from employing various models to
forecast our multivariate time series. The models under examination include LSTM (Long
Short Term Memory), LSTM with the attention mechanism, Encoder-Decoder Model, and
VAR (Vector Autoregression). Each model’s performance and predictive capabilities are
thoroughly analyzed to gain insights into their effectiveness in capturing the dynamics of
the multivariate time series data.

6.2 VAR Model

The figure 6.1 presented below delve into the insights provided by the VAR summary.
With a total of eight equations, the Akaike Information Criterion (AIC) yielded a value
of 9.67 and examine the correlation matrix of residuals that calculates the difference be-
tween the actual values and its predictions.

For example, the positive correlation between "zone1_5" and "zone7_9" suggests
that when one of these zones has higher-than-expected residuals, the other zone tends
to have higher residuals as well while the positive correlation between "zone7_9" and
"vitesse_moteur" and between "zone10_17" and "temperature_matiere" are closer to 0
and that indicate a weaker and a negligible relationship.

To understand the impact of "temperature_matiere" and "pression_matiere" on the
remaining variables, we employ the Impulse Response Function (IRF) as shown in figure
6.2 and figure 6.3

46

(a) Model Summary

(b) Correlation Matrix Of Residuals

Figure 6.1: VAR Summary

Figure 6.2: Impulse Response Function :"pression_matiere"
47

Figure 6.3: Impulse Response Function :"temperature_matiere"

The graph illustrates that "zone7_9," "zone10_17," "zone1_5," and "zone6" exhibit
varying response patterns to a "pression_matiere" shock over time. However, a pro-
nounced positive correlation exists between the "pression_matiere" impulse and these
responses. For instance, an upsurge of one standard deviation in "pression_matiere" due
to the shock leads to a substantial 0.3 standard deviation increase in "vitesse_moteur"
during the initial first time periods.In the second time period, the standard deviation de-
creases . Subsequently, the shock’s effect stabilizes during the third time period, followed
by a gradual reduction in standard deviation during the final time period.
Finally, we provide a table 6.1 that displays a comprehensive overview of the model’s per-
formance on different features along with the corresponding evaluation metrics including
R2 (Coefficient Of Determination), MAE (Mean Absolute Error), MSE (Mean Squared
Error), and RMSE (Root Mean Squared Error).

48

Features & Evaluation metric R2 MAE MSE RMSE
Courant_moteur -0.06510 38.73712 8947.79314 94.59277
Vitesse_moteur -0.39681 13.18129 449.11865 21.19242
Zone1_5 -0.1418533 4.91342 60.73536 7.79329
Zone_6 -0.399640 2.3767 14.78256 3.84481
Zone7_9 -0.3380 2.82434 19.38271 4.40258
Zone10_17 -0.218762 1.45308 6.39842 2.52951

Table 6.1: VAR model results

The model’s results for "courant_moteur" and "vitesse_moteur" demonstrate poor
performance. The negative R2 and high values of MAE, MSE, and RMSE suggest that
the VAR model fails to accurately predict both "courant_moteur" and "vitesse_moteur",
which is crucial for process control in extrusion. It also shows that The VAR model
shows subpar performance across all extrusion zones ("Zone1_5," "Zone_6," "Zone7_9,"
"Zone10_17"). Negative R2 values and high MAE, MSE, and RMSE values indicate that
the model is not suited for predicting characteristics in these zones, which is essential for
ensuring the quality of the extruded product.
In summary, the results of the VAR model are unsatisfactory in the context of recycling
plastic extrusion.

6.3 Long Short Term Memory (LSTM) Model

The figure’s visualization 6.4 enables a comprehensive assessment of how effectively the
LSTM model aligns with the actual data.

(a) zone10_17 (b) zone1_5 (c) zone7_9

(d) zone6 (e) courant_moteur (f) vitesse_moteur

Figure 6.4: Plots of the LSTM forecasting model

49

The following table 6.2 displays a comprehensive overview of the model’s performance
on different features along with the corresponding evaluation metrics including R2 (Co-
efficient Of Determination), MAE (Mean Absolute Error), MSE (Mean Squared Error),
and RMSE (Root Mean Squared Error).

