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  ملخص

 الاتصالات في متنوعة تطبيقات يمتلك نشط بحث مجال هو المصفوفة إشارات معالجة في الوصول اتجاهات تقدير

 الوصول اتجاهات تكون عندما. أخرى ومجالات الزلازل وعلم والملاحة والكلام والسونار والرادار اللاسلكية
 و ددةالمتع الإشارات تصنيف طريقة مثل الطرق تفشل متحركة، مصادر وجود بسبب الوقت مرور مع متغيرة

 لأخيرةا هذه لأن صحيحة تقديرات توفير في بالدوران ثابتة تقنيات عبر الإشارات إعدادات تقدير خوارزمية

 أربع يقدم .الوقت مرور مع المتغيرة الوصول إتجاهات تقدير مشكلة المشروع هذا يتناول. ثابتة إتجاهات تفترض

 لطرقا نطاق توسعان الثالثة و الثانية الطريقتان ، الفوري التردد مفهوم على تعتمد الأولى الطريقة:  طرق

  .تواليال على ، الفرعي الفضاء تحليل على تعتمد الأخيرة الطريقة و مستقرة الغير الحالة إلى الكلاسكية

                                                                                الوصول إتجاهات ،تحديد الإشارات معالجة  : المفتاحية الكلمات

Résumé 

L'estimation des directions d'arrivée (DoA) en traitement d'antennes est un domaine 
d'actualité avec de nombreux champs d'application tels que les communications sans 
fil, radar, sonar, traitement de la voix, navigation, séismologie. Lorsque les directions 
d'arrivée varient dans le temps, à cause du mouvement des sources, les approches 
telles que les algorithmes MUltiple Signal Classification (MUSIC) et Estimation of 
Signal Parameters via Rotational Invariance Techniques (ESPRIT) ne parviennent 
pas à estimer correctement les directions d'arrivée, car ils supposent que ces dernières 
sont constantes.    Ce projet a pour but d'estimer des directions d'arrivée  qui varient 
au cours du temps.  Il introduit quatre approches : la première s'appuie sur le concept 
de fréquence instantanée, la seconde et troisième étendent les méthodes classiques 
au cas non stationnaire et la dernière est basée sur la décomposition sous-espace, 
respectivement. 

Mots clés : traitement d'antennes, antennes adaptatives, direction d'arrivée. 

 

Abstract  

Directions of arrival (DoA) estimation in array signal processing is an active research 
area with various applications in wireless communications, radar, sonar, speech, 
navigation, seismology and other fields. When directions of arrival are time-varying, 
due to moving sources, approaches such as the MUltiple SIgnal Classification 
(MUSIC) method and the Estimation of Signal Parameters via Rotational Invariance 
Techniques (ESPRIT) algorithm fail in providing correct estimates, because the latter 
assume constant DoAs. This project addresses the problem of estimating time-
varying directions of arrival. It introduces four approaches: the first one relies on the 
instantaneous frequency concept, the second and third ones extend the classical 
methods to the non-stationary case and the last one is based on subspace 
decomposition, respectively. 

Keywords: array processing, direction finding, adaptive antennas, direction of 
arrival. 
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Chapter 1

Introduction

1.1 Context and challenge

Electromagnetic fields are often measured by an array of sensors.
A sensor array consists of a number of sensors arranged in a partic-
ular configuration. In array processing, where an incoming wave
is measured by an array, the corresponding signals at different
points in space can be processed to extract various types of in-
formation including their direction of arrival (DoA), which is the
object of our study. DoA methods can also be used to design and
adapt the directivity of array antennas in order to accept signals
from certain directions only while rejecting other signals that are
considered as interference. This is known as spatial filtering.

In what follows, we present the signal model for narrowband ar-
rays. The structure of propagation delays is discussed for a uni-
form linear array. This data model will be used throughout the
project.

Consider the case of a moving narrowband source, in a noise-free
environment, emitting plane waves from the time-varying direc-
tion θ1(t) towards a uniform linear array of M sensors spaced by
a distance d (see Figure 1.1).

12



Figure 1.1: Model configuration

Each antenna, except the first one, receives delayed versions of
the demodulated transmitted signal s1(t)ej2πfct, where fc is the
carrier frequency.

By putting the received signals in one vector, called the sensor
vector, one obtains:

x(t) =




x1(t)
x2(t)

...
xM(t)


 =




s1(t)

s1(t− τ1(t))e
−j2πfcτ1(t)

...
s1(t− (M − 1)τ1(t))e

−j(M−1)2πfcτ1(t)




However: {
fc =

c
λ

τ1(t) =
d
c sin θ1(t)

=⇒ x(t) =




s1(t)

s1(t− τ1(t))e
−j2π d

λ sin θ1(t)

...
s1(t− (M − 1)τ1(t))e

−j(M−1)2π d
λ sin θ1(t)




13



=⇒ x(t) =




s1(t)

s1(t− τ1(t))e
−jϕ1(t)

...
s1(t− (M − 1)τ1(t))e

−j(M−1)ϕ1(t)


 (1.1)

where: ϕ1(t) = 2π dλ sin θ1(t) is the electrical angle.

Narrowband signals are signals for which:

τmax = (M − 1)τ1(t) <<
1

W

where W is the bandwidth of s1(t)

Based on the above property, we can state that:

s1(t− (M − 1)τ1(t)) ≈ s1(t)

Proof: Let W be the bandwidth of s1(t).

s1(t− (M − 1)τ1(t)) =

∫ W
2

−W
2

S1(f)e
j2πf(t−(M−1)τ1(t))df

s1(t− (M − 1)τ1(t)) ≈
∫ W

2

−W
2

S1(f)e
j2πftdf = s1(t)

Equation (1.1) then becomes:

x(t) =




1

e−jϕ1(t)
...

e−j(M−1)ϕ1(t)


 s1(t) = a(θ1(t))s1(t)

For the multi-source case, the same procedure is followed:

x(t) = a(θ1(t))s1(t) + a(θ2(t))s2(t) + · · ·+ a(θL(t))sL(t)

14



=⇒ x(t) = A(t)s(t)

where
A(t) =

[
a(θ1(t)), . . . , a(θL(t))

]

is the M × L steering matrix which consists of the vectors

a(θi(t)) =
[
1, e−jπ sin θi(t), . . . , e−j(M−1)π sin θi(t)

]T

In the presence of additive noise, one obtains:

x(t) = A(t)s(t) + n(t)

where n(t) is the sensor noise vector, which is assumed to be
Gaussian with zero-mean and variance σ2.

1.2 Contributions

The contributions of our work are the suggestion of several meth-
ods such as the use of the instantaneous frequency concept, the
adaptive versions of both the Minimum Variance Distortionless
Response (MVDR) filter and the MUSIC algorithm along with
the reduced rank technique (Krylov subspace) in order to esti-
mate and track time-varying DoAs.

1.3 Outline

The outline of the report is as follows:

• Chapter 2 gives a brief literature review about source lo-
calization.

• Chapter 3 proposes to estimate time-varying DoAs using
the instantaneous frequency concept.

15



• Chapter 4 gives two other methods (Adaptive MVDR filter
and Reduced Rank technique) for tracking moving sources.
It also provides details on how the Kalman filter can be used
for smoothing the DoAs estimates.

• Chapter 5 extends the application of the MUSIC algorithm
to the non-stationary case.

• Chapter 6 summarizes the contributions of this project and
discusses interesting directions for future research.

16



Chapter 2

State of the art

2.1 Introduction

The need for direction of arrival (DoA) estimation arises in many
engineering applications, such as radar, wireless communications,
astronomy, etc.
Much of the work that has been done throughout the years focused
on estimating the direction of electromagnetic waves impinging on
one or more antennas [1].

