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Résume

Les inondations sont considérées comme l’un des phénomènes catastrophiques les plus

destructeurs. La susceptibilité aux inondations est définie comme la propension à subir

des dommages causés par ce phénomène. Cependant, la prédiction précise des crues

éclair reste difficile en raison de la complexité du phénomène. Dans cette étude, nous

avons adopté une approche basée sur les systèmes d’information géographique (SIG),

les techniques de télédétection (RS) et les modèles de classification de l’apprentissage

automatique, tels que LGBM, AdaBoost et la nouvelle technique de l’apprentissage automatique

appelée Stacking, afin de créer une carte de susceptibilité aux inondations dans le bassin

versant de Chellif. Quinze facteurs hydrologiques et topographiques ont été utilisés comme

entrées pour les modèles de susceptibilité aux inondations. Les résultats ont montré que

Stacking était le modèle le plus optimal, avec une valeur AUC de 0,99, suivi de LGBM avec

0,98 et AdaBoost avec 0,96. Les résultats de cette étude sont utilisés pour la planification

et la mise en œuvre de stratégies d’atténuation des inondations dans la région.

Mots clés : La susceptibilité aux inondations , crues , SIG , RS , apprentissage

automatique ,LGBM, AdaBoost , Stacking , AUC



Abstract

Floods are considered one of the most destructive catastrophic phenomena.Flood

susceptibility is defined as the tendency to suffer damage caused by this phenomenon.

However, accurately predicting flash floods remains challenging due to the complexity of

the phenomenon. In this study, we adopted an approach based on geographic information

systems (GIS), remote sensing techniques (RS), and machine learning classification models

such as LGBM, AdaBoost, and the new machine learning technique called Stacking,

to create a flood susceptibility map in the Chellif watershed. Fifteen hydrological and

topographic factors were used as inputs for the flood susceptibility models. The results

showed that Stacking was the most optimal model, with an AUC value of 0.99, followed

by LGBM with 0.98 and AdaBoost with 0.96. The findings of this study are used for

planning and implementing flood mitigation strategies in the region.

Key words: Flood susceptibility, flash floods, GIS, RS, machine learning, LGBM,

AdaBoost, Stacking, AUC
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GENERAL INTRODUCTION

Floods are the result of a combination of various environmental, meteorological, hydrological,
and geomorphological factors, as well as human intervention. The current global climate
change is the primary cause behind the increasing frequency and magnitude of flood risks.
Furthermore, large-scale human interventions in the environment, such as deforestation,
unregulated construction, dam construction, and urbanization near rivers, are additional
factors that can contribute to flooding, alongside climate change, as influential causes.

Studying floods on a large scale is challenging due to the influence of numerous local
factors, including rainfall, land slope, river systems, and land cover. Assessing flood risks
typically involves hydrological and hydraulic modeling, such as HEC-RAS modeling, to
estimate flood intensity and extent for different return periods. However, these modeling
techniques rely on observational data that may not always be available.

In current research, there is a focus on developing models that leverage geographic
information systems (GIS),machine learning (ML) methods and remote sensing (RS)
techniques, as well as high-performance artificial intelligence methods, to understand the
factors influencing floods and their interrelationships. These advancements are crucial for
the preparation of susceptibility maps, which serve as a fundamental step in flood risk
management.By integrating data from various sources and employing advanced modeling
techniques, researchers aim to enhance our understanding of flood phenomena and improve
flood risk assessment and management strategies.

The objective of this study is to produce a flood susceptibility map for the Chellif
basin using machine learning models, specifically LGBM; AdaBoost and the new model
in machine learning Stacking. The methodology followed in this study is as follows:
Preparation and extraction of influential factor maps,in this step maps related to factors
influencing floods are prepared and extracted. These factors could include rainfall patterns,
topography, land use, and other relevant variables. Next,analysis and data processing of
factor data,the collected data on these influential factors are analyzed and processed
to ensure their quality and suitability for further analysis. After that the application of
machine learning to assess the impact of each factor on floods,machine learning techniques
such as LGBM,AdaBoost and Stacking are applied to evaluate the impact of each factor
on flood occurrence and severity. These models are trained using the prepared factor
maps and relevant flood data. Also,Validation of machine learning model results,the
results obtained from the machine learning models are validated to assess their accuracy
and reliability. This validation process involves comparing the model predictions with
observed flood events or other reference data.

11



Finally,Combination and mapping of factor results,the results obtained from analyzing
each factor are combined and mapped to create the final flood susceptibility map. This
map represents the spatial distribution of flood susceptibility levels in the study area,
integrating the influence of multiple factors.

By following this methodology, the study aims to provide a comprehensive flood
susceptibility assessment using machine learning models.The resulting susceptibility map
can be a valuable tool for understanding and managing flood risks.

This study is divided into four chapters:

1.The first chapter includes a literature review on floods.

2.The second chapter presents a global vision of the study area.

3.The third chapter is devoted the methodology to be followed.

4.The fourth chapter concerns the results of the study and their interpretations.

And finally a general conclusion which summarizes the results obtained in the chapters
previous.

12
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CHAPTER I. LITERATURE REVIEW

Floods are a widespread and devastating natural disaster that can have adverse impacts
on human health, natural and artificial environments . They pose a major risk to human
life(loss of life, injury),assets (agriculture area, yield production, homes, and buildings),
communication systems (urban infrastructure,bridges, roads, and railway lines), culture
heritage, and ecosystems [28, 30].Flood-related incidents cause more than 2000 deaths
every year, and more than 75 million people are adversely affected across the globe
[44].Floods are often triggered by many factors, including both natural and anthropogenic
factors. Heavy rainfall or snow melt that overflows to adjacent areas or floodplains and
temporarily inundates surrounding areas is a common cause of floods [4,5].Recent studies
have indicated that climate change is a fundamental factor that induces floods in various
parts of the world [39]

Charlton et al.[17] indicate that flood disasters in a region can be considerably influenced
by changes in land use patterns forming an impermeable surface, which may increase
flow velocity. Other factors that contribute to flood occurrence include slope, elevation,
land use, curvature, Normalized Difference Vegetation Index (NDVI), proximity to rivers,
among others.

Due to the complex nature of floods and their frequent occurrence and extensive
destruction across the globe, many scientists have devoted significant effort to investigate
and understand flood hazards for better mitigation and management [20, 22]

Algeria is prone to floods, and in the last 20 years, it has experienced severe flooding
that resulted in the loss of hundreds of lives, thousands of injuries, and property damage
worth over a billion dollars.[10] The majority of these flood disasters occurred in the
arid and semi-arid regions, where there are intense storm events that trigger flash floods,
especially during the autumn season. Flash floods are characterized by a sudden rise and
fall of water with little to no warning, usually caused by heavy rainfall in a relatively
small area,as defined[12]

The impact of floods in Bangladesh is widespread and multifaceted. Firstly, floods in
Bangladesh result in the loss of lives and injuries, with vulnerable communities bearing
the brunt of these disasters. Due to its unique hydro-geographic location and low-
lying floodplains, Bangladesh experiences annual floods from June to September during
the rainy season. Flash floods, particularly in the northern region of Bangladesh and
downstream areas like the lower Teesta River basin, cause significant economic loss,
fatalities, damage to infrastructure, housing, and bridges, often exceeding US$20 million,
as well as affecting a significant number of people, according to Fao and Unicef (2017)[33].
In August 2017, a flash flood occurred in the lower Teesta River basin, affecting Kurigram,
Lalmanirhat, and Nilphamari districts, resulting in a vast landmass being submerged and
five individuals swept away. According to NIRAPAD, this flood had adverse impacts on
about 6.8 million people and over 560,000 hectares of cropland, resulting in damages of
up to US$10 million (FAO and Unicef, 2017).
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Iran is particularly prone to flash floods. In 2019 alone, flash floods killed 78 people,
injured 1076 others, and displaced about 300,000 people; in total, some 10 million people
were affected (UN Office for the Coordination of Humanitarian Affairs, 2019). One
of the most susceptible areas to flash flooding is the Haraz watershed in Mazandaran
Province[34]. Twenty-eight villages in this area weredestroyed during flash floods[16].

Mapping flash floods involves the use of remote sensing technologies and geographic
information systems (GIS) to detect changes in water levels and identify flooded areas.
Remote sensing technologies, such as satellite imagery and airborne sensors, are employed
to detect alterations in water levels and assess the extent of flooding. The data collected
is then processed using GIS software, which incorporates information on topography, land
use, and other factors influencing water flow, to generate maps.[9]

This section presents a comprehensive description of the GIS environment and geospatial
data preprocessing methods employed in the research. The application of GIS facilitated
the efficient analysis and processing of diverse data, encompassing climatological, morphological,
hydrological, and geological factors. By integrating these factors within the GIS framework,
thematic maps were created to visually represent their spatial distribution across the study
area.To ensure the reliability and accuracy of the analysis, a comprehensive approach to
geospatial data preprocessing was adopted. The initial step involved the extraction of
relevant factors using an inventory map that classified sites as either experiencing land
degradation or non-degradation. This inventory map served as the fundamental basis for
collecting essential information for subsequent analysis.[46]

Following the extraction of factors, a pre-treatment analysis of the statistical data
was conducted. This involved applying appropriate statistical techniques to evaluate
and preprocess the extracted values, ensuring data quality, consistency, and suitability
for further modeling. Classification modeling techniques were then employed to develop
models capable of predicting flood occurrence based on the identified factors. Machine
learning algorithms were integrated into the GIS environment to facilitate this modeling
process, enabling the capture of complex relationships and patterns between the factors
and flood susceptibility.[56]

The performance of the developed models was assessed using performance criteria,
which evaluated the accuracy and reliability of the models in predicting flood susceptibility
within the study area. This performance evaluation provided valuable insights into the
strengths, limitations, and practical applicability of the models. Furthermore, feature
importance analysis was conducted to determine the relative significance of each factor
in contributing to the flood susceptibility models. This analysis prioritized and assigned
weights to different factors in the final susceptibility maps generated by the models,
thereby enhancing the accuracy and effectiveness of their predictions.