Features & Evaluation metric R2 MAE MSE RMSE
Courant_moteur 0.4524 27.8556 1549.6172 39.3651
Vitesse_moteur 0.9790 1.5001 7.3863 2.7177
Zone1_5 0.9906 1.3738 2.5931 1.6103
Zone_6 0.9685 2.2123 9.4120 3.0679
Zone7_9 0.9988 0.4386 0.4386 0.5666
Zone10_17 0.9809 1.7204 4.4705 2.1143

Table 6.2: LSTM model results

The results of the LSTM model indicate that this model exhibits varying performance for
different process characteristics. Here is a context-specific interpretation:

• The LSTM model shows moderate performance in predicting "courant_moteur".
Although the coefficient of determination (R2) is not very high, this model manages
to capture some relationships in the data.

• The model’s results for "vitesse_moteur" are promising, with an R2 close to 1,
indicating a strong correlation between predictions and actual data. This suggests
that the LSTM model is capable of accurately predicting motor speed, which is
essential to control the extrusion process.

• The LSTM model displays varying performance for different extrusion zones. Some
zones, such as "Zone1_5" and "Zone7_9," show good performance with R2 values
close to 1, while others, like "Zone_6," exhibit less satisfactory performance.

These findings highlight the potential of the LSTM model to contribute to process opti-
mization and waste reduction through precise predictions of process characteristics, even
though its performance varies across different aspects of the extrusion process.

50

6.4 Encoder Decoder Model

In Table 6.3, the results of the Encoder Decoder model are presented, showcasing the
performance evaluation metrics for various features that offer a comprehensive view of
the model’s accuracy, capturing aspects such as variance explained, absolute and squared
prediction errors, as well as overall prediction precision.
The Encoder-Decoder model’s performance varies across different extrusion zones. Zone1_5
and Zone7_9 exhibit reasonably good predictions with high R2 values, indicating a strong
correlation. However, Zone_6 shows poor performance with a negative R2, indicating a
lack of correlation, while Zone10_17 has relatively good R2 but slightly higher errors.
These variations suggest that the model’s success depends on the specific extrusion zone
being considered.
The Encoder-Decoder model performs remarkably well in predicting Vitesse_moteur. The
high R2 value of 0.87534 indicates a strong correlation between predicted and actual val-
ues. Additionally, the low MAE, MSE, and RMSE values suggest that the model provides
accurate predictions for Vitesse_moteur, which is essential for controlling the extrusion
process.

Features & Evaluation metric R2 MAE MSE RMSE
Courant_moteur 0.37651 0.20247 0.06781 0.26042
Vitesse_moteur 0.87534 0.08940 0.02023 0.14225
Zone1_5 0.59293 0.14796 0.06037 0.24572
Zone_6 -0.52548 0.05843 0.01447 0.12030
Zone7_9 0.85756 0.05870 0.00515 0.07182
Zone10_17 0.83036 0.07944 0.01831 0.13534

Table 6.3: Encoder Decoder model results

The learning cure shown in figure 6.5 illustrates the behaviour of MSE loss function
over the training epochs. The plot showcases a gradual decrease in the model’s loss,
indicating a convergence towards a a point of stability The plot showcases of both the
training dataset and the validation dataset a gradual decrease in the model’s loss, indi-
cating a convergence towards stability. We can notice that the loss is consistently lower
on the training dataset compared to the validation dataset and that’s explain the gap
existed between the train and validation loss learning curves.
In summary, the Encoder-Decoder model’s results indicate that it excels in predicting

Vitesse_moteur, which is crucial for the extrusion process. However, its performance
varies for different extrusion zones, with some zones showing good predictions and others
requiring improvement

51

Figure 6.5: Behavior Of Loss Function Over The Training Epochs

6.5 Long Short Term Memory (LSTM) Model With

The Attention Mechanism

The mean squared error (MSE) loss curve shown in figure 6.6 shows a smooth slope,
indicating that the model improved during training. The decreasing loss values means that
the accuracy of the prediction is high and the deviation between the predicted value and
the actual target value is effectively minimized, which is a positive outcome. Additionally,
the learning curve computed from the holdout validation dataset provides valuable insight
into the model’s generalization performance. A gently sloping validation learning curve
means that the model not only learns from the training data, but also captures important
patterns and trends present in the validation data.

The table 6.4 below provides an overview of the model’s performance on different fea-
tures along with corresponding metrics such as R2, MAE, MSE and RMSE.

