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Résumé
Dans ce travail, nous présenterons deux approches non asymptotiques d’estimation : la
méthode basée sur les fonctions modulatrices et les observateurs à convergence en temps
prescrit. Nous expliquerons les principes de bases de ces dernières et illustrerons leurs
performances à travers des exemples illustratifs. Nous nous attarderons sur les observa-
teurs basés sur les fonctions modulatrices pour acquérir une compréhension profonde de la
méthode et se familiariser avec. Nous proposerons une extension de cet observateur a une
nouvelle classe de systèmes non linéaires. À titre d’application de l’extension proposée,
nous nous intéresserons à une problématique introduite récemment : La commande de
la position d’un drone dans un environnement mobile. Nous traiterons dans un premier
temps la partie contrôle de la problématique pour ensuite passer à la partie estimation.
Pour démontrer les performances de l’observateur basé sur les fonctions modulatrices,
nous le comparerons avec deux autres observateurs largement utilisés dans la littérature.

Mots clés: Stabilité en temps fini, observateurs, stabilité en temps prescrit, stabilité en
temps fixe, méthode basée sur les fonctions modulatrices, drone.

Abstract
In this work, we’ll present two non-asymptotic approaches for estimation: the modulat-
ing function-based method for estimation and observers with prescribed-time convergence.
We’ll explain the basic concepts of the latter and illustrate their performance through il-
lustrative examples. We will dwell on observers based on modulating functions to gain
a deep understanding of the method and become familiar with it. We will propose then
an extension of the observer to a new class of nonlinear systems. As an application of
the proposed extension, we will focus on a recently introduced problem: Controlling the
position of a drone in a mobile environment. Initially, we’ll deal with the Control part
of the problem, before moving on to the Estimation part. In order to demonstrate the
performance of the observer based on the modulating functions, we’ll compare it with two
other observers widely used in the literature.

Keywords: Finite time stability, observers, prescribed time stability, fixed-time stability,
modulating functions based method, drone.
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General introduction

"Measure what is measurable, and make measurable what is not so"
Galileo Galilei, 1564- 1642, Italy.

Precise knowledge of a system’s model parameters and states is crucial to solving many
control theory problems. To achieve this, sensors can be used for each variable we wish to
know about, providing dynamics independent of those of the observed system. However,
the sensors must be capable of acquiring measurements faster than the fastest dynamics
of the system. For example, to take a sharp picture of a moving vehicle, the exposure time
needs to be very short. However, there are a number of reasons why it may not be possible
to use sensors exclusively. Firstly, sensors can be expensive. In addition, some sensors
may be too slow compared to the dynamics of the variable to be measured, as in the case
of a camera-based perception system requiring sophisticated image processing. Finally,
in some applications, there may be no sensor available to measure the desired physical
quantity, or even the variable we wish to know has no physical significance. Fortunately,
there are ways of obtaining this information indirectly, using mathematical estimation
techniques and state observers. Essentially, this involves recreating the system’s internal
behavior from external measurements.

By definition, a state observer is an algorithm designed to allow the convergence of state
estimation dynamics towards their real values. The first observer was introduced by
Kalman [36], and the concept was generalized by Luenberger [47] for deterministic linear
systems. From this point onwards, observers and estimators have been widely developed
and studied. The concept has been generalized to different classes of nonlinear systems,
and numerous applications have since emerged [26] [38] [71] [9][84]. However, these ob-
servers are designed to work in systems where all inputs are known and measurable. Yet in
many practical cases, the system behavior is affected by disturbances or non-measurable
inputs. These disturbances can come from a variety of sources, such as external forces,
environmental factors or unmodeled dynamics. When unknown inputs are present, con-
ventional state observers cannot provide an accurate estimate of the system’s state. This
is where state observers with unknown inputs come into play. These observers are de-
signed to estimate the state of the system taking into account the unknown inputs, thus
providing a better estimate of the overall state [56] [34] [51]. These observers are also
used for fault detection by generating residuals [59] [20]. Today, observers and estimators
are considered as digital sensors and are used in various applications.
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The earliest estimators were designed for asymptotic convergence only. This means that,
in theory, it would take an infinite amount of time for the estimation error to be resolved,
which is sufficient for many applications. However, the evolution of technology has shown
the limits of such asymptotic convergence in many applications, and thus demonstrated
the need to achieve state estimation within a specific lapse of time. The problem of
observing systems within specified time limits referred to as non-asymptotic observation
presents an intriguing challenge in both control theory [25] [4] and practical applications,
for example in [63] where they formalized the problem of finite time chaos synchronization
to secure data transmission as a nonlinear finite-time observer design which relies on the
homogeneity properties of nonlinear systems. Finite-time observation offers a straightfor-
ward approach to achieve the separation principle, which allows the design and analysis of
control and observation algorithms independently. Moreover, in numerous control systems
problems, the transition processes are strongly restricted in time. For instance, walking
robots for which each step has to be obviously achieved in a finite time [6][65]. This
research field is currently booming.

Several observers that converge in finite time have been proposed [50] [85],[46], but with-
out any doubt one of the most interesting techniques for non-asymptotic estimation must
be the modulating functions based method for estimation, first introduced in [77] for
parameter identification of ordinary differential equations, it has recently been extended
to estimate both the state and the unknown input in real time for a restricted class of
nonlinear systems [87]. This method transforms the complex non-asymptotic estimation
problem into a linear algebraic system. It also allows getting rid of the initial conditions,
which are often unknown. It has also provided good robustness properties, which is im-
portant in presence of noisy data [75].

Objectives

The first objective of this thesis is to contribute to improving the observation techniques
based on modulating functions by proposing an extension of the current methods to a
new, more general class of nonlinear systems. This extension makes it possible to estimate
both the states and the unknown inputs of these systems.

The second objective of this work is to take a look into observers that ensure the sta-
bilization of the estimation error within a finite time prescribed by the user in advance,
independently of initial conditions and system’s parameters, as well as analyze their per-
formance.

Our third objective on one hand is to illustrate our extension of the modulating functions
based observer through an example, and on the other hand, contribute to a problem re-
cently tackled for the first time in [49] which deals with the position control of a drone
flying in a moving environment by combining the proposed modulating functions based
estimator with a sliding mode controller in a closed-loop to ensure tracking of the desired
reference in this moving environment. Numerical results will be presented using noisy
measurements to demonstrate the efficiency and robustness of the proposed method. In
addition, the performance of the proposed method will be compared to the Extended
Kalman filter with unknown input (EKF-UI) and to a sliding mode observer, in or-
der to highlight its suitability and advantage over these classical approaches. We will
also contribute to the problem of UAV’s (unmanned aerial vehicle) position control in a
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non-inertial reference frame by implementing a new controller, namely, the backstepping
controller and do a quick comparison with the sliding mode controller already developped
in [49].

Description of the work

This report consists of six chapters, in addition to the general introduction and conclu-
sion. Chapter 1 begins with a review of the concepts and definitions of classical stability
according to Lyapunov, as well as existing theorems for studying its properties. We then
turn to the subject of finite-time stability in its various forms, highlighting the distinction
between classical asymptotic convergence and non-asymptotic convergence.

Chapter 2 is devoted to a literature review of dynamical observers. We will start by ex-
amining the notion of the system’s observability, then review asymptotically converging
observers for linear and nonlinear systems, as well as the non-asymptotically converging
observers existing in the literature.

Chapter 3 focuses on estimation using the modulating function approach. First, we in-
troduce the modulating function approach. We’ll start by defining what a modulating
function is, highlighting its properties, then present the different types of modulating func-
tions that exist and explain the estimation approach, which we’ll illustrate with a com-
prehensive example. Once we’ve familiarized ourselves with the principle, we’ll present
algorithms based on this approach for parameter identification, as well as for the estima-
tion of unknown states and inputs. Finally, we’ll present our contribution, which consists
in extending the unknown-input observer based on modulating functions to a new, more
general form of nonlinear systems.

In Chapter 4, we’ll look at a specific type of finite-time observer, namely the prescribed-
time observer. We begin by establishing the necessary preliminaries, then present the
principles on which this observer is built. Next, we describe the method for designing this
observer for a certain class of linear and nonlinear systems, as proposed in [33] and [5]
respectively.

In Chapter 5, we tackle the problem of controlling the relative position of a drone in a
moving environment as an illustrative example of our extension of the observer based on
the modulating functions. We’ll start by presenting the drone model expressed in the
non-inertial reference frame (moving environment), as developed in [49]. We’ll then focus
on the "control" part of the problem. We will design a controller based on sliding modes,
as already realized in [49], as well as a controller based on the Backstepping method.
Finally, we’ll compare the performance of the two controllers.

The Chapter 6 will focus on the "estimation" part of the problem of controlling the rel-
ative position of a UAV in an inertial reference frame. We will combine our extension
of the modulating function-based observer with the sliding mode controller designed in
the previous chapter. To evaluate the effectiveness of this approach, we will compare the
performance of our method with that of the EKF-UI and the super twisting sliding mode
observer.

A general conclusion will summarize the work carried out, the main results obtained as
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well as some potential perspectives and future work.

To show the relevance of the work conducted in this thesis, the main contributions are
summarized in the following:

• An extension of the MFBM observer for state and unknown inputs to a new class
of broader multi output nonlinear systems is developed.

• Improve the robustness of the estimation of unknown inputs.

• A backstepping controller is implemented to control the relative position of an UAV
in a non-inertial frame of reference.

• A combination of the extended MFBM observer and a sliding mode controller is
implemented to the drone problem.

• A comparative study is conducted between the extended MFBM observer, EKF-UI
and the super twisting sliding mode controller in the context of the drones relative
position control.
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Chapter 1
Stability of dynamical systems



1.1 Introduction
Stability analysis plays an essential role in the design of control laws and observers for
systems. It is a subject of great importance to researchers in the field of control theory.
The literature offers numerous notions of stability, depending on the nature of the system
under study, the desired performance and the environment in which the system operates.
Stability in the Lyapunov sense is one of the best-known forms of stability, introduced
in 1892 by Alexander Mikhailovïch Lyapunov [48]. However, there are other notions of
stability that are used to solve specific practical cases, such as input-state stability (ISS)
[37] and practical stability [42]. All these notions generally deal with asymptotic conver-
gence. However, some applications require convergence in finite time, for example in the
case of a walking robot where each step must be completed in a given time [66]. In re-
cent years, this type of stability has attracted more attention from researchers, leading to
the development of several approaches based on this notion. Finite-time stability means
that the solutions of the dynamical system reach the equilibrium point exactly within a
finite time. This type of stability, sometimes called "non-asymptotic stability" to avoid
confusion, should not be confused with finite-time stability, which refers to stability over
a finite time interval, as described in [43]

We begin this chapter with a reminder of the notions and definitions of stability in the
Lyapunov sense. Next, we introduce finite-time stability under all of its variants, with
the aim of giving a clear and concise understanding of the difference between standard
asymptotic convergence and non-asymptotic convergence, along with the mathematical
and practical implications of both concepts.

1.2 Stability in the sense of Lyapunov
The definitions below [37] [55] are given by considering non-autonomous systems governed
by the following differential equation system :

#

ẋ = f(t, x(t)),

x(t0) = x0.
(1.1)

Hypothesis 1 : The function f : Rě0 ˆRn Ñ Rn is continuous in t, locally Lipschitzian
in x on the domain of study D Ă Rn containing the origin guaranteeing the unicity of the
solution of the system (1.1).

The basic concept when studying the stability of any system is the concept of the equi-
librium point.

Definition 1.2.1 :(Equilibrium point) The point xe is said to be an equilibrium point
for the system (1.1) if xe verifies :

f(t, xe) = 0.

Remark 1.2.1 : For the remainder of this document, we will give all the definitions and
theorems for the case where the equilibrium point corresponds to the origin of Rn without
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(a) Unstable equilibrium point (b) Stable equilibrium point

Figure 1.1: Illustration of the intuitive definition of stability [55].

loss of generality.

Definition 1.2.2 :(Intuitive notion of stability) If the system is initially "slightly" dis-
turbed from its equilibrium point and the system remains "close" to this equilibrium point.
In this case, the equilibrium point is said to be stable.

So it’s the system’s ability to stay close to the equilibrium point in the presence of external
disturbances. Figure (1.1) visualizes this concept: if the ball in Figure (1.1.(a)) is pushed
even slightly, it will move indefinitely away from its equilibrium point, it’s an unstable
equilibrium point, whereas the ball in the Figure (1.1.(b)) will always remain close to its
equilibrium position, it’s a stable equilibrium point.

Definition 1.2.3 :(Stability in the sense of Lyapunov) The origin is said to be Lyapunov
stable (LS) if for each ε ą 0 and t0 ě 0 there exists δ = δ(t0, ε) ą 0 such that :

||x0|| ă δ ñ ||x(t)|| ă ε, @t ě 0,

i.e. for any t ě t0, the trajectory of the system resulting from a small perturbation around
the origin is always bounded by ε and remains close to the origin.

Remark 1.2.2 : The origin is said to be unstable in the Lyapunov sense if it is not stable
in the sense of Definition 1.2.3.

Definition 1.2.4 :(Attraction point) The origin is said to be :

- attractive equilibrium point if there exists r ą 0 such that :

||x0|| ă r ñ lim
tÑ+8

||x(t)|| = 0,

- globally attractive equilibrium point if :

@||x0|| P Rn
ñ lim

tÑ+8
||x(t)|| = 0.

In the case of local attractivity, we call the region around the origin defined by r : Region
of attractivity, if the state of the system is changed while remaining inside this region, it
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will return to the origin after a certain time, even if it’s after an infinite time. In the case
of global attractivity, the whole space Rn is considered as Region of attractivity.

Definition 1.2.5:(Asymptotic stability) The origin is said to be :

- asymptotically stable equilibrium point (AS), if it is stable and attractive.

- globally asymptotically stable equilibrium point (GAS), if it is stable and globally
attractive.

Definition 1.2.6 :(Uniform Boundedness) The solutions of the system (1.1) are said
uniformly bounded, if : Da ě 0 and an increasing function c :]0, a[Ñ R such that @α P]0, a[,

||x0|| ă α ñ ||x(t)|| ă c(α), @t ě t0,

The solutions are said globally uniformly bounded, if the previous property holds for
a = +8.

Definition 1.2.7 :(Uniform stability) The origin is said to be a :

- uniformly stable equilibrium point (US) if : @ε ą 0, Dδ = δ(ε) ą 0, such that
@t+ 0 ě 0,

||x0|| ă δ ñ ||x(t)|| ă ε, @t ě t0 ě 0.

- globally uniformly stable equilibrium point (GUS), if it is uniformly stable and the
solutions of the system are globally uniformly bounded.

Definition 1.2.8 :(Uniform attractivity) The origin x = 0 is said to be :

- uniformly attractive equilibrium point (UA), if : Dc ą 0/@||x0|| ă c, @ε ą 0, DT :=
T (ε, c) such that

||x(t)|| ă ε, @t ě T + t0.

- globally uniformly attractive equilibrium point (GUA), if :@c ą 0, @ε ą 0, DT :=
T (ε, c) such that

||x(t)|| ă ε, @t ě T + t0.

Definition 1.2.9 :(Uniform asymptotic stability) The origin is said to be :

- uniformly asymptotically stable equilibrium point (UAS), if it is uniformly stable
and uniformly attractive.

- globally uniformly asymptotically stable equilibrium point (GUAS), if it is globally
uniformly stable and globally uniformly attractive.

Definition 1.2.10 (Exponential stability) The origin is said to be :

- exponentially stable equilibrium point (ES), if there exists α ą 0 such that, for every
ε ą 0, there exists ρ(ε) such that :

||x0|| ď ρ ñ ||x(t)|| ă ε||x0||e
´α(t´t0), @t ě t0 ě 0.
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- globally exponentially stable equilibrium point (GES), if there exists α ą 0 such that,
for every ε ą 0, we have :

@||x0|| P Rn
ñ ||x(t)|| ă ε||x0||e

´α(t´t0), @t ě t0 ě 0.

The exponential stability introduces a new concept to stability, namely the speed of con-
vergence. In fact, the ES induces that the system converges towards the origin faster than
an exponential, α is called in this case the rate of convergence.

Remark 1.2.3 : The Exponential stability implies asymptotic stability, which in turn im-
plies Lyapunov stability.

It may be noted that the above definitions of stability have a number of disadvantages :

- Explicitly calculating each solution of the system (1.1) corresponding to each initial
condition is very difficult.

- These definitions are expressed in mathematical terms that are not easy to verify.
(finding ε, δ, c, ρ, etc.)

Fortunately, there is a method for analyzing stability without having to integrate differ-
ential equations, further details can be found in A.

1.3 Finite time stability
Definition 1.3.1 :(Finite-time stability)[12][58][70] The origin of the system (1.1) is said
to be globally uniformly finite time stable (GUFTS) if it is US and attractive in finite time,
i.e there exists a locally bounded function T :Rn Ñ Rě0 Y 0 such that x(t, t0, x0) = 0 for
every t ě t0 + T (x0), where x(t, t0, x0) is a solution of (1.1) with x0 P Rn. The T function
is called settling time function of the system (1.1).

Definition 1.3.2 :(Fixed-time stability)[67] The origin of the system (1.1) is said to
be globally fixed-time stable (GFxTS) if it is GUFTS and the settling time function T is
globally bounded by a positive real Tmax ą 0, i.e

T (x0) ď Tmax, @x0 P Rn.

Remark 1.3.1 : the choice of Tmax is not unique, for example, if 0 ă T (x0) ď Tmax, we
can also write 0 ă T (x0) ď λTmax with λ ě 1. This drives us to define a set containing
all the upper bounds of the settling time function.

Definition 1.3.3 :(Settling time Set)[81] Suppose that the origin of (1.1) is GFxTs. The
set of all upper bounds of the settling time function is defined as follows

T = tTmax P Rě0 : T (x0) ď Tmax, @x0 P Rn
u.

We also define the minimum upper bound of the settling time function of (1.1) by :

Tf = minT = supx0PRnT (x0).
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For various applications such as state estimation, dynamic optimization and fault detec-
tion, it would be preferable for the system (1.1) to stabilize within a time Tc P T , defined
a priori as a function of the system parameters (denoted by ρ) Tc = Tc(ρ). This desirable
property motivates the definition of the stability in predefined time.

Definition 1.3.4 :(Predefined time Stability).[22] Denote by ρ the system parameters
of (1.1) and let Tc(ρ) ą 0 a design parameter. The origin of the system is said to be :

- Globally weakly predefined-time stable, if it is globally fixed time stable and if the
settling time function satisfies

T (x0) ď Tc, @x0 P Rn,

In this case, Tc is called weak predefined time.

- Globally strongly predefined-time stable, if it is globally fixed time stable and if the
settling time function satisfies

supx0PRn T (x0) = Tc, @x0 P Rn,

In this case, Tc is called strong predefined time.

Definition 1.3.5 :(Prescribed-time stability).[22] The origin of the system (1.1) is said
to be globally prescribed-time stable if it is GFxTS and if every nonzero trajectory reaches
the origin at exactly a desired user defined finite constant Tp after t0, i.e :

T (x0) = Tp, @x0 P Rn.

Remark 1.3.1 : Based on the Definitions presented above, we can distinguish several
finite-time stability criteria :

- Finite-time convergence refers to the situation where the settling time function
depends on the initial conditions of the system(1.1).

- Fixed-time convergence refers to the situation where the settling time function does
not depend on the system’s initial conditions, and is bounded.

- Predefined-time convergence refers to the situation where the settling time function
is bounded, but depends on the parameters of the control system.

- Prescribed-time convergence refers to the situation where the user can establish a
priori the desired convergence time, which is independent of initial conditions and
control system parameters.

The figure 1.2 summarizes the types of convergence presented in this chapter.

Example 1.3.1 :[62] Consider the following scalar systems such as rxuk = |x|ksign(x)

f1(x) = ´k0rxua0 , (1.2)
f2(x) = ´k0rxua0(1 + arctan(|x|)), (1.3)
f3(x) = ´(k0rxua0 +K8φa8

)(1 + ψ(x)), (1.4)

f4(x) = ´k0rxua0(1 + k1|x|
a8´a0

k2 )k2 . (1.5)
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Figure 1.2: Types of convergence [5].

f Stability T (x0))

f1(1.2) GUFTS = |x0|1´a0

k0(1´a0)

f2(1.3) GUFTS ď
|x0|1´a0

k0(1´a0)

f3(1.4) GFxTS ď
πcsc(

π(1´a0)
a8´a0

)

(a8´a0)k

a8´1
a8´a0
0 k

1´a0
a8´a0
8

f4(1.5) GFxTS ď
πcsc(

π(1´a0)
a8´a0

)

(a8´a0)k0k

k2(1´a0)
a8´a0

1

Table 1.1: Examples of functions f and their properties [62]

with ψ(x) a positive function, k0 and K8 are positive real numbers and a0 P]0, 1[, a8ą1.

The table (1.1) presents the properties of each system with respect to the type of stability
and the corresponding settling time function.
A logical extension of the previous theorems would be the application of Lyapunov func-
tions, a sufficient condition for finite-time stability can be found in appendix B.

1.4 Conclusion
The aim of this chapter was to highlight the difference between classical asymptotic sta-
bility, as commonly known, and finite-time stability. For this purpose, we presented a
reminder of classical stability in the Lyapunov sense of dynamical systems and then in-
troduced the various concepts of non-asymptotic stability and characterized each of them,
namely finite-time stability, fixed-time stability, predefined-time stability and prescribed-
time stability. Clearly, it is far more interesting to achieve finite-time convergence (ideally
prescribed-time) than to achieve the strongest form of asymptotic stability, namely expo-
nential stability.
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Chapter 2
Literature review on observers for
dynamical systems



2.1 Introduction
When it is not possible to measure one or more component of the state vector directly, it
is necessary to develop a program for estimating them, called an observer. The synthesis
of the observer is based on the measurements, the knowledge of the inputs and the model
of the system. However, observer synthesis is only possible if the system is observable.

The aim of this chapter is to introduce the problem of observing dynamical systems.
First, we will define the notion of observability, and then present a method for studying
the observability of nonlinear and linear systems. Next, we will review the state of the
art regarding the different approaches to synthesis observers, for both asymptotic and
non-asymptotic convergence, applied to linear and non-linear systems.

2.2 Observability
From the previous introduction, we can identify three basic concepts: the direct measure-
ment of the state vector, the indirect evaluation of these components and the possibility
of carrying out this indirect evaluation. The following definitions are given [18].

Definition 2.1.1 : The ability to measure a physical quantity is called the mesurability.

Definition 2.2.2 : A system’s observability is the ability to evaluate all the quantities
making up the state vector uniquely from measurements made on the system.

Definition 2.2.3 : The method for estimating the components of the state vector is
called observer.

In what follows, a more exact definition of observability is presented, along with a method
for investigating the latter for controlled systems of the form

#

ẋ(t) = f(x(t), u(t)),

y(t) = h(x(t), u(t)),
(2.1)

with f : Rn ˆ Rm Ñ Rn and h : Rn ˆ Rm Ñ Rp or n,m and p represents the dimension
of the state vector, inputs, and outputs respectively.