The integration of GIS and machine learning techniques in this research harnessed
spatial data to develop highly accurate flood susceptibility models. This integration
facilitated a comprehensive analysis of the study area, yielding valuable insights into
the factors influencing flood occurrence. The combination of GIS and machine learning
techniques showcases their potential synergy in addressing complex environmental issues
and supporting informed decision-making processes.[49].
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While much research has been conducted on the factors that contribute to flash
flood initiation, there are still areas that require more attention. These factors include
the impact of microtopography and soil moisture on flash flood initiation. The role of
microtopography is complex due to the terrain’s interaction with precipitation, making
it difficult to fully understand its impact[13]. Soil moisture plays a critical role in the
initiation of flash floods, but it is often oversimplified or ignored in hydrological models.
More research is needed to better understand these factors and their impact on flash
floods, especially in regions where flash floods are common but data is limited[38].

There are also several other factors related to flash floods that require further investigation.
These include the effects of climate change, land use and land cover changes, and human
interventions on flash floods. Identifying triggers and thresholds for flash floods is also
an area that needs more attention. The role of groundwater in flash flood initiation
and propagation, as well as the effects of sediment transport and vegetation cover, are
additional factors that require further study. Understanding the interactions between flash
floods and other natural disasters such as landslides and debris flows is also important[31].

Despite the existence of flash flood models, much about the phenomenon remains
poorly understood. While rainfall intensity, catchment topography, and soil properties
have been identified as key factors affecting flash flood generation, other factors such as
antecedent soil moisture, land use, and river morphology require further investigation.
The transferability of flash flood models to other regions has not been widely evaluated,
and model parameterization remains a significant challenge. Therefore, more research is
needed to better understand the factors contributing to flash floods and to improve flash
flood prediction, forecasting, and management.

Deep learning techniques have gained significant traction in flood management as
they offer potential solutions to the limitations of traditional numerical models, providing
accurate results at a faster pace. These models have demonstrated improved accuracy
compared to conventional approaches and faster computation times compared to numerical
methods. While various applications have emerged in flood susceptibility, inundation, and
hazard mapping, further research is required to explore how deep learning can support
real-time flood warning systems during emergencies and enhance flood risk estimation[9].

One major challenge is the development of deep learning models that can generalize
effectively to new case studies. To address this, recent advancements in deep learning can
be leveraged, drawing inspiration from developments in other domains. For instance,
models based on graph neural networks and neural operators can handle data with
arbitrary structures, allowing for generalization across diverse case studies and considering
complex interactions with the natural and built environment. Moreover, to account
for uncertainties and provide probabilistic predictions, it is essential to move beyond
deterministic models. Deep Gaussian Processes or Bayesian neural networks can be
employed to construct probabilistic models, enabling the incorporation of uncertainties in
outcomes[29].
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Additionally, integrating physics-based principles into deep learning approaches can
help preserve underlying physical equations, resulting in more reliable alternatives to
accelerate numerical models. This approach, known as physics-based deep learning,
ensures that the models align with known physical laws and principles. By addressing
these identified gaps and leveraging recent advancements, deep learning techniques can
play a crucial role in enhancing flood management, real-time flood warning systems, and
accurate flood risk estimation.

Despite the numerous models developed for predicting flash floods, hydrodynamic
modeling still faces various challenges in flash flood mapping. Limited data availability
poses one of the difficulties, which is vital for hydrodynamic model calibration and
validation[37]. Moreover, the flash flood phenomenon’s complexity involves many variables
that interact with each other in intricate ways, and most existing models assume a
uniform rainfall distribution over the catchment, which may not always be the case.
Additionally, deterministic approaches are widely used in most models, and they do
not consider the uncertainties related to the input data and model parameters. These
shortcomings underscore the need for further research to improve hydrodynamic modeling
in flash floods[5].

Another significant challenge is the lack of high-resolution topographic data, which is
crucial for precise modeling of flow dynamics. There is also a need for more comprehensive
models that account for the interactions between various hydrological processes like surface
runoff, infiltration, and subsurface flow. In addition, the current models make assumptions
about the soil’s hydraulic properties and flow’s boundary conditions, leading to considerable
errors in model predictions. Further research is necessary to understand the uncertainties
related to input data and model parameters and develop robust approaches for model
calibration and validation. These research gaps emphasize the importance of further
research to enhance hydrodynamic modeling for flash flood mapping and understand the
flash flood phenomenon’s complex nature[57].
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II.1 Introduction
A thorough understanding of the physical environment of the studied area is essential for
comprehending the phenomenon under investigation and interpreting the results. Since
each site has its own specificities, studying the site is necessary to understand the physical
characteristics of the location. This chapter aims to present, in its first part, the study
area and its characteristics, and in its second part, the issue of floods in this area.

II.2 Geographical location and delimitation
The Cheliff basin covers an area of 43,794 km2 and is divided into two distinct regions:

1. The upstream part of the Cheliff, with an area of 20,500 km2, is bordered to the
south by the Djebel Amour mountains and to the north by the Ouarsenis mountains.

2. The downstream part of the Cheliff, spanning an area of 23,250 km2, is bordered
to the south by the Tiaret, Saida, and Ouarsenis massifs, and to the north by the Dahra
and Beni Menacer.[36]

The Cheliff basin extends between longitudes 0° 7’ and 3° 31’ East and latitudes 33°
53’ and 36° 26’ North. It is adjacent to:

• The Algiers and Oran coastal areas to the north.

• The Issue, Hodna, Zahrez, and Constantine high plateau basins to the east.

• The Macta and Oran high plateau basins to the west.

• The Saharan Atlas to the south.

The location of the study basin is shown in Figure (II.1)

The Cheliff basin itself consists of three major hydrological units or main sub-basins:

1.Upper Cheliff River (upstream of Boughezoul) covering an area of 19,710 km2.

2.Middle and Upper Cheliff sub-basin (Middle and Upper Cheliff) covering 13,870 km2.

3.Lower Cheliff and Oued Mina sub-basin (Lower Cheliff and Mina River) covering
10,170 km2.[36]
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Figure II.1: Geographical Location of the Cheliff Watershed

II.3 Topography
The topography of the Chellif River watershed is varied, with the highest elevations
located in the Tell Atlas Mountains in the south and the lowest elevations located near the
coast in the north. The watershed is characterized by several mountain ranges, including
the Ouarsenis, the Dahra, and the Djurdjura. The highest point in the watershed is Djebel
Toubkal, which rises to an elevation of 4,167 meters in the Tell Atlas Mountains. The
Cheliff wadi, located in the northern part of the watershed, flows westward through the
province of Chlef before eventually reaching the Mediterranean Sea near Mostaganem..[36]

II.4 General Characteristics of the Cheliff Watershed
II.4.1 Geology
The Cheliff basin belongs to the elongated East-West sub littoral sedimentary basins,
which were formed after the last phase of Alpine tangential tectonics To the north, this
depression is separated from the sea by the northern Tell, represented by a series of
parallel reliefs mainly composed of Jurassic-Cretaceous formations, which are also found
in the plain (Dahra and epimetamorphic massifs with schistosity of Doui, Rouina, and
Témoulga). To the south, the Cheliff basin is limited by the southern Tell, characterized
by a set of mountainous massifs where the substrate consists mainly of marl-limestone
and corresponds to the allochthonous Tellian zone with its various nappe structures.[36]
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The Geological map ofthe Cheliff watershed is shown in Figure (II.2):

Figure II.2: Geological situation of the Cheliff watershed

II.4.2 Vegetation and Land Use
The spatial distribution of land use in the Cheliff basin exhibits several categories of land
occupation. Rangelands dominate the basin, covering 28550,57 km2, which represents
65.19% of the total surface area. Crops also occupy a significant portion, 7124.80 km2,
accounting for 16.27% of the basin.Bare ground covering 5669.83 km2(12.94%). Forest
formations cover approximately 4% of the total area and are primarily found in regions
with moderately rugged terrain. The remaining portion of the basin comprises unproductive
lands such as Built Area, water bodies (Table 1).
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Table II.1: Distribution of Land Use / Land Cover area in the Cheliff basin.