52

Figure 6.6: Learning Curve

Features & Evaluation metric R2 MAE MSE RMSE

Courant_moteur -1.169948 0.029198 0.001347 0.03671

Vitesse_moteur 0.98029 0.018149 0.00148 0.03854

Zone1_5 0.99151 0.0071 8.55×105 0.00925

Zone_6 0.97700 0.01362 0.00029 0.01707

Zone7_9 0.99882 0.00839 9.93×105 0.00996

Zone10_17 0.99856 0.00396 2.32×105 0.00482

Table 6.4: LSTM model with the attenstion mechanism results

The LSTM model performs exceptionally well in predicting Vitesse_moteur and ex-
cels in predicting all extrusion zones. The high R2 value indicates a strong correlation
between predicted and actual values. Additionally, the MAE, MSE, and RMSE values
are low, suggesting highly accurate predictions.
Finaly, we provide visualizations in 6.7 for a comprehensive assessment of how well the
predictions of the LSTM model with the attention mechanism matches the real data
where The forecast results (blue line) demonstrate a strong alignment with the original
time series (orange line), indicating a good fit between the predicted values and the actual
data.

53

(a) zone10_17 (b) zone1_5

(c) zone7_9 (d) zone6

(e) courant_moteur (f) vitesse_moteur

Figure 6.7: Plots of the LSTM with the attention mechanism forecasting model

In summary, The LSTM model with an attention mechanism performs exceptionally well
for Vitesse_moteur and all extrusion zones. However, it struggles to predict Courant_moteur
accurately, as indicated by the negative R2 value and higher errors.

54

6.6 Discussion

We compare the performance of the four models (VAR Model, LSTM, Encoder Decoder
Model and LSTM with the Attention Mechanism) over the concatenated datasets (Ex-
truder Parameters) over time. We use Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE) and Coeffecient Of Ddetermination (R2) to assess the forecasting perfor-
mance, which can be obtained as we already explain in the chapter 2.
The table 6.6 and the table 6.5 provide the summary statistics on models performances:

Features LSTM with Attention Encoder-Decoder Model

RMSE MAE R2 RMSE MAE R2

Courant_moteur 0.03671 0.02919 -1.16994 0.26042 0.06781 0.37651
V itesse_moteur 0.98029 50.0476 0.98029 0.14225 0.08940 0.87534
Zone1_5 0.00925 0.0071 0.99151 0.24572 0.14796 0.59293
Zone_6 0.01707 0.01362 0.97700 0.12030 0.05843 -0.52548
Zone7_9 0.00996 0.00839 0.99882 0.07182 0.05870 0.85756
Zone10_17 0.00482 0.00396 0.99856 0.13534 0.07944 0.83036

Table 6.5: Performance Comparison (LSTM with Attention vs. Encoder-Decoder Model)

Features LSTM VAR Model

RMSE MAE R2 RMSE MAE R2

Courant_moteur 39.3651 27.8556 0.4524 94.59277 38.73712 -0.06510
V itesse_moteur 1.6103 1.5001 0.9790 21.19242 13.18129 -0.39681
Zone1_5 1.6103 1.3738 0.9906 7.79329 4.91342 -0.14185
Zone_6 3.0679 2.2123 0.9685 3.84481 2.3767 -0.39964
Zone7_9 0.5666 0.4386 0.9988 4.40258 2.82434 -0.3380
Zone10_17 2.1143 1.7204 0.9809 2.52951 1.45308 -0.21876

Table 6.6: Performance Comparison (LSTM vs. VAR Model)

We can note this results:

1. The "LSTM with Attention" consistently achieves the lowest RMSE and MAE val-
ues among all models, indicating superior performance in terms of minimizing pre-
diction errors.

2. The "Encoder-Decoder Model" with LSTM layers shows competitive RMSE and
MAE values, suggesting that the LSTM layers in this model contribute to improved
predictive accuracy.

55

3. The "VAR Model" generally exhibits higher RMSE and MAE values compared to
the LSTM-based models indicating larger discrepancies between predictions and
actual values.

4. Both LSTM-based models (with Attention and without) tend to yield higher R2

values compared to the "Encoder-Decoder Model" with LSTM layers and the "VAR
Model." This suggests that the LSTM models better explain the variance in the data
and provide better-fitting models while the "VAR Model" has a poorer fit to the
data in terms of explaining variance.

Overall, both LSTM with the attention mechanism and The encoder decoder with two
LSTM layers model exhibit notably superior performance compared to LSTM and the
VAR model, considering R2, RMSE and MAE. It’s worth noting that the distinct per-
formance hierarchy of the four prediction models (LSTM_attention_mechanism ≻
EncoderDecoder ≻ LSTM ≻ V AR) proves valuable in establishing a connection be-
tween model performance and interpretability.