Definition 2.2.4:(Distinguishability)[14] Let y0(t) and y1(t) be two output signals gen-
erated by applying the input signal u(t) to the system (2.1) with initial conditions x0 and
x1 respectively. We say that x0 and x1 are distinguishable if

y(t, x0, u(t)) ‰ y(t, x1, u(t)), @t ě 0, for all u.

Otherwise, we say that x0 and x1 are indistinguishable.

Definition 2.2.5 :(Observability)[14] The system (2.1) is said to be observable in x0
if x0 is distinguishable from any x P Rn. Furthermore, the system (2.1) is said to be
observable if @x0 P Rn, x0 is distinguishable.

We can study the observability of a given linear or non-linear system following the method
given in C .
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2.3 State of the art of observers

2.3.1 Linear systems
Luenberger proposed in [47] a simple solution for estimating the state of linear systems
in a deterministic framework, while Kalman in [36] did so in a stochastic framework. In
both cases, we consider the following dynamic model of the linear system

#

ẋ(t) = Ax(t) +Bu(t) + ω(t),

y(t) = Cx(t) + ν(t),
(2.2)

where x(t) P Rn, u(t) P Rm and y(t) P Rp. A,B and C are matrices of appropriate
dimensions. ω(t) and ν(t) are two gaussian white noises with a mean equals to 0 and
respective covariances Q and R, they are assumed to be uncorrelated.

2.3.1.1 Luenberger observer

The basis of Luenberger’s theory of observation lies mainly on the pole placement method
. Let’s consider the system (2.2) and assume it’s observable, the noises ω and ν are zero.

The aim is to implement an asymptotic observer such that the estimate of x denoted x̂
converges to x. In other words, set up a dynamic function x̂ of the observable output y,
to ensure (x̂(t) ´ x(t)) Ñ 0 when t Ñ 8. The basic principle is to take an exact copy
of the dynamical system we wish to observe and add a correction term that takes into
account the observation error. In the case of a simple Luenberger observer, the correction
term is simply a gain L multiplied by the estimation error.

Figure 2.1: Explanatory diagram of how observers work in general

Definition 1.3.1 : A Luenberger observer x̂ of x is a solution of the system of the form

˙̂x = Ax̂(t) +Bu(t)
looooooomooooooon

a

+L(Cx̂(t) ´ y(t))
loooooooomoooooooon

b

, (2.3)

with L P Rnˆp is called the gain matrix, chosen such that

@x0, x̂0 P Rn, x̂(t) ´ x(t) Ñ 0 when t Ñ 8.
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Part (a) of the system (2.3) corresponds to the observed system dynamics, while part (b)
is the corrective term.

Let e(t) be the estimation error given by e(t) = x̂(t)´x(t), the dynamics of the prediction
error ė(t) is given by the following equation

ė(t) = (A+ LC)e(t), (2.4)

therefore, e(t) Ñ 0 when t Ñ +8, @e0 P Rp, if and only if the matrix A+LC is Hurwitz.
In order to design an asymptotic observer, we need to find a gain matrix L that makes
(A + LC) Hurwitz.

2.3.1.2 Kalman filter

In a deterministic environment (ω and ν are zero), Luenberger’s approach uses linear pole
placement techniques to choose the gain L so that the (ALC) matrix is Herwitz. The
Kalman approach, on the other hand, provides an optimal estimate in the sense of mini-
mum variance of the estimation error in a stochastic environment, based on the results of
optimal control by solving a Riccati equation and making use of the statistical properties
of noise.

Consider the system (2.2), the corresponding Kalman estimator is of the form

˙̂x(t) = Ax̂(t) +Bu(t) +K(t)(Cx̂(t) ´ y(t)). (2.5)

The dynamics of the observation error ė is written as

ė(t) = (A+K(t)C)e(t) +K(t)ν(t) ´ ω(t). (2.6)
The gain of the estimator is written as follows

K(t) = P (t)CTR´1, (2.7)
where P (t) is the symmetrical positive-definite solution of the Riccati equation

Ṗ (t) = AP (t) + P (t)AT ´ P (t)CTR´1CP (t) +Q. (2.8)
The Q and R matrices are constants used to model the noise affecting the system. The
Q matrix represents the noise covariance of the process, capturing fluctuations and errors
in the evolution of the system over time; a higher value of the Q matrix indicates greater
uncertainty in the prediction of the system state. The R matrix represents the covariance
of the noise in the measurements, i.e. the uncertainty associated with the actual mea-
surements from the sensors. A higher value in the R matrix indicates greater uncertainty
in the measurements.

The gain K(t) then minimizes the covariance matrix of the estimation error P (t) =
E(e(t)e(t)T ).
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2.3.2 Non-linear systems
For linear systems, the Kalman and Luenberger observers have given satisfactory results.
The Kalman filter is suitable for stochastic systems, as it minimizes the covariance matrix
of the estimation error, while the Luenberger observer is suitable for deterministic linear
systems.

However, state observation for non-linear systems is more complex, and there is currently
no universal method for designing observers. Existing approaches consist either of an
extension of linear algorithms, or of specific nonlinear algorithms. In the first case, the
extension is based on linearization of the model around an operating point. In the case of
specific non-linear algorithms, work on this subject has given rise to numerous estimation
algorithms. In the remainder of this chapter, we’ll look at a few of these approaches.

2.3.2.1 Extended observers

It is possible to apply certain linear techniques to nonlinear systems by calculating the
observer gain from the linearized model around an operating point. This is actually the
case for the extended kalman filter and the extended Luenberger observer.

A- Extended kalman filter (EKF)

The extended Kalman filter is a widely studied and popular state estimation method for
nonlinear dynamical systems. This approach involves applying the equations of the stan-
dard Kalman filter to a linearized nonlinear model using the first-order Taylor formula.
The EKF has proven its effectiveness in many types of nonlinear processes.

However, it should be noted that the stability and convergence proofs of the extended
Kalman filter cannot be generalized to all nonlinear systems. Moreover, the convergence
of this estimator is local, meaning that it is valid in a restricted neighborhood of the true
state. Analyzing the convergence of the extended Kalman filter remains an open problem,
and is the subject of a great deal of research.

A great deal of research has been devoted to analyzing the convergence of the extended
Kalman filter for nonlinear systems, and this has led to numerous publications and books
on the subject [16][30].

Consider the following nonlinear system
#

ẋ = f(x, u) + ω(t),

y = h(x, u) + ν(t).

The corresponding EKF is given by

ẋ = f(x̂, u) ´ P (t)H(x̂, u)R´1(h(x̂, u) ´ y),

Ṗ (t) = F (x̂, u)P (t) + P (t)F (x̂, u)T ´ P (t)H(x̂, u)TR´1H(x̂, u)P (t) +Q,

with
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F (x̂, u) =
Bf

Bx
(x̂, u),

H(x̂, u) =
Bh

Bx
(x̂, u).

B- Extended Luenberger observer

The extended Luenberger observer can be used for nonlinear systems using a linearized
model, either with constant gain via pole placement, or with state-dependent gain via
coordinate changes. However, these approaches have their limitations and are not always
applicable to all types of nonlinear systems. Coordinate change methods often require
the integration of nonlinear partial differential equations, which is difficult to achieve and
often necessitates the use of approximate solutions.

2.3.2.2 Change of base

This is a method that involves a change of coordinates to transform a non-linear system
into a linear one, making it easier to estimate the state of the system. Once the system
has been transformed, a Luenberger-type observer can be used to estimate the state of
the transformed system. Using the inverse coordinate change, it is then possible to es-
timate the state of the original system. This technique is commonly used in the design
of observers for non-linear systems, as it allows applying linear estimation approaches,
which are easier to analyze and control. However, it should be noted that this approach
is highly sensitive to modeling errors.

2.3.2.3 High-gain observers

High-gain observers are often used for Lipschitzian systems. They take their name from
the fact that the observer’s gain is chosen to be large enough to compensate for the
system’s non-linearity. This approach transforms a non-linear system into a linear one,
making it easier to estimate the state of the system [26] [38] [71]. High-gain observers
are particularly useful for non-linear systems where equations of state are unavailable or
difficult to obtain. However, choosing the optimum gain can be tricky, as too high of a
gain can cause unwanted oscillations or instabilities in the system.

2.3.3 Finite-time observers

2.3.3.1 Sliding mode observers

The idea behind this type of finite-time observer is to stabilize the estimation error by
making it converge towards zero on a given surface. This surface is chosen in such a
way that when the error reaches this surface, it becomes zero. The method used for this
employs the sign function, which can be seen as the use of an infinite gain to crush the
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non-linearity in the error dynamics and establish the convergence of the finite-time ob-
server error [9][84].

We consider the linear system (C.2), the basic principle of synthesis of such an observer is
similar to that of a Luenberger observer in the sense that both approaches use the same
structure, the difference lies in the choice of the correction term, in fact, the sliding mode
observer uses instead the discontinuous function sign, so the observer takes the following
form

˙̂x(t) = Ax̂(t) +Bu(t) + Lsign(y(t) ´ Cx̂(t)), (2.9)
with (y(t) ´ Cx̂(t)) = 0 the sliding surface where we want to bring the error dynamics.
The gain matrix is a parameter to be determined using the method described in [23].
An extension of this method, allowing the error to converge to zero in a predefined way
(convergence time independent of initial estimation error and system parameters), can be
found in [69].

The main problem for this observer is the chattering phenomenon. It is a zigzag motion
along the sliding surface. This phenomenon comes intrinsically with the discontinuity of
the sign function. One way to remedy this is to smooth the sign function and replace
it with a sigmoid. [80] [86] However, this may alter its robustness and the finite-time
convergence property of this observer in the presence of perturbations [88].

2.3.3.2 Global finite-time observer

The problem of finite-time observers has been given less consideration, as it requires non-
smooth techniques. Indeed, there are several methods that achieve convergence in finite
time, but some of these are not continuous, such as sliding-mode observers.

One of the observers that can converge in finite time while being smooth and continuous
is the global finite-time observer with large gain. Perruquetti et al initially constructed
a finite-time observer for systems in observability canonical form in [64], the proof of
finite-time stability being based on homogeneity properties. Subsequently, a semi-global
finite-time observer was proposed by Shen and Xia in [76] based on the observer proposed
by Perruquetti et al. In [54] an extension of this observer was presented, making it global.

Consider the following system
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ẋ1 = x2 + Σm
j=1g1,j(x1)uj,

ẋ2 = x3 + Σm
j=1g2,j(x1, x2)uj,

...
ẋn´1 = xn + Σm

j=1gn´1,j(x)uj,

ẋn = φ(x) + Σm
j=1gn,j(x)uj,

y = x1.

(2.10)

Consider the input of the bounded system u = (u1, . . . , um) and assume that the functions
(gi,j)1,jďn and φ are globally Lipschitz. The system (2.11) admits the following finite-time
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global observer
$

’

’

’

’

&

’

’

’

’

%

˙̂x1 = x̂2 + Σm
j=1g1,j(x̂1)uj + k1([e1]

α1 + ρe1),
˙̂x2 = x̂3 + Σm

j=1g2,j(x̂1, x̂2)uj + k2([e1]
α2 + ρe1),

...
˙̂xn = φ(x̂) + Σm

j=1gn,j(x̂)uj + kn([e1]
αn + ρe1).

(2.11)

Details of the selection of the power αi and the gains ki and ρ can be found in [54].

2.4 Conclusion
In this chapter, we addressed the problem of observation, where it was pointed out that
in most practical cases, measuring the entire state vector of systems is either physically
or economically impossible. To overcome this limitation, observers were introduced, but
they can only be implemented if the system of interest is observable. The first observers
developed were dedicated to linear systems, such as the Kalman observer and the Luen-
berger observer. Later, they were adapted to non-linear systems using the linearization
principle. Other types of observer have also been developed, each with its own properties,
strengths and weaknesses.

The choice of which observer to implement depends on a number of factors, such as
the specific characteristics of the system, the shape of the model, the objectives of the
observation and the constraints of the application. For example, if the model of the
system we wish to observe is highly simplified (with unmodeled dynamics or modeling
errors), or if the system operates in a noisy environment, it is clear that the sliding
mode observer, renowned for its robustness, would be clearly preferable compared to
a basis change observer, which is sensitive to modeling errors. Recently, another type
of observers has attracted the attention of researchers, namely finite-time convergence
observers. However, the majority of these observers use non-smooth techniques or terms
tending towards infinity. In the next chapter, we’ll look at a finite-time estimation method
that doesn’t require any non-smooth or infinity-tending terms.
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Chapter 3
Modulating function based method
for estimation



3.1 Introduction
In this chapter, we explore the modulating function-based method (MFBM) for estimat-
ing and observing systems. The introduction of this approach dates back to the 1950s,
when Shinbrot first used it in [77] and [78] for the identification of parameters of ordinary
differential equations (ODEs). The method was subsequently extended to the identifi-
cation of constant and variable parameters in the space of partial differential equations
(PDEs) [61] [27].

Further studies then focused on the analysis of the characteristics of the modulating func-
tions (MFs) [82] [73] [72]. More recently, the MFs approach has been adapted for real-time
identification of ODE’s parameters [19]. The MFBM has also been extended to state es-
timation and estimation of unknown inputs for ODEs and PDEs [35] [7]. In addition, it
has been used to identify the parameters and fractional derivatives of fractional ODEs
and PDEs [10] [45].
More recently, MFBM has been applied to certain classes of nonlinear systems, where
finite-time convergence has been proposed in [87] and [39]. An integral-type observer has
also been introduced in [1]. These MF based estimators offer several advantages. They
offer good robustness properties thanks to the integration action. In addition, they are
easy to implement and do not require knowledge of initial conditions.

In this chapter, we begin by providing fundamental definitions of modulating functions and
their properties. Next, we present the different types of modulating functions found in the
literature. We go on to introduce the principle of the MFBM for estimation, presenting
the basic MFBM procedure, which will be illustrated with a comprehensive example.
Once we’ve familiarized ourselves with the method, we’ll present a generalization of the
application of MFBM to the estimation of both constant and time-varying parameters of
ordinary differential equations (ODEs) and the estimation of the state vector and unknown
inputs of nonlinear systems (UIO). Finally, we present our contribution to this method,
which consists of an extension of the previously illustrated UIO to a new, more general
form of nonlinear system with multiple outputs.
This chapter intends to provide an in-depth understanding of the concepts and methods
related to MFBM for estimation as well as to presenting our contribution to the problem.

3.2 Modulating functions

3.2.1 Definitions & Properties
Definition 3.2.1 : (Classic modulating function) [2] A function φ(t) ‰ 0 defined on an
interval [a, b] is called a modulating function (MF) of order k (k P N˚) if it satisfies :

(P1) : φ(t) P Ck([a, b]),

(P2) : φ(i)(a) = φ(i)(b) = 0, i = 0, 1, . . . , k ´ 1,
where i represents the derivation order.

Definition 3.2.2 : (Generalized modulating function) [68] Let [a, b] Ă R, l, k P N with
k ď l, and φ a function that satisfies the following properties :
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(P1) : φ(t) P Cl+1([a, b]),

(P2) : φ(i)(a) = 0, i = 0, 1, . . . , l,

(P3) : φ(i)(b) = 0, i = 0, 1, . . . , k,
and φk+1(b) ‰ 0. si k ă l.

Then, φ is said to be a modulating function of order (l, k) over [a, b].
- If φ satisfies only the properties (P1) and (P2) for all k P N, then φ is said to be a
modulating function of order (l,´1) on [a, b].
- If l = k, then φ is a classic modulating function of order l on [a, b].

Definition 3.2.3 : (Modulating operator) [2] Consider the modulating function φ(t) P

Ck([a, b]). The associated modulating operator applied to an integrable signal y : [a, b] Ă

R+ Ñ R is given by the following scalar product on the interval I = [a, b] :

xφ, yyI =

ż b

a

φ(t)y(t) dt,

Property 3.2.1 :[75] Let φ(t) be a modulating function of order k defined on the interval
[0, T ] and f(t) a continuously differentiable function of order l (f P Cl([0, T ])), so the
product φ(t)f(t) is also a modulating function of order p on [0, T ], such that :

p = min(k, l), (3.1)

Before explaining the MFBM principle, we need to mention the following Lemma, which
represents the basic tool that makes this estimation method possible : Generalized inte-
gration by parts.

Lemma 3.2.1 : (Generalized integration by parts) [8] Let f, g P Cn(R), where n P N˚.
So for any interval [a, b] Ă R, we have :

ż b

a

f(t)y(n)(t)dt = (´1)n
ż b

a

f (n)(t)g(t)dt+
n´1
ÿ

k=0

(´1)k
[
f (k)(t)g(n´1´k)(t)

]t=b
t=a

looooooooooooooooooomooooooooooooooooooon

S

. (3.2)

If we take the case where the function f is a classic modulating function, considering the
property (P2) of Definition 3.2.1, the term S in (3.2) is equal to 0. So by combining
Lemma 2.2.1.1 and Definition 2.2.1, we obtain the following property :

Property 3.2.2 : Given a measurable signal y : [a, b] Ă R+ Ñ R and φ a modulating
function of order n ě i defined on [a, b], then :

xφ, y(i)yI =

ż b

a

φ(t)y(i)(t) dt = (´1)i
ż b

a

φ(i)(t)y(t)dt (3.3)

The modulating operator allows the derivative of the measured signal to be shifted to the
modulating function, which is known analytically, thus avoiding any numerical instability
due to differentiation of the measured signal.
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3.2.2 Examples of modulating functions
Several types of modulating functions have been proposed in the literature. Here are some
of the most commonly found

3.2.2.1 Sinusoidal modulating functions

This type of modulating function was introduced in the early 1950s and was the first to
be proposed by Shinbrot in [77][78], used to identify the parameters of ODEs. Sinusoidal
modulating functions are given by the following general form :

φi(t) = sini(ωnt), @t P [0, T ] et @i P N˚, (3.4)

With ωn = nπ
T

, ou T P Rą0, n P N˚et φi P Ck([0, T ]), k ě i.

Figure 3.1: Sinusoidal modulating functions for n = 2 and i = 1, . . . , 5

3.2.2.2 Jacobi (Polynomial) modulating functions

This type of modulating function is a combination of Jacobi polynomial functions which
cancel at the boundary of the defined interval. They are expressed by [31] :

φi(t) = ti1(T ´ t)i2 , @t P [0, T ] and @i1, i2 P N˚, (3.5)
where T P R˚

+ and φi P Ck([0, T ]) with i1, i2 ě k.
Polynomial modulating functions can reach values that are too large, which can cause
numerical problems during implementation. This is why, in practice, we normalize these
functions before using them, by dividing them by their norms, we can use for example
the Euclidean norm.

3.2.2.3 Poisson’s modulating functions

This type of modulating function is introduced in [74] in order to identify the parameters
of a continuous lumped linear system, they are defined by :

φi(t) =
(T ´ t)i

i!
e[´q(T´t)], @t P [0, T ] et @i P N˚, (3.6)

where T P R˚
+ and φi P Ck([0, T ]), T must be large enough and q represents the degree of

freedom.
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Figure 3.2: Polynomial modulating functions and normalized polynomial modulating
functions for i = 1, . . . , 5

Figure 3.3: Poisson’s modulating functions for q = 2 et i = 1, . . . , 5

3.2.2.4 Other types

The table (3.1) summarizes some of the least common modulating functions and their
properties.

Modulating
functions

φi(t) Interval Remarks

Fourier [60] = e´jαi(e´j 2π
T
t ´ 1)K [0, T ] φi P Cn([0, T ]) and

n ě i

Hermite [82] = (´1)ie´ r2

2
Hi?
2π

,
r = t ´ T

2
,

Hi is the ith hermit function.

[´L
2
, L
2
] L is sufficiently large.

Hartley [3] = Σn
j=0(´1)j

(
n
j

)
cas((n+i´j)2π

T
t)

with cas(x) = cos(x) + sin(x)

[0, T ] φi P Cn([0, T ]) and
n ě i

Table 3.1: Examples of modulating functions with their properties
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3.3 Principle of the method based on modulating
functions for estimation

3.3.1 Standard procedure
The modulating function method is a non-asymptotic estimation approach where the main
idea is to transform the problem of estimating a differential equation into an algebraic
problem of solving a set of linear equations. Thanks to the properties of modulating
functions, this estimation approach is considered to be very fast and easy to implement.
In addition, the method is robust to noise. The MFBM steps can be summarized in the
following diagram.

Figure 3.4: Estimation procedure using the MFBM

To better illustrate and understand the principle of this approach, let’s consider the
following example :

3.3.2 Illustrative example
Suppose we measure a noisy sinusoidal signal of the form :

y(t) = x(t) + ν(t) = A sin(ωt+ φ) + ν(t), (3.7)
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We want to estimate the parameters of the sinusoidal signal (A,ω and φ) and why not
even the sinusoidal signal in itself and its derivative (x and ẋ) given that we have access
to only the noisy signal y, where ν(t) represents the measurement noise.

Estimation of the frequency ω :
We begin by estimating the frequency ω of the sinusoidal signal, knowing that any sinu-
soidal signal is governed by the following second-order differential equation :

ẍ(t) + ω2x(t) = 0. (3.8)
Knowing that φi,j(t) represents a modulating function of order (i, j). We proceed as fol-
lows :

- Step 1 : Multiply the differential equation (3.8) by a modulating function of order
(1, 1) over a finite time interval [t ´ T, t] :

φ1,1(τ)ẍ(τ) + ω2g1,1(τ)x(τ) = 0, @τ P [t ´ T, t], (3.9)

- Step 2 : Integrate the equation (3.9) over the interval [t ´ T, t] :
ż t

t´T

φ1,1(τ)ẍ(τ)dτ + ω2

ż t

t´T

g1,1(τ)x(τ)dτ = 0, (3.10)

- Step 3 : Apply the generalized integration by parts Lemma 3.2.1 in order to shift
the derivative of the measured signal to the modulating function :

ż t

t´T

φ
(2)
1,1(τ)x(τ)dτ+ω

2

ż t

t´T

φ1,1(τ)x(τ)dτ+
[
φ1,1(τ)ẋ(τ)

]τ=t
τ=t´T

´

[
φ̇1,1(τ)x(τ)

]τ=t
τ=t´T

= 0,

(3.11)

- Step 4 : Apply the properties of MFs to remove the boundary values φ1,1(t´T ) =
φ1,1(t) = φ̇1,1(t ´ T ) = φ̇1,1(t) = 0 :

ż t

t´T

φ
(2)
1,1(τ)x(τ)dτ + ω2

ż t

t´T

φ1,1(τ)x(τ)dτ = 0, (3.12)

- Step 5 : Replace x by the measured signal y and express ω̂ :

ω̂ =

g

f

f

e

şt

t´T
φ
(2)
1,1(τ)y(τ)dτ

şt

t´T
φ1,1(τ)y(τ)dτ

. (3.13)

The equation (3.13) is very simple to calculate and on top of that, we’ve been able to
transfer the derivative from the measured noisy signal to the modulating function, which
we know analytically, this ensures a numerically more stable algorithm.