LULC Class Area(km2) Area(%)
water 62.43 0.14
Trees 1354.28 3.09
Crops 7124.81 16.27

Built Area 1032.07 2.36
Bare ground 5669.84 12.95
Rangeland 28550.58 65.19

Total 43494 100

The LandUse/LandCover Map is shown in Figure (II.3):

Figure II.3: Land use/Land cover map

II.4.3 Agricultural Activity
The Cheliff basin is primarily characterized by agricultural activities. Upstream of the
Boughazoul dam, olive cultivation is predominant. In the upper and middle regions
of the Cheliff, the main agricultural practices include cereal crops, forage production,
horticulture, industrial crops, fruit tree cultivation, and legumes.
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In the lower Cheliff area, the primary agricultural practices revolve around cereal crops,
forage production, horticulture, fruit tree cultivation, and legumes.[51]

II.4.4 Hydrographic Network
All the water from the main tributaries is collected towards the center of the Cheliff plain,
flowing into the main Oued (river). This river drains all the water from the Cheliff basin
towards the outlet located near Mostaganem (Figure II.4). The Cheliff originates from the
Djebel Amour, located at the edge of the Sahara. Initially, there are several tributaries,
including Oued Berkana, Sabgague, Mekta, and Oued Namous.

Figure II.4: Hydrographic network of chellif basin.

The Cheliff River, resulting from the confluence of these two watercourses, crosses a
gap between Ksar El Boughari and Boughar, leaving the high plateaus and entering the
Tell region. From Boughari to Amoura (formerly known as Dollfuss city).
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it flows through deep gorges, and starting from the Djebel Amoura, it follows an east-
west-oriented plain. Finally, after separating the Mostaganem plateau from the Abdel
Malek Ramdan plateau (formerly known as Willis), the Cheliff discharges its waters into
the sea after a journey of over 720 km.

II.5 Morphological characteristics of the watershed
The characteristics of a watershed can have significant effects, particularly on the variation
of flow during flood periods. Both external factors such as precipitation and climatic
conditions, as well as internal factors related to the morphological characteristics of the
watershed, notably the size (surface area), shape, altitude, slope, and orientation, have
an impact on the time of concentration. The time of concentration partly describes the
speed and intensity of the watershed’s response to precipitation. The Chellif watershed
encompasses an area of 43,794 km2 and has a perimeter of approximately 1438 km.

II.5.1 compactness index
The compactness index is a shape parameter used to characterize the shape of a watershed.
It is calculated as follows:

C = 0.28 P√
S

(II.1)

P: the perimeter of the watershed (Km).

S: the surface of the watershed (Km2).

When the compactness index is greater than 1, it indicates that the watershed’s
perimeter is longer than that of a circle with the same area. In this case, a value of
1.92 suggests that the watershed’s shape is roughly 92% longer or more intricate than a
perfect circle with the same area.The compactness coefficient of the Chellif watershed is
1.92 indicating its elongation and the development of linear erosion.

II.5.2 Equivalent rectangle
An equivalent rectangle is a rectangle that has the same area (or sometimes the same
perimeter) as the original shape but does not necessarily have the same proportions or
orientation. It is a way of reducing a complex shape to a simpler geometric form while
preserving a specific characteristic, such as area or perimeter. To determine the equivalent
rectangle, the length and width of the rectangle are adjusted to match the area of the
original shape. The resulting rectangle may have different dimensions and aspect ratios
depending on the shape being approximated

a. Length of equivalent rectangle:
The length of the equivalent rectangle is given by the following expression:

L = C
√

S

1.12

1 +
√

1 −
(1.12

C

)2
 (II.2)
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C: compactness index.
S: surface of the watershed in km2.
L: length of the equivalent rectangle in km.

b. Width of equivalent rectangle:
The width of the equivalent rectangle is given by the following expression:

l = C
√

S

1.12

1 −
√

1 −
(1.12

C

)2
 (II.3)

C: compactness index.
S: surface of the watershed in km2.
l: width of the equivalent rectangle in km.

II.5.3 Average slope index:
The average slope index is a measure used to quantify the steepness or gradient of a
particular terrain or surface. It provides information about the rate of change in elevation
over a given distance. It plays a vital role in hydrological modeling and watershed
management. It affects surface runoff, water infiltration, and the formation of drainage
networks. Steeper slopes generally result in faster runoff and can contribute to increased
erosion and flood risks

I = Hmax − Hmin

L
(II.4)

These parameters are summarized in the following table:

Table II.2: Summary of the morphological characteristics of the Chellif watershed

Parameter Symbol Value Unit
Surface S 43794 Km2

Perimeter P 1438 km
compactness index C 1,92 -

Length of equivalent rectangle L 650,13 Km
Width of equivalent rectangle l 67,36 Km

Minimum altitude Hmin 0 m
Maximum altitude Hmax 1800 m
Average altitude Hmoy 900 m

Average slope index I 2,76 %

II.6 The nature of watershed surfaces
The nature of watershed surfaces plays a crucial role in their hydrological behavior.
Parameters such as slope, lithology, soil characteristics, and vegetation cover are influential
factors. These parameters greatly affect surface permeability and roughness, which in turn
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determine the speed of runoff and the ratio of runoff to infiltration.

A significant portion of the valley’s area is occupied by rainfed crops, with fruit trees
covering a very small area. Vegetation cover influences evapotranspiration, delays runoff,
and helps in conserving the soil surface against erosion.

The topography is highly varied, characterized by pronounced relief and steep slopes
that promote runoff velocity over infiltration.

Figure II.5: Slope variation Map

The classification of soil and vegetation cover is depicted on maps that are subject to
possible transformations or changes resulting from alterations in forested areas or forest
fires. It should be noted that this region has a Mediterranean climate, and vegetation is
often adapted to withstand fires or possesses good regenerative capacity. The regeneration
of vegetation cover is particularly rapid in areas with high rainfall and much slower in
areas with low rainfall.

Areas that may undergo changes due to forest fires or logging are eventually recolonized,
within a period of 7 or 8 years, by shrubs as a substitute for the original forest cover.
However, complete regeneration may require 30 to 40 years in humid Mediterranean zones.
When considering calculations involving areas with vegetation cover or erosion risks,
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significant changes should be avoided, as their accidental disappearance or alteration
should not imply modifications in the future purpose and occupation of these areas.

II.7 climatology
II.7.1 Climat:
The climate of the Chellif plain is typically Mediterranean, characterized by hot and dry
summers and cool and rainy winters. Despite this, the rainfall is relatively low, with
average annual precipitation of 473mm for El Khemis, 400mm for Chellif, and 325mm for
Ghilizane. The annual potential evapotranspiration (calculated using the Turc formula)
is 1145mm for High Chelif, 1276mm for the central area, and 1300 for the low

II.7.2 Precipitaion:
Precipitation is one of the most important elements that define the climate of a given
location. Since the study region is characterized by a semi-arid climate, it has experienced
prolonged periods of drought in recent years. The average annual precipitation varies
between 400 and 600mm. The first rains usually occur between September and November,
while the last ones fall from April to May. Although rainfall events are infrequent
and short-lived, they are intense, which means that floods can be dangerous and cause
significant damage to both human lives and property.(site:power.larc.nasa.gov)

Figure II.6: Annual rainfall variation in chellif watershed (2010-2021)

II.7.3 Temperature:
The upper and middle Cheliff basin is characterized by an average annual temperature
ranging from 13 to 20°C. The monthly maximum temperature exceeds 30.6°C in July at
the Ain Defla station, while the monthly minimum temperature is 4.6°C in January at
the Medea station (ANRH, 2014). The observation period for temperature, similar to
rainfall, needs to be specified. In the lower Cheliff plain and Oued Mina, the average
annual temperature varies from 14 to 29°C. The monthly maximum temperature reaches
29.5°C in August at the Relizane station, and the monthly minimum temperature is 6.1°C
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in January at the Tiaret station (ANRH, 2014). In the Cheliff basin near Boughazoul, the
average annual temperature ranges from 13 to 16°C. The monthly maximum temperature
is 27°C in August at the Ksar Chellala station in the Tiaret province. All these temperature
variations are illustrated in Table (II.3), which indicates the average annual temperature
in four stations distributed throughout the Cheliff region.(ANRH, 2014)
These parameters are summarized in the following table:

Table II.3: Mean annual temperature (C°) for the Cheliff regions, during the 2004/2014
period. (ANRH, 2014)

Années Tiaret Chlef Miliana k-chellala
2004 14,3 20,9 16,01 12,99
2005 15,7 19,6 16,79 13,85
2006 15,7 20 15,98 13,85
2007 15,9 20 18,34 13,85
2008 15,4 20,3 16,38 13,85
2009 15,6 19,7 17,19 15,03
2010 15 20,2 16,09 19,29
2011 15 19,8 18,34 19,29
2012 15 19,8 16,09 13,75
2013 15 19,8 16,09 14,02
2014 15,8 19,8 16.02 16,60
Max 15,9 20,9 18.34 19,29
Min 14,3 19 ,6 15,98 12,99

Ecart 1,6 1,9 3,05 6, 3
Moy 15,3 19,9 16 ,4 15,5

II.7.4 Relative humidity (Hr%)
Refers to the amount of water vapor present in a certain volume of air and is considered
one of the essential elements of the hydrological cycle. The relative humidity data for the
Tiaret station, located in the center of the Cheliff basin, are provided in Table (II.4)(Source
ANRH 2008).