In short, it is clear that extending the LSTM model with an attention mechanism,
emerges as the most appropriate predictive model for the extruder’s parameters, espe-
cially for motor speed and different heat zones. Its outstanding accuracy, competitive
performance, and overall superiority in predictive capabilities make it the best choice for
this specific application.

56

Chapter 7

Conclusion

In Chapter 2, we presented a comprehensive definition of multivariate time series and
explored how statistical methods and deep learning approaches have been widely utilized
in forecasting them over the past decade. Subsequently, in Chapter 3, we reviewed existing
research related to forecasting multivariate time series, focusing on our specific interest
in predicting the behavior of parameters in an extruder machine.

In pursuit of this objective, we explored three different solutions and conducted a com-
parative analysis of the results obtained. Among these solutions, we specifically applied
the Long Short-Term Memory (LSTM) model enhanced with an attention mechanism to
address our study case. This approach was implemented using a dataset from the recycled
plastic extrusion process, which constituted a multivariate time series.

The outcomes of our experimentation with the LSTM model combined with the at-
tention mechanism were exceedingly gratifying, showcasing substantial enhancements in
the accuracy and precision of our forecasts. Consequently, this particular model emerged
as the most favorable and optimal choice for effectively tackling the forecasting task at
hand.

Looking to the future, we envision further advancements in our research. The inclu-
sion of sensors to monitor the viscosity of the final plastic material would be a valuable
enhancement to the extrusion process offering a valuable means of quality control and
process optimization. Moreover, with the availability of more data from the recycled
plastic extrusion process, we plan to develop a new neural network that combines LSTM
with other elements to capture dependencies over time. However, we are keen to explore
the integration of reinforcement learning methods and the application of Markov chain
approaches. This enhanced model will enable us to forecast the attitude of the extruder
machine even more effectively, paving the way for continued progress in this domain.

57

Bibliography

[1] Stationarity in time series analysis explained using python.
https://www.quantinsti.com/.

[2] Ajitesh Kumar. Gradient descent explained simply with examples. https://

vitalflux.com/gradient-descent-explained-simply-with-examples/.

[3] Jimeng Sun Cao Xiao. Recurrent neural networks (rnn). SpringerLink.

[4] Attila GerGely Attila Gyárfás. The design of a small-scale plastic extrudermachine.
2019.

[5] Baydaa Ismael Ayat Ahmed Hamel. Time series forecasting using arima model. 2022.

[6] Abdu Mohammed Seid Bayile Damtie Abebaw Bizuneh AlemuU, Jaya Prakash Ra-
juU. Comparative study of seasonal autoregressive integrated moving average and
holt-winters modeling for forecasting monthly ground-level ozone. 2023.

[7] Jagjeevan Kanoujiya Rahul Singh Gautam. Multivariate inflation forecasting: A case
of vector auto regressive (var) model. 2022.

[8] Abdelmounaim Abdali Ibtissam Amalou, Naoual Mouhni. Multivariate time series
prediction by rnn architectures for energy consumption forecasting. 2022.

[9] Xiaoxuan Liu Zijun Fu, Yongming Wu. A tensor-based deep lstm forecasting model
capturing the intrinsic connection in multivariate time series. 2022.

[10] Lotfi Najdi Hassan Bousnguar, Amal Battou. Gated recurrent units (gru) for time
series forecasting in higher education. 2023.

[11] Kittisa Kerdprasop Pasapitch Chujai, Nittaya Kerdprasop. Time series analysis of
household electric consumption with arima and arma models. 2013.

[12] Miguel García Torres Francisco A. Goméz Vela José Luis Vázquez Noguera Fed-
erico Divina, ORCID. A comparative study of time series forecasting methods for
short term electric energy consumption prediction in smart buildings. 2019.

[13] Duc Do Micheal Hintlian Mahdy Shirdel, Reza Asadi. Deep learning with kernel flow
regularization for time series forecasting. 2021.

58

https://vitalflux.com/gradient-descent-explained-simply-with-examples/
https://vitalflux.com/gradient-descent-explained-simply-with-examples/

[14] Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey.
2021.

[15] Time series analysis and forecasting using auto time se-
ries. https://www.section.io/engineering-education/

time-series-analysis-and-forecasting-using-auto-time-series/.

[16] Denis Kwiatkowski, Peter C B Phillips, Peter Schmidt, and Yongcheol Shin. Testing
the null hypothesis of stationarity against the alternative of a unit root: How sure
are we that economic time series have a unit root? Journal of Econometrics, 54(1-
3):159–178, 1992.