Estimation of the sinusoidal signal x :
The procedure is similar, only this time we’re going to multiply the equation (3.8) by a
modulating function of order (1, 0). Steps 1 and 2 are identical to the previous ones, so
we’ll start from step 3.
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- Step 3 : Shift the derivative from the measured signal to the modulating function
:
ż t

t´T

φ
(2)
1,0(τ)x(τ)dτ+ω

2

ż t

t´T

φ1,0(τ)x(τ)dτ+
[
φ1,0(τ)ẋ(τ)

]τ=t
τ=t´T

´

[
φ̇1,0(τ)x(τ)

]τ=t
τ=t´T

= 0,

(3.14)

- Step 4 : Apply the properties of modulating functions of order (1, 0) to eliminate
unwanted terms φ1,0(t ´ T ) = φ̇1,0(t ´ T ) = φ1,0(t) = 0 and φ̇1,0(t) ‰ 0

ż t

t´T

φ
(2)
1,0(τ)x(τ)dτ + ω2

ż t

t´T

φ1,0(τ)x(τ)dτ ´ φ̇1,0(t)x(t) = 0, (3.15)

The order of the modulating function must be chosen according to our needs. Here,
since we’re estimating x(t), we need to preserve the right-hand boundary conditions
of x by choosing a modulating function of order 0 on the right.

- Step 5 : Replace x by the measured signal y and express x̂ :

x̂(t) =
1

φ̇1,0(t)

(
ż t

t´T

φ
(2)
1,0(τ)y(τ)dτ + ω2

ż t

t´T

φ1,0(τ)y(τ)dτ

)
. (3.16)

Considering the modulating operator, which is simply an integration and it behaves as a
filter, the equation (3.16) allows us to estimate the filtered signal x(t). As the integration
horizon increases, the ability of noise attenuation also increases.

Estimation of the derivative ẋ :
We start again from step 3, but this time with the aim of preserving in the equation the
derivative ẋ at the right limit. To do so, we choose a modulating function of order (1,´1).

- Step 3 : Shift the derivative from the measured signal to the modulating function
:
ż t

t´T

φ
(2)
1,´1(τ)x(τ)dτ+ω

2

ż t

t´T

φ1,´1(τ)x(τ)dτ+
[
φ1,´1(τ)ẋ(τ)

]τ=t
τ=t´T

´

[
φ̇1,´1(τ)x(τ)

]τ=t
τ=t´T

= 0,

(3.17)

- Step 4 : Apply the properties of modulating functions of order (1,´1) to eliminate
unwanted terms φ1,´1(t ´ T ) = φ̇1,´1(t ´ T ) = 0 and φ1,´1(t) ‰ 0,

ż t

t´T

φ
(2)
1,´1(τ)x(τ)dτ+ω

2

ż t

t´T

φ1,´1(τ)x(τ)dτ+φ1,´1(t)ẋ(t)´φ̇1,´1(t)x(t) = 0, (3.18)

- Step 5 : Replace x by the measured signal y and express ˆ̇x :

ˆ̇x(t) =
´1

φ1,´1(t)

(
ż t

t´T

φ
(2)
1,´1(τ)y(τ)dτ + ω2

ż t

t´T

φ1,´1(τ)x(τ)dτ ´ φ̇1,´1(t)y(t)

)
.

(3.19)

Estimation of the amplitude and the phase :
Knowing how to compute ω, x(t) and ẋ(t) (equations (3.13),(3.16) and (3.19)), we can
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easily deduce the amplitude and phase of the sinusoidal signal from the following trigono-
metric equations :

$

&

%

Â =

b

x̂2(t) +
ˆ̇x2(t)
ω̂2 ,

φ̂ = arctan
(
ω̂ x̂(t)
ˆ̇x(t)

)
´ ω̂t.

(3.20)

Numerical implementation :
The following noisy sinusoidal signal is measured :

y(t) = x(t) + ν(t) = sin(t+ π

2
) + ν(t). (3.21)

where ν is a normally distributed random noise with variance equal to 0.1 and a mean of
zero.
The measured signal y and the actual signal are shown in figure (3.5)
By using the equations (3.13),(3.16)(3.19) and (3.20) and by selecting the following nor-
malized modulating functions (Euclidean norm) :

φi,j(τ) =
φ̄i,j(τ)

||φ̄i,j(τ)||2
, With : φ̄i,j(τ) = (τ ´ t+ T )(i+1)(t ´ τ)(j+1), @τ P [t ´ T, t],

(3.22)
We find :

$

’

&

’

%

ω̂ = 1.0083,

Â = 0.9985,

φ̂ = 1.5587.

The figure (3.6) shows the estimated x(t) and ẋ(t) and their real values.

Figure 3.5: Real signal x and measured noisy signal y.

The estimates are almost identical to the real values, despite the presence of significant
noise estimated at 12% of the signal x1, thanks to the integration, which is known for
its noise attenuation effects. So, using the properties of the MFs, we were able to bypass
the problem of deriving a measured signal and transform it into an algebraic problem by
transferring the derivation of the signal to the MF whose analytical expression is known,
thus ensuring the stability of the method.

The relative errors of the sinusoidal signal estimation and its derivative are estimated at
0.17% and 0.19% respectively.
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Figure 3.6: Real signals x and ẋ and their estimates

3.3.3 The advantages of the modulating functions based estima-
tion method

The method based on modulating functions handles a number of recurrent problems in
estimation, which offers considerable advantages :

- No need to know the system’s initial conditions, thanks to the properties of modu-
lating functions on the boundaries.

- Shift the derivatives from the signal to the modulating functions that are known
analytically.

- Transforms the estimation problem into a simple linear algebraic system that can be
solved either by an inverse transformation (for square systems) or by least squares
(for any rectangular system), as we’ll see later in this chapter.

- The method is robust to external disturbances induced on the measurements, thanks
to integration, which has the effect of attenuating noise.

In the remainder of this chapter, we present generalizations of this method to systems of
well-defined form for identification and observation purposes, and introduce the associated
algorithms.

3.4 Parameter identification by the MFBM

3.4.1 Constant parameters
Consider the system governed by the differential equation of the following form [29] :

n
ÿ

i=0

ai
diy(t)

dti
=

m
ÿ

i=0

bi
diu(t)

dti
, n ą m (3.23)

with y(t) the system output, u(t) the input and ai and bi the system parameters we want
to identify. They are assumed to be constant in R. Without loss of generality, we also
assume that a0 = 1.
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- Step 1 : Multiply the equation (3.23) by a modulating function φ(t) P Cm+n+1([0, T ])
:

n
ÿ

i=0

aiφ(τ)
diy(τ)

dτ i
=

m
ÿ

i=0

biφ(τ)
diu(τ)

dτ i
. (3.24)

- Step 2 : Integrate the equation (3.24) over the interval I = [0, T ] :
n

ÿ

i=0

ai

ż T

0

φ(τ)
diy(τ)

dτ i
dτ =

m
ÿ

i=0

bi

ż T

0

φ(τ)
diu(τ)

dτ i
dτ. (3.25)

- Step 3 : Apply property (3.3), the equation (3.25) becomes :
n

ÿ

i=0

(´1)iai

ż T

0

diφ(τ)

dτ i
dτ =

m
ÿ

i=0

(´1)ibi

ż T

0

diφ(τ)(τ)

dτ i
u(τ)dτ. (3.26)

We assume that y and u are known, we note :

xφ(i), yyI =

ż T

0

φ(i)(τ)y(τ) dτ, xφ(i), uyI =

ż T

0

φ(i)(τ)u(τ) dτ, (3.27)

Using numerical integration methods, xφ(i), yyI and xφ(i), uyI can be calculated.

- Step 4 : Rewrite the equation (3.26) and replace with (3.27). (3.26) becomes :

xφ, yyI +
n

ÿ

i=1

(´1)iaixφ
(i), yyI =

m
ÿ

i=0

(´1)ibixφ
(i), uyI , (3.28)

m
ÿ

i=0

(´1)ibixφ
(i), uyI ´

n
ÿ

i=1

(´1)iaixφ
(i), yyI = xφ, yyI . (3.29)

The equation (3.29) can be rewritten in the following vector form :

[
xφ, uyI . . . (´1)mxφ(m), uyI xφ(1), yyI . . . (´1)(n+1)xφ(n), uyI

]


b0
...
bm
a1
...
an


= xφ, yyI ,

(3.30)
The equation (3.30) is an algebraic system with n+m+1 unknown coefficients. To
solve it, we need at least n +m + 1 different modulating functions, to generate at
least n+m+ 1 different equations.

- Step 5 : Construct from the equation (3.30) an algebraic system of at least (n +
m+ 1) equations, giving the following algebraic system :

A(T )θ̂ = B(T ), (3.31)
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where A(T ) P R(M)ˆ(m+n+1), B(t) P RM , θ P R(m+n+1) and M is the number of
modulating functions used.

With :

A(T ) =


xφ1, uyI . . . (´1)mxφ

(m)
1 , uyI xφ

(1)
1 , yyI . . . (´1)(n+1)xφ

(n)
1 , uyI

xφ2, uyI . . . (´1)mxφ
(m)
2 , uyI xφ

(1)
2 , yyI . . . (´1)(n+1)xφ

(n)
2 , uyI

... . . .
... ... . . .

...
xφM , uyI . . . (´1)mxφ

(m)
M , uyI xφ

(1)
1 , yyI . . . (´1)(n+1)xφ

(n)
M , uyI ,


(3.32)

and :

B(T ) =


xφ1, yyI

xφ2, yyI
...

xφM , yyI

 , θ̂ =



b0
...
bm
a1
...
an


. (3.33)

If we take M = m + n + 1, the algebraic system (3.31) becomes square. Then, if
A(T ) is invertible, the parameter estimates of the system (3.23) are given by :

θ̂ = A´1(T )B(T ). (3.34)

If we take M ą m+n+1, in this case the algebraic system (3.31) is solved by least
squares, the estimation of the system parameters (3.23) is given by :

θ̂ = (AT (T )A(T ))´1AT (T )B(T ). (3.35)

3.4.2 Time-varying parameters
MFBM can also be used to estimate the parameters of a time-varying system. To do
so, the parameters ai(t), bi(t) are projected onto a known basis of functions called basis
functions. Now, we’ll have to estimate the coefficients of the chosen bases, which reduces
the problem of estimating time-varying parameters to a problem of estimating constant
parameters again.

We project the parameters of the system (3.23) ai and bi into the space generated by a
set of basis functions tβj(t)u

N
j=1, N P N such that

#

ai(t) = ΣNa
j=1α

a
i,jβj(t) i = 1, 2, . . . , n,

bi(t) = ΣNb
j=1α

b
i,jβj(t) i = 0, 1, . . . ,m,

(3.36)

where the coefficients αai,j and αbi,j are the projection parameters to be estimated and Na

and Nb are the numbers of basis function used for ai and bi respectively.

Substituting the equation (3.36) into (3.23), we follow the same steps above to obtain the
following algebraic system for estimating the projection parameters
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A(T ) =
[
A1 A2

]
, (3.37)

where

A1 =


xg1,1, uyI . . . xg1,Nb

, uyI . . . (´1)(m)xg
(m)
1,1 , uyI . . . (´1)(m)xg

(m)
1,Nb

, uyI

xg2,1, uyI . . . xg2,Nb
, uyI . . . (´1)(m)xg

(m)
2,1 , uyI . . . (´1)(m)xg

(m)
2,Nb

, uyI
... . . .

... . . .
... . . .

...
xgM,1, uyI . . . xgM,Nb

, uyI . . . (´1)(m)xg
(m)
M,1, uyI . . . (´1)(m)xg

(m)
M,Nb

, uyI

 ,
(3.38)

A2 =


xg

(1)
1,1, yyI . . . xg

(1)
1,Na

, yyI . . . (´1)(n+1)xg
(n)
1,1 , yyI . . . (´1)(n+1)xg

(n)
1,Na

, yyI

xg
(1)
2,1, yyI . . . xg

(1)
2,Na

, yyI . . . (´1)(n+1)xg
(n)
2,1 , yyI . . . (´1)(n+1)xg

(n)
2,Na

, yyI
... . . .

... . . .
... . . .

...
xg

(1)
M,1, yyI . . . xg

(1)
M,Na

, yyI . . . (´1)(n+1)xg
(n)
M,1, yyI . . . (´1)(n+1)xg

(n)
M,Na

, yyI

 ,
(3.39)

gi,j = φi(t)βj(t), (3.40)
and

B(T ) =


xφ1, yyI

xφ2, yyI
...

xφM , yyI

 , (3.41)

θ̂ =
[
αb0,1 . . . αb0,Nb

. . . αbm,1 . . . αbm,Nb
αa1,1 . . . αa1,Na

. . . αan,1 . . . αan,Na

]T
,

(3.42)
gi,j is a modulating function according to the Property 3.2.1 (3.1) andA(T ) P R(M)ˆ(Naˆn+Nbˆ(m+1)),
B(t) P RM ,θ P R(Naˆn+Nbˆ(m+1)) and M is the number of modulating functions.

3.4.2.1 Numerical example

Consider the simple system governed by the following time-varying first-order differential
equation :

a(t)y(1)(t) + y(t) = 0, t P [0, 10], (3.43)
with a(t) a real time-varying parameter given by :

a(t) = 0.5 + t. (3.44)

The system is simulated for the initial condition y(0) = 3. The parameter a(t) is esti-
mated in the case of a noiseless environment and in the case of a noisy environment by
adding to the measurements a normally distributed random noise of variance equal to 0.1.

We decompose a(t) into 3 polynomial bases, i.e. :

a(t) =
3

ÿ

i=0

αit
i. (3.45)
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From the equations (3.37-3.42), we obtain the following algebraic system : xg
(1)
1,1, yyI xg

(1)
1,2, yyI xg

(1)
1,3, yyI

... ... ...
xg

(1)
M,1, yyI xg

(1)
M,2, yyI xg

(1)
M,3, yyI


α1

α2

α3

 =

 xφ1, yyI
...

xφM , yyI

 , (3.46)

where M is the number of modulating functions and :

gi,j = φi(t) ˆ t(i´1). (3.47)

The modulating functions used in the simulations are polynomial modulating functions
given by :

φi(t) =
φ̄i(t)

||φ̄i(t)||2
, Avec : φ̄i(t) = t(2+i´1)(10 ´ t)(2+i´1), (3.48)

for i = 1, . . . ,M.

The figure (3.7) represents the measured signal without and with noise, while the figure
(3.8) represents the estimate of a(t) in the case of an environment without and with noise.

We have also simulated the absolute errors of estimation for different numbers of modu-
lating functions in the case of a noise-free and noise-affected environment represented by
the figures (3.9) and (3.10) respectively.

Figure 3.7: Measured signal with and without noise

From the figures, we can see that in both cases (with and without noise) the MFBM
provided very satisfactory results, almost identical to the true values despite the presence
of noise, and this is due to the integral which has the effect of attenuating the noise.
We can also see that increasing the number of modulating functions doesn’t necessarily
produce better results. Consequently, sticking to a small number of modulating functions
is preferable for ease of calculation and simplicity.
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Figure 3.8: Estimation of the parameter a(t) in a noisy and noiseless environment for
M = N = 3

Figure 3.9: Absolute estimation error in a noise-free environment for different numbers of
modulating functions

Figure 3.10: Absolute estimation error in a noise-free environment for different numbers
of modulating functions

3.5 State and unknown input estimation using MFBM
The method based on modulating functions can also be used to estimate the states of a
system, as seen in the sinusoid example, it can also be used to estimate unknown inputs.
In what follows, we’ll present a general observer algorithm based on the MFBM associated
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with nonlinear systems of a well-defined form.

3.5.1 Offline estimation
Let’s consider the system governed by the following differential equation [87]

#

dnx
dtn

= f(x, u) + g(t, x, u),

y = x.
(3.49)

Represented in state space in the following canonical triangular form :
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ẋ =


x̂1
...

x̂n´1

x̂n

 =


x2
...
xn

f(x, u) + g(t, x, u)

 ,
y = x,

(3.50)

where x P Rn is the system state vector, u P Rm(m P N˚) is the bounded input vector,
y P R is the measured output. f(x, u) is a known nonlinear function and g(t, x, u) is an
unknown bounded nonlinear function which includes model uncertainty and disturbances.
f and g are assumed to be continuous and locally Lipschitz.
The system (3.50) has a canonical structure that decouples the unknown parameters of
the nonlinear function from the unmeasured states. As a result, both estimates can be
reconstructed under the assumption of constant excitation persistence u(t) and y(t).

MFBM estimates states and disturbance in two main phases :

- Step 1 : Having the output measurements y(t), we estimate the states x2, . . . , xn
using the (n ´ 1) first equations of the system (3.50) for t P [0, T ].

- Step 2 : In the last equation of the system (3.50), the inputs u(t) and the output
y(t) are substituted by the estimation of the states x̂2, . . . , x̂n, in order to estimate
the disturbance g.

3.5.1.1 State estimation

MFBM estimation for triangular systems offers the advantage that each state estimate is
independent of the rest of the states and depends only on the measured output. y.

- Step 1 : Multiply the (n´ 1) first equations of (3.50) by a modulating function φ φ(t)ẋ1
...

φ(t) ẋn´1

 =

φ(t)x2...
φ(t)xn

 . (3.51)

We replace the first-order derivatives of the states (ẋ2, . . . , ẋn´1) by the higher-order
derivatives of the measured output y φ(t)ẏ

...
φ(t)y(n´1)

 =

φ(t)x2...
φ(t)xn

 . (3.52)
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- Step 2 : Apply the modulating operator to the system (3.52) over the interval
I = [0, T ]  xφ, ẏyI

...
xφ, y(n´1)yI

 =

xφ, x2yI
...

xφ, xnyI

 . (3.53)

- Step 3 : Apply the property (3.3), the equation (3.54) becomes :xφ, x2yI
...

xφ, xnyI

 =

 ´xφ̇, yyI
...

(´1)(n´1)xφ(n´1), yyI

 . (3.54)

Since xj, j = 2, . . . , n are time-varying, we decompose each into a space spanned by
a set of unknown coefficients aji and by known basis functions αi(t) such that :

x̂j(t) =
N
ÿ

i=1

âjiαi(t). (3.55)

- Step 4 : Substitute by (3.55) in (3.54), we find :

xφ, x̂jyI = (´1)(j´1)
xφ(j´1), yyI =

N
ÿ

i=1

âji xφ, αiyI . (3.56)

The equation (3.56) can be rewritten in the following vector form :

[
xφ, α1yI . . . xφ, αNyI

]  â
j
1
...
âjN

 = (´1)(j´1)
xφ(j´1), yyI . (3.57)

The equation (3.57) is an algebraic system with N unknown coefficients. To solve
it, we need at least N different modulating functions of order l ě j, to generate at
least N different equations.

- Step 5 : Construct from the equation (3.57) an algebraic system of at least N
equations, we obtain :

Aj(T )θ̂j = Bj(T ). (3.58)
With :

Aj(T ) =

 xφ1, α1yI . . . xφ1, αNyI
... . . .

...
xφM , α1yI . . . xφM , αNyI

 , (3.59)

Bj(T ) = (´1)(j´1)

xφ
(j´1)
1 , yyI

...
xφ

(j´1)
M , yyI

 , θ̂j =

 â
j
1
...
âjN

 . (3.60)
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3.5.1.2 Disturbance estimation

Having estimated the states xj, j = 2, . . . , n in addition to having measured the inputs
u(t) and the output y we can now proceed to estimate the unknown input d(t). Consider
the (n ´ th) equation of (3.50)

ẋn = f(x, u) + d(t). (3.61)
The unknown input is therefore expressed by :

d(t) = ẋn ´ f(x, u). (3.62)

The steps involved in estimating the disturbance are as follows :

- Step 1 : Multiply the equation (3.62) by a modulating function φ :

φ(t)d(t) = φ(t)ẋn ´ φ(t)f(x, u) = φ(t)y(n) ´ φ(t)f(x, u). (3.63)

- Step 2 : Apply the modulating operator to equation (3.63) over the interval
I = [0, T ]

xφ, dyI = xφ, y(n)yI ´ xφ, f(x, u)yI . (3.64)

- Step 3 : According to the property (3.3), the equation (3.64) becomes :

xφ, dyI = (´1)(n)xφ(n), yyI ´ xφ, f(x, u)yI . (3.65)

The disturbance is time varying, so it can be decomposed in the space spanned by
a set of unknown coefficients b̂i and G known basis functions βi(t) chosen such that
:

d̂(t) =
G

ÿ

i=1

b̂iβi(t). (3.66)

- Step 4 : Substitute with (3.66) in (3.65) and x by x̂, we find :

G
ÿ

i=1

b̂ixφ, βiyI = (´1)(n)xφ(n), yyI ´ xφ, f(x̂, u)yI . (3.67)

The equation (3.67) can be rewritten in the following vector form :

[
xφ, β1yI . . . xφ, βGyI

]  b̂1...
b̂G

 = (´1)(n)xφ(n), yyI ´ xφ, f(x̂, u)yI . (3.68)

To solve (3.68), we need at least G different equations, for which we use W ě G
different modulating functions of order l ě n.

- Step 5 : From the equation (3.68), we generate an algebraic system of at least W
equations and we find :

Ad(T )θ̂d = Bd(T ), (3.69)
with :
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Ad(T ) =

xφ1, β1yI . . . xφ1, βGyI
... . . .

...
xφWβ1yI . . . xφW , βGyI

 , (3.70)

and

Bd(t) =

 (´1)(n)xφ
(n)
1 , yyI ´ xφ1, f(x̂, u)yI

...
(´1)(n)xφ

(n)
W , yyI ´ xφW , f(x̂, u)yI

 , θ̂d =

b1...
bG

 . (3.71)

3.5.2 Online Estimation
Up to now, we have presented MFBM in its offline form, i.e. the experimental signals are
first measured so that the desired variables (parameters, states or disturbances) can then
be estimated. However, in the majority of control problems (e.g. state feedback control,
adaptive control, fault detection ... and so on), the estimation must take place in real
time. Estimation must be carried out in real time (online). For this purpose, the sliding
window strategy was proposed in [75].

The principle of this approach is to apply the MFBM previously seen on a short time
window [t ´ τ, t] which at each clock top, progresses by one step allowing the estima-
tion of the variable of interest on the current time window, so the estimate of the variable
of interest at each instant is the last estimate on the window. More details are given below.

Let Ihk be the sliding integration window and h its width. At each clock top, the inte-
gration window progresses by one sampling step, such that Ihk = [tlk , tuk ] where tlk and
tuk are the lower and upper bounds of the window respectively. Modulating functions of
order l must therefore satisfy the following requirements :

(P1) : φ(t) P Cl[tlk , tuk ]),

(P2) : φ(i)(tlk) = φ(i)(tuk) = 0, i = 0, 1, . . . , l ´ 1.