Table II.4: Relative humidity recorded at the Tiaret station (1980-2008)

M Sep Oct Nov Dec Jan Fev Mar Avr Mai Juin Juil Août Annuel
Hr % 55 64 73 78 76 69 66 56 54 48 38 45 60,17

II.8 Mobilization of surface water resources
The Cheliff watershed is equipped with 16 operational dams, which are referenced as
follows: Merdja Sidi Abed, Gargar, Sidi M’Hamed Ben Aouda , Bakhada, Dahmon,
Colonel Bougara, Sidi Yacoub, Oued elFouda, Derdour, Harezza, Ghrib, Sidi M’Hamed
Ben Taiba, Ouled Mellouk, Koudiat Rosfa
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These dams serve various purposes within the watershed, such as water storage, flood
control, irrigation, and hydroelectric power generation. the characteristics of these dams
are listed in the table

Figure II.7: Dams in the Chellif watershed (Source: AGIRE)
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Table II.5: Dams in the Chellif watershed

dam Oued Type Work Yc Ic(HM3) Lsc(HM3) L (HM3) coordinates
Latitude Longitude

Merdja S.Abed Chlef Terre 1984 54,9 44,86 10,04 36° 0’ 38" north 0° 59’ 26" east
Gargar Rhiou Terre 1988 450 283,49 166,51 35° 25’ 40"north 1° 33’ 47" east

Sidi M.B Aouda Mina Terre 1978 235 125,32 109,68 35° 36’ 12" north 0° 35’ 25" east
Bakhadda Mina En roche 1959 56 37,26 18,74 35° 20’ 0" north 1° 3’ 37" est
Dahmouni Nahr- Ouassel Terre 1987 41 35,51 5,49 35° 25’ 40" north 1° 33’ 47" east
C.Bougara Nahr- Ouassel Terre 1989 69,50 60,65 8,85 35° 33’ 41" north 1° 54’ 3" east
Sidi Yacoub Ardjen Terre 1985 280 224,064 55 35° 57’ 21" north 1° 19’ 31" east

Oued el Fodda Fodda Poids 1932 228 96,79 131,21 36° 2’ 44" north 1° 36’ 41" east
Derdeur Ain Defla Terre 1984 115 107,54 7,46 36° 19’ 46" north 2° 1’ 43" est
Harreza Hareza Terre 1984 76 74,61 1,19 33° 27’ 38" north 1° 11’ 0" east
Ghrib Chlef En roche 1939 350 169,35 180,65 36° 9’ 46" north 2° 33’ 38" east

Sidi M.B Taiba BDA En roche 2005 75 70,22 4,78 36° 19’ 46" north 2° 1’ 43" east
Ouled Mellouk Rouina Terre 2003 127 114,10 12,9 36° 11’ 18" north 1° 50’ 22" east
Koudiat Rosfa Fodda Terre 2004 75 66,04 8,96 / /

Lon: Longitude

Lat:Latitude

L:Loss (HM3)

Lsc: Last survey capacity (HM3)

Ai:Ability initial

Yss : Year setting service
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II.9 Groundwater resources:
The Cheliff watershed contains several hydrogeological units that contain significant aquifers,
suitable for both drinking water supply (AEP) and irrigation purposes. In the northern
part of the Cheliff basin, located between the two Tellian mountain ranges of Mont du
Dahra and the Ouarsenis massif, numerous geological formations hold underground water
resources. The oldest groundwater is attributed to the Jurassic period, while the most
recent corresponds to Quaternary alluvium.

The Cheliff basin is divided into three sub-basins: upper, middle, and lower Cheliff,
separated by two thresholds known as the Aïn Defla threshold and the Oum Drou threshold.
The Cheliff region is home to 42 aquifers, with a potential of 330 million cubic meters per
year (ANRH, 2015). These aquifers represent valuable water resources for various uses in
the region, including drinking water supply and agricultural irrigation.

II.10 History of flash floods in the region
Flash floods have had a significant impact on the Cheliff watershed throughout its history.
The region’s geographical characteristics, coupled with climatic factors, contribute to the
occurrence of devastating flash floods. The Cheliff watershed, located in a mountainous
region with steep slopes and narrow valleys, is prone to intense rainfall events, particularly
during the winter season. These events, combined with poor soil infiltration capacity due
to the presence of impermeable rock layers, amplify the risk of flash floods.

Over the years, the Cheliff watershed has experienced several major flash floods that
have resulted in catastrophic damage. One notable example is the flash flood of 1987,This
event is one of the most devastating flash floods in the history of the Cheliff watershed.
It occurred after heavy rainfall, primarily in the mountainous areas surrounding the
watershed.

The sudden surge of water caused flash flooding in the valleys and downstream areas.
The floodwaters inundated villages, towns, and agricultural lands along the Cheliff River,
resulting in significant loss of life and widespread destruction. Infrastructure such as roads,
bridges, and buildings were severely damaged or completely swept away. The economic
impact was substantial, affecting agricultural activities and disrupting the livelihoods of
the local population, another significant event occurred in 2001.
This flash flood event occurred following intense and prolonged rainfall in the Cheliff
watershed. The heavy downpours saturated the soil, leading to rapid runoff and a
surge of water in the river system. The flash flood affected various regions within the
watershed, including cities and towns such as Ain Defla and Chlef. The floodwaters
submerged urban areas, causing extensive damage to houses, public infrastructure, and
businesses. Agricultural lands were also severely impacted, leading to significant losses in
crop production. The flash flood of 2001 resulted in the displacement of people, loss of
lives, and a long-term recovery and reconstruction process for the affected communities.
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Efforts to mitigate the risk of flash floods in the Cheliff watershed have been ongoing.
Construction of reservoirs and dams, implementation of early warning systems, and
improved land management practices are among the measures undertaken to minimize
the impact of future flash flood events. However, the history of flash floods in the Cheliff
watershed serves as a reminder of the need for continued vigilance, preparedness, and
adaptation to ensure the safety and well-being of the communities living in this vulnerable
region.

Table II.6: History of flooding in the cheliff watershed

Locale Data Cause
Boumedfaa 01/01/1969 /

Chiffa 01/03/1973 /
Sidi Aissa 27/10/1985 /

Oued Fodda 06/10/1986 Flash flood wadi
sidi bouzid 05/03/1988 /

Ksar El Boukhari 05/10/1991 /
tiaret 19/10/1991 /

Berrouaghia 05/10/1991 Flash flood wadi
Taougrit 10/11/2001 /
Hoceinia 03/05/2006 /
Ain Tork 03/05/2006 Flash flood wadi

El Hamdania 09/04/2007 /
Ain Boucif 30/09/2009 Flash flood wadi
Zeboudja 01/01/2009 Urban runoff
Zeboudja 01/10/2009 Urban runoff

Ouled Fares 01/10/2009 Urban runoff
Soumaa 24/09/2009 Urban runoff

Blida 29/09/2009 Urban runoff
Blida 24/09/2009 Urban runoff
Blida 28/09/2009 Flash flood wadi

Damous 07/11/2010 Flash flood wadi
Taougrit 10/11/2010 /

El Abadia 02/02/2011 /
djelfa 01/10/2011 /

Labiod Medjadja 01/04/2012 Flash flood wadi
Taougrit 01/10/2012 /

Ouled Yaich 11/03/2012 /
Blida 11/03/2012 /

Bouaarfa 21/05/2013 /
El-Affroun 21/05/2013 Flash flood wadi

Ain Romana 21/05/2013 Flash flood wadi
Taougrit 01/04/2013 /

msila 25/04/2013 /
Taougrit 01/01/2014 /
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II.11 Flood Inventory Map
The flood inventory map serves as a fundamental tool for assessing flood susceptibility and
predicting future flood occurrences in a region. An accurate analysis of flood susceptibility
requires a precise flood inventory map that identifies the locations where flooding has
occurred.

A flood inventory map records the locations of flood events and provides detailed
information on the characteristics of historical floods [18]. The locations of flood events
have been obtained through historical records and extensive field surveys conducted by
the Ministry of Water Resources and Hydraulic Security[4].
In this study, a total of 256 points have been identified as flood-prone areas, while 256
no-flood-prone points have been randomly selected from no-flooded areas.

Figure II.8: Inventory map of flood points and non-flood points
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II.12 Conclusion
The main purpose of this chapter is to present data that give an overview of the geographical,
topographical, climatological, geological, and other characteristics of our study area such
as land use, water resources, hydrographic network ..etc

This chapter also allowed us to develop knowledge on the problem of floods within the
Chellif Watershed, which will help us to develop a study against flooding in times of flood.
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CHAPTER III. METHODOLOGY FOR FLOOD RISK MAPPING

III.1 Introduction
The present study aims to define the mapping of flood susceptibility. Specifically, it
involves producing a flood susceptibility map using a modeling approach with the use of
Geographic Information Systems (GIS) and machine learning tools .
The flood mapping methodology consists of four main steps :

1. Construction of a geospatial database for influencing factors and historical flood
events.

2. Development and application of machine learning models.

3. Validation of results and evaluation of model performance.

4. Generation of the flood susceptibility map by overlaying the previously determined
conditioning factor maps.

To begin, a geospatial database is created, which includes data on factors that influence
flood susceptibility, such as topography, land cover, and hydrological characteristics.

Historical flood events are also incorporated into the database.
Next, machine learning models are developed and applied to analyze the relationship
between the influencing factors and flood occurrences. These models are trained using
the available data and then used to predict flood susceptibility across the study area.

The results of the machine learning models are then validated to assess their accuracy
and reliability. Performance evaluation metrics are used to determine the effectiveness of
the models in capturing flood susceptibility patterns.

Finally, the flood susceptibility map is generated by overlaying the maps of the
previously determined conditioning factors. This map provides a visual representation
of areas at higher risk of flooding based on the identified factors.

By following this methodology, the study aims to provide a comprehensive understanding
of flood susceptibility and produce a reliable flood susceptibility map that can support
decision-making processes related to flood risk management and mitigation.