[17] S. Prabhakaran. Augmented dickey fuller test (adf test) â must read guide,” machine-
learningplus.com,. november 2, 2019.

[18] var. https://en.wikipedia.org/wiki/Vector_autoregression.

[19] Vector auto-regressive (var) models for multivariate time series forecasting. https:

//medium.com,.

[20] Venus Khim-Sen Liew. Which lag selection criteria should we employ? Economics
Bulletin 3(33):1-9, 2014.

[21] Himanshi Singh. Deep learning 101: Beginners guide to neural network, 2021.

[22] Neural networks bias and weights. https://medium.com/fintechexplained/

neural-networks-bias-and-weights-10b53e6285da,.

[23] Jean-Louis Queguiner. What does training neural networks mean? https://blog.

ovhcloud.com/what-does-training-neural-networks-mean/.

[24] Mbali Kalirane. Gradient descent vs. backpropagation: What’s
the difference? https://www.analyticsvidhya.com/blog/2023/01/

gradient-descent-vs-backpropagation-whats-the-difference/.

[25] Knut Hinkelmann. Neural networks, 2018.

[26] Activation functions in neural networks. https://www.geeksforgeeks.org/activation-
functions-neural-networks/.

[27] Activation functions in neural networks [12 types use cases].
https://www.v7labs.com/blog/neural-networks-activation-functionsh3.

[28] prakharr0y. Intuition of adam optimizer.

[29] Jimmy Lei Ba Diederik P. Kingma. Adam: A method for stochastic optimization.
2015.

59

https://www.section.io/engineering-education/time-series-analysis-and-forecasting-using-auto-time-series/
https://www.section.io/engineering-education/time-series-analysis-and-forecasting-using-auto-time-series/
https://en.wikipedia.org/wiki/Vector_autoregression
https://medium.com
https://medium.com
https://medium.com/fintechexplained/neural-networks-bias-and-weights-10b53e6285da
https://medium.com/fintechexplained/neural-networks-bias-and-weights-10b53e6285da
https://blog.ovhcloud.com/what-does-training-neural-networks-mean/
https://blog.ovhcloud.com/what-does-training-neural-networks-mean/
https://www.analyticsvidhya.com/blog/2023/01/gradient-descent-vs-backpropagation-whats-the-difference/
https://www.analyticsvidhya.com/blog/2023/01/gradient-descent-vs-backpropagation-whats-the-difference/

[30] Derrick Mwiti. Getting started with recurrent neu-
ral network (rnns). https://towardsdatascience.com/

getting-started-with-recurrent-neural-network-rnns-ad1791206412.

[31] How do you deal with the vanishing and exploding gradi-
ent problems in rnns? https://www.linkedin.com/advice/3/

how-do-you-deal-vanishing-exploding-gradient#:~:text=The%20vanishing%

20and%20exploding%20gradient%20problems%20occur%20when%20the%

20gradients,information%20from%20previous%20time%20steps.

[32] Jurgen Schmidhube Sepp Hochreiter. Long short-term memory. 1997.

[33] Understanding lstm networks. https://colah.github.io/posts/

2015-08-Understanding-LSTMs/#fn1.

[34] Héctor Corrada Bravo imothy Wood. Improving long-horizon forecasts with
expectation-biased lstm networks. 2018.

[35] Demystifying encoder decoder architecture neural network. https:

//vitalflux.com/encoder-decoder-architecture-neural-network/#What%

E2%80%99s_Encoder_Decoder_Architecture_How_does_it_work.

[36] Attention mechanisms in deep learning — not so special. https://medium.com,.

[37] Yoshua Bengi KyungHyun Cho. Neural machine translation by jointly learning to
align and translate. 2015.

[38] Christopher D. Manning Minh-Thang Luong, Hieu Pham. Effective approaches to
attention-based neural machine translation. 2015.

[39] Hung-yi Lee Shun-Yao Shih, Fan-Keng Sun. Temporal pattern attention for multi-
variate time series forecasting. 2019.

[40] python. https://www.python.org/.

[41] tensorflow. https://www.tensorflow.org.

[42] keras. https://keras.io/api/.

[43] Soukaina Ouhame and Youssef Hadi. Multivariate workload prediction using vector
autoregressive and stacked lstm models. March 28–29,2019.

[44] XIANYUN WEN and WEIBANG LI. Time series prediction based on lstm-attention-
lstm model. IEEE Access, January 2023.

[45] YAQUN HUANG YUNTONG LIU, CHUNNA ZHAO. A combined model for multi-
variate time series forecasting based on mlp-feedforward attention-lstm. IEEE Access,
January 2022.