At each new sampling cycle, we substitute I by Ihk updated in the system (3.58-3.60) and
then the system (3.69-3.71), enabling us to calculate the estimates. x̂j(τ) for j = 2, . . . , n

and d(̂τ) respectively, for τ P Ihk = [tlk , tuk ] = [t ´ h, t], simply replace by t to retrieve
the instantaneous estimates which can now be used for control calculation or fault de-
tection. The procedure is described in greater detail in the algorithm (1) and figure (3.11).
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Figure 3.11: Schematic diagram of the algorithm (1)

Algorithm 1: Online estimation of states and unknown input by MFBM
Input: Tf : final time, h : width of the window, Ts : sampling step.
Initialization: Ih1 = [0, h], k = 1;
for j = 2 until n do :

‚ Estimate x̂j over Ih1 by solving the algebraic system (3.58-3.60) for
I = Ih1 ; X̂0

j = x̂j;
End
‚ Estimate d̂ over Ih1 by solving the algebraic system (3.69-3.71) for I = Ih1 ;
D̂0 = d̂;

while h+ kTs ď T do :
Ihk = [kTs, h+ kTs] = [tlk , tuk ];
for j = 2 until n do :

‚ Estimate x̂j over Ihk by solving the algebraic system (3.58-3.60)
for I = Ihk ;
‚ Update X̂k

j =
[
X̂k´1
j x̂j(tuk)

]
;

End
‚ Estimate d̂ over Ihk by solving the algebraic system (3.69-3.71) for
I = Ihk ;
‚ Update D̂k =

[
D̂k´1 d̂(tuk)

]
;

k=k+1;
End while
Output: D̂ and X̂j for j = 2, . . . , n.

Remark 3.3.1 :Real-time estimation cannot start before the time t = h, which represents
a dead time with respect to the control, where we have no information on the system
states and the unknown input, so the control inputs cannot be calculated during this
time. Depending on the knowledge of the system behavior, it is possible to predefine the
control during this dead time or computing it based on the measurements only.

Remark 3.3.2 : This strategy is also valid for MFBM parameter estimation (adaptive
control).
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3.5.3 Numerical example
Consider the example of an oscillating system governed by the following ordinary differ-
ential equation [87] [83]:

mz̈ + g(t, z, ż) +Ksz = F (t), (3.72)
with z the mass displacement, ż the displacement velocity and z̈ the acceleration, F (t)
represents the external force applied to the mass, g(t, z, ż) represents the nonlinear dissi-
pative force, Ks is the spring stiffness constant and m represents the body mass.
Let the state vector x =

[
z
ż

]
. The measured output of the system is y = z and the input

of the system is the force u(t) = F (t), the system is represented in the state space by
$

’

&

’

%

ẋ =

[
x1

x2

]
=

[
x2

´Ks

m
x1 +

1
m
u ´ 1

m
g(t, x)

]
,

y = x1,

(3.73)

where g(t, x) is the unknown non-linear part of the model, assumed to be the unknown
input to the system. In this example, we take :

g(t, x) =
2δx21

m(1 + x21)
x2(1 + 0.1 sin(πt)), (3.74)

where δ is the depreciation factor.

The objective is to estimate the state x2 and the nonlinear part g(t, x) using the MFBM
by the offline and online approachs. For each approach, the parameters are given in what
follows.
Offline approach :
The type of modulating functions chosen are polynomial modulating functions for both
the estimation of the state x2 and the unknown input g(t, x), respectively given by :

φi(t) =
φ̄i(t)

||φ̄i(t)||2
, Avec : φ̄i(t) = t(px+M+1´i)(T ´ t)(px+i), i = 1, 2, . . . ,M, (3.75)

φi(t) =
φ̄i(t)

||φ̄i(t)||2
, Avec : φ̄i(t) = t(pd+W+1´i)(T ´ t)(pd+i), i = 1, 2, . . . ,W, (3.76)

where T is the final simulation time, px, pd P N˚ are degrees of freedom, M and W are
the number of modulating functions used for estimating the state and the unknown in-
put respectively. We decompose x2 and g(t, x) into N and G polynomial basis functions
respectively.

The parameters chosen for offline estimation are given in the following table (3.2) :

N M G W px pd
35 35 30 30 1 1

Table 3.2: Offline observer parameters
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Online approach :
We use the same modulating functions as above, adapting them so that they can be used
for the online estimation of x2 and g(t, x) respectively.

φ̄i(τ ´ t+ h) = (τ ´ t+ h)(px+M+1´i)(t ´ τ)(px+i), i = 1, 2, . . . ,M, (3.77)
φ̄i(τ ´ t+ h) = (τ ´ t+ h)(pd+W+1´i)(t ´ τ)(pd+i), i = 1, 2, . . . ,M, (3.78)

where h is the width of the sliding window.

Remark 3.3.3 : When estimating in an online setting, since we are estimating over small
intervals, the approximation of the signals by the basis functions is better and requires a
smaller number of basis, so we can reduce the number of basis functions as well as the
number of modulating functions.

Remark3.3.4 : The number of samples used to calculate the integrals is much smaller
in the case of online estimation than the offline setting, which can cause the Aj and Ad
matrices to be ill-conditioned. To remedy this, we need to add a regularization step before
inverting the matrices. In this example, we used Thikonov regularization [44].

The parameters chosen for the online estimation are given in the following table (3.3) :

h N M G W px pd
0.5s 4 4 5 5 3 5

Table 3.3: Online observer parameters

Simulations were performed taking u(t) = 0.5 sin(2π
5
) and setting m = 5, Ks = 1 and

δ = 2. The measurements are assumed to be noisy, so a random normally distributed
noise of 5% relative to the real signal without noise was added to the output. Figure
(3.12) shows the real oscillator output signal and the noisy measured output signal.

Figure (3.13) shows the results of the offline estimation of the state x2 and the unknown
input g(t, x). It can be seen that the reconstructed velocity x̂2 obtained using the MFBM
corresponds perfectly to the actual value of x2. Regarding the estimation of the dis-
turbance term ĝ(t, x), the observer also provides a good estimate, although slightly less
accurate, particularly at the limits of the time interval. The relative error of the offline
velocity estimate is 0.13%, while the relative error of the unknown input estimate is 1.25%.

The figure (3.14) shows that the observer is able to estimate the velocity x2 as well as the
unknown non-linear term g(t, x) with better accuracy using the sliding integration win-
dow. The inaccuracies at the boundaries have disappeared, and the relative error of the
estimation of the velocity and the unknown term by the online approach are respectively
equal to 0.02% and 0.06%.

The online estimation approach offers more accurate results than the offline approach, as it
allows for segmented signal estimation. This segmentation makes it easier to approximate
the signals using the basis functions. In contrast, in the offline approach, the entire
signal is reconstructed using the basis functions, which requires a larger number of these
functions. This can lead to less accurate results, especially when the time interval is long.
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By using online setting for estimation, more accurate estimates can be obtained thanks
to a better adaptation of the basis functions to each specific segment of the signal.

Figure 3.12: System output signal

Figure 3.13: Offline estimation of state x2 and unknown input g.

Figure 3.14: Online estimation of state x2 and unknown input g.

3.6 Contribution - Extension of the modulating func-
tion estimation method

3.6.1 Problem formulation
The method presented in section 3.5 can only estimate the states of a nonlinear system in
a simple triangular canonical form. However, many other systems have a more complex
structure (e.g. the drone model presented in the next chapter). We therefore, propose to
extend this method to more general models. In the following, we consider the nonlinear
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block triangular system, which is composed of r blocks of canonical triangular systems,
governed by the following system of differential equations :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dn1x1
dtn1

= f1(x1, . . . , xr, u) + d1(t, x1, . . . , xr, u),
dn2x2
dtn2

= f2(x1, . . . , xr, u) + d2(t, x1, . . . , xr, u),
...
dnrxr
dtnr = fr(x1, . . . , xr, u) + dr(t, x1, . . . , xr, u),

y = (x1, x2, . . . , xr)
T .

(3.79)

Represented in the state space as :
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ẋ =



ẋ1,1
...

ẋn1´1,1

ẋn1,1

ẋ1,2
...

ẋn2´1,2

ẋn2,2
...
...
x1,r

...
xnr´1,r

xnr,r



=



x2,1
...

xn1,1

f1(x, u) + d1(t, x, u)
x2,2

...
xn2,2

f2(x, u) + d2(t, x, u)
...
...
x2,r

...
xnr,r

fr(x, u) + dr(t, x, u)



,

y = [x1,1, x1,2, . . . , x1,r]
T ,

(3.80)

where x P R
řr

i=1 ni is the system state vector, u P Rm(m P N˚) is the bounded input signal,
y P Rr is the measured output.
The fj terms are known non-linear functions and are locally Lipschitz, while dj are un-
known inputs and are assumed to be bounded, @j = 1, 2, . . . , r. They can represent a
modeling error, a time-varying disturbance, or both.

In this section, we present the method we have developed for a more general class of
nonlinear systems, namely block-triangular nonlinear systems.

Having a system with the structure described in (3.80), the state estimation xk,j , for
k = 2, ..., nj, j = 1, ..., r is decoupled from the estimation of the unknown inputs dj(t).
We therefore propose a two-stage algorithm :

- Step 1 : Having output measurements y(t), we estimate the states xk,j, for
k = 2, ..., nj ´ 1, j = 1, ..., r using the first (nj ´ 1) equations of each system block
(3.80) for t P [0, T ].

- Step 2 : In the last equation of each system block(3.80), we substitute by the
states estimations xk,j, for k = 2, ..., nj ´ 1, j = 1, ..., r, the inputs u(t) and the
outputs y(t) in order to estimate disturbances dj, j = 1, ..., r.
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3.6.2 States estimation
The first step in the proposed modulating function-based estimation approach is to es-
timate the xk,j states, for k = 2, ..., nj, j = 1, ..., r, using the nj ´ 1 first equations of
each block of the triangular system, and its corresponding measured output yj(t). The
estimation of the xk,j states is given by the following proposition.

Remark 3.6.1 : In what follows, we’ll assume that the number of modulating functions
used is equal to the number of basis functions, which means we’ll have to solve square
algebraic systems.

Proposition 3.6.1 :

Let yj = x1,j, for all j = 1, .., r be the measured outputs of system (3.80) and tφiu
i=N
i=1

be a set of modulating functions of order l ě k satisfying (P1) and (P2), @k = 2, ..nj,
j = 1, ..., r. Then an estimate of the state xk,j, is given as follows: @k = 2, ..., nj, j = 1, .., r

x̂k,j =
N
ÿ

i=1

âjk,iα
j
k,i(t), (3.81)

where N P N, αjk,i(t) are chosen basis functions and âjk,i represent their corresponding
unknown coefficients and are given by the following closed-form solution : â

j
k,1
...

âjk,N

 = (´1)(k´1)Φk

xφ
(k´1)
1 , x1,jyI

...
xφ

(k´1)
N , x1,jyI

 , (3.82)

where Φk is the N ˆ N squared matrix defined by :

Φk =

 xφ1, α
j
k,1(t)yI . . . xφ1, α

j
k,N(t)yI

... . . . ...
xφN , α

j
k,1(t)yI . . . xφN , α

j
k,N(t)yI

 . (3.83)

Proof :

considering the first nj ´ 1 equations of each block of triangular system j, for j = 1, ..., r
of system (3.80)  ẋ1,j

...
ẋnj´1,j

 =

 x2,j...
xnj ,j

 . (3.84)

Given that each state xk,j, @k = 2, ..., nj, j = 1, ..., r is the kth derivative of x1,j (i P

2, . . . , n ´ 1), equation (3.84) can be re-written as x2,j...
xnj ,j

 =

 ẋ1,j
...

x
(nj´1)
1,j

 . (3.85)

56



Applying the operator xφ, .y on both sides xφ, x2,jyI
...

xφ, xnj ,jyI

 =

 xφ, ẋ1,jyI
...

xφ, x
(1)
nj´1,jyI

 . (3.86)

Using Property 3.2.1, one obtains xφ, x2,jyI
...

xφ, xnj ,jyI

 =

 ´xφ̇, x1,jyI
...

(´1)(nj´1)xφ(nj´1), x1,jyI

 . (3.87)

The states are time-varying, so they can be decomposed in space spanned by a set of
unknown coefficients ajk,i and N chosen basis functions αjk,i(t) as follows :

x̂k,j =
N
ÿ

i=1

âjk,iα
j
k,i(t). (3.88)

replacing the state x̂k,j by its decomposition, (3.87) becomes :
N
ÿ

i=1

âjk,ixφ, α
j
k,i(t)yI = ´xφ(k´1), x1,jyI . (3.89)

which can be written in vector notation :

[
xφ, αjk,1(t)yI . . . xφ, αjk,N(t)yI

]  â
j
k,1
...

âjk,N

 (3.90)

= (´1)(k´1)
xφ(k´1), x1,jyI .

This is an algebraic system with N unknown coefficients âjk,i. In order to solve it, we
need N different modulating functions which leads to N different equations. The final
equation is :  â

j
k,1
...

âjk,N

 = (´1)(k´1)Φk

xφ
(k´1)
1 , x1,jyI

...
xφ

(k´1)
N , x1,jyI

 , (3.91)

where Φk is the N ˆ N square matrix defined by :

Φk =

 xφ1, α
j
k,1(t)yI . . . xφ1, α

j
k,N(t)yI

... . . . ...
xφN , α

j
k,1(t)yI . . . xφN , α

j
k,N(t)yI

 . (3.92)

3.6.3 Unknown input estimation
Given the states estimates x̂k,j, @k = 2, ..., nj, j = 1, ..., r and the measured input u(t)
and output yj(t) = x1,j(t), we can proceed with estimating the unknown input dj(t). The
estimation of the unknown inputs of system (3.80) is presented in the following proposi-
tion.
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Proposition 3.6.2 :

Let u(t) and yj(t) = x1,j(t), @j = 1, .., r be the measured input and outputs of system
(3.80), respectively, and x̂k,j the estimated states for k = 2, ..., nj, j = 1, ..., r. Let tφiu

i=G
i=1

be a set of modulating functions of order l ě nj satisfying (P1) and (P2) @j = 1, ..., r.
Then an estimate of the unknown input dj(t), @j = 1, .., r is given by

d̂j(t, x, u) =
G

ÿ

i=1

b̂jiβ
j
i (t), (3.93)

where G P N, βji (t) are the known basis functions and b̂ji are unknown coefficients given
by the following closed-form solution :

Solution 1 :  b̂
j
1
...
b̂jG

 = ´Φui

 xφ̇1, x̂nj ,jyI + xφ1, fj(x̂, u)yI
...

xφ̇G, x̂nj ,jyI + xφG, fj(x̂, u)yI

 , (3.94)

Solution 2 :  b̂
j
1
...
b̂jG

 = (´1)(nj) ˆ Φui

xφ
(nj)
1 , x1,jyI + xφ1, fj(x̂, u)yI

...
xφ

(nj)
G , x1,jyI + xφG, fj(x̂, u)yI

 , (3.95)

where Φui of both solutions is the G ˆ G square matrix defined by

Φui =

xφ1, β
j
1(t)yI . . . xφ1, β

j
G(t)yI... . . . ...

xφG, β
j
1(t)yI . . . xφG, β

j
G(t)yI

 . (3.96)

Proof :

Considering the (nj ´ th) equation of each block j of triangular systems, for j = 1, ..., r :

ẋnj ,j = fj(x, u) + dj(t, x, u), (3.97)

which is equivalent to :
dj(t, x, u) = ẋnj ,j ´ fj(x, u). (3.98)

Applying the operator xφ, .y on both sides :

xφ, dj(t, x, u)y = xφ, ẋnj ,jyI ´ xφ, fj(x, u)yI . (3.99)

At this point we have two choices ; we can either replace xnj ,j by the output derivative
x
(nj´1)
1,j or use its estimate x̂nj ,j . The second case is better when the measurements are

noisy because the numerical computation of derivatives of noisy signals generates numer-
ical unstability. And the signal x̂nj ,j obtained by the modulating function estimator in
Proposition 3.6.2 is less corrupted than x1,j due to the integration. Therefore, the noise
will be filtered twice with the next integration and be more robust than if we used x(nj´1)

1,j .
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choice 1 :
Using Property 3.2.1 and substituting x by x̂ and xnj ,j by x̂nj ,j, equation 3.99 becomes :

xφ, dj(t, x, u)y = ´xφ̇, x̂nj ,jyI ´ xφ, fj(x̂, u)yI . (3.100)

The unknown input dj(t) is time-varying, so it can be decomposed in the space spanned
by a set of unknown coefficients b̂ji and G chosen basis functions βji (t) as follows :

d̂j(t, x, u) =
G

ÿ

i=1

b̂jiβ
j
i (t). (3.101)

Substituting d̂j(t) by its decomposition in (3.107) :

G
ÿ

i=1

b̂ji xφ, β
j
i (t)yI = ´xφ̇, x̂nj ,jyI ´ xφ, fj(x̂, u)yI , (3.102)

Which can be written in vector notation :

[
xφ, βj1(t)yI . . . xφ, βjG(t)yI

]  b̂
j
1
...
b̂jG

 (3.103)

= ´xφ̇, x̂nj ,jyI ´ xφ, fj(x̂,u)yI .

Equation (3.109) is an algebraic system with G unknown coefficient b̂ji . In order to solve
for b̂ji , j = 1, ..., n, we need G different modulating functions in order to obtain G different
equations. Finally the coefficients b̂ji are obtained as follows b̂

j
1
...
b̂jG

 = ´Φui

 xφ̇1, x̂nj ,jyI + xφ1, fj(x̂, u)yI
...

xφ̇G, x̂nj ,jyI + xφG, fj(x̂, u)yI

 , (3.104)

where Φui is the G ˆ G square matrix given by :

Φui =

xφ1, β
j
1(t)yI . . . xφ1, β

j
G(t)yI... . . . ...

xφG, β
j
1(t)yI . . . xφG, β

j
G(t)yI

 . (3.105)

choice 2 :
Using Property 3.2.1 and substituting x by x̂ and xnj ,j by x(nj´1)

1,j , equation 3.99 becomes

xφ, dj(t, x, u)y = xφ, x
(nj)
1,j yI ´ xφ, fj(x̂, u)yI . (3.106)

The unknown input dj(t) is time-varying, so it can be decomposed in the space spanned
by a set of unknown coefficients b̂ji and G chosen basis functions βji (t) as follows :

d̂j(t, x, u) =
G

ÿ

i=1

b̂jiβ
j
i (t). (3.107)
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Substituting d̂j(t) by its decomposition in (3.107) :
G

ÿ

i=1

b̂ji xφ, β
j
i (t)yI = (´1)(nj)xφ(nj), x1,jyI ´ xφ, fj(x̂, u)yI , (3.108)

Which can be written in vector notation :

[
xφ, βj1(t)yI . . . xφ, βjG(t)yI

]  b̂
j
1
...
b̂jG

 (3.109)

= (´1)(nj)xφ(nj), x1,jyI ´ xφ, fj(x̂, u)yI .

Equation (3.109) is an algebraic system with G unknown coefficient b̂ji . In order to solve
for b̂ji , j = 1, ..., n, we need G different modulating functions in order to obtain G different
equations. Finally the coefficients b̂ji are obtained as follows : b̂

j
1
...
b̂jG

 = (´1)(nj) ˆ Φui

xφ
(nj)
1 , x1,jyI + xφ1, fj(x̂, u)yI

...
xφ

(nj)
G , x1,jyI + xφG, fj(x̂, u)yI

 , (3.110)

where Φui is the G ˆ G square matrix given by :

Φui =

xφ1, β
j
1(t)yI . . . xφ1, β

j
G(t)yI... . . . ...

xφG, β
j
1(t)yI . . . xφG, β

j
G(t)yI

 . (3.111)

3.7 Conclusion
The aim of this chapter was to provide a detailed understanding of the modulating func-
tion method and its principles. This method offers a promising approach to estimating the
parameters, states and unknown inputs of finite-time dynamical systems, by transforming
the estimation problem into a simple algebraic linear system. It enables both constant
and time-varying variables to be estimated, using two distinct approaches: the offline
approach, which is useful for system parameter identification, and the online approach,
which is useful for state estimation in control problems, estimation of unknown inputs
in fault detection problems, or even estimation of system parameters in adaptive control
problems.

One of the main advantages of this method over other estimation approaches is that it
does not require knowledge of the system’s initial conditions, thanks to the properties of
the modulating functions at the boundaries. In addition, unlike many other finite-time
estimation approaches, it does not use any non-smooth or infinity-tending terms. On the
other hand, thanks to the modulating operator (integration), the method is robust to
external disturbances that can affect measurements.

Finally, we have presented our contribution to observers with unknown inputs via the
MFBM, which consists of an extension adapted to a new class of nonlinear systems. In
order to illustrate and highlight our proposal, we will compare the observer we have
developed with other estimation approaches widely used and studied in the literature in
the context of a problem of controlling a drone in a particular environment, which was
dealt with for the first time very recently. We’ll look at this in the next few chapters.
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Chapter 4
Prescribed time observers



4.1 Introduction
In the previous chapter, we focused mainly on finite-time observers based on modulating
functions. These observers were algebraic rather than dynamic in nature. In this chapter,
we will focus on a recently developed type of observer, which is dynamical and ensures
convergence in finite time, to be more specific, convergence in a prescribed time T deter-
mined by the user independently of initial conditions and system parameters. This type
of observer uses time-varying gains that tend to infinity as time approaches the prescribed
convergence time, using an approach based on specific coordinate transformation.

We’ll start by providing the necessary preliminaries to fully understand what comes next,
then explain the fundamental principle on which this approach is based. Next, we will
present the work recently developed in [33] and [5], which respectively propose fixed-time
observers with a prescribed time T for linear and nonlinear systems of particular form.
The performance of these observers will be illustrated using simple examples. This chap-
ter aims to introduce and provide a general understanding of the fundamental principles
on which this type of observer is built.

It is important to note that our original intention was to contribute to this subject by
extending this approach to a more general form of systems. However, due to time con-
straints, this has not been possible. Therefore, for the purposes of this work, we will
confine ourselves to presenting recent work and advances concerning this type of observers.

4.2 Preliminaries
In this section, we will introduce some basic concepts on which prescribed-time observers
are founded. We will also recall some definitions of fixed-time and prescribed-time sta-
bility, slightly modified to align ourselves with the work of Holloway and Krstic, before
presenting a formal one.

Suppose that a dynamical system of order n is stable and converges to the origin in a finite
time T (x0) ą 0, which depends on the initial conditions x0 = x(t0), if for all x0 P Rn,
there exists a time T ą 0 such that T (x0) ď T , then the system is said to converge in
fixed time in T . When this fixed time T can be chosen arbitrarily by the user as a design
parameter, in contrast to Definition 1.3.5 where the prescribed time T represents the
exact time at which the system reaches the origin. The definition used by Holloway and
Krstic is less restrictive, allowing convergence or stability over a time interval T rather
than at a precise instant [33].

4.2.1 Fixed-time scaling functions
Let µ1(t ´ t0, T ) : [t0, t0 + T ) Ñ Rą0 be a strictly increasing function from 1 when t = t0
to infinity when t tends to t0 + T given by [33]

µ1(t ´ t0, T ) :=
T

T + t0 ´ t
, (4.1)

with T ą 0 a parameter to be fixed. we also define the strictly decreasing function from
1 when t = t0 to zero when t tends to t0 + T given by [33] :
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ν(t ´ t0, T ) := µ´1
1 (t ´ t0, T ) :=

T + t0 ´ t

T
. (4.2)

For a system of order n, the scaling function and its inverse are defined by [33] :

µ(t ´ t0, T ) := µ1(t ´ t0, T )
n+m =

T n+m

(T + t0 ´ t)n+m
, (4.3)

ν(t ´ t0, T ) := ν1(t ´ t0, T )
n+m =

(T + t0 ´ t)n+m

T n+m
, (4.4)

or m P Ną0 is a degree of freedom set by the user and has an influence on the speed of
divergence to infinity and zero of µ and ν respectively.