2.2 Literature review

DoA estimation algorithms can be divided into two basic cate-
gories, namely [2]:

1. Classical methods which use beamformers or spatial filters:

(a) Conventional beamformer (Bartlett,1948 )

(b) Minimum Variance Distortionless Response (MVDR) fil-
ter (Capon,1969 )

2. Subspace methods which apply linear algebra principles:

(a) MUltiple SIgnal Classification (MUSIC) algorithm
(Schmidt,1986 )

17



(b) Estimation of Signal Parameters via Rotational Invari-
ance Techniques (ESPRIT) algorithm (Roy & Kailath,1989 )

Note that these algorithms have been developed under the as-
sumption that the sources are stationary in space.

However, in the case where the directions of arrival are changing
with time, several methods have been introduced in earlier days,
such as:

• (Dowling et al.1994 ) who came up with an adaptive singular
values decomposition that enables tracking real time angles
[3].

• Or even (Strobach,1998 ) who presented a fast recursive sub-
space adaptive ESPRIT algorithm [4].

Moreover, and in the recent decades, numerous new approaches
have been developed, for instance:

• (Sakhtari et al.2004 ) who combined the time difference of
arrival (TDOA) with the recursive least squares (RLS) algo-
rithm for source tracking [5].

• (Badeau et al.2005 ) who proposed a much faster adaptive
(on-line) ESPRIT algorithm [6].

• and (Valizadeh et al.2007 ) who introduced a robust adaptive
beamformer via LMS-type procedure [7].

2.3 Conclusion

As we can see, only the ESPRIT algorithm has been made adap-
tive, compared to the MVDR filter and the MUSIC algorithm.
That is why the adaptive versions of the latters will be the sub-
ject of this project.

18



Chapter 3

Instantaneous Frequency based
estimation of time varying
Directions of Arrival

3.1 Introduction

In this chapter, we propose to solve the problem of estimating the
time varying DoAs using the instantaneous frequency estimates
of the array outputs. In contrast to high resolution approaches
such as the MUltiple SIgnal Classification (MUSIC) method [8]
and the Estimation of Signal Parameters via Rotational Invari-
ance Techniques (ESPRIT) algorithm [9] which fail in providing
correct estimates due to the time-variation of the DoAs, our pro-
posed approach not only provides good estimates, but is also able
to solve the underdetermined case where the number of sources is
greater than the number of sensors.

This chapter is structured as follow : Section 3.2 provides the
signal model under consideration, the proposed algorithm is pre-
sented in Section 3.3, Section 3.4 provides the reader with an
insight into the FAST IF algorithm and simulation results are
presented in Section 3.5, and finally, Section 3.6 concludes the
chapter.

19



3.2 Signal Model

Consider a uniform linear array of M sensors spaced by half a
wavelength, which receives plane waves emitted by L moving nar-
rowband sources from time-varying directions {θ1(t), . . . , θL(t)}.

Let x(t)=
[
x1(t), . . . , xM(t)

]T be the sensor vector which can
be modeled as:

x(t) = A(t)s(t) + n(t) (3.1)

where
A(t) =

[
a(θ1(t)), . . . , a(θL(t))

]
(3.2)

is the M × L steering matrix which consists of the vectors

a(θi(t)) =
[
1, e−jπ sin θi(t), . . . , e−j(M−1)π sin θi(t)

]T (3.3)

and
s(t) = [s1(t), · · · , sL(t)]T (3.4)

is an L-dimensional vector containing the source waveforms. n(t)
is the sensor noise vector, which is assumed to be Gaussian with
zero-mean and variance σ2.

In the sequel, we propose to estimate the time variation of the
Directions of Arrival θi(t), i = 1, · · · , L through the estimates of
the instantaneous frequencies [10] of the sensor outputs xi(t), i =
· · · ,M .

3.3 Proposed Algorithm

3.3.1 One source case

Let us first consider the case of L = 1 source in a noise-free
environment, it follows from equation (3.1), that:

x(t) = a(θ1(t))s1(t) (3.5)
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and by considering the source signal s1(t) as analytic, i.e. s1(t) =
b1(t)e

jϕs1(t), together with equation (3.3), we obtain the following
observation vector:

x(t) =




x1(t)
x2(t)

...
xM(t)


 = b1(t)




ejϕs1(t)

ej(−ϕ1(t)+ϕs1(t))
...

ej(−(M−1)ϕ1(t)+ϕs1(t))


 (3.6)

where
ϕ1(t) = π sin θ1(t) (3.7)

denotes the electrical angle of the 1st source.

It appears clearly from equation (3.6) that the instantaneous
phase of the ith sensor signal is given by

ϕxi(t) = −(i− 1)ϕ1(t) + ϕs1(t)

and its instantaneous frequency is given by :

fxi(t) =
1

2π

dϕxi(t)

dt
= −(i− 1)

1

2π

dϕ1(t)

dt
+ fs1(t) (3.8)

Accordingly, one obtains the following vector whose entries are
the instantaneous frequencies of the M sensor signals:




fx1(t)
fx2(t)...
fxM (t)


 =




fs1(t)

− 1
2π

dϕ1(t)
dt + fs1(t)...

−(M − 1) 1
2π

dϕ1(t)
dt + fs1(t)


 (3.9)

By subtracting the instantaneous frequency of the first sensor
signal from the M-1 other sensor signals, one gets the following

21



new vector :



fx2(t)− fx1(t)
fx3(t)− fx1(t)...
fxM (t)− fx1(t)


 =




− 1
2π

dϕ1(t)
dt

−2 1
2π

dϕ1(t)
dt...

−(M − 1) 1
2π

dϕ1(t)
dt


 (3.10)

= − 1

2π

dϕ1(t)

dt




1
2
...

M − 1


 (3.11)

In order to extract the first derivative of the electrical angle
ϕ1(t), we multiply both sides of (3.10) by

[
1 2 . . . M − 1

]
,

which leads to:

[
1 2 . . . M − 1

]




fx2(t)− fx1(t)
fx3(t)− fx1(t)...
fxM (t)− fx1(t)




= − 1

2π

dϕ1(t)

dt

M−1∑

i=1

i2

Finally, the ”angular instantaneous frequency” is then estimated
as:

1

2π

dϕ1(t)

dt
= −

∑M−1
i=1 i(fxi+1

(t)− fx1(t))∑M−1
i=1 i2

= −6
∑M−1

i=1 i(fxi+1
(t)− fx1(t))

M(M − 1)(2M − 1)
(3.12)

By applying to the estimated angular instantaneous frequency
of equation (3.12) an integrator filter whose transfer function is
given by:

H(z) =
Ts
2

1 + z−1

1− z−1

22



and where Ts is the sampling period, one obtains an estimate of
the electrical angle ϕ̂1(t) up to 2π constant. Since the electrical
angle and the direction of arrival of the source are related by (3.7),
one can also estimate θ̂1(t).

3.3.2 Multiple sources case

In the case of several sources, one has to estimate first the instan-
taneous frequency of each source at each sensor and then apply
the above procedure for each source separately. In this project, we
use as estimation technique of the instantaneous frequencies of a
multi-component signal the FAST IF algorithm of reference [11].

3.4 Insight into the FAST IF algorithm

In various research fields such as vibration analysis, speech recog-
nition, signals are non-stationary and have multi components, that
is why a time-frequency representation (TFR) is necessary since
the frequency content of such signals is time varying.

The present section introduces the algorithm of reference [11]
which provides a TFR without computing a time-frequency dis-
tribution (TFD) [10].

Consider having a signal with K components:

s(t) =
K∑

k=1

ak(t)e
j2π

∫ t

−∞ fk(τ)dτ

where ak(t) and fk(t) represent the instantaneous amplitude and
the instantaneous frequency of the kth component.

The FAST IF algorithm suggests estimating the IF in an iterative
way according to the following steps:
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1. First, it finds the time instant of the highest signal energy t0,
i.e.:

t0 = argmax
t

se(t)

where

se(t) =

∫ t+∆t

t−∆t
|s(τ)|2dτ

se(t) computes the signal energy in the time interval t−∆t <
t < t +∆t. Where the parameter ∆t determines the width
of the window to estimate the local energy of the signal. In
our study, ∆t = 63

2. Then it finds out the location of maximum frequency and
optimum rotation order of analysis window f0 and α0, re-
spectively:

(f0, α0) = argmax
f,αl

Sαl
(f)

where

Sαl
(f) =

∫ +∞

−∞
s(t)wαl

(t− t0)e
−j2πftdt (3.13)

is the Fourier transform of the signal multiplied by a window
shifted by t0
and

wαl
(t) =

ejαl/2

√
jsin(αl)

∫ +∞

−∞
e−

µ

2σ2 ejπ(µ
2+t2)cos(αl−2tµ)/sinαldµ

αl is the rotation order of the fractional Fourier transform
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and is given by αl =
l
L where the parameter L determines

the number of quantization levels (see Appendix A.1 for more
details about the fractional Fourier transform).