60

https://towardsdatascience.com/getting-started-with-recurrent-neural-network-rnns-ad1791206412
https://towardsdatascience.com/getting-started-with-recurrent-neural-network-rnns-ad1791206412
https://www.linkedin.com/advice/3/how-do-you-deal-vanishing-exploding-gradient#:~:text=The%20vanishing%20and%20exploding%20gradient%20problems%20occur%20when%20the%20gradients,information%20from%20previous%20time%20steps.
https://www.linkedin.com/advice/3/how-do-you-deal-vanishing-exploding-gradient#:~:text=The%20vanishing%20and%20exploding%20gradient%20problems%20occur%20when%20the%20gradients,information%20from%20previous%20time%20steps.
https://www.linkedin.com/advice/3/how-do-you-deal-vanishing-exploding-gradient#:~:text=The%20vanishing%20and%20exploding%20gradient%20problems%20occur%20when%20the%20gradients,information%20from%20previous%20time%20steps.
https://www.linkedin.com/advice/3/how-do-you-deal-vanishing-exploding-gradient#:~:text=The%20vanishing%20and%20exploding%20gradient%20problems%20occur%20when%20the%20gradients,information%20from%20previous%20time%20steps.
https://colah.github.io/posts/2015-08-Understanding-LSTMs/#fn1
https://colah.github.io/posts/2015-08-Understanding-LSTMs/#fn1
https://vitalflux.com/encoder-decoder-architecture-neural-network/#What%E2%80%99s_Encoder_Decoder_Architecture_How_does_it_work
https://vitalflux.com/encoder-decoder-architecture-neural-network/#What%E2%80%99s_Encoder_Decoder_Architecture_How_does_it_work
https://vitalflux.com/encoder-decoder-architecture-neural-network/#What%E2%80%99s_Encoder_Decoder_Architecture_How_does_it_work
https://medium.com
https://www.python.org/
https://www.tensorflow.org
https://keras.io/api/

[46] Lemya Taha. Forecasting time series using vector autoregressive model. 2021.

[47] S Sudibyakto-Aris Poniman Sri Hartini, Muhammad Pramono Hadi. Application of
vector auto regression model for rainfall-river discharge analysis. 2015.

[48] Willdan Aprizal Arifin Yoga Estu Nugraha Nugraha, Ishak Ariawan. Weather fore-
cast from time series data using lstm algorithm. 2023.

[49] Jun WangJun Wang HsinChun Chen Qing Li, Jinghua Tan. A multimodal event-
driven lstm model for stock prediction using online news. 2020.

[50] Umesh Chandra Pati Mogarala Tejoyadav, Rashmiranjan Nayak. Multivariate water
quality forecasting of river ganga using var-lstm based hybrid model. 2022.

[51] Elliana Gautama Harya Widiputra, Adele Mailangkay. Multivariate cnn-lstm model
for multiple parallel financial time-series prediction. Complexity, October 2021.

61

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Theoretical Foundations
	Introduction
	Time Series
	Definition
	Time Series Types
	Stationary Time Series
	The Augmented Dickey-Fuller (ADF) Test
	Differencing To Achieve Stationarity

	Multivariate Time Series Forecasting Models
	Statistical Methods: Vector AutoRegression Model
	Deep Learning
	Neural Network
	Training a Neural Network

	Recurrent Neural Network (RNN)
	Long Short Term Memory (LSTM)
	Encoder Decoder Seq2Seq Model
	Attention Mechanism

	Evaluation Metrics
	Mean Squared Error (MSE)
	Root Mean Squared Error (RMSE)
	Mean Absolute Error (MAE)
	Coefficient of Determination (R2)

	Implementation Tools
	Python
	TensorFlow
	Keras
	Google Colab

	Conclusion

	Related Work
	Statistical Methods
	Neural Networks
	Hybrid Models
	Limitations in Existing Research

	Dataset
	Introduction
	Study Case
	Data Exploration

	Modeling and Implementation
	Introduction
	VAR model
	Checking Stationarity
	Lag Order Determination
	Model Fitting

	Long Short Term Memory (LSTM) Model
	Encoder Decoder Model
	Long Short Term Memory (LSTM) Model And The Attention Mechanism

	Results
	Introduction
	VAR Model
	Long Short Term Memory (LSTM) Model
	Encoder Decoder Model
	Long Short Term Memory (LSTM) Model With The Attention Mechanism
	Discussion

	Conclusion

	Bibliography