Figure (4.1) show the scaling functions µ and ν for different values of the degree of free-
dom m by setting n = 1, T = 5 and t0 = 0.

Figure 4.1: Scaling functions µ(t0 ´ t, T ) and ν(t0 ´ t, T ) with T = 5, n = 1 and different
values of m

Now that we’ve introduced the various basic concepts, we present the formal definition
proposed in [33] on which their work on prescribed-time observers is based, It’s given as
follows

Definition 6.2.1 : [33] A dynamical system ẋ = f(x, t) is said to be globally uniformly
asymptotically fixed-time stable (GUAFxS) in a time T , if there exists a function β of
class KL such that for all t P [t0, t0 + T ).

|x(t)| ď β(|x0|, µ1(t ´ t0, T ) ´ 1), (4.5)
with µ1(t ´ t0, T ) defined by (4.1). µ1(t ´ t0, T ) ´ 1 = t´t0

T+t0´t
is a function which at t0 is

equal to 0 and grows strictly to infinity when t Ñ t0 + T , since β is a function of class
KL so β tends to zero when t tends to t0 + T .

Remark 6.2.2 : Since T is a constant independent of initial conditions and is freely chosen
by the user, a system verifying (4.5) can be considered to have convergence properties in
prescribed time T .
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4.3 Prescribed-time observers for linear systems
Halloway and Krstic developed a prescribed-time state observer with time-varying gains
that tend to infinity when time tends towards the prescribed convergence time, and
demonstrated that this observer is GUAFxS according to Definition 6.2.1 in a prescribed
time defined apriori by the user, independently of initial conditions and system parame-
ters. Their work focused on SISO linear systems written in the following form :

$

’

&

’

%

ẋ(t) = Ax(t) ´ ay(y) +

[
0(r´1)ˆ1

b

]
u(t),

y(t) = Cx(t),

(4.6)

where

A =

0 In´1
...
0 0

 , a =

an´1
...
a0

 , b =

bp...
b0

 , C =
[
1 01ˆ(n´1)

]
, (4.7)

where x(t) P Rn is the system state vector, u(t) P R is the bounded and known control
input, y(t) P R the measured system output, r is the relative degree of the system such
that r = n ´ ρ or n ą ρ ě 0 and the coefficients ai, i = 0, . . . , n ´ 1 and bj, j = 0, . . . , ρ
are known.

The observer allowing estimation of the system states (4.6) in a prescribed time T is given
by [33] :

˙̂x(t) = Ax̂(t) ´ ay(t) +

[
0(r´1)ˆ1

b

]
u(t) +

g1(t ´ t0, T )
...

gn(t ´ t0, T )

 (y(t) ´ x̂1(t)), (4.8)

where gi(t´ t0, T ), i = 1, . . . , n, are time-varying gains that depend on the prescribed con-
vergence time T , in the following we present the principle and methodology for designing
such observers.

4.3.1 Principle
The observer’s estimation errors are defined as ei(t) = xi(t) ´ x̂i(t), i = 1, . . . , n, and its
dynamics is given by

#

ėi(t) = ei+1(t) ´ gi(t ´ t0, T )e1(t), i = 1, . . . , n ´ 1,

ėn(t) = ´gn(t ´ t0, T )e1(t).
(4.9)

Consider the following base change :

ζi(t) := µ(t ´ t0, T )ei(t), i = 1, . . . , n ´ 1, (4.10)
or T ą 0, t P [t0, t0 + T ) and µ : [t0, t0 + T ) Ñ Rą0 is a strictly increasing function having
the property of tending to infinity when t tends to t0 + T defined by (4.3). The inverse
transformation is given by :

ei(t) = µ(t ´ t0, T )
´1ζ(t), i = 1, . . . , n ´ 1, (4.11)
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according to the properties of µ(t ´ t0, T ) mentioned above, µ(t ´ t0, T )
´1 is a strictly

decreasing function which tends towards 0 when t Ñ t0 + T defined by (4.4).

If the states ζi(t), i = 1, . . . , n are stable and remain a finite quantity on [t0, t0 + T ) and
according to the equation (4.11) and the properties of µ(´1)(t ´ t0, T ), the errors ei(t),
i = 1, . . . , n will be forced to tend towards zero as t tends towards t0 + T . This has the
advantage of providing a means of achieving fixed-time convergence in a prescribed time
T . This is the basic principle on which prescribed-time observers are built.

Consequently, when expressing the errors ei(t) in the new coordinate base, it will suffice
to choose the gains gi(t ´ t0, T ), i = 1, . . . , n so as to stabilize the errors expressed in
the new base ζi(t), forcing the errors ei(t) to tend towards zero when t Ñ t0 + T . So,
using a particular time-dependent change of basis and choosing the gains gi(t´ t0, T ) in a
well-determined way, the system (4.9) will have the properties of being fixed time stable
according to Definition 6.2.1 in a time prescribed by the user T independently of initial
conditions and system parameters.

Remark 6.2.2 : The change of variable (4.10) can lead to a more complex expression.
In what follows, we present the change of variable proposed in [33], which allows us to
transform the system of the estimation errors(4.9) while retaining the interesting property
of (4.11) and ensuring that the transformed system is easy to stabilize, allowing fixed-time
stabilization in a prescribed time T of the system (4.10).

4.3.2 Prescribed-time coordinate transformation
The change of basis proposed in [33] is actually two successive coordinate transformations,
the first transformation ei(t) Ñ ζi(t) is used to express the dynamics of the error so that
fixed-time stabilization can be achieved in a prescribed time according to the approach
described previously, it is given by :

ζi(t) := µ(t ´ t0, T )ei(t), i = 1, . . . , n ´ 1, (4.12)
followed by the transformation ζi(t) Ñ zi(t) which serves to rewrite the errors transformed
into a form that is easy to stabilize, it is defined as follows :

zi(t) =
n

ÿ

j=1

p˚
i,j(µ1)ζj(t), i = 1, . . . , n, (4.13)

Where the functions p˚
i,j(µ1) are defined by :

p˚
i,j(µ1) := p̄i,jµ

i´j
1 , 1 ď j ď i ď n, (4.14)

with p̄i,j being constant coefficients determined by the following set of relations :

p̄i,i = 1, (4.15)
p̄i,j = 0, j ą i, (4.16)

p̄n,j´1 = ´
2n+m ´ j

T
p̄n,j, j = n, n ´ 1, . . . , 2, (4.17)

p̄n,j´1 = ´
n+m+ i ´ j

T
p̄i,j + p̄i+1,j, n ´ 1 ě i ě j ě 2, (4.18)
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Furthermore, if we take the gains gi(t ´ t0, T ) as follows :

#

gi = li + (n+m+i´1
T

p̄i,1 ´ p̄i+1,1)µ
i
1 ´

ři´1
j=1 gj p̄i,jµ

i´j
1 , i = 1, . . . , n ´ 1,

gn = ln +
2n+m´1

T
p̄n,1µ

n
1 ´

řn´1
j=1 gj p̄n,jµ

n´j
1 ,

(4.19)

with li, i = 1, . . . , n are constants to be selected. So, considering the transformation
expressed in (??) and replacing by (4.19), the system (4.9) becomes :

#

żi(t) = zi+1(t) ´ liz1(t), i = 1, . . . , n ´ 1,

żn(t) = ´lnz1(t),
(4.20)

4.3.3 Stabilization
The system (4.20) is easily stabilized, by setting the constant parameters li, i = 1, . . . , n
so that the polynomial sn + l1s

n´1 + . . .+ ln has roots with a negative real part, making
the system (4.20) AS, according to the transformation property e(t) Ñ z(t) the system
(4.9) will be in a prescribed time T as defined by Definition 6.2.1. Further details and
proofs of this method can be found in [33].

Remark 6.3.1 : It has been proved in [33] that although the gains gi(t ´ t0, T ) tend to
infinity when t Ñ t0 + T , the correction term βi(t ´ t0, T ) = gie1 remains finite.

4.3.4 Practical aspects
The observer (4.8) is easy to implement. Its construction simply consists in selecting the
constants li, i = 1, . . . , n, to stabilize the system (4.20), then independently choosing the
prescribed convergence time T and the design parameter m ě 1.

Although the correction terms βi remain finite, in practice the implementation of such an
observer will present numerical limitations when time tends to t0+T , as the gains gi tend
to infinity. To get around this limitation, two approaches are possible [33]:

- Extend the prescribed convergence time T to a time posterior to tf

- Monitor the gains gi in real time during estimation until one of them approaches a
threshold gmax set by the user, at which point we deactivate the correction terms βi.
Once the injections have been deactivated, the estimation errors will increase again.
If necessary, the observer can be reset from this point onwards, considering the
current time as a new t0 and the current estimation error as a new initial condition.

In both cases, we obtain convergence of the estimation error within a neighborhood of
the origin, which can be adjusted by the user if necessary.

The performances of this observer are illustrated in the following example.
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4.3.5 Illustrative example
Consider the following second-order system :

$

’

&

’

%

ẋ1(t) = x2(t) ´ a1y(t),

ẋ2(t) = ´a0y(t),

y(t) = x1(t),

(4.21)

where a1 = 3 and a0 = 2. The prescribed-time observer for the system (4.21) is given by :
#

˙̂x1(t) = x̂2(t) ´ a1y(t) + g1(t ´ t0, T )(y(t) ´ x̂1(t)),
˙̂x2(t) = ´a0y(t) + g2(t ´ t0, T )(y(t) ´ x̂1(t)).

(4.22)

The constants p̄i,j, are determined according to the directives (4.15)-(4.18), we find :
$

’

&

’

%

p̄1,1 = p̄2,2 = 1,

p̄1,2 = 0,

p̄2,1 = ´m+2
T
.

(4.23)

Having determined the coefficients p̄i,j, we can calculate the time-varying gains g1 and g2
following (4.19), we obtain :

#

g1(t ´ t0, T ) = l1 + 2m+2
T
µ1,

g2(t ´ t0, T ) = l2 + l1
m+2
T
µ1 +

(m+1)(m+2)
T 2 µ2

1.
(4.24)

To test the designed observer, we run a simulation with the observer parameters set as
l1 = 3, l2 = 2 and T = 3 and the system initial conditions set as x0 = [2, 1] . First, we
simulate the observer in a deterministic environment without measurement noise.

Deterministic environment :

Figure (4.2) represent state estimates and their errors for three different initial conditions,
for m = 1, we note that the estimates do indeed converge to the real values at the pre-
scribed instant T = 3, independently of the observer’s initial conditions.

The figure (4.3) illustrates the time evolution of the correction terms for different initial
conditions and for m = 1. As Halloway and Krstic proved in [33], the correction terms
remain finite and tend towards zero when t Ñ t0 + T .

Figure (4.4) illustrate state estimates, in this case by varying the parameter m for
x0 = [´2,´3]T , we note that changing m impacts the transient regime of the estima-
tion error in such a way that, by increasing its value, the error tends to approach zero
more quickly, but the overshoot is larger. However, the estimates converge to their true
values in a prescribed time T independently of m.

Stochastic environment :
In a second step, we consider the presence of noise affecting the measurements of the
system output, such as :

y(t) = x1(t) + v(t),
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Figure 4.2: State estimation and its error with T = 3, m = 1 and for different initial
observer conditions

Figure 4.3: Correction terms β1 and β2 with T = 3, m = 1 and for different initial observer
conditions

Figure 4.4: State estimation and its error with T = 3, x̂ = [´2,´3]T and for different
values of m.

where v(t) is a normally distributed random noise estimated at 10% from the real signal x1.
Figure (4.5) represent the evolution of the estimation error of x1 and x2 for x0 = [´2,´3]T

and m = 1. We can see that even in the presence of measurement noise, the estimates
continue to converge with respect to their initial condition. However, as we start nearing
the prescribed time T , the estimates diverge to infinity due to numerical instability, which
is accentuated by the measurement noise.
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Figure 4.5: State estimation error with T = 3, x̂ = [´2,´3]T and m = 1 for noisy
measurements

4.4 Prescribed-time observers for nonlinear systems
In this section, we will present a recent proposal by the authors of [5], expanding on the
work of [33] and [17], which introduces a new extension of prescribed-time observers for
nonlinear systems described by

#

ẋ(t) = Ax(t) + f(x(t)),

y(t) = Cx(t),
(4.25)

where

A =

0 In´1
...
0 0

 , C =
[
1 01ˆ(n´1)

]
. (4.26)

with x(t) P Rn the system’s state vector and y(t) P R the system’s measured output.

Hypothesis : The functions fi : Ri Ñ R, i = 1, . . . , n are Lipschitzian and satisfy the
following property [5]

|fi(x1, . . . , xi) ´ fi(x̄1, . . . , x̄1)| ď γfi

i
ÿ

j=1

|xj ´ x̄j|, (4.27)

where γfi is Lipschitz’s constant.

The observer developed in [5] is a modified high-gain observer based on the same change-
of-variable principle as above, enabling fixed-time state estimation at a prescribed time
T . Details of the observer design are given in the following.

4.4.1 Design
The observer for estimating the states of the system (4.25) in a prescribed time T is given
as follows [5] :

˙̂x = Ax̂(t) + f(x̂(t)) + Γ´1K(y(t) ´ x̂1(t)), (4.28)
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where Γ is a scaling matrix given by :

Γ =


1/µ1+m 0 . . . 0

0 1/µ2(1+m) . . . 0
... . . . ...
0 . . . . . . 1/µn(1+m)

 , (4.29)

with m ě 1 is the degree of freedom.
The dynamics of the estimation error e(t) = x(t) ´ x̂(t) is expressed by :

ė(t) = Ae(t) + ∆f ´ Γ´1e1(t), (4.30)
where

∆f := f(x) ´ f(x̂). (4.31)
As we have already seen, in order for the estimation error to be stable in fixed time at a
prescribed time T , we consider the following coordinate transformation

z(t) = Γe(t). (4.32)

The dynamics of the estimation error expressed in the new base is given as follows

ż(t) = µ1+m(A ´ KC)z(t) ´ (1 +m)
µ̇

µ
Dz(t) + Γ∆f, (4.33)

with

D =


1 0 . . . 0
0 2 . . . 0
... . . . ...
0 . . . . . . n

 . (4.34)

Remember that due to the nature of the transformation e(t) Ñ z(t), if z(t) remains a finite
quantity, e(t) will be forced to tend towards zero when t Ñ t0 + T . So in order to ensure
that (4.30) is GUAFxS in a prescribed time T , all we need to do is ensure that (4.33) is AS.

Consider the following Lyapunov function [5] :

V (z(t)) = z(t)TPz(t), (4.35)
where P ą 0.
Ensuring that (4.33) is AS is equivalent to forcing the derivative of V to be a NDF on
[t0, t0 + T ], this implies the following theorem

Theorem 6.4.1 : [5] If there exists a matrix P ą 0, a matrix of adequate dimension Y
and positive constants m,λ1 and λ2 ensuring the following conditions :

ATP + PA ´ CTY ´ YTC + λ1In ď 0, (4.36)
DTP + PD ´ λ2In ě 0, (4.37)

with
K = P´1YT =

[
K1 . . . Kn

]T
, (4.38)

then the dynamics of the error expressed in the new base (4.33) is AS.
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Remark 6.4.1 : Constructing a prescribed-time observer for the system (4.25) involves
solving the system of linear matrix inequalities (LMI) (4.41)(4.42).
More details on the design of the observer and the proof of Theorem 6.4.1 can be found
in [5]. The performances of this observer are presented in the following example.

4.4.2 Illustrative example
Let’s consider the second-order nonlinear system expressed by :

$

’

&

’

%

ẋ1(t) = x2(t) + cos(x1(t)x2(t)),
ẋ2(t) = x2(t)

2 ´ x1(t)x2(t,

y(t) = x1(t).

(4.39)

the system (4.39) is written in the form described by (4.25) such that

A =

[
0 1
0 0

]
, f(x(t)) =

[
f1(x)
f2(x)

]
=

[
cos(x1(t)x2(t))

x2(t)
2 ´ x1(t)x2(t)

]
.

The prescribed-time observer associated with the system (4.39) is given by
#

˙̂x1(t) = x̂2(t) + cos(x1(t)x̂2(t)) + µ1+m(t)K1(x1(t) ´ x̂1(t)),
˙̂x2(t) = x̂2(t)

2 ´ x1(t)x̂2(t) + µ2(1+m)(t)K2(x1(t) ´ x̂1(t)).
(4.40)

Using Matlab, we solve the following system of linear matrix inequalities to find the
observer’s gains K1 et K2

ATP + PA ´ CTY ´ YTC + λ1I2 ď 0, (4.41)
DTP + PD ´ λ2I2 ě 0, (4.42)

where
D =

[
1 0
0 2

]
, λ1 = 1, λ2 = 0.5, (4.43)

K = P´1YT =
[
K1 K2

]T
, (4.44)

we find
K =

[
1.45 2.7

]
. (4.45)

The convergence time is fixed at T = 4 and the parameter m = 1. The time origin is
taken equal to t0 = 0. The initial conditions of the system and the observer are x0 = [0, 1]
and x̂0 = [1, 2].

Figures (4.6) and (4.6) illustrate the evolution of estimation errors as well as the estimates
of x1 and x2 respectively for different values of parameter m. The estimates do converge
towards their true values in a time T = 4 and this independently of the values of m, having
said that, we notice that by increasing the value of m the estimates tend to converge more
rapidly.
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4.5 Conclusion
In this chapter, we have presented a recently developed observer known as the prescribed-
time observer. Its main characteristic is that it ensures the fixed time stability of the
estimation error within a predefined time fixed by the user, independently of the ob-
server’s initial conditions and the system’s parameters. This approach is based on the use
of time-varying gains, which tend towards infinity as the prescribed time T is reached,
thanks to a specific coordinate change. We have demonstrated the performance of this
observer using simple examples, where the results were very satisfying. However, in the
presence of measurement noise, as we approach the prescribed time T, estimates diverged
due to numerical instabilities, which are exacerbated by measurement noise.

The aim of this chapter was to introduce the fundamental principles on which this observer
approach is based, thus opening up new perspectives for future research directions. As
a potential example, we can consider a few ideas worth developing, such as extending
this approach to more general forms of systems, further analyzing the robustness of these
observers and proposing improvements to mitigate the effects of numerical instability and
measurement noise. These lines of research open up new prospects for exploring in greater
detail the capabilities and limitations of this innovative approach.

Figure 4.6: Estimation of the state x1 along with estimation error with T = 4, x̂ = [1, 2]T

for different values of m
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Chapter 5
Application to drone



5.1 Introduction - Problem formulation
Drones have been highly effective in many outdoor applications, including infrastructure
monitoring and search and rescue operations. It is questionable whether this effectiveness
would be the same in enclosed moving environments, such as vehicles, ships or aircrafts,
where GPS is inaccessible. Flying in these environments can present several challenges.
The absence of a GPS signal deprives UAVs (unmanned aerial vehicle) of direct access
to their absolute position in the geocentric coordinate system, considered an inertial ref-
erence frame for these vehicles. On-board sensors such as accelerometers and gyroscopes
provide measurements of angles and accelerations relative to this inertial reference frame.
In contrast, on-board location sensors provide positions relative to the moving environ-
ment, which is a non-inertial reference frame. As a result, the visual odometry of drones
is discordant with inertial measurements. Two YouTube videos illustrate this challenge,
showing people trying to fly drones inside trucks or elevators [41][40] Human pilots man-
age to control the drones at very low speeds, but this task becomes increasingly difficult
to downright impossible as the environment speed and acceleration increase.

This particular problem has recently been introduced in [49]. No other work has consid-
ered this scenario to date. In a first attempt, the authors of [49] proposed a formulation
for the problem of UAV flight in a moving environment with translational motion rela-
tive to the geostationary reference frame. A model corresponding to this situation was
developed, taking into account the acceleration of the environment in which the drone
is located. Next, an extended kalman filter with unknown inputs (EKF-UI) was imple-
mented to estimate the drone’s linear velocities and the accelerations of the environment.
The estimated velocities were then used in a sliding-mode controller, along with the other
measured states, to enable the drone to follow the desired trajectory. The results ob-
tained were satisfactory in both simulation and experimentation in an elevator, further
confirming their work and validating the effectiveness and reliability of their proposals.

The next two chapters (5 and 6) of our study will be dedicated to this specific prob-
lem. In chapter 5, we will present in detail the model developed in [49] and focus on
the control aspect of the problem. We will implement two control laws to enable the
drone to follow a desired trajectory, namely the sliding mode control already treated by
[49] and the backstepping control. The next chapter will focus on the estimation problem.

5.2 Drone dynamical model
We consider the case where the moving environment moves only in translation with respect
to the inertial frame of reference. Before a model of the UAV with respect to the non-
inertial reference frame can be developed, we must first establish a model with respect to
the inertial reference frame. In the following, we’ll refer to the inertial and non-inertial
reference frames as R(o, x, y, z) and R1(o1, x1, y1, z1) respectively.

5.2.1 Dynamical model w.r.t the inertial reference frame
The equations of motion of the UAV in the reference frame R based on the Newton-Euler
formalism are given by [49][13]
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ẍ/R = u1(c(φ/R)s(θ/R)c(ψ/R) + s(φ/R)s(θ/R)),

ÿ/R = u1(c(φ/R)s(θ/R)s(ψ/R) ´ s(φ/R)c(θ/R)),

z̈/R = u1(c(φ/R)c(θ/R)) ´ g,

φ̈/R = Iy´Iz
Ix

θ̇/Rψ̇/R + u2,

θ̈/R = Iz´Ix
Iy

φ̇/Rψ̇/R + u3,

ψ̈/R = Ix´Iy
Iz

φ̇/Rψ̇/R + u4,

(5.1)

the moments of inertia along each axis are represented by Ix,Iy and Iz and g = 9.81 m/s2
represents the gravitational force. The terms φ/R, θ/R and ψ/R correspond respectively
to the drone’s pitch, roll and yaw angles in the reference frame R, while x/R, y/R and z/R
represent the drone’s position in the same reference frame. The variables ui, i = 1, 2, 3, 4
designate the drone’s control inputs and are defined as follows
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u1 =
b
m
(Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4),

u2 =
b
Ix
(Ω2

4 ´ Ω2
2),

u3 =
b
Iy
(Ω2

3 ´ Ω2
1),

u4 =
l
Iz
(´Ω2

1 + Ω2
2 ´ Ω2

3 + Ω2
4),

where a = Iy´Iz
Ix

, b = Iz´Ix
Iy

,c = Ix´Iy
Iz

, l is the distance between the rotor and the drone’s
center of mass and Ω1, Ω2, Ω3 and Ω4 represent the angular velocities of the rotors.