III.2 Application of GIS in the Chellif Watershed
In the present work, our aim is to create a flood risk mapping in the Chelief Watershed
using GIS, remote sensing and AI techniques. The purpose of this chapter is to determine
the factors influencing flood risks in the Chellif Watershed using remote sensing techniques
in GIS environment.
The methodology followed consists of the following four steps:
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1. Firstly, integrating relevant geographical information obtained from satellite images
into a GIS.

2. Utilizing the functionalities of ArcGIS on the data integrated into the GIS to
calculate the factors influencing floods in the Chellif Watershed. The results will be
presented in the form of detailed maps.

The calculation of factors is performed using different methods, which are as follows:

• The hydrographic network was automatically generated from the Digital Elevation
Model (DEM) using GIS extension.

• Vegetation cover (NDVI),Normalized Difference Water Index(NDWI) and precipitation
data are derived from satellite image processing using ArcGIS.

• Other factors such as slope, SPI, TWI, etc., are calculated based on the DEM.

3. We standardized the resulting factors using ArcGIS. Standardization is a strategy
to convert different inputs of a decision problem to a common scale for comparison [8]. In
our case study, we standardized the factors so that their values range between 0 and 1.

4. Finally, from the resulting maps, we extracted characteristic data of flooded and
non-flooded points in the form of a numerical table. These data will be used in the next
step of our work.

Figure III.1: Flowchart methodology for Flashflood susceptibility mapping.
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III.3 Factors influencing flood
The modeling of floods requires the characterization of geospatial information on key
hydrological properties of the study area. Therefore, a series of conditioning factors and
their relationship with floods need to be studied to create flood susceptibility maps[14].

There are no universal guidelines for selecting flood conditioning factors. The selection
of causal factors generally varies from one location to another, depending on the study
area and data availability.

In this study, 15 factors have been chosen for flood mapping: elevation,slope, aspect of
elevation, Rainfall,Hillshade ,Landuse/Landcover(LULC),Profile curvature,Plan curvature,Stream
density,Distance from river,Flow accumulation,Stream power index (SPI),Topographic
wetness index (TWI),vegetation cover (NDVI),Water Index(NDWI).

These factors are determined using GIS tools and remote sensing, and they are defined
as follows:

Elevation:

The elevation factor assumes paramount importance in the modeling of flood phenomena
[42]. In particular, a reciprocal relationship exists between flooding occurrences and
elevation levels. Greater elevation diminishes the likelihood of flooding incidents, while
lower elevation heightens the risk of such events transpiring . As elevation decreases,
the terrain typically assumes a flatter profile, resulting in augmented water flow within
streams and rivers [4].

Elevation data acquisition techniques, such as GPS, LiDAR, and satellite measurements,
are commonly employed to gather information pertaining to the vertical positioning of the
Earth’s surface. This collected data serves as the basis for constructing digital elevation
models (DEMs) or elevation maps, which effectively depict the diverse topographical
elevations found across the terrain. By virtue of these models, terrain characteristics can
be visualized and analyzed.

Slope:

Slope is a fundamental topographical attribute that reflects the degree of spatial
irregularity across a surface. It plays a pivotal role in governing both the velocity of
surface runoff and the process of percolation, thereby exerting influence over the flow
dynamics of water, particularly during flood events . A steeper slope angle corresponds
to a decreased likelihood of water accumulation, reduced infiltration rates, and elevated
flow velocities. Consequently, areas characterized by lower and flatter terrains are more
prone to experiencing flooding incidents[52].

Aspect:

The selection of this index stems from its association with the convergence of water
flow and the determination of flow directions .Aspect plays a significant role in influencing
the paths of flooded water flow, while also influencing the distribution of soil moisture.

38



CHAPTER III. METHODOLOGY FOR FLOOD RISK MAPPING

Consequently, aspect indirectly impacts the occurrence and extent of flooding events.[50]

Rainfall:

The occurrence of flash flooding is closely associated with rainfall patterns. Both short-
duration, heavy rainfall events and long-duration, lower intensity rainfall can contribute to
flooding incidents [49]. In the case of the Chellif watershed, a rainfall map was constructed
utilizing a dataset spanning 10 years (2010-2021) derived from 13 rain gauges. Various
interpolation methods were employed, including simple kriging, ordinary kriging, inverse
distance weighting (IDW) with powers ranging from 1 to 5, a radial basis function (RBF)
employing a completely regularized spline, and a spline with a tension kernel function.
Among these methods, the IDW approach with a power value of "1" was selected due to
its lowest root mean square error (RMSE) value. The resulting rainfall map was classified
into 5 distinct classes that represent it in the next chapter.

Hillshade:

Hillshade is an important hydrological parameter that captures the shading and shadowing
effects on a terrain model. It provides valuable information about slope and aspect,
influencing water flow and accumulation patterns. Incorporating hillshade into analyses
enhances our understanding of landscape dynamics and aids in various water management
applications.

LULC:

Land use and land cover (LULC) exert a significant influence on surface runoff and
sediment transportation, thereby directly impacting the frequency of flood occurrences
(Benito et al., 2010). This influence stems from the fact that LULC patterns govern the
generation of surface runoff and the extent of infiltration. Built-up areas, characterized
by limited opportunities for water infiltration and high surface water generation, are more
prone to frequent flooding incidents.Conversely,forested areas facilitate water infiltration,
resulting in reduced flooding events [53].The relationship between flood events and vegetation
density exhibits an inverse correlation when considering hydrological responses across
different temporal scales[23].

Profile curvature:

The velocity of runoff can be influenced by the curvature of a profile aligned parallel to
the direction of the steepest slope. The role of profile curvature as a significant factor in
flood dynamics has been recognized by several researchers.Convex slopes tend to expedite
overland flow and can impact processes such as infiltration, soil saturation, and surface
runoff[1].
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Plan curvature:

According to certain researchers, plan curvature, akin to profile curvature, is regarded
as a significant factor in influencing floods . A convex slope contributes to the acceleration
of overland flow and can have implications for processes such as infiltration, soil saturation,
and surface runoff[2].

Stream density:

River density refers to the measurement of total stream length (m) within a specific
area divided by the corresponding watershed area (km2). When comparing all other
factors, areas with higher stream densities are generally more prone to experiencing
flooding [55].Fraser and Schumer (2012) have observed a correlation between larger flood
peaks and volumes with higher stream densities in perennial watersheds, whereas ephemeral
watersheds tend to exhibit lower flood peaks. In order to visualize river density, a river
density map was generated utilizing the "Line density" tool in ArcGIS 10.4, with the
natural breaks classification method applied to select five distinct classes.

Distance from river:

The proximity to the river plays a crucial role in determining the areas most susceptible
to flood inundation, with the most heavily affected regions typically located adjacent to
the river . Distance from the river serves as a vital conditioning factor for assessing flood
vulnerability within a basin, as it influences both the occurrence of flooding incidents and
the interaction between river flow and other factors.
Greater distances from the river correspond to a reduced likelihood of flood events.At the
basin scale, regional flooding can be attributed to the storage of terrestrial water[24].

Flow accumulation:

Flow accumulation is recognized as a significant conditioning factor for flood susceptibility
mapping, according to certain researchers.This variable is derived from the combination of
flow direction data and the calculation of the number of upstream pixels that contribute
flow to each pixel. Specifically, each pixel is assigned a value equivalent to the number
of pixels draining through it[35]. The calculation of flow accumulation was performed
using the eight flow direction algorithm, and the "Arc Hydro Tools" in ArcGIS 10.4 were
utilized for this purpose .

Stream power index (SPI):

The Stream Power Index (SPI) plays a crucial role in shaping fluvial systems (Knighton,
1999). It is calculated using Equation(III.1) :

SPI = A · tan(β) (III.1)
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A: flow accumulation

β(in radians) : the slope gradient

The SPI is indicative of both the sediment transport capacity and the erodibility of
the stream bed, collectively referred to as the total SPI

Topographic wetness index (TWI):

The Topographic Wetness Index (TWI) is a significant factor in the occurrence of
floods,as it spatially represents the variation in basin wetness[49].This index quantifies
the water content within each pixel of the region and is computed using Equation (III.2):

TWI = ln
(

A
tan(β)

)
(III.2)

A:flow accumulation(m2/m)

β:denotes the slope gradient (in degree).

Higher TWI values are generally associated with increased likelihood of flooding [49].

NDVI:

The Normalized Difference Vegetation Index (NDVI) is a widely used metric for
assessing the greenness of the land surface and detecting the presence of water bodies.Changes
in NDVI serve as an indicator of variations in vegetation and surface water coverage over
time[3], enabling the examination of the relationship between flooding and vegetation
within a watershed.Higher vegetation densities are generally associated with lower probabilities
of flooding in the study area . The NDVI metric ranges from +1, indicating the highest
vegetation density, to -1, representing the lowest vegetation density[54].This index is
produced using the combination of image bands 4 and 5 from the Landsat 8 OLI satellite
It is calculated using Equation(III.3) :

NDVI = Bande 5 − Bande 4
Bande 5 + Bande 4 (III.3)

NDWI:

NDWI stands for Normalized Difference Water Index. It is an index used to assess
the presence and extent of water bodies or the moisture content of vegetation.
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Since water absorbs light in the visible to infrared electromagnetic range, the index
wears out the green bands (Band 3) and near infrared (band 5) images from (Landsat
8/OLI). Bodies of water generally have a higher reflectance on the blue spectrum (0.4 -
0.5 µm) than on the green (0.5 -0.6 µm) and red (0.6 - 0.7 µm) spectrum ) (Claudia, et
al., 2019). The NDWI index is calculated using this equation:

NDWI = Bande 3 − Bande 5
Bande 3 + Bande 5 (III.4)

The index values range from -1 to +1, where higher values indicate a higher presence
of water or moisture content. NDWI is commonly employed in various applications,
including water resource management, drought monitoring, and flood mapping[41].