3. The IF of the strongest component at time-instant t0 is f̂1(t0) =
f0.

4. Then we estimate the IF for t > t0 iteratively as follows :

(a) We first initialize t̂ = t0. Then we increment it with step
1
fs

, i.e. t̂ = t̂ + 1
fs

(fs being the sampling frequency).
And each time, we estimate the IF at t̂ by searching
the maximum energy in the neighborhood of f0, i.e in
the interval f0 − ∆f < f < f0 + ∆f using 3 different
fractional windows: one with α0−∆α0 and one with α0

and finally one with α0 +∆α0 (∆α0 is set to be ∆α0 =
1

2L+1 and ∆f = 2 since the frequency search is limited
to 5 bins in our study)

(f0, α0) = argmax
f,αl

|
∫ +∞

−∞
s(t)wαl

(t− t̂)e−j2πftdt|

(b) The estimated IF at t̂ is considered to be f̂1(t̂) = f0.

(c) We repeat the iterations until the energy is less than 0.1
times the energy of the highest energy TF point.

5. Once the IF of the strongest component is estimated for t >
t0, the same process is applied to estimate the IF for t < t0
(the increment will slightly change and becomes t̂ = t̂− 1

fs
).
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6. After estimating the IF "f̂1(t)" corresponding to the strongest
component, we remove the latter from the mixture signal ac-
cording to the following process:

(a) First consider the signal:

y(t) = s(t)e−j2π
∫ t

−∞ f̂1(τ)dτ

y(t) =

(
K∑

k=1

ak(t)e
j2π

∫ t

−∞ fk(τ)dτ

)
e−j2π

∫ t

−∞ f̂1(τ)dτ

which can be written as:

y(t) = a1(t)e
j2π(

∫ t

−∞ f1(τ)−f̂1(τ)dτ) +
(

K∑

k=2

ak(t)e
j2π

∫ t

−∞ fk(τ)dτ

)
e−j2π

∫ t

−∞ f̂1(τ)dτ

(b) Under the assumption f̂1(t)− f1(t) ≈ 0, y(t) becomes:

y(t) = a1(t) +

(
K∑

k=2

ak(t)e
j2π

∫ t

−∞ fk(τ)dτ

)
e−j2π

∫ t

−∞ f̂1(τ)dτ

(c) Then we apply on y(t) a low pass filter in order to get
the estimated instantaneous amplitude of the strongest
component, i.e. â1(t).

(d) Having â1(t), we subtract the strongest component "ŝ1(t)"
from the original signal:

s(t) = s(t)− ŝ1(t)

with
ŝ1(t) = â1(t)e

j2π
∫ t

−∞ f̂1(τ)dτ

7. The same process is repeated for the next strongest compo-
nent in the remaining mixture signal and so on untill the
energy of the extracted component is less than 0.05 times
the energy of the strongest component.
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3.5 Simulation results

The performance of the proposed DoA estimation algorithm are
assessed using synthetic signals.

3.5.1 One source case

Let us first consider L = 1 source impinging, in the absence of
noise, on an array of M = 4 sensors and whose direction of arrival
varies linearly, i.e. θ1(t) = αt where α is set to equal 0.8.

Figure 3.1: Estimated DoA vs Original DoA (1 source and 4 sensors)

Interpretation of result: Fig.3.1 displays the time variation
of the estimated DoA (in blue) versus the original DoA (in red).
Indeed, the blue curve fits the red one, meaning that the linearly
time varying DoA was well estimated.

3.5.2 Multiple sources case

The DoA estimation algorithm can be extended to the multi source
scenario with the following experimental setup:

• Number of sensors (M=10).
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• Quadratic and cubic variations of the two sources, θ1(t) =
10t2 and θ2(t) = 15t3, respectively.

• Additive noise with a signal-to-noise ratio SNR = 20dB.

Figure 3.2: 2 sources and 10 sensors with SNR = 20dB

Interpretation of results: Fig.3.2 contains two plots which
show quadratic and cubic variations of the DoAs, respectively.
The obtained results show that the proposed approach allows es-
timating quadratic angular time variation that is related to angu-
lar acceleration in practice and also a hypothetical cubic angular
time variation.

3.5.3 Underdetermined case

Herein, we consider the case of 2 sensors and 3 sources with an
SNR = 20dB.
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Figure 3.3: IF estimates of the 1st sensor signal

Figure 3.4: IF estimates of the 2nd sensor signal

Interpretation of results: Figures 3.3 and 3.4 display the esti-
mates of the instantaneous frequencies of the 1st sensor signal and
the 2nd sensor signal, respectively, while using the FAST IF algo-
rithm. Evidently, the FAST IF algorithm successfully estimates
the instantaneous frequencies of the sensors signals.
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Figure 3.5: 3 sources and 2 sensors with SNR = 20dB

Interpretation of results: Fig.3.5 contains three plots, one for
each source and where each estimated DoA has been plotted along
with the original DoA. The figure highlights the ability of our
suggested method to address the underdetermined case where 3
time varying directions of arrival have been estimated using only
2 sensors and with an SNR = 20dB.

3.6 Conclusion

In this chapter, we introduced a novel method in order to esti-
mate time-varying DoAs. Indeed, feeding the estimates of the
array outputs’ instantaneous frequencies to an integrator filter al-
lows estimating any angular time variation, whether it is linear or
hyperbolic. Furthermore, the advantage of the proposed approach
is its ability to solve the underdetermined case. The implemented
method is a batch technique, i.e. it has to "wait" until it has all
the data. An extension of the proposed approach to a tracking
one depends only on the use of an efficient online instantaneous
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frequency estimation algorithm. On the other hand, the subse-
quent chapters introduce tracking approaches, i.e. methods that
estimate the time-varying DoAs in an adaptive manner, making
the tracking possible.
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Chapter 4

Estimation of time varying
Directions of Arrival using the
adaptive version of the MVDR
filter and the Reduced Rank
approach

4.1 Introduction

Two other methods for estimating time-varying DoAs are given
subsequently in this chapter. The first one is an extension of
Capon’s approach [12] to the non-stationary case in order to esti-
mate and track the time-varying DoAs adaptively. And the second
one is the Reduced-Rank adaptive filtering using Krylov subspace.

The chapter is structured as follows : in Section 4.2, the data
model is recalled. Section 4.3 introduces the reader to Capon’s
method in the stationary case, followed by its extension to the
non-stationary case in Section 4.4. In Section 4.5, the reduced
rank method based on Krylov subspace is presented. Section 4.6
details how the Kalman filter can be used for smoothing the DoAs
estimates provided by the proposed adaptive Capon algorithm and
the reduced rank method. Simulation results are presented in Sec-
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tion 4.7, and finally, Section 4.8 concludes the chapter.

4.2 Data Model

As in chapter 3, we consider a uniform linear array of M sensors
spaced by half a wavelength, which receives plane waves emitted
by L moving narrowband sources from time-varying directions
{θ1(t), . . . , θL(t)}.

Let x(t)=
[
x1(t), . . . , xM(t)

]T be the sensor vector which can
be modeled as:

x(t) = A(t)s(t) + n(t) (4.1)

where
A(t) =

[
a(θ1(t)), . . . , a(θL(t))

]
(4.2)

is the M × L steering matrix which consists of the vectors

a(θi(t)) =
[
1, e−jπ sin θi(t), . . . , e−j(M−1)π sin θi(t)

]T (4.3)

and
s(t) = [s1(t), · · · , sL(t)]T (4.4)

is an L-dimensional vector containing the source waveforms. n(t)
is the sensor noise vector, which is assumed to be Gaussian with
zero-mean and variance σ2.