We define the following state vector: xr = (x1r, x2r, x3r, x4r, x5r, x6r, x7r, x8r, x9r, x10r, x11r, x12r)
T =

(x/R, ẋ/R, y/R, ẏ/R, z/R, ż/R, φ/R, φ̇/R, θ/R, θ̇/R, ψ/R, ψ̇/R)
T , the state space representation of

the UAV expressed in the inertial reference frame R is given by
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ẋ1r = x2r,

ẋ2r = [c(x7r)s(x9r)c(x11r) + s(x7r)s(x11r)]u1,

ẋ3r = x4r,

ẋ4r = [c(x7)s(x9)s(x11) ´ s(x7)c(x11)]u1 ´ ay,

ẋ5r = x6,

ẋ6r = [c(x7)c(x9)]u1 ´ g ´ az,

ẋ7r = x8,

ẋ8r = ax10x12 + u2,

ẋ9r = x10,

ẋ10r = bx8x12 + u3,

ẋ11r = x12,

ẋ12r = cx8x10 + u4.

5.2.2 Dynamical model w.r.t the non-inertial refrence frame
Since the non-inertial reference frame is assumed to move in translation only, only the
drone’s linear positions and velocities are affected. Angular positions and angular veloci-
ties in the non-inertial reference frame are identical to those in the geostationary reference
frame. To better illustrate this idea, let’s imagine that the drone is inside a box, as shown
in figure (5.1). In this case, the non-inertial frame of reference corresponds to the frame
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of reference linked to the body of the box. By considering the moving environment as a
box, we can encompass all possible scenarios: if we want to fly the drone in an elevator,
we can represent it as a box moving along the z axis.

Figure 5.1: Representation of the different refrence frames [[49]

We denote xb/R, yb/R and zb/R the position of the fictitious box (the environment) in R,
while φb/R, θb/R and ψb/R represent the orientation of the box in R. Since the box is
assumed to move in translation only, we have

ẍb/R
ÿb/R
z̈b/R
φ̈b/R
θ̈b/R
ψ̈b/R

 =


ax
ay
az
0
0
0

 . (5.2)

The UAV’s linear accelerations in R are expressed as the sum of the UAV’s acceleration
in R1 and the acceleration of the environment. Consequently, the drone’s accelerations
relative to the reference frame R1 are expressed as followsẍ/Rÿ/R

z̈/R

 =

ẍ/R1 + ẍb/R
ÿ/R1 + ÿb/R
z̈/R1 + z̈b/R

 Ñ

ẍ/R1

ÿ/R1

z̈/R1

 =

ẍ/R1 ´ ẍb/R
ÿ/R1 ´ ÿb/R
z̈/R1 ´ z̈b/R

 .
By direct measurement, we have access to the relative position of the UAV with respect
to the non-inertial reference frame R1, as well as to its angular position. So the state
representation of the UAV in R1 is given by

76



$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ẋ1 = x2,

ẋ2 = [c(x7)s(x9)c(x11) + s(x7)s(x11)]u1 ´ ax,

ẋ3 = x4,

ẋ4 = [c(x7)s(x9)s(x11) ´ s(x7)c(x11)]u1 ´ ay,

ẋ5 = x6,

ẋ6 = [c(x7)c(x9)]u1 ´ g ´ az,

ẋ7 = x8,

ẋ8 = ax10x12 + u2,

ẋ9 = x10,

ẋ10 = bx8x12 + u3,

ẋ11 = x12,

ẋ12 = cx8x10 + u4,

(5.3)

y = [x1 x3 x5 x7 x9 x11]
T .

The state vector is given by x = (x/R1 , ẋ/R1 , y/R1 , ẏ/R1 , z/R1 , ż/R1 , φ/R1 , φ̇/R1 , θ/R1 , θ̇/R1 , ψ/R1 , ψ̇/R1).
The accelerations of the non-inertial reference frame (ax,ay, and az) act as a disturbance
on the UAV model and can be considered as unknown inputs.

5.3 Control problem
In the system (5.3), it’s important to note that angles and their time derivatives don’t
depend on translation components, whereas translations do depend on angles. This allows
us to consider the system (5.3) as consisting of two distinct subsystems : angular rotations
and linear translations, as illustrated in Figure (5.2). The output of the angular rotations
subsystem then becomes a control input for the translations subsystem.

Figure 5.2: Block diagram of the drone model

To ensure efficient control of the entire system, the control scheme is divided into two
parts: a position controller and a rotation controller, as shown in Figure (5.3).
In the control scheme, the desired values (xd, yd, zd, ψd) are set, the position controller
generates the required values (φd, θd) for the rotation controller. The measured quantities
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Figure 5.3: UAV control structure

are then fed back to both controllers.

In order to design the control laws, we define ux and uy as virtual controls given by
#

ux = c(x7)s(x9)c(x11) + s(x7)s(x11),

uy = c(x7)s(x9)s(x11) ´ s(x7)c(x11).
(5.4)

The drone model can be rewritten as follows
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ẋ1 = x2,

ẋ2 = uxu1 ´ ax,

ẋ3 = x4,

ẋ4 = uyu1 ´ ay,

ẋ5 = x6,

ẋ6 = [c(x7)c(x9)]u1 ´ g ´ az,

ẋ7 = x8,

ẋ8 = ax10x12 + u2,

ẋ9 = x10,

ẋ10 = bx8x12 + u3,

ẋ11 = x12,

ẋ12 = cx8x10 + u4.

(5.5)

5.3.1 Sliding mode control
5.3.1.1 A reminder about sliding mode control

Sliding mode control is an advanced control technique commonly used in control systems.
Its main objective is to enable precise control of dynamical systems that are non-linear
and uncertain, using switching control based on state variables. The fundamental idea
of this approach is to align the actual dynamics of the system with a desired dynamics,
which is defined by a specific surface called the sliding surface. When the state of the
system remains on this surface, the system is said to be in a sliding regime. At this stage,
the system becomes insensitive to parameter variations, modeling errors and disturbances.

Sliding-mode control is particularly useful for controlling disturbed systems or systems
with poorly understood models. Its objective focuses on two essential aspects. Firstly, it
involves designing a surface, denoted S(x), so that all system trajectories follow a desired
behavior in terms of tracking, control and stability. Next, we need to determine a control
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or switching law, denoted u(t, x), which attracts all state trajectories to the sliding surface
and holds them there.

Consider the following non-linear system
#

ẋ = f(t, x) + g(t, x)u,

y = h(x),
(5.6)

with x P Rn is the state vector, u P Rm is the control input vector and y P Rp is the
output vector.
Designing a sliding-mode controller for the system (5.6) generally involves three steps, as
described in [15] and [57]. Here’s an overview of these steps:

1- Choosing a sliding surface :

Slotine and Li propose in [79], a general form of the sliding surface given by

S(x) = (
d

dt
+ λ)r´1e(x), (5.7)

where e(x) represents the tracking error, λ is a positive constant and r is the relative
degree of the system under consideration.

2- Attractivity condition :

The attractivity condition is the condition under which the state trajectory of a system
reaches the sliding surface. It is also known as the "sliding surface access condition".
There are two types of sliding surface access conditions : the direct approach and the
Lyapunov approach. In this context, we’ll use the direct approach, which is the oldest
and was proposed by Emilyanov and Utkin, it is given by

#

Ṡ(x) ą 0 When S(x) ă 0,

Ṡ(x) ă 0 When S(x) ą 0.
(5.8)

These two conditions can be rewritten as a single condition, as follows

Ṡ(x)S(x) ă 0. (5.9)
3- Establishing the control law :

In order to bring the system states to the sliding surface and maintain them there, even
in the presence of uncertainties and disturbances, the control u is composed of two terms
[57], the control is given by

u(t) = uatt + ueq(t). (5.10)
The first term uatt, called the switching term, aims to attract the state trajectories towards
the sliding surface. It is designed to ensure fast and accurate convergence of the system to
the sliding surface in a finite time, satisfying the attractiveness condition Ṡ(x)S(x) ă 0.
The simplest and most widely used form is

uatt = ´K
1

g(t, x)
sign(S). (5.11)
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The second term, called the correction term, is used to maintain the state trajectories
on the sliding surface once they have reached it. Its role is to eliminate the undesirable
effects of disturbances and uncertainties, thus ensuring that the system remains on the
sliding surface robustly, satisfying the surface invariance condition

#

S(x) = 0,

Ṡ(x) = 0.

This leads to the expression

ueq(t) = ´[
BS

Bx
g(t, x)]´1(

BS

Bx
f(t, x) +

BS

Bt
). (5.12)

By combining these two terms, we obtain a control u that guides the system states to-
wards the sliding surface and maintains them there, even in the presence of disturbed or
uncertain conditions:

u(t) = ´K
1

g(t, x)
sign(S) ´ [

BS

Bx
g(t, x)]´1(

BS

Bx
f(t, x) +

BS

Bt
). (5.13)

Chattering phenomenon :

In an ideal sliding regime, switching the control at an infinite frequency would be desir-
able. However, in practice, switching at a finite frequency is realistic, creating a delay
between output measurement and control calculation. This delay can cause the system to
overshoot the sliding surface before the control can react. As a result, during the sliding
regime, control discontinuities can cause high-frequency oscillations in the system’s tra-
jectory around the sliding surface. This phenomenon is known as chattering. This leads
to a deterioration in the system performance, and may even result in instability

To mitigate or eliminate this phenomenon, several solutions have been proposed. One
commonly used method is the boundary layer, which replaces the sign function of the
control law with a high-gain continuous approximation in the vicinity of the sliding surface,
while saturating it outside this vicinity. This allows the sliding regime to extend beyond
the sliding surface and into a neighborhood of it. This is referred to as a pseudo-sliding
regime. However, this method reduces the robustness of the control. It is parameterized
with a constant adjusted to strike a balance between reducing chattering and preserving
system robustness. A commonly used approximation to the discontinuous function sign
is the function arctan [15].

5.3.1.2 Sliding mode control design

The sliding surfaces considered are [49]
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Sx = ė1 + λ1e1,

Sy = ė3 + λ3e3,

Sz = ė5 + λ5e5

Sφ = ė7 + λ7e7,

Sθ = ė9 + λ9e9,

Sψ = ė11 + λ11e11,

(5.14)
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where ei = xi ´ xid, with i = 1, 3, 5, 7, 9, 11, are the tracking errors, and λi, i =
1, 3, 5, 7, 9, 11, are positive constants.

Hypothesis 4.3.1 : The accelerations of the environment are bounded such that
|ax| ď a1, |ay| ď a3, |az| ď a5.

Control law of x :

Considering the surface Sx, we present in what follows the steps of the control synthesis.
The derivative of the surface Sx is given by

Ṡx = ë1 + λ1ė1. (5.15)
To ensure system stability and reference tracking, the attractiveness condition ṠxSx ď 0
must be satisfied.

ṠxSx = [ë1 + λ1ė1],

= Sx[ẍ1 ´ ẍ1d + λ1(ẋ1 ´ ẋ1d)],

= Sx[ẋ2 ´ ẍ1d + λ1(x2 ´ ẋ1d)],

= Sx[uxu1 ´ ax ´ ẍ1d + λ1(x2 ´ ẋ1d)],

= Sx[uxu1 ´ ẍ1d + λ1(x2 ´ ẋ1d)] ´ Sxax,

ď Sx[uxu1 ´ ẍ1d + λ1(x2 ´ ẋ1d)] + |Sx||ax|.

Using Hypothesis 4.3.1, we find
ṠxSx ď Sx[uxu1 ´ ẍ1d + λ1(x2 ´ ẋ1d)] + a1|Sx|,

ď Sx [uxu1 ´ ẍ1d + λ1(x2 ´ ẋ1d) + a1sign(Sx)]
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

I

.

To ensure ṠxSx ď 0 it is enough to take I = ´k1sign(Sx), we obtain

ux =
1

u1
[´(k1 + a1)sign(Sx) + ẍ1d ´ λ1(x2 ´ ẋ1d)].

Following the same steps, we find the control laws of y, z, φ, θ and ψ, they are given by
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u1 =
1

c(x7)c(x9)
[´(k5 + a5)sign(Sz) + g + ẍ5d

´λ5(x̂6 ´ ẋ5d)],

u2 = ´k7sign(Sφ) ´ ax̂10x̂12 + ẍ7d ´ λ7(x̂8 ´ ẋ7d),

u3 = ´k9sign(Sθ) ´ bx̂8x̂12 + ẍ9d ´ λ9(x̂10 ´ ẋ9d),

u4 = ´k11sign(Sψ) ´ cx̂8x̂10 + ẍ11d ´ λ11(x̂12 ´ ẋ11d),

ux =
1
u1
[´(k1 + a1)sign(Sx) + ẍ1d ´ λ1(x̂2 ´ ẋ1d)],

uy =
1
u1
[´(k3 + a3)sign(Sy) + ẍ3d ´ λ3(x̂4 ´ ẋ3d)],

(5.16)

where ki, i = 1, 3, 5, 7, 9, 11 are positive constants. u1 is assumed to never reach zero.

x1d, x3d, x5d, and x11d are the desired trajectories that are defined a priori, while, x7d and
x9d are obtained from the virtual control inputs ux and uy (5.4) by :[

s(x7d)
c(x7d)s(x9d)

]
=

[
s(x11d) ´c(x11d)
c(x11d) s(x11d)

] [
ux
uy

]
.
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5.3.1.3 Results

In order to validate and test the designd laws, we present in the following figures two
scenarios, in the first case the figures (5.4)-(5.6) represent respectively the positions as
well as the linear speeds, the angles as well as the angular speeds and the control signals
(real and virtual) by considering :

- Non-inertial reference frame accelerations : ax = 1m/s2, ay = 2m/s2 and az =
3m/s2.

- Desired position and yaw angle : x1d = 2m, x3d = 2.5m, x5d = 1m and x11d = 0 rad.

As for the second scenario, we simulated the tracking of a circular trajectory, represented
by figure (5.7), this time with

- Non-inertial reference frame accelerations : ax = sin(0.5t)m/s2, ay = 2m sin(0.5t)/s2
and az = 3 sin(0.5t)m/s2.

- Desired position and yaw angle : x1d = 2 sin(t)m, x3d = 2 sin(t)m, x5d = 6m and
x11d = 0 rad.

Simulations are performed in the presence of a normally distributed random process noise
with a mean equal to 0.001. When implementing the control laws, we replaced sign(S)
by tanh(S/0.1), with the UAV initially placed at the origin of the non-inertial reference
frame (x0 = zeros(12, 1)).

The drone parameters used for the simulations are given in the table (5.1).

In both scenarios, the signals quickly converge to their respective references, enabling
the drone to follow the desired trajectory in a moving environment, guaranteeing system
stability. Although this technique offers flexibility of manipulation, the choice of the
parameters λi and associated ki is tricky, as inappropriate selection can lead to system
instability. We note that despite replacing the sign function by a continuous one, the
Chattering phenomenon is still present in the u2 and u3 control signals, no doubt due to
the presence of process noise.

Name Symbol Value Unit
Mass m 1 Kg
Distance from rotor to
center of mass

l 0.24 m

Moment of inertia
along x

Ix 8.1ˆ10´3 Kg.m2

Moment of inertia
along y

Iy 8.1ˆ10´3 Kg.m2

Moment of inertia
along z

Iz 14.2ˆ10´3 Kg.m2

Table 5.1: Simulation parameters[11]
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Figure 5.4: Positions and linear velocities (sliding mode control)

Figure 5.5: Orientation and angular velocities (Sliding mode control)
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Figure 5.6: Control signals (sliding mode control)

Figure 5.7: Trajectory tracking (sliding mode control)
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5.3.2 Backstepping control
Backstepping control is an advanced control method widely used to stabilize and control
non-linear dynamical systems, particularly in the field of robotics.

This approach is based on the concept of "backtracking", where the system is divided
into several nested subsystems, in descending order. The Lyapunov function is calculated
recursively, starting from inside the loop. At each step, the order of the system is increased
and the unstabilized part of the previous step is processed. Finally, in the last step,
the control law is determined. This control law guarantees the overall stability of the
compensated system, ensuring that the system is tracked and regulated at all times.

5.3.2.1 A reminder about Backstepping control

Backstepping is a method that focuses on the progressive construction of the Lyapunov
function and the step-by-step design of the control. Unlike many other methods, Back-
stepping imposes no constraints on the type of non-linearity of the system. However, the
system must be formulated in a specific form called "cascade". The equations of such
systems are given by
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ẋ1 = f1(x1) + g1(x1)x2,

ẋ2 = f2(x1, x2) + g2(x1, x2)x3,
...
ẋn´1 = fn´1(x1, x2, . . . , xn´1) + gn´1(x1, x2, . . . , xn´1)xn,

ẋn = fn(x1, x2, . . . , xn) + gn(x1, x2, . . . , xn)u,

y = x1,

(5.17)

where : x =
[
x1 x2 . . . xn

]T
P Rn, u P R and y P R.

To illustrate the recursive procedure of the Backstepping method, let’s assume that the
output of the system y = x1, must follow a reference signal yref . Since the system is of
order n, the Backstepping procedure takes place in n successive steps.

Step 1 :
We consider the first equation of the system (5.17) as a separate subsystem where x2 is
considered as an intermediate virtual control. The reference signal for x1 is denoted

yref = x1d = α0.

The control error and its dynamics are given by
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%

e1 = x1 ´ α0,

ė1 = ẋ1 ´ α̇0,

= f1(x1) + g1(x1)x2 ´ α̇0.

(5.18)

We define the Lyapunove function for the system (5.18) as follows

V1 =
1

2
e21. (5.19)
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V1 is PDF on R, its time derivative is given by :

V̇1 = e1ė1,

= e1[f1(x1) + g1(x1)x2 ´ α̇0].

A judicious choice of x2 would make V̇1 NDF and ensure the stability of the system (5.18).
To do this, we take

x2 = α1 =
1

g1(x1)
[´k1e1 + α̇0 ´ f1(x1)], (5.20)

with k1 ą 0. This leads to
V̇1 = ´k1e

2
1 ď 0. (5.21)

Step 2 :
For the system (5.18) to be stable, x2 = α1 is required, so α1 is in turn the desired
reference of x2, x3 is considered to be the virtual control of the x2 state

x2d = α1.

The control error of the variable x2 and its dynamics are given by :
$
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%

e2 = x2 ´ α1,

ė2 = ẋ2 ´ α̇1,

= f2(x1, x2) + g2(x1, x2)x3 ´ α̇1.

(5.22)

We extend the previous Lyapunov function (5.19) to the system (5.22)

V2 = V1 +
1

2
e22 =

1

2
(e21 + e22). (5.23)

Its derivative is given by

V̇2 = V̇1 + e2ė2,

= ´k1e
2
1 + e2[f2(x1, x2) + g2(x1, x2)x3 ´ α̇1 + e1g1(x1)].

The choice of x3 that will stabilize the system (5.22) dynamics and make V̇2 NDF is

x3 = α2 =
1

g2(x1, x2)
[´k2x2 + α̇1 ´ f2(x1, x2) ´ e1g1(x1)], (5.24)

with k2 ą 0. We then obtain :

V̇2 = k1e
2
1 ´ k2e

2
2 ď 0. (5.25)

Step n :
Similarly, the reference to follow at this stage is

xnd = αn´1.

The tracking error of state xn and its dynamics are given by
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en = xn ´ αn´1,

ėn = ẋn ´ α̇n´1,

= fn(x1, x2, . . . , xn) + gn(x1, x2, . . . , xn)u.

(5.26)

The extended Lyapunov function of the system (5.26) is

Vn = Vn´1 +
1

2
e2n = Σn

i=1e
2
i . (5.27)

V̇n is given by

V̇n = ´Σn´1
i=1 kie

2
i + en[fn + gnu ´ α̇n´1 + en´1gn´1].

In order for V̇n to be NDF, we take

u =
1

gn
, (5.28)

with kn ą 0. This gives V̇n = ´Σn
i=1kie

2
i which is NDF on Rn.

The control u guarantees asymptotic convergence of the system output to the desired
reference.

5.3.2.2 Backstepping control design

Tracking errors are given by

ei =

#

xi ´ xid, for i P t1, 3, 5, 7, 9, 11u,

xi ´ ẋ(i´1)d + ki´1ei´1, for i P t2, 4, 6, 8, 10, 12u,
(5.29)

with ki ą 0.

The Lyapunov functions are written as

Vi =

#

1
2
e2i , for i P t1, 3, 5, 7, 9, 11u,

1
2
(Vi´1 + e2i ), for i P t2, 4, 6, 8, 10, 12u.

(5.30)

We design the Backstepping control of the motion along the x-axis subsystem , which is
given by

#

ẋ1 = x2,

ẋ2 = uxu1 ´ ax.
(5.31)

Since the subsystem (5.31) is a second order system, the design of the control law is per-
formed in two steps:

Step 1 :
Let’s consider x2 as a virtual control law to control the state x1 and make it follow the
previously defined reference x1d. The dynamics of the control error of the variable x1 is
given by

ė1 = x2 ´ ẋ1d. (5.32)
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We define the Lyapunov function for the subsystem (5.32) and its derivative as follows
#

V1 =
1
2
e21,

V̇1 = e1ė1 = e1[x2 ´ ẋ1d].
(5.33)

In order for the subsystem (5.32) to be stable, it is necessary that V̇1 ď 0, this is verified
by choosing the virtual control as

x2 = α1 = ẋ1d ´ k1e1, (5.34)
in this case V̇1 = ´k1e

2
1, which guarantees convergence of e1 to the origin.

Step 2 :
In order for x1 to follow the reference x1d, x2 must in turn follow α1. To do this, we take
the Lyapunov function

#

V2 =
1
2
(e21 + e22),

V̇2 = e1ė1 + e2ė2 = ´k1e
2
1 + e2[uxu1 ´ ax ´ α̇1 + e1].

(5.35)

To ensure system stability and reference tracking, V̇2 ď 0 must be satisfied.

V̇2 = ´k1e
2
1 + e2[uxu1 ´ ax ´ α̇1 + e1],

= k1e
2
1 + e2[uxu1 ´ α̇1 + e1] ´ e2ax,

ď k1e
2
1 + e2[uxu1 ´ α̇1 + e1] + |e2||ax|.

Using the Hypothesis 4.3.1, we find

V̇2 ď k1e
2
1 + e2[uxu1 ´ α̇1 + e1] + a1|e2|,

ď k1e
2
1 + e2[uxu1 ´ α̇1 + e1 + a1sign(e2)],

by setting
ux =

1

u1
[´k2e2 + α̇1 ´ e1 ´ a1sign(e2)]. (5.36)

We obtain : V̇2 ď ´k1e
2
1 ´ k2e

2
2 ď 0.

Following the same steps, we design the control laws uy, u1, u2, u3 and u4 :
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u1 =
1

c(x7)c(x9)
(α̇5 ´ e5 + g ´ azsign(e6) ´̨ 6e6),

u2 = α̇7 ´ e7 ´ ax10x12 ´ k8e8,

u3 = α̇9 ´ e9 ´ ax8x12 ´ k10e10,

u4 = α̇11 ´ e11 ´ ax8x10 ´ k12e12,

ux =
1
u1
[´k2e2 + α̇1 ´ e1 ´ a1sign(e2)],

uy =
1
u1
[´k4e4 + α̇3 ´ e3 ´ a3sign(e4)].