III.4 Machine Learning Models:
Machine learning is the process of solving practical problems by collecting a set of data
and then constructing a statistical model algorithmically based on that data. The main
objective of this chapter is to first introduce the tools and strategies of machine learning.
Subsequently, the application of machine learning programs and algorithms for preparing a
susceptibility map is used as an initial step in flood management in the Chellif Watershed.

Finally, the obtained results from the machine learning models are presented through
the final susceptibility map. The results are interpreted, and the reliability of the employed
models is discussed at the next chapter.

III.4.1 Definition
Machine Learning (ML) is a branch of modern computer science that involves analyzing
databases or interacting with the environment using algorithms to identify patterns and
make predictions based on past statistics. It is based on data exploration and pattern
recognition to derive predictive analyses.

ML demonstrates its potential in cases where trends need to be identified within vast
and diverse datasets, often referred to as big data. It is more effective in terms of accuracy
and speed compared to traditional methods of analyzing massive datasets because ML
algorithms can learn and adapt their results based on new acquired data without requiring
reprogramming. While traditional analysis methods often struggle with immense volumes
of data, ML, on the other hand, thrives when databases are growing, as it can learn and
detect trends with significantly improved accuracy [6].
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III.4.2 Establishing a Machine Learning Model
The four key processes involved in developing a machine learning model are as follows:

1. First, it is necessary to select and organize a dataset. These data will be fed into the
machine learning model, which will then learn how to solve the problem it was designed
for.

2. The next step involves choosing an algorithm to apply to the extracted training
data. The choice of algorithm depends on two factors: the type and volume of the training
data and the problem to be solved.

3. The algorithm then needs to be trained in an iterative process. Variables are
passed to the algorithm, and the results are compared to what the algorithm should have
produced. To increase the accuracy of the result, the variables can be modified before the
algorithm is retrained until the desired outcome is achieved. Once trained, the algorithm
takes the form of a machine learning model.

4. Finally, the model needs to be put to work and improved upon. The model is
applied to new data, the source of which is determined by the current situation. The
accuracy of the model may also vary over time

By following these processes, a machine learning model can be developed, trained,
and applied to real-world data to solve specific problems. The continuous improvement
and adaptation of the model contribute to its effectiveness and performance in various
domains.

Figure III.2: Step of building a machine learning model
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III.5 Machine Learning-Based Modeling in the Chellif
Watershed

III.5.1 The models used
Among the most frequently used machine learning models that have shown their performance
in flood mapping, we will choose three models following:

Light Gradient Boosting model (LGBM) :

LGBM is a boosting ensemble model that transforms weak learners into a powerful model.
It was made open-source by Microsoft in 2017. LGBM improves the performance of
Gradient Boosted Decision Trees (GBDT) models by accelerating runtime and reducing
memory consumption while maintaining high accuracy[7] .Traditional GBDT-based models
tend to experience decreased accuracy and slower forecasting speed when dealing with
large volumes of data[15].
LGBM addresses these issues by employing a histogram-based algorithm that handles
high-dimensional data effectively, speeds up computation, and prevents overfitting. This
boosting technique involves transforming continuous floating-point values into integers
and constructing a histogram shape with depth and width restrictions. Unlike XGB,
LGBM utilizes a pre-sorted based Decision Trees (DT) technique and incorporates parallel
learning through a parallel voting DT during the training process. This enables parallel
learning for the model, where initial samples are distributed to multiple trees to select
the top-k samples using Local Voting Decision (LVD). The global voting decision then
collects the top-k LVD attributes to compute the top-2k attributes for k iterations. In the
optimization process, LGBM employs the Leaf-wise method to find suitable leaves[40].

Figure III.3: Leaf wise growth

Adaptive Boosting (AdaBoost):

AdaBoost is machine learning technique initiated by Freund and Schapire[26], many
algorithms are derived from AdaBoost either for classification or applied to regression .The
AdaBoost algorithm is an iterative approach that seeks to construct a robust classifier
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through the combination of weak learners generated in prior iterations. The algorithm
modifies the learning pattern in accordance with the error returned by the weak learners,
with the ultimate goal of achieving a final hypothesis that exhibits low error relative to a
given distribution[27].

Stacking Model(AdaBoost and LGBM):

Stacking is one of the popular ensemble modeling techniques in machine learning. Various
weak learners are ensemble in a parallel manner in such a way that by combining them
with Meta learners, we can predict better predictions for the future.

This ensemble technique works by applying input of combined multiple weak learners’
predictions and Meta learners so that a better output prediction model can be achieved.In
stacking, an algorithm takes the outputs of sub-models as input and attempts to learn
how to best combine the input predictions to make a better output prediction[43].

Stacking is also known as a stacked generalization and is an extended form of the Model
Averaging Ensemble technique in which all sub-models equally participate as per their
performance weights and build a new model with better predictions. This new model is
stacked up on top of the others; this is the reason why it is named stacking.In the context
of stacking AdaBoost model and LGBM model,it involves training both types of models
separately and then combining their predictions to make a final prediction[45].
By stacking AdaBoost model and LGBM model, you can leverage the strengths of both
types of models and potentially improve predictive performance. This approach allows
for capturing complex temporal dependencies with AdaBoost and utilizing the boosting
capabilities of LGBM models.

III.5.2 Measurement of performance and validation
The ROC curve :

The Receiver Operating Characteristic (ROC) curve, also known as the performance
characteristic curve, is a graph that represents the performance of a classification model.
This model aims to classify elements into two distinct categories based on one or more
properties of these elements. In our study, we represent the positive pixels (flooded)
and negative pixels (No-flooded), which are precisely classified into true positives, true
negatives, false positives, and false negatives.
The ROC curve depicts the true positive rate (sensitivity) as a function of the false positive
rate (specificity). The true positive rate and true negative rate are calculated using the
following formulas[25].

The true positive rate:

TPR = TP
TP + FN (III.5)
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The true negative rate:

TNR = TN
TN + FP (III.6)

Such as,

• TP: True Positive (The actual value was positive and the model predicted a positive
value).

• FP: False Positive (The actual value was positive and the model predicted a negative
value).

• TN: True Negative (The actual value was negative and the model predicted a
negative value).

• FN: False Negative (The actual value was negative and the model predicted a
positive value).

The AUC parameter:

The AUC (Area Under the Curve) is a parameter associated with the ROC curve. It
represents the area under the ROC curve and provides a single scalar value to measure
the overall performance of the classification model. The AUC ranges from 0 to 1, where
a higher value indicates better discrimination ability. An AUC of 0.5 corresponds to
a random classifier, while an AUC of 1 represents a perfect classifier that achieves a
perfect trade-off between sensitivity and specificity. The AUC used to evaluate the overall
performance of a model in data classification.
This parameter is calculated using the following formula:

AUC = TN + TP
P + N (III.7)

Such as,

• P: Positive points (flooded).

• N: Negative points (No-flooded).

Precession

Precision, in the context of machine learning models, is a metric that measures the
proportion of correctly predicted positive instances (true positives) out of the total instances
predicted as positive (true positives+false positives). In other words, precision focuses on
the accuracy of the positive predictions made by the model.precision is calculated as:
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Precession = TP
TP + FP (III.8)

III.6 The Modeling steps
III.6.1 Data Introduction
Firstly, we gather the data, which in this case are the factors influencing flooding, in a
consolidated form so that they are all contained in a single table. Then, we proceed with
preprocessing the data and removing any null values... etc. Successful learning models
require good data quality.

III.6.2 Correlation Matrix Extraction
Finding the relationships between the training data (factors influencing flooding) allows
us to see if a given factor is directly dependent on another, expressing the degree of
correlation between the different factors. Afterwards, we eliminate one of the strongly
correlated factors as they will have the same influence.

III.6.3 Data Split (Training, Validation)
In this step, we divide the data into two sets:

• The training data, which will be used to train the chosen algorithms.

• The validation data, which will be used to assess the performance of the results.
In general, according to several articles in flood mapping, 80% of the data is used for
training and 20% is reserved for validation [55].

III.6.4 Application of Models
In this step, we apply the previously chosen algorithms. This is done by introducing the
required data in a consolidated numerical format through the use of GIS tools, so that the
algorithms can learn (training phase), and then interpret the remaining results (validation
phase), including the interpretation of other parameters such as the weight of the factors.

III.6.5 Validation
The second component of the data, the validation dataset, is used in this validation
phase. This subset of data refines the model by introducing data that the computer has
not encountered during the learning phase. This allows for the evaluation of the model’s
performance in flood mapping. The models used will be validated using the ROC curve
and the AUC parameter. The results can serve as decision support in the development
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of future urban planning documents or, more broadly, in the optimization of urban or
territorial projects in the cities of this watershed[19].