4.3 Insight into Capon’s method

Capon’s beamformer or Minimum Variance Distortionless Response
(MVDR) filter was first introduced in the stationary case. It con-
sists of minimizing, with a constraint, the contributions of signals
not of interest SNOI (i.e signals coming from directions different
from the direction of interest θ1) and noise by minimizing the out-
put power of the beamformer.
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This problem can be stated mathematically as a constrained min-
imization problem :

{
argminw P (w) = argminw wHRxw

wHa(θ1) = 1
(4.5)

where:

• Rx = E[x(t)x(t)H ] is the covariance matrix of the sensor
vector.

• a(θ1(t)) =
[
1, e−jπ sin θ1(t), . . . , e−j(M−1)π sin θ1(t)

]T is the steer-
ing vector of the source of interest.

The solution of the above optimization problem [13] is given by:

wCapon(θ) =
R−1
x a(θ)

a(θ)HR−1
x a(θ)

(4.6)

which is known as Capon’s filter.

Since the MVDR filter was first proposed in the stationary case,
the data model is similar to the one in Section 4.2 but with a
slight change since the DoAs are constant. Thus Equation (4.1)
just becomes:

x(t) = As(t) + n(t) (4.7)

x(t) = a(θ1)s1(t) + a(θ2)s2(t) + · · ·+ a(θL)sL(t) + n(t) (4.8)

which can be rewritten as :

x(t) = a(θ1)s1(t) + J(t) (4.9)

where J(t) is M-dimensional column vector containing the SNOI
and the noise.

The output power of the beamformer is given by:

P (w) = E[|y(t)|2] = σ2s1|wHa(θ1)|2 +wHRJw (4.10)
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where RJ = E[J(t)J(t)H ] is the covariance matrix of J(t)

Since the beamformer gain is constrained to be 1 in the direction
θ1, i.e wHa(θ1) = 1, minimizing the output power minimizes in-
deed the contributions of the SNOI and noise.

Using the Lagrange multipliers, Equation (4.10) is minimized and
its optimal solution is [2]

w =
R−1
x a(θ1)

a(θ1)HR−1
x a(θ1)

(4.11)

This procedure can be applied for each possible angle θ and pro-
vides Capon’s filter (4.6).

By replacing (4.6) in the output power expression, one obtains:

PCapon(θ) =
1

a(θ)HR−1
x a(θ)

(4.12)

The angles for which (4.12) has peaks represent the estimates of
the directions of arrival.

4.4 Adaptive Capon’s method

This section introduces the adaptive version of the MVDR filter,
which is an extension of Capon’s approach to the non-stationary
case. The mono-source case is considered first, then the multi-
sources one is discussed.

4.4.1 Mono-source case

Consider the case where L = 1 source radiates plane waves to-
wards a uniform linear array of M sensors spaced by half a wave-
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length from a time-varying direction.

Assuming the slow variation of the DoA, the gradient ascent op-
timization method has been used in this adaptive version.

We first begin by initializing our algorithm using a batch of length
N0 where we assumed stationarity and ergodicity in order to es-
timate the initial covariance matrix as :

R̂0 =
1

N0

N0∑

n=1

x(n)x(n)H

We then estimated the initial value of the DoA by searching for
the peak of (4.12), i.e:

θ̂0 = argmax
θ

1

a(θ)HR̂−1
0 a(θ)

Secondly, we estimate the covariance matrix in an adaptive man-
ner as:

R̂(n) = βR̂(n− 1) + (1− β)x(n)x(n)H (4.13)

with 0 < β < 1 being the forgetting factor.

and used Schur inversion lemma [14]:

R̂(n)−1 =
1

β
R̂(n−1)−1−

( R̂(n−1)−1

β

√
1− βx(n))( R̂(n−1)−1

β

√
1− βx(n))H

1 +
√
1− βx(n)H( R̂(n−1)−1

β

√
1− βx(n))

since we need the inverse in (4.12).

Finally, we fed θ̂0 to our adaptive gradient ascent algorithm:

θ̂n = θ̂n−1 + µ∇PCapon(θ̂n−1)

which will search for the values of θ that maximize the objective
function (4.12) and where:
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• µ is the learning rate.

• ∇PCapon(θ) = −(a(θ)HR−1
x a(θ))−2(da(θ)

H

dθ R−1
x a(θ)+a(θ)HR−1

x
da(θ)
dθ )

is the gradient of the objective function (4.12).

4.4.2 Multi-source case

We basically applied the aforementioned procedure to each source
separately, i.e. we first estimated the initial values of the DoAs
using Capon’s method. Then, we fed them individually to our
adaptive gradient ascent algorithm as shown in the figure below:

Figure 4.1: Bloc diagram of adaptive Capon

A well-known problem in DoA estimation is when two or more
sources have incident angles that are below the spatial resolution
of the processing algorithm and where the latter is defined as the
ability to distinguish these sources. Naturally, the crossing sources
problem falls under the aforementioned category.
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A way to tackle this problem would be the use of a Kalman filter.

4.5 Reduced rank method based on Krylov sub-
space

4.5.1 Motivation

This method belongs to the class of dimension reduction method,
and what motivated the use of the latter is the fact that it reduces
the computation complexity.

4.5.2 Principle

In this subsection, the principle of the reduced rank approach is
presented. Since the method is based on Krylov subspace [15], let
us first define the latter.

Definition: Given a square matrix A and a nonzero vector v, the
Dth Krylov subspace associated with the pair (A,v) is defined as:

KD(A,v) = span(v, Av, A2v, . . . , AD−1v)

In this project, we deal with KD(Rx, a(θ)) where:

• Rx = E[x(t)x(t)H ] is the covariance matrix of the sensor
vector.

• a(θ1(t)) =
[
1, e−jπ sin θ1(t), . . . , e−j(M−1)π sin θ1(t)

]T is the steer-
ing vector of the source of interest.

Capon’s method (see Section 4.3) consists of minimizing the out-
put power of the beamformer under a specific constraint :

{
argminw wHRxw

wHa(θ) = 1
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The reduced rank approach suggests that the beamformer w can
be written as:

w = Qw̃ (4.14)

where:

• Q is an M × r projection matrix defined as:

Q =
[
a(θ) Rxa(θ) R2

xa(θ) . . . Rr−1
x a(θ)

]

• w̃ is an r-dimensional vector with r < M

The minimization problem then becomes:
{
argminw̃ w̃HRzw̃

w̃H ã(θ) = 1
(4.15)

where:

• ã(θ) = QHa(θ) is the projected r-dimensional steering vector

• Rz = E[z(t)z(t)H ] = QHRxQ is the covariance matrix of the
projection of the sensor vector z(t) = QHx(t)

Proof: We have the following minimization problem:
{
argminw wHRxw

wHa(θ) = 1

However w = Qw̃

=⇒
{
argminw̃ w̃HQHRxQw̃

w̃HQHa(θ) = 1

=⇒
{
argminw̃ w̃HRzw̃

w̃H ã(θ) = 1
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Interestingly, instead of looking for the M -dimensional vector w,
we now search for an r-dimensional vector w̃ with r < M .

In this project, r is set to equal the number of sources.

Similarly to Capon’s method (see Section 4.3), the angles which
maximize:

PRR(θ) =
1

ã(θ)HR−1
z ã(θ)

(4.16)

represent the estimates of the DoAs.

4.5.3 Implementation

The family of Reduced Rank methods were developed for solving
large systems, that is why the multi-source case will only be ad-
dressed.

The Reduced Rank algorithm is similar to the adaptive MVDR
filter with slight changes.

Consider L sources radiating plane waves towards a uniform linear
array of M sensors spaced by half a wavelength from time-varying
directions.

In order to initialize the Reduced Rank algorithm, we use the same
batch technique as in the Adaptive Capon’s method (see Section
4.4), i.e.