(5.37)

u1 is assumed to never reach zero.
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5.3.2.3 Results

The two previous scenarios are repeated with the same initial conditions and simulation
parameters, this time implementing the backstepping control laws given by (5.37). Figure
(5.8) shows the positions and linear velocities of the drone, while Figure (5.9) illustrates
the angles and their variations. Figure (5.10) shows the control signals (real and virtual).
Finally, Figure (5.11) shows the drone’s trajectory in space, as well as the reference tra-
jectory.

Backstepping control enables the system outputs to converge towards their reference val-
ues, even though a small static error is present concerning the drone’s position along the
y and z axes. We also note that the pitch and roll angles initially fail to follow their
reference values determined by the controller. However, this does not prevent the system
from stabilizing and maintaining its reference position while in a moving environment.
In Figure (5.11), we can see that backstepping control enables the drone to follow the
circular reference trajectory. However, it is noticeable that the control takes longer to
reach the reference trajectory than in Figure (5.7) (sliding mode control). It can also be
seen that the control u2 and u3 signals exhibit strong peaks. This technique is flexible
in its handling, but the choice of parameters ki is difficult, as the wrong selection can
lead to the instability of the system. It is therefore crucial to make appropriate choices
to guarantee the stability and performance of the controlled system.

5.4 Conclusion
In this chapter, we presented the UAV model in a non-inertial reference frame R1, as
developed in [49]. Next, we designd two controllers, namely the sliding mode controller
and the Backstepping controller. It’s worth noting that sliding mode control has already
been covered in [49]. We tested them under two scenarios : reaching and maintaining the
desired position in the non-inertial reference frame R1 and following a circular trajectory
in the same frame. Both approaches has given satisfactory results. However, the sliding
mode control seems to be the better choice due to its smaller control signals and its rep-
utation for robustness against disturbances and modeling errors (which is essential when
implementing on a real system).

However, it is important to note that the implementation of these control laws requires the
knowledge of all the system’s states at each given time, whereas we only have access to the
measured relative position of the UAV and its orientation. This requires the introduction
and the implementation of an observer to estimate the other non-measurable states. In
the next chapter, we’ll look at the estimation problem associated with the drone.
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Figure 5.8: Positions and linear velocities (backstepping control)

Figure 5.9: Orientation and angular velocities (backstepping control)
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Figure 5.10: Control signals(Backstepping control)

Figure 5.11: Trajectory tracking (backstepping control)
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Chapter 6
Estimation of UAV’s states and
unknown inputs



6.1 Introduction
In this chapter, we’ll focus on testing the MF observer for the UAV trajectory tracking
problem in a non-inertial frame. We will combine this observer with the sliding mode con-
troller and analyze its performance. We’ll also compare it with other, better-known and
commonly-used classical observers. The aim is to draw constructive conclusions about
the most suitable observer for a given situation.

We will start by implementing the observer developed in section 3.6. Then, we will
present the results obtained by combining it with the sliding mode controller described in
the previous chapter. Finally, we will compare the modulating functions-based observer
with two other observers, namely the unknown input Kalman filter and the super twisting
sliding mode observer. This comparison will be based on several qualitative criteria. The
objective of this approach is to provide useful information to determine which observer
would be most suitable w.r.t each criteria.

6.2 Modulating functions based observer
Note that the drone model (5.3) has the same structure described by the class of nonlinear
systems to which we have extended the MF estimator with unknown inputs (3.80), so we
can rewrite the drone model in block triangular form, which is composed of r = 6 canonical
triangular blocks with nj = 2, j = 1, 2, ..., r., such that

ẋ1,1
ẋ2,1
ẋ1,2
ẋ2,2
ẋ1,3
ẋ2,3
ẋ1,4
ẋ2,4
ẋ1,5
ẋ2,5
ẋ1,6
ẋ2,6



=



x2,1
[c(x1,4)s(x1,5)c(x1,6) + s(x1,4)s(x1,6)]u1 ´ ax

x2,2
[c(x1,4)s(x1,5)s(x1,6) ´ s(x1,4)c(x1,6)]u1 ´ ay

x2,3
[c(x1,4)c(x1,5)]u1 ´ g ´ az

x2,4
ax2,5x2,6 + u2

x2,5
bx2,4x2,6 + u3

x2,6
cx2,4x2,5 + u4



, (6.1)

where the known nonlinear functions are given by
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’

’

%

f1(x, u) = [c(x1,4)s(x1,5)c(x1,6) + s(x1,4)s(x1,6)]u1,

f2(x, u) = [c(x1,4)s(x1,5)s(x1,6) ´ s(x1,4)c(x1,6)]u1,

f3(x, u) = [c(x1,4)c(x1,5)]u1 ´ g,

f4(x, u) = ax2,5x2,6 + u2,

f5(x, u) = bx2,4x2,6 + u3,

f6(x, u) = cx2,4x2,5 + u4,

93



and the bounded unknown inputs are
$

’

’

’

&

’

’

’

%

d1(t) = ´ax,

d2(t) = ´ay,

d3(t) = ´az,

di(t) = 0, i = 4, 5, 6.

We can therefore easily apply the state estimation and unknown input approach developed
in section 3.6. In what follows, we present the results obtained by combining sliding mode
control with the unknown input observer we have proposed.

6.2.1 Observer simulations
In order to illustrate the performance of the MF based observer, we present in this sec-
tion numerical simulations of its implementation to the problem of controlling the relative
position of the UAV to the moving environment by combining it with the sliding mode
controller designd in the previous chapter (5.16). The results presented below were ob-
tained by setting the position’s references as follows: x1d = 2, x1d = 2.5, x5d = 1 and
x11d = 0. The accelerations of the non-inertial reference frame were taken as ax = 1,
ay = 2 and az = 3. In addition, when implementing the sliding mode controller, we
replaced sign(S) by tanh(S/0.2).

From the figure (6.1), we can see that the drone’s position does indeed reach the reference
position and maintain it by combining the MFBM observer and sliding mode controller.
In what follows, we first look at the state estimates, then present the results for the
estimation of the unknown inputs. For the MF based estimator, we obviously observe the
system in real time (online approach), using polynomial modulating functions for state
and unknown input estimation.

φi(τ ´ t+ h) =
φ̄i(τ ´ t+ h)

||φ̄i(τ ´ t+ h)||2
,

where ||.||2 is the Euclidean norm, and φ̄i(τ ´ t + h) for state estimation and unknown
inputs is given by

φ̄i(τ ´ t+ h) = (t ´ τ)(px+i)(τ ´ t+ h)(px+M+1´i) avec i = 1, 2, . . . ,M,

φ̄j(τ ´ t+ h) = (t ´ τ)(pg+q)(τ ´ t+ h)(pg+N+1´q) avec i = 1, 2, . . . , N,

with h the width of the sliding integration window, M and N represent the number
of modulating functions for estimating the states and the unknown inputs respectively.
px, pg P N˚ are degrees of freedom.
We have chosen the basis functions to be polynomial: αjk,i(t) = ti´1, βjq(t) = tq´1 with
i = 1, 2, ...,M and q = 1, 2, ..., N for k = 2, ..., nj , j = 1, ..., r.

Note that the Φk and Φui matrices may present problems of matrix ill-conditioning, so
regularization, such as Tikhonov regularization, [44] may be necessary. The parameters
used for the estimator are taken as h = 0.03s, M = 3, px = 4, N = 1, and pg = 5.
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Figure 6.1: Reference tracking using a combination of sliding-mode controller and MF
based observer

6.2.1.1 State estimation

Figures (6.2) and (6.3) represent respectively linear and angular velocity estimates by the
MF based method in a deterministic environment. These figures show that the observer
developed in section 3.6 provides an accurate estimate of linear and angular velocities,
without any information on the initial conditions of the system. However, it should be
noted that the parameters must be set correctly for the observer to work properly. As for
Tikhonov’s regularization, it mainly consists of adding a small positive ε to improve the
conditioning of the matrices to be inverted at each iteration. The larger ε gets, the less
precise the estimates are, since we are in fact slightly modifying the algebraic system in
order to find a numerically stable solution in the vicinity of the real solution, so there’s a
trade-off between numerical stability and precision.

Figure 6.2: MF based method estimates of the linear velocities with their actual values
in a closed-loop

Figure 6.3: MF based method estimates of the angular velocities with their actual values
in a closed-loop
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Robustness test against measurement noise :

In order to test the robustness of the proposed observer, we add different levels of high-
frequency normally distributed Gaussian noise to the y measurements with which we feed
the observer, the table (6.1) represents the relative errors of the linear velocity estimates
respectively for each measurement noise level in (%).

Estimates of linear velocities and angular velocities in a closed loop (the controller is fed
with estimates from the observer) in the presence of gaussian noise of high frequency of
10% are shown in figures (6.4) and (6.5) respectively, while the open-loop estimates (the
controller is fed with the real state values) are shown in figures (6.6) and (6.7). It can be
seen that even in the presence of high-level measurement noise, the MF based observer
was able to provide good state estimation. However, it can be seen that the estimation
of angular velocities is not as good as linear velocities when combining the observer with
the controller. The presence of measurement noise led to the appearance of the chattering
phenomenon, which the observer was unable to completely reconstruct, due to the fact
that it is high-frequency, the integration had the effect of smoothing the signal.

Table 6.1: Linear velocities’ estimation relative error w.r.t different noise levels

Noise level (%) |x2´x̂2|

|x2|
ˆ 100 |x4´x̂4|

|x4|
ˆ 100 |x6´x̂6|

|x6|
ˆ 100

0 % 2.52 1.69 3.65
1 % 2.53 1.71 3.67
3 % 2.6 1.75 3.72
5 % 2.65 1.8 3.79
10 % 2.78 1.93 3.91

Figure 6.4: MF based method estimates of the linear velocities with their true values in
closed-loop with the presence of 5% measurement noise.

6.2.1.2 Unknown inputs estimation

To estimate the unknown inputs, we saw in section 3.6 that two approaches were possible.
The first is to replace the states xnj ,j by their previously found estimates x̂nj ,j, we replace
in (3.99) by

xφ, ẋnj ,jyI = xφ̇, x̂nj ,jyI
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Figure 6.5: MF based method estimates of the angular velocities with their true values
in closed-loop with the presence of 5% measurement noise.

Figure 6.6: MF based method estimates of the linear velocities with their true values in
open-loop with the presence of 5% measurement noise.

while the second approach consists of replacing the states xnj ,j by the derivatives of the
outputs x(nj´1)

1,j , we replace in (3.99) by

xφ, ẋnj ,jyI = xφ, x
(nj)
1,j yI = (´1)(nj)xφ(nj), x1,jyI

So we have two choices. In the case of noisy measurements, the first approach seems
to be better than the second, because when estimating the unknown inputs, we replace
with state estimates that are less affected by noise (noise is filtered out during state es-
timation), and noise will be filtered out a second time by integration when estimating
the unknown inputs. The above is illustrated by the figures (6.11)-(6.14) where these
represent estimates of the acceleration of the environment along the x axis ax for different
levels of measurement noise using the two approaches mentioned above. We can see that
choice 1 is more robust than choice 2, thanks to the double integration, which filters the
measurement noise twice.

Figures (6.8) and (6.9) represent estimates of the environment’s accelerations along the
three axes using the first and second approach respectively. We can see that the observer
is able to estimate their actual values. However, we can see that there are peaks due to
the virtual control signals ux and uy and the real control signal u1, which present sudden
and abrupt variations affecting the estimates of the unknown inputs (see figure (6.10)).
The peaks of the acceleration estimates ax, ay and az align perfectly with the sudden
variations in ux, uy and u1 respectively.
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Figure 6.7: MF based method estimates of the angular velocities with their true values
in open-loop with the presence of 5% measurement noise.

Figure 6.8: MF based method estimates of the environment accelerations (Choice 1) with
their actual values

Figure 6.9: MF based method estimates of the environment accelerations (Choice 2) with
their actual values

Figure 6.10: Virtual control signals and the real control signal u1
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Choice 1 Choice 2

Figure 6.11: Noise level of 1%

Figure 6.12: Noise level of 3%

Figure 6.13: Noise level of 5%

Figure 6.14: Noise level of 10%
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6.3 Comparison with other observers
The estimation of states and unknown inputs with modulating functions seems to be
giving very satisfactory results. However, to better appreciate the performance of this
new method, we propose to carry out a comparison with other, better-known and more
widely-used classical observers, and thus come out with some constructive conclusions as
to which would be the most suitable observer w.r.t specific criterion

6.3.1 Extended Kalman filter with unknown inputs (EKF-UI)
The Kalman filter is one of the best-known and most widely used observers in automatic
control and signal processing. It has the advantage of being both simple and efficient.
It can be considered as a reference observer if you want to make comparisons and get an
idea of whether a given observer is performing well or not.

The extended Kalman filter is applied according to the following methodology.

Consider the following non-linear system
#

ẋ = f(x, u, w, t),

y = h(x, v, t),
(6.2)

where x P Rn is the state vector, u P Rm is the control input vector, w and v are gaussian
variables with a mean of zero and covariance Q and R respectively. These two terms
represent process (internal) noise and measurement noise respectively. The functions f
and h are non-linear.

• We start by evaluating the following matrices at the current state estimate:

A =

(
Bf

Bx

)
x=x̂

, L =

(
Bf

Bw

)
x=x̂

, C =

(
Bh

Bx

)
x=x̂

, M =

(
Bh

Bv

)
x=x̂

. (6.3)

• We calculate Q̃ and M̃ as follows :

Q̃ = LQLT , R̃ =MRMT . (6.4)

• We can apply the Kalman filter equations give by :
$
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x̂(0) = E[x(0)],

P (0) = E[(x(0) ´ x̂(0))(x(0) ´ ˆx(0))T ],
˙̂x = f(x̂, u, w0, t) +K[y ´ h(x̂, v0, t)],

K = PCT R̃´1,

Ṗ = AP + PAT + Q̃ ´ PCT R̃´1CP,

(6.5)

with w0 = 0 and v0 = 0 representing the nominal noise values and E[.] is the mathemati-
cal expectation.
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This is the basic Kalman filter algorithm, which has been generalized for application to
nonlinear systems. There have been subsequent changes and modifications to optimize
it, but this form remains the most widely used. The Kalman Filter can also be used
to determine unknown inputs, using an augmented state containing the state of the sys-
tem and the unknown inputs to be estimated in real time. However, the method remains
the roughly same, more details are presented through its application to the drone problem.

Implementation to the drone :
The Extended kalman filter with unknown inputs (EKF-UI) has already been imple-
mented as part of the problem of controlling the drone in a non-inertial reference frame in
[49], but considering the angular velocities as being measured to directly by the sensors.
However, in our case, we have considered that only the drone’s orientation and position
can be measured, but this doesn’t change anything regarding the synthesis of the EKF-UI.
In what follows, we present the EKF-UI designd in [49]. The drone model (5.3) can be
rewritten in the following form

#

ẋ = A0x(t) +B(y)u(t) + f(x) + Ea(t) + w(t),

y = C0x+ v(t),
(6.6)

where a(t) = [ax, ay, az]
T is the unknown term, w and v are gaussian variables with a

mean of zero and covariance Q and R respectively. The matrices A,B(y), C and E and
the vector field f(x) are given by

A0 =

#

aij = 1, j = i+ 1 avec i = 1, 3, 5, 7, 9, 11,

aij = 0, sinon.

B(y) =



0 0 0 0
c(x7)s(x9)c(x11) + s(x7)s(x11) 0 0 0

0 0 0 0
c(x7)s(x9)s(x11) ´ s(x7)c(x11) 0 0 0

0 0 0 0
c(x7)c(x9) 0 0 0

0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1



.

E =



0 0 0
´1 0 0
0 0 0
0 ´1 0
0 0 0
0 0 ´1

6ˆ3


, f(x) =



6ˆ3

0
ax10x12
0
bx8x12
0
ax8x10


.

C0 =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

3ˆ6

6 I6

 .
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As explained above, we augment the system, such that the augmented state is given by
ξ(t) = [x(t) a(t)]T . The state representation thus becomes :
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%

ξ̇ =

(
A0 E

0 0

)
ξ +

(
B(y)

0

)
u(t) +

(
f(x)

0

)
+

(
w(t)

wa(t)

)
y =

(
C0 06ˆ3

)
ξ + v(t)

(6.7)

where ωa(t) is the noise affecting the accelerations. The augmented system can be written
in the following compact form

#

ξ̇ = Aξξ +Bξ(y)u(t) + fξ(ξ) + wξ(t),

y = Cξξ + v(t),
(6.8)

The EKF-UI associated with the system (6.8) is given by
$

’

&

’

%

˙̂
ξ = Aξ ξ̂ +Bξ(y)u(t) + fξ(ξ) +K(y ´ Cξ ξ̂),

K = PCTR´1,

Ṗ = AP + PAT +Q ´ PCTR´1CP.

(6.9)

The matrices A,C,Q̃ and R̃ are calculated by 6.3, 6.4 and 6.5. In this case L = M = 1,
which implies that Q̃ = Q and R̃ = R.

6.3.2 Super-twisting sliding-mode observer
The sliding mode observer has the advantage of being a finite-time observer, as well as
being robust to modeling error, measurement noise and disturbance noise. It can there-
fore provide accurate state estimation even under difficult conditions, making it a popular
method for applications requiring reliable state estimation. It would also be interesting
to compare the MF based observer with another finite-time observer.

Consider a system of the following form :
$
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%

ẋ1 = x2,

ẋ2 = f(t, x1, x2, u) + ε(t, x1, x2, u),

y = x1,

(6.10)

with f and ε (which is the uncertainty term) are assumed to be uniformly bounded and
x1 is assumed to be measurable.

The super-twisting sliding mode observer associated with the proposed (6.10) system
takes the following form [21]

#

˙̂x1 = x̂2 + z1,
˙̂x2 = f(t, x1, x̂2, u) + z2,

(6.11)

where x̂1 and x̂2 are the estimated states, and z1 and z2 are the correction terms given by
:

#

ẑ1 = λ|x1 ´ x̂1|1/2sign(x1 ´ x̂1),

ẑ2 = α.sign(x1 ´ x̂1).
(6.12)
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The estimation error is defined by e = x ´ x̂, its dynamics is given by
#

ė1 = e2 ´ λ|e1|1/2sign(e1),

ė2 = F (t, x1, x2, x̂2, u) ´ αsign(e1),
(6.13)

where F (t, x1, x2, x̂2, u) = f(t, x1, x2, u)´ f(t, x1, x̂2, u) + ε(t, x1, x2, u). If we assume that
the system states are bounded, then the existence of a constant f+ is assured, such that
f+ verifies the following inequality

|F (t, x1, x2, x̂2, u)| ă f+, (6.14)

for any t, x1, x2 and |x̂2| ď 2sup|x2|. With α and λ satisfying parameters:

α ą f+, (6.15)

λ ą

c

2

α ´ f+

(α + f+)(1 + p)

(1 ´ p)
, (6.16)

where p is a constant chosen such that 0 ă p ă 1.

Implementation to the drone :
The drone model is made up of six blocks of the form described in (6.10), with the slight
nuance that the functions f for the different blocks are not a function of the two states
of the block only, but include other states. For the first three blocks, these states are
measured, so their exact values are known, unlike for the last three blocks, where they
are considered part of the uncertainty term.

#

ẋ1 = x2,

ẋ2 = [c(x7)s(x9)c(x11) + s(x7)s(x11)]u1 ´ ax,

where f1(x, u) = [c(x7)s(x9)c(x11) + s(x7)s(x11)]u1 and ε1(t, x, u) = ´ax.
#

ẋ3 = x4,

ẋ4 = [c(x7)s(x9)s(x11) ´ s(x7)c(x11)]u1 ´ ay,

where f2(x, u) = [c(x7)s(x9)s(x11) ´ s(x7)c(x11)]u1 and ε2(t, x, u) = ´ay.
#

ẋ5 = x6,

ẋ6 = [c(x7)c(x9)]u1 ´ g ´ az,

where f3(x, u) = [c(x7)c(x9)]u1 ´ g and ε3(t, x, u) = ´az.
#

ẋ7 = x8,

ẋ8 = ax10x12 + u2,

where f4(x, u) = u2 and ε4(t, x, u) = ax10x12.
#

ẋ9 = x10,

ẋ10 = bx8x12 + u3,
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where f5(x, u) = u3 and ε5(t, x, u) = bx8x12.
#

ẋ11 = x12,

ẋ12 = cx8x10 + u4,

where f6(x, u) = u4 and ε6(t, x, u) = cx8x10.

The observer based on the twisting Sliding Mode associated with the drone will therefore
be as follows
#

˙̂x2i´1 = x̂2i + z2i´1,
˙̂x2i = f2i´1(t, x2i´1, x̂2i, u) + z2i,

ñ

#

ẑ2i´1 = λi|x2i´1 ´ x̂2i´1|
1/2sign(x2i´1 ´ x̂2i´1),

ẑ2i = αisign(x2i´1 ´ x̂2i´1),

(6.17)
avec i P 1, 2, . . . , 6.

6.3.3 Comparison
The three observers are implemented in closed loop with the sliding mode controller : The
MF based observer, the Twisting sliding mode observer and the EKF-UI. The Twisting
sliding mode observer, unlike the other two observers, is unable to estimate unknown
inputs, but remains robust to disturbances even without any knowledge. about them For
this comparison, we will take into account several qualitative criteria such as : conver-
gence speed, numerical stability, robustness, etc.

The system and the MF based observer are simulated under the same conditions (param-
eters, etc.) as in the previous section. The initial conditions of the EKF-UI are taken as
ξ̂0 =

[
0.5 ˆ ones(1, 12) zeros(1, 3)

]T , the covariance matrices of the measurement noise

and process noise are taken equal to Q =

(
5I12 012ˆ3

03ˆ12 50I3

)
and R = 1. While the initial

conditions of the Super twisting sliding mode are fixed at x0 =
[
1.5 ˆ ones(1, 12)

]T .

We’ve added a 5% gaussian noise to the measurements y , in order to test the robustness
of the observers to noise affecting the measurements. Figures (6.15), (6.16) and (6.17) rep-
resent the evolution of the UAV’s linear position by implementing the MF based method,
EKF-UI and the super twisting sliding mode observer respectively. It’s clear that the MF
based method observer gives the best results, and if we compare figure (6.15) with figure
((6.15)), which represents the situation where we know exactly the instantaneous values
of each state, we can see that the dynamical performances are very similar, unlike the
results obtained with EKF-UI and the super twisting sliding mode, where the dynamical
performances were more or less affected, negatively impacting response time.

The figure (6.19) illustrates the estimates obtained from each observer. It can be seen that
the estimates converge instantaneously in the case of the MF based observer, followed by
the super twisting sliding mode observer, which requires a short period of time to con-
verge. Finally, the estimates obtained by the EKF-UI are the slowest to converge, which
explains the deterioration in the system’s dynamical performances. It should be noted
that the speed of convergence of the last two is very sensitive to the initial conditions of
the observer, which can even leads to instability of the observer, whereas the MF based

104



observer does not require knowledge of the initial conditions at all.