III.7 Conclusion
In this chapter, we have introduced the fundamental concepts that form the basis of
our work, including geographical mapping, data collection, and modern decision-making
support techniques derived from artificial intelligence. These concepts serve as the starting
point for our study, and a well-defined working methodology is essential for the development
of a susceptibility map and the identification of key factors influencing flooding. Each
factor is presented along with its spatial distribution.
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CHAPTER IV. RESULTS AND DISCUSSION

IV.1 Introduction
In this chapter, we will present and interpret the results obtained in the form of spatial
distribution maps of various factors and the final vulnerability map. Additionally, we will
discuss the reliability of our models.

IV.2 Results
IV.2.1 Factors
We will present in the following the maps of the different factors influencing floods:

Elevation:

Altitude is considered as an important factor in mapping susceptible area of flash floods,
since it affects the natural flow of water. Generally, higher altitude areas are essentially
safe from flash flooding and lower altitude areas have high potential for inundation during
the flash flood events[21] . The range of altitude varies from 0 to 1969 m (Figure IV.1)
in the present studied area.

The elevation map illustrates that the topography of the studied region can be divided
into four sections. The first section (elevation < 450m) is situated in the low coastal plains
in the northwestern side of the basin . The second section (elevation 780m <elevation
<1055m) is located in the central area (Figure IV.1). The third section (450m< elevation<
780m) is found in the northeastern side, overlapping with the first section. Lastly, the
fourth section (1056m< elevation<1969m) is situated the southwestern side of the Chellif
basin.

Slope:

The slope is a parameter that indicates the level of topographic variation in a given area.
It plays a significant role in determining the velocity of water flow, as a steeper slope tends
to increase the speed of surface runoff. Consequently, the risk of land erosion becomes
more pronounced. Using GIS, a slope map was created, revealing that the southern and
northern parts of the region consist of mild slopes (<3.88°). In contrast, the central and
northeastern areas of the basin exhibit high slopes (ranging from 23.29° to 89.96°). The
southwestern region, on the other hand, is characterized by relatively low slope values
approach of chellif wadi (Figure IV.2).

Aspect:

The aspect indicates the direction of the elevation and the flow pattern ,it depends largely
on the direction of the surface. Here, the elevation aspect map was classified into five
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classes (Figure IV.3) :

• Plane

• North-East

• South-East

• South-Ouest

• North-East

Rainfall:

As it is shown in Figure (IV.4), the average precipitation is distributed across five levels,
with a maximum of approximately 731.3 mm in the central part of the watershed, covering
certain cities such as Djelfa and Tissimsilt. The minimum precipitation of about 328.6
mm is observed in the eastern part of the watershed. The rest of the watershed experiences
an average precipitation ranging from 500 to 553 mm. It is noteworthy that precipitation
is significantly higher in the west compared to the east.

Figure IV.1: Elevation Map Figure IV.2: Slope Map
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Figure IV.3: Aspect Map Figure IV.4: Rainfall Map

LULC:

land use/ landcover have been identified as factors that could impact floods Changes in
land use/land cover may have a significant impact on flashfloods prone areas, as they affect
various hydrological processes such as infiltration, evaporation, evapotranspiration, and
runoff. This can either accelerate or decelerate the volume and velocity of water flowing
over the surface during heavy rainfall events. In this study, the LULC map consists of
several thematic maps, including water, trees and crops, built areas, bare ground, and
rangeland as shown in figure(IV.5).

Hillshade:

hillshade illustrates slope shading. Just like the up north and central south regions
are characterized by high shading values, indicating a convergence of water flow. The
remaining watershed area is characterized by low to moderate shading values, resulting
in a weak convergence of water flow in this part Figure (IV.6).

Profile curvature/Plane curvature:

Topographic characteristics of an area were basically understood by plan and profile
curvature. Here, the plane and profile curvature value ranged from (−10.32 to 10.73) and
(−13.33 to 12.14) (Figure IV.7).
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Figure IV.5: (Landuse/Landcover) Map Figure IV.6: Hillshade Map

Figure IV.7: Profile curvature/Plan curavture Map

Stream density:

It appears that (Figure IV.8) illustrates that stream density values are high in the path
of the main river Chellif wadi. Additionally, it shows that the density of the rivers
is exceptionally high at the outlet, which is the point where the two main rivers of the
catchment area converge. As one moves away from the rivers, the stream density gradually
decreases until it reaches nearly zero values. This suggests that the concentration of
streams is the greatest near the main river and diminishes as you move further away from
it.
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Distance from river:

Can significantly affect the severity and extent of water-induced flash flood. Many
researchers consider the distance from the river as a key factor in assessing the flood
risk. When a location is situated close to a river, it becomes more vulnerable to flood
due to the increased water flow volume and velocity, which accelerate the process of flash
floods. As a result, areas located in close proximity to a river are at a higher risk of
experiencing flash flood in our region the distance from river values varies between (0 and
51 km ) (see figure(IV.9))

Flow accumulation:

The topography of the land can contribute to flow accumulation, with low-lying areas or
channels posing a higher risk of flooding. The range of flow accumulation varied from 0
m to 54 966000 in this study area (Figure IV.10).

Figure IV.8: Stream density Map Figure IV.9: Distance from river Map
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Figure IV.10: Flow accumulation Map

Stream power index (SPI):

stream power index represents a quantitative measure of the erosive power of flowing
water in a river system which valuable for flood risk assesment. As can be observed, the
values of this index are significant only at the river courses, while they are extremely low
or even absent elsewhere(Figure (IV.11)).

Topographic wetness index (TWI):

It is used to evaluate the impact of the topography on the hydrological process. The TWI
map shows that low TWI values (-15.4 ;-9.54) are present in the center and South regions
of the basin; therefore, a weak humidity is present in the two regions. The moderate TWI
values ranging from (-4.84 to -2.35) are present in North, South and South-east of the
basin indicating the presence of an average humidity (Figure IV.12). A high humidity is
detected in the outlet and the course of waterways due to the presence of runoff, the TWI
values at this region varied from 1.54 to 16.5 in north and east.

NDVI:

According to Figure (IV.13), the study area can be divided into three main parts based
on the Normalized Difference Vegetation Index (NDVI):

1. The first part showing values ranging from (-0.55 to 0.11), representing water
bodies, urbanized areas, rocks, and bare soils, primarily located in the east and south
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regions of the area where there is high human settlement.

2. The second part displays values ranging from (0.11 to 0.26), located primarily in
the center of the watershed and representing various cultivated lands.

3. The third part demonstrates values rangin from(0.27to 0.79) generally indicating
forested areas, public gardens, and agricultural zones, primarily situated in the north
regions.

NDWI:

According to Figure (IV.14), the study area can be divided into three main parts based
on the the Normalized Difference Water Index (NDWI):

1. The first part exhibits values ranging from (-0.79 to -0.22),which indicatesthe
absence of water or the presence of non-water surfaces like land or built-up areas primarily
located in the southern half of the region where there is high human settlement.

2. The second part displays values ranging from (-0.22 to 0.0018),represents urbanized
areas and bare soils located in the north and in the east of the zone.

3.The third part demonstrates values ranging from (0.0018 to 0. 32) which indicate
water bodies and areas where water stagnates .

Figure IV.11: SPI Map Figure IV.12: TWI Map
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Figure IV.13: NDVI Map Figure IV.14: NDWI Map

IV.2.2 The importance of factors
Feature selection:

In order to select the most relevant variables for the classification model, a feature selection
process was carried out considering 15 variables (elevation ,slope, aspect of elevation,
Rainfall ,Hillshade ,Land use/Land cover(LULC),Profile curvature ,Plan curvature, Stream
density ,Distance from river ,Flow accumulation, Stream power index (SPI),Topographic
wetness index (TWI),vegetation cover (NDVI),Water Index(NDWI)).

Moreover, the top 10 variables were selected using feature importance scores obtained
from LGBM. The feature importance scores were then calculated by evaluating the impact
of each feature on the model’s accuracy. The 10 variables with the highest feature
importance scores were retained for the final classification model. This approach ensures
that only the most informative variables are included in the model for predicting soil
Flashflood in the Cheliff basin.

The selected factors are defined as follows: elevation ,slope, Rainfall , Profile curvature
,Stream density ,Distance from river, Stream power index (SPI),Topographic wetness
index (TWI),vegetation cover (NDVI),Water Index(NDWI).
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Table IV.1: Selection of variable

Ranking Features Importances (%)
1 TWI 15,58
2 SPI 14,76
3 Rainfall 11,78
4 Slope 10,90
5 Profile curvature 10,31
6 Distance from river 9,84
7 NDVI 8,73
8 Stream density 5,92
9 NDWI 4,45
10 Elevation 3,46
11 LULC 2,46
12 Aspect 1,11
13 Plan curvature 0,35
14 hillshade 0,35
15 Flow accumulation 0,00

Correlation Matrix:

A correlation matrix is a table containing correlation coefficients between variables, in
our case these variables are the flood conditioning factors.

This matrix is used to assess the dependence between different conditioning factors at
the same time, such that each cell represents a correlation value which is the degree of
dependence between two conditioning factors, this value is between -1 and 1.To avoid the
double effect of the same factors on the modelling, the Topographic wetness index(TWI)
and Distance from river variables were eliminated based on their high correlation with
Stream density and Stream Power Index (SPI) respectively.
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Figure IV.15: Correlation Matrix

The machine learning models have the ability to provide estimates of the importance
of factors, which is one of their most useful features. In our case, we opted for the LGBM,
AdaBoost and Stacking (LGBM-AdaBoost) models.