θ̂kini = argmax
θ

1

a(θ)HR̂−1
0 a(θ)

for k = 1, . . . , L

The batch technique is also used to initialize the projection matrix
and the covariance matrix of the projected sensor vector:
{
Qkini =

[
a(θ̂kini) R̂0a(θ̂kini) R̂2

0a(θ̂kini) . . . R̂r−1
0 a(θ̂kini)

]

R̂zkini
= QH

kini
R̂0Qkini
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Secondly, we estimate the covariance matrix of the projected sen-
sor vector and the projection matrix adaptively:



zk(n) = QH
k (n− 1)x(n)

R̂zk(n) = βR̂zk(n− 1) + (1− β)zk(n)zk(n)
H

Qk(n) =
[
q1(n) q2(n) q3(n)

]

q1(n) = a(θ̂k(n)) where θ̂k(n) is the kth DoA estimated by
the Reduced Rank algorithm at time instant n
q2(n) = βq2(n− 1) + (1− β)x(n)x(n)Hq1(n)

q3(n) = βq3(n− 1) + (1− β)x(n)x(n)Hq2(n)

Finally, and like the adaptive MVDR filter, we use the gradient
ascent optimization method:

θ̂
(n)
k = θ̂

(n−1)
k + µ∇PRR(θ̂(n−1)

k )

which will search for the values of θ that maximize the cost func-
tion (4.16)
and where :

• µ is the learning rate.

• ∇PRR(θ) = −(ã(θ)HR−1
z ã(θ))−2(dã(θ)

H

dθ R−1
z ã(θ)+ã(θ)HR−1

z
dã(θ)
dθ )

is the gradient of the cost function (4.16).

4.6 Smoothing using Kalman filter

This section gives the details on how the Kalman filter is im-
plemented for both smoothing and solving the crossing sources
problem.

Let us consider the following state vector:

yk(t) =

[
θk(t)

θ̇k(t)

]
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where θk(t) is the kth DoA and θ̇k(t) is its velocity.

The dynamic of the motion, as well as the observations, are mod-
eled, respectively, as follows [16]:

{
yk(t+ 1) = Fyk(t) + ψk(t)

θ̂k(t) = Hyk(t) + vk(t)

where:

• F =

[
1 Ts
0 1

]
with Ts being the sampling period.

• H =
[
1 0

]
.

• ψk(t) is the noise model supposed to be Gaussian with zero
mean and covariance matrix:

Q(t) = E[ψk(t)ψk(t)
H ] =

[
T 4
s

4
T 3
s

2
T 3
s

2 T 2
s

]
σ2ψ

Proof : By applying a limited development to both the ith

DoA and its velocity, one obtains:
{
θk(t+ 1) = θk(t) + Tsθ̇k(t) +

T 2
s

2 θ̈k(t) + . . .

θ̇k(t+ 1) = θ̇k(t) + Tsθ̈k(t) + . . .

After truncating the limited development to the second order,
we obtain:

yk(t+ 1) = Fyk(t) + ψk(t)

where:

ψk(t) =

[
T 2
s

2

Ts

]
θ̈k(t)

=⇒ Q(t) = E[ψk(t)ψk(t)
H ] =

[
T 2
s

2

Ts

] [
T 2
s

2 Ts

]
E[|θ̈k(t)|2]
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=⇒ Q(t) =

[
T 4
s

4
T 3
s

2
T 3
s

2 T 2
s

]
σ2ψ

• vk(t) is the observation noise assumed to be Gaussian with
zero mean and variance σ2v .

The Kalman filter proceeds in two steps : first a prediction then
an update.

4.6.1 Prediction step

From the data available at time t, i.e. the DoAs estimated by
the adaptive Capon’s algorithm, we can make a prediction of the
state vectors:

ŷk(t+ 1|t) = F ŷk(t|t) (4.17)

4.6.2 Update step

After obtaining the new observations, the DoA estimates are im-
proved using:




P (t+ 1) = F [I −K(t)H]P (t)F T +Q(t)

K(t+ 1) = P (t+ 1)H[HP (t+ 1)HT + σ2v]
−1

ŷk(t+ 1|t+ 1) = ŷk(t+ 1|t) +K(t+ 1)[θ̂k(t+ 1)−HF ŷk(t|t)]

where:

• P (t) = E[(ŷk(t|t)−yk(t))(ŷk(t|t)−yk(t))
H ] is the covariance

matrix of the estimated state vector at time instant t.

• K(t) is the Kalman filter gain at time instant t.
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In order to initialize the Kalman filter, we use the two points
technique:





Pini =

[
1 1

Ts
1
Ts

1
T 2
s

]
σ2v

Kini = PiniH[HPiniH
T + σ2v]

−1

ŷkini = ŷk(N0|N0) =

[
θ̂k(N0)

θ̂k(N0+1)−θ̂k(N0)
Ts

]

where θ̂k(N0 + 1) and θ̂k(N0) are the DoA estimates of the kth

source provided by the proposed adaptive Capon algorithm at
time instants t = N0 + 1 and t = N0, respectively.

4.7 Simulation results

4.7.1 Mono-source case

Consider L = 1 source impinging on an array of M = 4 sensors
in the presence of an additive noise with a signal-to-noise ratio
SNR = 20dB and whose DoA’s variation is quadratic.

Figure 4.2: Adaptive Capon (1 source and 4 sensors with SNR = 20dB)
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Interpretation of result: Fig.4.2 displays the time variation
of the estimated DoA (blue solid line) versus the original DoA
(red solid line). As shown, the estimate has variations due to the
learning rate.

Figure 4.3: Smoothed Adaptive Capon (1 source and 4 sensors with SNR =
20dB)

Interpretation of result: Fig.4.3 contains on the same plot the
original DoA (red solid line) and the DoA estimate provided by
the adaptive Capon algorithm which has been smoothed using a
Kalman filter [17] (blue solid line). Indeed, the variations due to
the learning rate were reduced.

4.7.2 Multi-source case

Non-crossing case

The proposed adaptive Capon algorithm is also applicable in the
multi-source scenario. For example, let us have L = 2 sources,
M = 4 sensors and SNR = 20dB and where the sources don’t
cross each other.
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Figure 4.4: Adaptive Capon (2 non-crossing sources and 4 sensors with SNR
= 20dB)

Interpretation of results: In Fig.4.4, the blue solid lines rep-
resent the DoAs’ estimates provided by the adaptive Capon al-
gorithm and the red solid lines represent the original DoAs. As
illustrated, the proposed algorithm provides good estimates.
Let us also assess the performance of the Reduced Rank method
with the following experimental setup:

• Number of sources (L = 2) which don’t cross.

• Number of sensors (M = 10).

• Additive noise with a signal-to-noise ration SNR = 20dB.
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Figure 4.5: Reduced Rank method (2 non-crossing sources and 10 sensors
with SNR = 20dB)

Interpretation of results: In Fig.4.5, the blue dotted lines rep-
resent the DoAs’ estimates provided by the Reduced Rank ap-
proach and the red solid lines represent the original DoAs. As
shown, the Reduced Rank method provides estimates that are
close to the original DoAs.

Figure 4.6: Smoothed Reduced Rank method (2 non-crossing sources and 10
sensors with SNR = 20dB)
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Interpretation of results: Fig.4.6, contains on the same plot
the original DoAs (red solid lines) and the DoAs’ estimates pro-
vided by the Reduced Rank method which have been smoothed
using a Kalman filter (see Section 4.6) (green dotted lines). In-
deed, the variations due to the learning rate were reduced, yet the
green curves still don’t fit the red curves, we do observe a bias.

Crossing case

Herein, we kept the same configuration (L = 2 sources, M = 4
sensors and SNR = 20dB) but where the two sources cross each
other.

Figure 4.7: Adaptive Capon (2 crossing sources and 4 sensors with SNR =
20dB)

Interpretation of results: Fig.4.7 displays the time variation
of the estimated DoAs (blue solid lines) versus the original DoAs
(red solid lines). As demonstrated in the figure, the algorithm fails
in providing correct estimates after a while. This is related to the
fact that the difference between the two DoAs becomes less than
the MVDR filter resolution making the distinction impossible.
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This problem can be partially solved using a Kalman filter as
shown in Fig.4.8.

Figure 4.8: Smoothed Adaptive Capon (2 crossing sources and 4 sensors with
SNR = 20dB)

Interpretation of results: In Fig.4.8, the green solid lines rep-
resent the DoAs’ estimates provided by the adaptive Capon al-
gorithm which were smoothed by the Kalman filter, and the red
solid lines represent the original DoAs. As illustrated, the green
curves approach the red curves and almost fit them.
In what follows, we added a third source to the previous configu-
ration regarding the Reduced Rank method, i.e. L = 3 sources,
M = 10 sensors and SNR = 20dB, but where two of the three
sources cross each other.
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Figure 4.9: Reduced Rank method (2 crossing sources among 3 and 10 sensors
with SNR = 20dB)

Interpretation of results: Fig.4.9 displays the time variation of
the estimated DoAs using the Reduced Rank algorithm (blue dot-
ted lines) versus the original ones (red solid lines). As illustrated,
the algorithm tracks the first source with some variation related
to the learning rate. Meanwhile, it fails in providing correct esti-
mates for the remaining sources due to resolution problem.

Figure 4.10: Smoothed Reduced Rank method (2 crossing sources among 3
and 10 sensors with SNR = 20dB)
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Interpretation of results: Fig.4.10 contains the smoothed es-
timates of the DoAs (green dotted lines) and the original DoAs
(red solid lines) on the same plot. In this context, we tried to re-
duce the fluctuations of the estimates of the DoAs and also solve
the resolution problem using a Kalman filter (see Section 4.6). We
succeeded regarding the first source, as its green curve approaches
the red curve, but failed in doing so for the other sources.

4.8 Conclusion

In this chapter, we have presented the adaptive version of the
MVDR filter and the Reduced Rank method which were both
cascaded with a Kalman filter in order to track moving targets.
Furthermore, the advantage of the adaptive MVDR filter is its
higher resolution compared to the conventional beamformer. Re-
garding the Reduced Rank technique, its advantage resides in the
fact that it reduces the computation complexity. Nevertheless,
the shortcoming of the first approach is its numerical complexity,
since it doesn’t perform a dimension reduction unlike the second
method. As for the Reduced Rank method, its disadvantage would
be the fact that it restricts the degrees of freedom of the spatial
filter which it is looking for, since it imposes a certain form on the
latter (see Equation 4.14).
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Chapter 5

Estimation of time varying
Directions of Arrival using the
adaptive version of the MUSIC
algorithm

5.1 Introduction

This chapter focuses on the adaptive version of the MUltiple SIg-
nal Classification (MUSIC) algorithm [8] which extends the appli-
cation of the latter to a non-stationary environment.

It is structured as follows: In Section 5.2, the data model is re-
called again. Section 5.3 provides the reader with details about the
MUSIC algorithm, followed by its extension to the non-stationary
case in Section 5.4. Simulation results are presented in Section
5.5, and finally, Section 5.6 concludes the chapter.

5.2 Data Model

Consider again a uniform linear array of M sensors spaced by half
a wavelength, which receives plane waves emitted by L moving
narrowband sources from time-varying directions {θ1(t), . . . , θL(t)}.
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Let x(t)=
[
x1(t), . . . , xM(t)

]T be the sensor vector which can
be modeled as:

x(t) = A(t)s(t) + n(t) (5.1)

where
A(t) =

[
a(θ1(t)), . . . , a(θL(t))

]
(5.2)

is the M × L steering matrix which consists of the vectors

a(θi(t)) =
[
1, e−jπ sin θi(t), . . . , e−j(M−1)π sin θi(t)

]T (5.3)

and
s(t) = [s1(t), · · · , sL(t)]T (5.4)

is an L-dimensional vector containing the source waveforms. n(t)
is the sensor noise vector, which is assumed to be Gaussian with
zero-mean and variance σ2.

5.3 Insight into the MUSIC algorithm

The MUltiple SIgnal Classification algorithm [8] was first intro-
duced in the stationary case. It is a subspace-based method which
exploits the eigenstructure of the covariance matrix:

Rx = E[x(t)x(t)H ] (5.5)

Rx = UDUH =
[
Us Un

] [Λs 0
0 σ2I

] [
UH
s

UH
n

]
(5.6)

where:

• Us is an M × L matrix which contains L eigenvectors corre-
sponding to the L greatest (major) eigenvalues.

• Un is an M × (M − L) matrix which contains M − L eigen-
vectors corresponding to the minor eigenvalues.

• Λs is an L× L diagonal matrix whose diagonal elements are
the " signal " eigenvalues.
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• σ2I is an (M−L)×(M−L) diagonal matrix whose diagonal
elements are the " noise " eigenvalues.

The MUSIC algorithm estimates the DoAs by searching through
the set of all possible steering vectors and find those that are
orthogonal to the noise subspace (the subspace spanned by the
minor eigenvectors), i.e.:

UH
n a(θ) = 0 for θ = θ1, . . . , θL (5.7)

In practice, a(θ) will not be exactly orthogonal to the noise sub-
space due to errors in estimating Un. Nevertheless, the MUSIC
spectrum

PMUSIC(θ) =
1

a(θ)HUnUH
n a(θ)

(5.8)

presents a peak when θ is equal to the DoA of one of the incoming
signals.

5.4 Adaptive MUSIC

This section introduces the adaptive version of the MUSIC algo-
rithm. The mono-source case is considered first, then the multi-
sources one is discussed.

5.4.1 Mono-source case

Consider the case where L = 1 source radiates plane waves to-
wards a uniform linear array of M sensors spaced by half a wave-
length from a time-varying direction.

Assuming the slow variation of the DoA, the gradient ascent op-
timization method has been used in this adaptive version.

We first begin by initializing our algorithm using a batch of length

54



N0 where we assume stationarity and ergodicity in order to esti-
mate the initial covariance matrix as:

R̂0 =
1

N0

N0∑

n=1

x(n)x(n)H

We then estimated the initial value of the DoA as:

θ̂0 = argmax
θ

J(θ) = argmax
θ

a(θ)HUsU
H
s a(θ) (5.9)

Proof: In the MUSIC algorithm, the DoAs are estimated by:

min
θ

a(θ)HUnU
H
n a(θ)

= min
θ

a(θ)H(I −Πs)a(θ)

where Πs is the projector of the signal subspace defined as:

Πs = UsU
H
s (5.10)

After a workout of the previous equation, we obtain:

min
θ

||a(θ)||2 − a(θ)HUsU
H
s a(θ)

which is equivalent to:

max
θ

a(θ)HUsU
H
s a(θ)

Secondly, we tracked the signal subspace using the OPAST algo-
rithm [18] (see Appendix A.2 for more details).

Finally, we fed θ̂0 to our adaptive gradient ascent algorithm:

θ̂n = θ̂n−1 + µ · ∇J(θ̂n−1)

which will search for the values of θ that maximize the objective
function J(θ) and where:
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• µ is the learning rate.

• ∇J(θ) = da(θ)H

dθ UsU
H
s a(θ) + a(θ)HUsU

H
s
da(θ)
dθ is the gradi-

ent of J(θ).

5.4.2 Multi-source case

We basically applied the aforementioned procedure to each source
separately, i.e. we first estimated the initial values of the DoAs us-
ing the MUSIC algorithm. Then, we fed them individually to our
adaptive gradient ascent algorithm as shown in the figure below:

Figure 5.1: Bloc diagram of adaptive MUSIC
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5.5 Simulation results

5.5.1 Mono-source case

Consider L = 1 source impinging on an array of M = 4 sensors
in the presence of an additive noise with a signal-to-noise ratio
SNR = 20dB and whose DoA’s variation is quadratic.

Figure 5.2: Adaptive MUSIC (1 source and 4 sensors with SNR = 20dB)

Interpretation of result: Fig.5.2 displays the time variation
of the estimated DoA (blue dotted line) versus the original DoA
(red solid line). Indeed, the blue curve approaches the red one,
meaning that the quadratic DoA was well estimated.