• For the LightGBM model, the most critical parameters were :SPI,Stream density,Rainfall,Profile
curvature,NDWI,Slope,Elevation,NDVI

• For the AdaBoost model, the most critical parameters were :SPI, Rainfall,Stream
density , Slope , Elevation, NDVI, NDWI,Profile curvature
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• For the Stacking model, the most critical parameters were:SPI,Rainfall,Stream
density, Profile curvature,NDWI,Slope,Elevation,NDVI

In summary, significant similarities could be observed in the rankings importance for
the three models.

Table IV.2: Ranking of importance of factors

Factor Class LGBM AdaBoost Stacking
1 SPI SPI SPI
2 Stream density Rainfall Rainfall
3 Rainfall Stream density Stream density
4 Profile curvature Slope Profile curvature
5 NDWI Elevation NDWI
6 Slope NDVI Slope
7 Elevation NDWI Elevation
8 NDVI Profile curvature NDVI

IV.2.3 The susceptibility map
According to the LGBM model, the susceptibility map presented in(figure IV.16) was
generated using the quantile method for classification. It includes five classes of vulnerability,
the spatial coverage of areas susceptible to very high and high flooding is respectively
10.26% and 23.97% of the total area of the zone. The rest of the zone is associated with
regions of moderate, low and very low vulnerability. The percentages of area covered by
these zones are respectively 29.71%, 24.40% and 11.63%
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Figure IV.16: The flood susceptibility map with LGBM

According to the AdaBoost model, the susceptibility map presented in Figure (IV.17)
below, was generated using, for classification, the method of quantile . The spatial
coverage of areas susceptible to very high and high flooding is respectively 7.23% and
29.45% of the total area. These areas are mainly located in the region near the wadis,
mainly the Chellif wadi . The rest of the zone is associated with regions of moderate,
low and very low susceptibility. The percentages of the areas covered by these zones are
respectively 27.38%, 18.97% and 16.94%.
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Figure IV.17: The flood susceptibility map with AdaBoost

According to the Stacking model, the susceptibility map presented by Figure(IV.18)
below. It includes five classes of susceptibility.where the spatial coverage of areas susceptible
to very high and high flooding are respectively 9.73% and 25.44% of the total area. The
rest of the zone is associated with regions of moderate, low and very low susceptibility.
The percentages of the areas covered by these zones are respectively 28.60%, 21.02% and
15.18%
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Figure IV.18: The flood susceptibility map with Stacking
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Finally, the results are shown in the following table

Table IV.3: Flood Susceptibility Zone Classes

Model Surface Susceptibility class
Very High High Moderate Low Very Low

LGBM % 10,26 23,97 29,71 24,40 11,63
AdaBoost % 7,23 29,45 27,38 18,97 16,94
Stacking % 9,73 25,44 28,60 21,02 15,18

IV.2.4 Validation
In the flood susceptibility analysis, it is important to locate areas likely to be affected
by future floods. Whatever the method used for validation, it is important to validate
susceptibility maps to unknown future floods[4]. Validation of model predictions was
performed using the AUC value of the ROC (receiver operating characteristics) curve.

The ROC curve evaluates the prediction accuracy of each model by plotting the
observed and predicted values. The ROC method calculates flood susceptibility map
prediction success rates based on data of the historical flood events. The ROC AUC
illustrates the accuracy of a prediction model by determining the ability of the technique
to calculate the occurrence and non-occurrence of a flood from historical data in the
predefined area [47].

AUC is also used to qualitatively assess the accuracy of flood susceptibility prediction[48].
The ROC curve results shown in Figures (IV.19), (IV.20) and (IV.21) indicated that the
Stacking model (LGBM-AdaBoost) had the highest prediction accuracy (AUC = 0.9898)
(Figure IV.16), followed by the LighGBM(AUC = 0.9857) (Figure IV.17), and finally the
AdaBoost model (AUC = 0.9615) (Figure IV.18). The analysis of the AUC values showed
that the Stacking model was more efficient than the others. was more efficient than the
others. The relationship between the AUC and the prediction accuracies of the flood
susceptibility map can be described in the following table[4]:

Table IV.4: Classification of performance with AUC values

AUC value Model Performance
0,6-0,7 Average
0,7-0,8 Good
0,8-0,9 very good
0,9-1,0 excellent

Therefore the accuracy of the prediction of the Stacking(LGBM-AdaBoost),LGBM
and AdaBoost models is excellent.
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Table IV.5: Performance of the three models

LGBM AdaBoost Stacking
Sensitivity(TPR) 0,980 1 0,968
Specificity(TNR) 0,942 0,92 0,990

precession 0,943 0,927 0,989
Accuracy 0,961 0,961 0,979

Figure IV.19: The ROC Curve with
LGBM model

Figure IV.20: The ROC Curve with
AdaBoost model

Figure IV.21: The ROC Curve with Stacking model
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IV.3 Discussion
While it is impossible to completely avoid sudden floods, the most crucial measures that
can be implemented focus on predicting future floods. Areas prone to flooding can be
identified, and suitable structural and non-structural measures can be applied to mitigate
flood losses. The models implemented for flood mapping in this study are LightGBM,
AdaBoost and Stacking . In this study, the flood susceptibility map that we produced
was based on three different models that were evaluated and compared.

Furthermore,the most influencial factors are: SPI, Stream density, Rainfall, Profile
curvature, NDWI, Slope,elevation, NDVI.Flood mapping identifies areas that are prone
to flooding based on considering factors that affect floods, such as geological, hydrological,
topographical, and morphological conditions at the local level[55]. Based on the obtained
maps, it is evident that the area’s most susceptible to flooding, as indicated by the three
models used, are typically found in regions characterized by a high stream density and
substantial rainfall .The flood susceptibility maps generated by our study reveal that the
areas likely to be affected by a very high level of risk of flooding are areas closer to wadi
chlef. According to the LGBM model, the flood-prone areas represent 10.26% of the total
basin area. The AdaBoost model indicates that these areas represent 7.23% of the total
surface. Lastly, the stacking ensemble model shows that these areas account for 9.73% of
the total surface.

Validation using the area under the curve (AUC) method yielded performance scores
of 98% and 96% for LGBM and AdaBoost models, Moreover, it is important to consider
that the mapping of flashfloods-susceptible areas using AI techniques reveals variations in
the machine’s understanding of the phenomena[32]. To further improve the accuracy, a
stacking method was employed, which combines the previous machine learning techniques
in a hybrid model. This stacking approach yielded exceptionally high results, with an
accuracy reaching 99%. By leveraging the strengths of multiple models, the stacking
method enhances the predictive power and reliability of the flashflood susceptibility
mapping process[11].

Overall, the integration of AI techniques and the application of the stacking method
have proven to be effective in accurately identifying flashflood-prone areas and can reduce
the impact of flooding and risk of financial and economic losses in the future.

IV.4 Conclusion
In this chapter, to generate a flood risk map displaying different susceptibility classes
and serving as a crucial predictive tool for managing this phenomenon, we employed the
LGBM algorithm, AdaBoost and Stacking algorithms .Based on the AUC values, the
Stacking model demonstrated the best predictive performance, achieving an AUC of 0.99.

This study will enable us to make informed decisions in the future regarding the
development and planning within the Cheliff watershed
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GENERAL CONCLUSION

This research highlights the significant potential of machine learning and tools, as well as
meta-models, in enhancing the identification, visualization, and interpretation of flashfloods
susceptible areas. Focusing on the Cheliff basin in Algeria, this study successfully generated
flashfloods susceptibility maps using tree distinct machine learning algorithms: LightGBM,
AdaBoost, and stacking ensemble methods. The findings shed light on the factors influencing
flashfloods-prone areas in the Cheliff basin, key parameters are : SPI, Stream density
,Rainfall ,Profile curvature ,NDWI, Slope ,Elevation, NDVI.

Furthermore, the utilization of stacking ensemble methods exhibited exceptional accuracy
and significantly improved the prediction and mapping of flashfloods-susceptible areas.
By combining predictions from multiple base models, the stacking ensemble approach
provided a more robust and reliable estimation of flashfloods susceptibility. This hybrid
model effectively leveraged the strengths of individual machine learning algorithms while
mitigating their weaknesses, resulting in a highly accurate and comprehensive assessment
of flashfloods risks. The reliable flashfloods susceptibility maps generated in this study
serve as invaluable tools for decision-makers and government officials involved in flashfloods
risk management. The integration of machine learning techniques, along with the stacking
ensemble method, offers a promising approach to better delineate, visualize, and interpret
flashfloods-prone areas.

Future research work can focus on further testing the performance of the developed
models by incorporating more varied features, such as climate change,river morphology
and antecedents conditions, into the input datasets. This will enhance the models’
capability to predict and understand floods and flash floods. Additionally, evaluating
the efficacy of the models in diverse locations across the country can provide insights into
their generalizability and guide necessary modifications to adapt to different scenarios.
To streamline the model development process, researchers can develop programming tools
like widgets and scripts that simplify the collection of crucial input datasets. Furthermore,
it is important to investigate both the direct and indirect costs associated with floods and
flash floods, as they often result in significant economic losses. Research studies focusing
on economic cost analysis can provide valuable information for stakeholders and support
informed decision-making. Collaboration among researchers, stakeholders, and funding
agencies is crucial to support these research efforts and advance our understanding of
flood modeling, leading to effective flood risk management and sustainable practices.
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