5.5.2 Multi-source case

Non-crossing case

Adaptive MUSIC can also be applied in the case where we have
multiple sources. For instance, let us have L = 2 sources, M = 10
sensors and SNR = 10dB and where the sources don’t cross each
other.
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Figure 5.3: Adaptive MUSIC (2 non-crossing sources and 10 sensors with
SNR = 10dB)

Interpretation of results: Fig.5.3 contains the plots of the esti-
mated DoAs (blue dotted lines) along with the original DoAs (red
solid lines) as a reference. The algorithm provides good estimates,
as illustrated.

Crossing case

Herein, we consider the case of M = 10 sensors, L = 3 sources
with an SNR = 10dB and where two of the sources cross each
other.
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Figure 5.4: Adaptive MUSIC (2 crossing sources among 3 and 10 sensors
with SNR = 20dB)

Interpretation of results: Fig.5.4 displays the time variation
of the estimated DoAs (blue dotted lines) versus the original ones
(red solid lines). As shown, the algorithm keeps a good track of
the first source throughout all the duration of observation. Nev-
ertheless, it fails in providing correct estimates for the second and
third sources after the crossing happens. This is due to the fact
that at the crossing point, the steering vectors of the 2nd and 3rd

sources, which span the signal subspace, have angles that are be-
low MUSIC’s resolution, making this subspace deficient. On the
other hand, the first source does not suffer from the aforemen-
tioned problem (since it doesn’t cross with any other sources),
that is why the tracking in its direction keeps going.
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Figure 5.5: Smoothed Adaptive MUSIC (2 crossing sources among 3 and 10
sensors with SNR = 20dB)

Interpretation of results: Fig.5.5 contains the smoothed esti-
mates of the DoAs (green dotted lines) and the original DoAs (red
solid lines) on the same plot. In this context, we tried to solve the
above problem using a Kalman filter (see Section 4.5), but it was
unsuccessful. This is due to the fact that the filter acts only on
the estimates of the DoAs and does not bring a correction to the
estimated signal subspace.

5.6 Conclusion

In this chapter, we have presented the adaptive version of the
MUSIC algorithm which was cascaded with a Kalman filter in
order to track moving targets. Moreover, the advantage of this
method is its high resolution. Nonetheless, its downfall is none
other than its incapability to resolve the underdetermined case,
since both the signal and noise subspaces cannot be generated if
the number of sensors is less than the number of sources, which is
not the case of the Instantaneous Frequency based DoA estimation
technique of Chapter 3.
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Chapter 6

Conclusion

In this project, we addressed the problem of estimating time-
varying directions of arrival. For this purpose, we introduced four
approaches.

The first one uses the instantaneous frequency estimates of the
array outputs. Its advantage is its ability to solve the under-
determined case, besides not suffering from the crossing sources
problem. Its first version is a batch technique. It could be made
adaptive by using online instantaneous frequency estimation al-
gorithm to cope with the tracking issue. This first contribution
gave rise to the publication of a conference article at the 16th

edition of the International Symposium on Signals, Circuits and
Systems [19].

The material in Chapter 4 proposed two additional tracking meth-
ods, the adaptive version of the MVDR filter on one hand and the
Reduced Rank technique for computational complexity reduction
on the other hand. This chapter also gave details on how the
Kalman filter can be implemented in order to smooth the DoAs
estimates.

Finally, Chapter 5 focused on extending the MUSIC algorithm to
the non-stationary case. Nevertheless, the latter suffers from the
crossing sources problem, even after applying the Kalman filter.
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6.1 Interesting directions for future research

• Extending the instantaneous frequency based estimation of
time-varying DoAs algorithm to a tracking one using an effi-
cient online instantaneous frequency estimator.

• Developing an algorithm that corrects the adaptively esti-
mated signal subspace.
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Appendix A

A.1 Fractional Fourier Transform

A.1.1 Motivation

Several joint time-frequency distributions have been developed
throughout the years in order to extract the characteristics of
non-stationary signals, i.e. signals whose frequency content varies
with time.

Some of the representations, such as the Wigner-Ville distribu-
tion, suffers from the cross-terms which may hide some of the
auto-terms. In general, the auto-terms might be oriented in a di-
rection on some angle in the time-frequency plane, in which case
the axes of maximum signal width do not correspond to time or
frequency. These rotated axes, corresponding to the maximum
signal width, are referred to as the principal axes. Rotation of
time-frequency representations has shown a better reduction of
cross-terms without too severely degrading the auto-terms than
the corresponding, original time-frequency representations. [20]

A.1.2 Definition and interpretation

The fractional Fourier transform (FRFT), defined by equation
(3.13), is a generalization of the Fourier transform with an ad-
justable parameter α which is interpreted as a rotation by an
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angle α in the time-frequency plane.

In time-frequency representations, one normally uses a plane with
two orthogonal axes corresponding to time and frequency respec-
tively. If we consider a signal x(t) represented along the time axis
and its Fourier transform X(f) represented along the frequency
axis, we can view the Fourier transform as a change in the rep-
resentation of the signal corresponding to a counterclockwise axis
rotation of π

2 rad. In this context, the FRFT has been introduced
to allow a rotation by an angle α that is not necessarily a multiple
of π

2 , or in other terms a representation of the signal along an axis
u making an angle α with the time axis. [21]

Figure A.1: Time-frequency plane and a set of coordinates (u, v) rotated by
an angle α relative to the original coordinates (t, w)

A.2 OPAST

A.2.1 Motivation

Subspace estimation occupies an important place in various signal
processing applications, such as system identification, data com-
pression and in our case direction finding.

The Orthonormal Projection Approximation and Subspace Track-
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ing (OPAST) is an algorithm that estimates and tracks the signal
subspace.

A.2.2 Definition and interpretation

The OPAST algorithm provides a solution to the following con-
strained optimization problem :

{
minW J(W ) = minW E[||x(t)−W (t)W (t)Hx(t)||2]
W (t)HW (t) = I

where:

• x(t) is the sensor vector (see Section 3.2)

• W (t) is an M ×L matrix, where L is the number of sources.

Its iterative solution, whose columns span the signal subspace, is
given by:

W (i) = W (i− 1) + p′(i)q(i)H

The OPAST algorithm is summarized in the table below:

Algorithm 1 OPAST
W (i) = W (i− 1) + p′(i)q(i)H

q(i) = 1
β
Z(i− 1)y(i)

y(i) = W (i− 1)Hx(i)
γ(i) = 1

1+y(i)Hq(i)

Z(i) = 1
β
Z(i− 1)− γ(i)q(i)q(i)H

p(i) = γ(i)(x(i)−W (i− 1)y(i))
τ(i) = 1

||q(i)||2 (
1√

1+||p(i)||2||q(i)||2
− 1)

p′(i) = τ(i)W (i− 1)q(i) + (1 + τ(i)||q(i)||2)p(i)

• β is the forgetting factor

• Z(i)
def
= (W (i− 1)HRx(i)W (i− 1))−1
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Abstract— This paper addresses the problem of estimat-
ing time-varying directions of arrival. It demonstrates how
the concept of instantaneous frequency can be employed
for this purpose. The proposed approach can localize more
sources than the number of available sensors. It also theo-
retically allows the estimation of any angular time variation.
Herein, we consider linear and hyperbolic time variations,
which, in practice, take into account velocity and accelera-
tion, respectively. Numerical experiments are conducted to
validate the effectiveness of the proposed method.

Index Terms— Directions of arrival, linear time varia-
tion, hyperbolic time variation, instantaneous frequency,
angular instantaneous frequency.

I. INTRODUCTION

Directions of arrival (DoA) estimation in array signal
processing is an active research area with applications
in wireless communications, radar, sonar, speech, navi-
gation, seismology and other fields.

When directions of arrival are time-varying, either due
to moving sources, or moving sensors, or even both,
high resolution approaches such as the MUltiple SIgnal
Classification (MUSIC) method [1], the Estimation of
Signal Parameters via Rotational Invariance Techniques
(ESPRIT) algorithm [2] or either the subspace approaches
in the time frequency domain [3], [4] fail in providing
correct estimates as the latter assume constant DoAs.
If the time variation is rather slow, algorithms such as
Kalman filter can be used [5] to track the DoAs.

In this paper, we propose to solve the problem of
estimating the time varying DoAs by resorting to the
instantaneous frequencies estimates of the array outputs.
In contrast to the above aforementioned techniques, the
proposed approach allows solving the underdetermined
case where the number of sources is greater than the
number of sensors. In addition, the proposed techniques
can estimate any angular time variation, even hypothetical

one as for example a cubic time variation. Our numeri-
cal experiments consider also linear and hyperbolic time
variations, which, in practice, take into account velocity
and acceleration, respectively. The conducted simulations
show that the performance of the proposed approach rely
on the efficiency of the used instantaneous frequency
estimation technique.

The paper is organized as follows: Section II provides
the signal model under consideration, the proposed so-
lution is presented in Section III, simulation results are
presented in Section IV, and finally, Section V concludes
the paper.

II. SIGNAL MODEL

Consider a uniform linear array of M sensors spaced
by half a wavelength, which receives plane waves emit-
ted by L moving narrowband sources from time-varying
directions {θ1(t), . . . , θL(t)}.

Let x(t)=
[
x1(t), . . . , xM (t)

]T be the sensor vector
which can be modelled as:

x(t) = A(t)s(t) + n(t) (1)

where
A(t) =

[
a(θ1(t)), . . . ,a(θL(t))

]
(2)

is theM×L steering matrix which consists of the vectors

a(θi(t)) =
[
1, e−jπ sin θi(t), . . . , e−j(M−1)π sin θi(t)

]T
(3)

and
s(t) = [s1(t), · · · , sL(t)]T (4)

is an L-dimensional vector containing the source wave-
forms. n(t) is the sensor noise vector, which is assumed
to be Gaussian with zero-mean and variance σ2.

In the sequel, we propose to estimate the time variation
of the Directions of Arrival θi(t), i = 1, · · · , L through
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the estimates of the instantaneous frequencies [6] of the
sensor outputs xi(t), i = · · · ,M .

III. PROPOSED SOLUTION

Let us first consider the case ofL = 1 source in a noise-
free environment, it follows from equation (1), that:

x(t) = a(θ1(t))s1(t) (5)

And by considering the source signal s1(t) as analytic,
i.e. s1(t) = b1(t)e

jϕs1 (t), together with equation (3), we
obtain the following observation vector:

x(t) =




x1(t)
x2(t)

...
xM (t)


 = b1(t)




ejϕs1
(t)

ej(−ϕ1(t)+ϕs1
(t))

...
ej(−(M−1)ϕ1(t)+ϕs1 (t))


 (6)

Where
ϕ1(t) = π sin θ1(t) (7)

denotes the electrical angle of the source under con-
sideration. It appears clearly from equation (6) that the
instantaneous phase of the ith sensor signal is given by

ϕxi
(t) = −(i− 1)ϕ1(t) + ϕs1(t)

And its instantaneous frequency is given by :

fxi
(t) = −(i− 1)

1

2π

dϕ1(t)

dt
+ fs1(t) (8)

Accordingly, one obtains the following vector whose en-
tries are the instantaneous frequencies of the M sensor
signals:




fx1
(t)

fx2
(t)
...

fxM
(t)


 =




fs1(t)

− 1
2π

dϕ1(t)
dt + fs1(t)

...
−(M − 1) 1

2π
dϕ1(t)
dt + fs1(t)


 (9)

By subtracting the instantaneous frequency of the first
sensor signal from the M-1 other sensor signals, one gets
the following new vector:




fx2
(t)− fx1

(t)
fx3

(t)− fx1
(t)

...
fxM

(t)− fx1
(t)


 =




− 1
2π

dϕ1(t)
dt

−2 1
2π

dϕ1(t)
dt

...
−(M − 1) 1

2π
dϕ1(t)
dt




(10)

= − 1

2π

dϕ1(t)

dt




1
2
...

M − 1


(11)

In order to extract the first derivative of the elec-
trical angle ϕ1(t), we multiply both sides of (11) by[
1 2 . . . M − 1

]
, which leads to:

[
1 2 . . . M − 1

]




fx2
(t)− fx1

(t)
fx3

(t)− fx1
(t)

...
fxM

(t)− fx1
(t)




= − 1

2π

dϕ1(t)

dt

M−1∑

i=1

i2

Finally, the ”angular instantaneous frequency” is then
estimated as:

1

2π

dϕ1(t)

dt
= −

∑M−1
i=1 i(fxi+1

(t)− fx1
(t))

∑M−1
i=1 i2

= −6
∑M−1

i=1 i(fxi+1
(t)− fx1

(t))

M(M − 1)(2M − 1)
(12)

By applying to the estimated angular instantaneous
frequency of equation (12) an integrator filter whose z
transfer function is given by:

H(z) =
Ts
2

1 + z−1

1− z−1

where Ts is the sampling period, one obtains an estimate
of the electrical angle ϕ̂1(t) up to 2π constant. Since the
electrical angle and the direction of arrival of the source
are related by (7), one can also estimate θ̂1(t).

In the case of several sources, one has to estimate
first the instantaneous frequency of each source at each
sensor and then apply the above procedure for each source
separately. In this paper, we use the Fast IF algorithm of
reference [7] as estimation technique of the instantaneous
frequencies of the multi-component signal.

In the simulation section, it is shown that the proposed
procedure solves the DoA estimation problem in the case
of more sources than the number of available sensors
and allows estimating any angular time variation, even
hypothetical one.

IV. SIMULATIONS AND RESULTS

The performance of the proposed algorithm are as-
sessed using synthetic signals. For this purpose, we first
consider L = 1 source impinging, in the absence of noise,
on an array of M = 4 sensors and whose direction of
arrival varies linearly, i.e. θ1(t) = αt, where α was set to
equal 0.8. The time variation of the estimated DoA versus
the original one is shown in Fig.1.
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Fig. 1. Estimated DoA vs Original DoA (1 source and 4 sensores)

Fig. 2. 2 sources and 10 sensors with SNR = 20dB

Fig.2 illustrates the extension to the multi source sce-
nario with the following experimental setup:

• Number of sensors (M=10)
• Quadratic and cubic variations of the two sources,
θ1(t) = 10t2 and θ2(t) = 15t3, respectively.

• Additive noise with a signal-to-noise ratio SNR =
20dB.

The obtained results show that the proposed approach
allows estimating quadratic angular time variation that
is related to angular acceleration in practice and also a
hypothetical cubic angular time variation.

More sources than the number of available sensors:

Herein, we consider the case of 2 sensors and 3 sources
with an SNR = 20dB. Figures 3 and 4 display the es-
timates of the instantaneous frequencies of the 1st sensor

Fig. 3. IF estimates of the 1st sensor signal

Fig. 4. IF estimates of the 2nd sensor signal

signal and the 2nd sensor signal, respectively, while using
the Fast IF algorithm [7].

Fig. 5 shows the ability of our suggested method to
address the underdetermined case where 3 time varying
directions of arrival have been estimated using only 2
sensors.

V. CONCLUSION

A new approach for estimating time-varying DoAs
was proposed. The latter uses the estimates of the ar-
ray outputs’ instantaneous frequencies, followed by an
integrator filter. Indeed, simulation results show that the
aforementioned combination allows estimating any an-
gular time variation, whether it is linear or hyperbolic
and even hypothetical variation such as a cubic one.
The proposed method allows solving the underdetermined
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Fig. 5. 3 sources and 2 sensors with SNR = 20dB

case, where the number of sources is greater than the
number of sensors. The proposed DoA estimation highly
depends on the efficiency of the chosen instantaneous
frequency estimation technique. In this paper, we have
used the Fast IF algorithm [7] for such task. This first
version of the proposed DoA estimation approach is a
batch technique. An extension of the proposed approach
to a tracking one depends only on the use of an efficient
online instantaneous frequency estimation algorithm.
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