From the figure (6.18) illustrating estimates of unknown inputs by MF based method
and EKF-UI, the same observation is made, estimates by MF based method converge
instantaneously while EKF-UI is much slower, however EKF-UI is numerically stable
compared to MFBM. In terms of robustness to measurement noise, all three observers are
effective at attenuating it, although we note that the MF based observer is slightly less
robust. In fact, the wider the sliding window, the better the observer’s ability to attenuate
low-frequency noise, but this will make the calculations more cumbersome, so there’s a
trade-off between computational load and robustness. The table (6.2) below summarizes
the qualitative comparison between these three observers according to different criteria.

Table 6.2: Qualitative comparison between the three observers implemented

Criteria Modulating functions Twisting Sliding Mode EKF-UI
Nature Algebraic Dynamic Dynamic
Convergence speed ++ + -
Dynamical performances ++ + -
Robustness + ++ ++
Initial conditions sensitivity ++ - - - -
Numerical stability - ++ ++
Parameter sensitivity - - - -

Figure 6.15: Reference tracking using a combination of a sliding-mode controller and the
MF based observer

Figure 6.16: Reference tracking using a combination of a sliding-mode controller and the
EKF-UI
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Figure 6.17: Reference tracking using a combination of a sliding-mode controller and the
super twisting sliding mode

6.4 Conclusion
In this chapter, we’ve applied the MF based estimator to the problem of trajectory track-
ing of an UAV in a moving reference frame. We carried out numerical simulations to
estimate the system states and the acceleration of the non-inertial reference frame, using
the combination of the MF based observer and a sliding mode controller. We then carried
out a qualitative comparison between the MFBM estimator and other estimators widely
used in the automatic control and signal processing literature. The aim was to demon-
strate the performance of the MF based estimator compared with these other methods,
as well as to determine which observer to choose in different situations, taking into ac-
count their respective advantages and disadvantages. The comparison revealed that the
observer based on modulating functions has significant advantages over the other two
observers tested, apart from the numerical instabilities it may present. In particular, the
convergence of the estimator is almost instantaneous, and the fact that it does not require
knowledge or adjustment of the initial conditions of the estimator thanks to the properties
of the modulating functions.

It’s important to note that MFBM estimation is non-asymptotic, as it provides an accu-
rate estimate after a finite time. So the method is at least finite time stable, but it could
be even more efficient beings fixed time stable or prescribed time stable, but nothing has
been proven yet. This represents a very interesting direction for research, we could also
think of improving the method by making it numerically stable.
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Figure 6.18: Comparison of the acceleration’s estimates by the MF based observer and
EKF-UI
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Figure 6.19: Comparison of the linear and angular velocities’s estimates by the MF based
observer, EKF-EI and the super twisting sliding mode observer
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General conclusion

In this project, we were confronted with a concept that was initially unknown to us,
namely non-asymptotic stability in the field of observation and estimation. In the first
chapter, we were able to appreciate the difference, and even the superiority, of different
types of non-asymptotic stability compared with stability in the Lyapunov sense. How-
ever, in Chapter 2, we quickly realized why this class of observers has not attracted the
same interest from researchers as those with asymptotic convergence. It turns out that to
ensure the stability of the estimation error, it is often necessary to resort to non-smooth
techniques or to employ terms tending towards infinity, which makes the study and devel-
opment of these techniques often very complex. Nevertheless, this field has been booming
in recent years, and will only increase in popularity with control-theory researchers and
engineers in the years to come, thanks to technical advances and the growing need in
many applications and fields to ensure convergence in a non-asymptotic fashion.

In this work, we focused on two non-asymptotic observers, one using an algebraic method
(MFBM observer) and the other using a specific time-varying base change (prescribed-
time observer). However, we focused on the observer based on modulating functions. We
introduced it by first defining what a modulating function is and its various properties,
on which MFBM is based. To help the reader understand the method, we began by pre-
senting the MFBM in the context of parameter estimation (constant and time-varying)
of systems governed by ordinary differential equations, providing numerical examples to
illustrate the method’s performance. We then moved on to the chore of the matter,
presenting the application of MFBM to the estimation of state and unknown inputs of
nonlinear triangular canonical systems, both online and offline, accompanied by a numer-
ical example. Throughout this chapter, we have been able to appreciate the advantages
that this method brings. We found that, thanks to the properties of the modulating func-
tions, we could estimate the variables of interest (state, unknown inputs and parameters)
without having to initialize the estimator, making this observer totally insensitive to ini-
tial conditions. Furthermore, we found out that modulating functions allow us to transfer
the derivative from an experimental signal that may be subject to measurement noise to
the modulating function, whose analytical expression is known. Finally, MFBM is robust
to measurement noise. MFBM is a very powerful method of estimation that transforms an
estimation problem into a problem of finding the solution of a simple linear algebraic sys-
tem, without having to resort to non-smooth techniques or terms tending towards infinity.

Having mastered this method, we ended the chapter by presenting our contributions to
the MFBM estimation problem, which consists of an extension of the unknown-input ob-
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server based on modulating functions to a new class of nonlinear triangular block MIMO
systems, and the improvement of the robustness of the estimation of unknown inputs.

We then proceeded to the study of an existing observer that converge in a user-prescribed
time T , independently of initial conditions and system parameters, for well-defined linear
and nonlinear systems. By illustrating the performance of these observers through simple
examples, we found out that this type of observer does indeed converge in a prescribed
time. However, it uses time-varying gains that explode to infinity as time approaches the
prescribed time T , which considerably limits its practicality. Furthermore, this type of
observer is highly sensitive to measurement noise when approaching the prescribed time,
due to gains that tend towards infinity. It’s also restrained to a specific class of systems

Finally, our work concludes with an application of the proposed extension of the MFBM,
we introduce the problem of controlling the drone’s position in a moving environment,
with access only to relative positions. It is important to note that this problem was re-
cently proposed in [49]. In Chapter 5, we dealt with the control part of the problem where
we designed two controllers, namely the sliding mode controller and the backstepping con-
troller. Both commands produced satisfactory results. Knowing that the sliding mode
control proved effective in the experiments carried out in [49], we decided to continue
with the sliding mode controller. Having designed a controller for the UAV, it is now
necessary to implement an observer to estimate the states in order to be able to calculate
the control laws in question. For this reason, in Chapter 6, we dealt with the estimation
part of the problem. We implemented the extension we proposed in Chapter 3 on the
UAV. First, we presented numerical simulations of state estimation and the acceleration
of the non-inertial reference frame as an unknown input, combining the MFBM observer
and sliding mode controller. We then carried out a sort of qualitative comparison between
this estimator and other well-known estimators widely used in the automatic control and
signal processing literature. The idea was to illustrate the performance of modulating
functions by having a reference and also to know which observer to choose for different
situations, knowing the advantages and disadvantages of each observer. The comparison
revealed that the observer based on modulating functions has significant advantages over
the other two observers tested, apart from the numerical instabilities it may present. In
particular, the near-instantaneous convergence of the estimates, and the fact that it does
not require knowledge or adjustment of the initial conditions of the estimates, thanks
to the properties of the modulating functions, which makes this method very attractive,
even when compared with observers that are highly regarded in the literature.

Perspectives

For the continuity of this work, different perspectives can be considered. We propose:
• Validate the combination of the sliding mode controller and the MFBM observers

by experiments.

• Improve the numerical stability of the MFBM observer.

• Extend the UAV problem to the broader case where the non-inertial frame has both
translation and rotation motion.

• Extend the prescribe time observer to a broader class of systems and improve its
robustness.

110



Bibliography

[1] A. Adil, I. N., and Laleg-Kirati, T. M. Modulated-integral observer design
with a virtual output derivative injection term. IFAC World Congress (2023).

[2] Abeer, A., TaousMeriem, L., and Dayan, L. A novel approach for param-
eter and differentiation order estimation for a space fractional advection dispersion
equation. arXiv: Optimization and Control (2014).

[3] Amit, P., and Unbehauen, H. Identification of a class of nonlinear continuous-
time systems using hartley modulating functions. International Journal of Control
62, 6 (1995), 1431–1451.

[4] Andrieu, V., Praly, L., and Astolfi, A. Homogeneous approximation, recur-
sive observer design, and output feedback. SIAM Journal on Control and Optimiza-
tion 47, 4 (2008), 1814–1850.

[5] Ania, A. On Estimation and observer design in nonlinear systems : theory and
application. PhD thesis, Universite Mouloud Mammeri Tizi-Ouzou, 2022.

[6] Aoustin, Y., Chevallereau, C., and Orlov, Y. Finite time stabilization of
a perturbed double integrator - part ii: applications to bipedal locomotion. In 49th
IEEE Conference on Decision and Control (CDC) (2010), pp. 3554–3559.

[7] Asiri, S., Elmetennani, S., and Laleg-Kirati, T.-M. Moving-horizon modu-
lating functions-based algorithm for online source estimation in a first order hyper-
bolic pde. Journal of Solar Energy Engineering 139 (08 2017).

[8] Bahloul, M. A., and Kirati, T.-M. L. Finite-time joint estimation of the
arterial blood flow and the arterial windkessel parameters using modulating functions.
IFAC-PapersOnLine 53, 2 (2020), 16286–16292. 21st IFAC World Congress.

[9] Barbot, J., Boukhobza, T., and Djemai, M. Sliding mode observer for trian-
gular input form. IEEE-CDC (1996).

[10] Belkhatir, Z., and Laleg-Kirati, T.-M. Estimation of multiple point sources
for linear fractional order systems using modulating functions. IEEE Control Systems
Letters 2, 1 (2018), 7–12.

[11] Belkheiri, M., Rabhi, A., Hajjaji, A. E., and Pegard, C. Different lin-
earization control techniques for a quadrotor system. In CCCA12 (2012), pp. 1–6.

111



[12] Bhat, S. P., and Bernstein, D. S. Finite-time stability of continuous au-
tonomous systems. SIAM J. Control. Optim. 38 (2000), 751–766.

[13] Bouabdallah, S., and Siegwart, R. Backstepping and sliding-mode techniques
applied to an indoor micro quadrotor. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation (2005), pp. 2247–2252.

[14] BOULKROUNE, B. Estimation de letat des systemes non lineaires à temps discret.
Application a une station depuration. PhD thesis, Universite Henri Poincare Nancy
1, 2008.

[15] Bregeault, V. Quelques contributions à la théorie de la commande par modes
glissants. PhD thesis, Ecole Centrale de Nantes, France, 2010.

[16] Chen, G. Approximate Kalman filtering. 1993.

[17] Chen, X., Zhang, X., and Liu, Q. Prescribed-time decentralized regulation
of uncertain nonlinear multi-agent systems via output feedback. Systems Control
Letters 137 (2020), 104640.

[18] Cherifa, B. Stabilisation et Estimation de l’état des systèmes Dynamiques non
linéaires et Applications. PhD thesis, Universite Mouloud MAMMERI Tizi-Ouzou,
2011.

[19] Co, T. B., and Ungarala, S. Batch scheme recursive parameter estimation of
continuous-time systems using the modulating functions method. Automatica 33, 6
(1997), 1185–1191.

[20] Commault, C., Dion, J., Sename, O., and Motyeian, R. Fault detection and
isolation of structured systems. IFAC Proceedings Volumes 33, 11 (2000), 1157–1162.
4th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Pro-
cesses 2000 (SAFEPROCESS 2000), Budapest, Hungary, 14-16 June 2000.

[21] Davila, J., Fridman, L., and Levant, A. Second-order sliding-mode observer
for mechanical systems. IEEE transactions on automatic control 50, 11 (2005),
1785–1789.

[22] Djennoune, S., Bettayeb, M., and Al-Saggaf, U. M. Fixed-time conver-
gent sliding-modes-based differentiators. Communications in Nonlinear Science and
Numerical Simulation 104 (2022), 106033.

[23] Drakunov, S., and Utkin, V. Sliding mode observers. tutorial. In Proceedings of
1995 34th IEEE Conference on Decision and Control (1995), vol. 4, pp. 3376–3378
vol.4.

[24] Emmanuel, T., and Thomas, H. Cours dautomatique, Master de Mathématiques.

[25] Engel, R., and Kreisselmeier, G. A continuous-time observer which converges
in finite time. IEEE Transactions on Automatic Control 47, 7 (2002), 1202–1204.

[26] Esfandiari, F., and Khalil, H. Observer-based control of uncertain linear sys-
tems: Recovering state feedback robustness under matching condition. In 1989 Amer-
ican Control Conference (1989), pp. 931–936.

112



[27] Fairman, F. W., and Shen, D. W. C. Parameter identification for a class of
distributed systems. International Journal of Control (2007), 929940.

[28] Gauthier, J. P., and Bornard, G. Observability for any u(t) of a class of
nonlinear systems. IEEE Trans. Automatic Control 26, 4 (1994), 922926.

[29] Giuseppe, F., and Loredana, C. A recursive scheme for frequency estimation
using the modulating functions method. Applied Mathematics and Computation 216,
5 (2010), 1393–1400.

[30] Grewal, M., and Andrews, A. Kalman filtering : Theory and practice. Prentice
Hall, 1993.

[31] Guo, Q. Online identification and control of robots using algebraic differentiators.
PhD thesis, Ecole Centrale de Lille, 12 2015.

[32] Haimo, V. T. Finite time controllers. SIAM Journal on Control and Optimization
24, 4 (1986), 760–770.

[33] Holloway, J. C. Prescribed Time Stabilization and Estimation for Linear Systems
with Applications in Tactical Missile Guidance. PhD thesis, TUC San Diego, 2018.

[34] Hou, M., and Muller, P. Design of observers for linear systems with unknown
inputs. IEEE Transactions on Automatic Control 37, 6 (1992), 871–875.

[35] Jouffroy, J., and Reger, J. Finite-time simultaneous parameter and state
estimation using modulating functions. In 2015 IEEE Conference on Control Appli-
cations (CCA) (2015), pp. 394–399.

[36] Kalman.R.E. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME Journal of Basic Engineering 82 (1960), 3545.

[37] Khalil, H. Nonlinear Systems. Pearson Education. Prentice Hall, 2002.

[38] Khalil, H. K. High-gain observers in nonlinear feedback control. In 2008 Interna-
tional Conference on Control, Automation and Systems (2008), pp. xlvii–lvii.

[39] Korder, K., Noack, M., and Reger, J. Non-asymptotic observer design for
nonlinear systems based on linearization. In 2022 IEEE 61st Conference on Decision
and Control (CDC) (2022), pp. 615–621.

[40] Lab, T. A. If you fly a drone in a car, does it move with it? (dangerous in-car flight
challenge), Nov. 2017.

[41] Lab, T. A. What happens if you fly a drone in an elevator? real experiment!, Jan.
2019.

[42] Lakshmikantham, V., Leela, S., and Martynyuk, A. A. Practical Stability
of Nonlinear Systems. WORLD SCIENTIFIC, 1990.

[43] Lam, L., and Weiss, L. Finite time stability with respect to time-varying sets.
Journal of the Franklin Institute 298, 5 (1975), 415–421.

[44] Lenzen, F., and Scherzer, O. Tikhonov type regularization methods: History
and recent progress. Proceeding Eccomas (2004).

113



[45] Liu, D.-Y., and Laleg-Kirati, T.-M. Robust fractional order differentiators us-
ing generalized modulating functions method. Signal Processing 107 (2015), 395–406.
Special Issue on ad hoc microphone arrays and wireless acoustic sensor networks Spe-
cial Issue on Fractional Signal Processing and Applications.

[46] Liu, J., Sun, M., Chen, Z., and Sun, Q. Super-twisting sliding mode control
for aircraft at high angle of attack based on finite-time extended state observer.
Nonlinear Dynamics 99 (03 2020).

[47] Luenberger, D. An introduction to observers. IEEE Transactions on Automatic
Control 16, 6 (1971), 596–602.

[48] LYAPUNOV, A. M. The general problem of the stability of motion. International
Journal of Control 55, 3 (1992), 531–534.

[49] Marani, Y., Telegenov, K., Feron, E., and Kirati, M.-T. L. Drone refer-
ence tracking in a non-inertial frame using sliding mode control based kalman filter
with unknown input. In 2022 IEEE Conference on Control Technology and Applica-
tions (CCTA) (2022), pp. 9–16.

[50] Mazenc, F., and Malisoff, M. New finite-time and fast converging observers
with a single delay. IEEE Control Systems Letters 6 , 1561–1566.

[51] Meditch, J. S., and Hostetter, G. Observers for systems with unknown and
inaccessible inputs. In IEEE Conference on Decision and Control (1973).

[52] Moulay, E. Une contribution à l’étude de la stabilité en temps fini et de la stabil-
isation. PhD thesis, Automatique / Robotique. Ecole Centrale de Lille; Université
des Sciences et Technologie de Lille - Lille I, 2005.

[53] Moulay, E., and Perruquetti, W. Finite time stability of nonlinear sys-
tems. In 42nd IEEE International Conference on Decision and Control (IEEE Cat.
No.03CH37475) (2003), vol. 4, pp. 3641–3646 vol.4.

[54] Ménard, T., Moulay, E., and Perruquetti, W. Global finite-time observers
for non linear systems. In Proceedings of the 48h IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese Control Conference (2009),
pp. 6526–6531.

[55] Müllhaupt, P. Introduction à l’analyse et à la commande des systèmes non
linéaires. 2009.

[56] Nazari, S. The unknown input observer and its advantages with examples, 2015.

[57] Nedjmi, D. R. Commande hybride avec observation dun uav de type quadrotor.
Master’s thesis, Ecole Militaire Polytechnique, Alger, Algérie, 2010.

[58] Orlov, Y. Finite time stability and robust control synthesis of uncertain switched
systems. SIAM Journal on Control and Optimization 43, 4 (2004), 1253–1271.

[59] Patton, R., and Chen, J. Observer-based fault detection and isolation: Robust-
ness and applications. Control Engineering Practice 5, 5 (1997), 671–682.

114



[60] Pearson, A., and Lee, F. Efficient parameter identification for a class of bilinear
differential systems. IFAC Proceedings Volumes 18, 5 (1985), 161–165.

[61] Perdreauville, F. J., and Goodson, R. E. Identification of systems described
by partial differential equations. J. Basic Eng 88, 2 (1966), 463468.

[62] Perruquetti, W. Non-asymptotic output feedback of a double integrator: a sep-
aration principle, 2022.

[63] Perruquetti, W., Floquet, T., and Moulay, E. Finite-time observers: Ap-
plication to secure communication. IEEE Transactions on Automatic Control 53, 1
(2008), 356–360.

[64] Perruquetti, W., Floquet, T., and Moulay, E. Finite-time observers: Ap-
plication to secure communication. IEEE Transactions on Automatic Control 53, 1
(2008), 356–360.

[65] Plestan, F., Grizzle, J., Westervelt, E., and Abba, G. Stable walking of
a 7-dof biped robot. IEEE Transactions on Robotics and Automation 19, 4 (2003),
653–668.

[66] Plestan, F., Grizzle, J., Westervelt, E., and Abba, G. Stable walking of
a 7-dof biped robot. IEEE Transactions on Robotics and Automation 19, 4 (2003),
653–668.

[67] Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control
systems. IEEE Transactions on Automatic Control 57, 8 (2012), 2106–2110.

[68] Preisig, H., and Rippin, D. Theory and application of the modulating function
methodi. review and theory of the method and theory of the spline-type modulating
functions. Computers Chemical Engineering 17, 1 (1993), 1–16.

[69] Riaz, S., Yin, C.-W., Qi, R., Li, B., Ali, S., and Shehzad, K. Design
of predefined time convergent sliding mode control for a nonlinear pmlm position
system. Electronics 12, 4 (2023).

[70] Roxin, E. On finite stability in control systems. Rendiconti del Circolo Matematico
di Palermo 15 (1966), 273–282.

[71] Saberi, A., and Sannuti, P. Observer design for loop transfer recovery and for
uncertain dynamical systems. IEEE Transactions on Automatic Control 35, 8 (1990),
878–897.

[72] Sadabadi, M., Shafiee, M., and Karrari, M. Parameter estimation of two-
dimensional linear differential systems via fourier based modulation function. IFAC
Proceedings Volumes 41, 2 (2008), 14385–14390. 17th IFAC World Congress.

[73] Saha, D., and Rao, G. P. Identification of distributed parameter systems via
multidimensional distributions. Proc.IEE 127, 2 (1980), 4550.

[74] SAHA, D. C., RAO, B. B. P., and RAO, G. P. Structure and parameter
identification in linear continuous lumped systems the poisson moment functional
approach. International Journal of Control 36, 3 (1982), 477–491.

115



[75] Sharefa, M. A. Modulating Function-Based Method for Parameter and Source
Estimation of Partial Differential Equations. PhD thesis, King Abdullah University
of Science and Technology Thuwal, Kingdom of Saudi Arabia, 2017.

[76] Shen, Y., and Xia, X. Semi-global finite-time observers for nonlinear systems.
Automatica 44, 12 (2008), 3152–3156.

[77] Shinbrot, M. On the analysis of linear and nonlinear dynamical systems from
transient-response data. NACA Technical Notes (1954).

[78] Shinbrot, M. On the analysis of linear and nonlinear systems. Trans. ASME
(1957), 547552.

[79] Slotine, J.-J. E. Applied nonlinear control. Prentice Hall, 1991.

[80] Sulaiman, M., Patakor, F. A., and Ibrahim, Z. New methodology for chat-
tering suppression of sliding mode control for three-phase induction motor drives.

[81] Sánchez-Torres, J. D., Sanchez, E. N., and Loukianov, A. G. Predefined-
time stability of dynamical systems with sliding modes. In 2015 American Control
Conference (ACC) (2015), pp. 5842–5846.

[82] Takaya, K. The use of hermite functions for system identification. IEEE Transac-
tions on Automatic Control 13, 4 (1968), 446–447.

[83] Tang, B., and Brennan, M. Comparison of two nonlinear damping mechanisms
in a vibration isolator. A.Journal of Sound and Vibration 332, 3 (2013), 510520.

[84] Utkin, V. Sliding modes in control and optimization. 1992.

[85] Wang, Q., Dong, X., Wang, B., Hua, Y., and Ren, Z. Finite-time observer-
based h fault-tolerant output formation tracking control for heterogeneous nonlinear
multi-agent systems. IEEE Transactions on Network Science and Engineering.

[86] Xu, R., and Zhou, M. Sliding mode control with sigmoid function for the motion
tracking control of the piezo-actuated stages. Electronics Letters 53, 2 (2017), 75–77.

[87] Yasmine, M., Ibrahima, N., and Taous Meriem, L.-K. Non-asymptotic neural
network-based state and disturbance estimation for a class of nonlinear systems using
modulating functions. In 2023 American Control Conference (2023).

[88] Yuri, S., Christopher, E., Leonid, F., and Arie, L. Sliding mode control
and observation. Birkhauser (2014).

[89] Zemouche, A. Sur lobservation de létat des systèmes dynamiques non linéaires.
PhD thesis, Université Louis Pasteur Strasbourg I, March 2007.

[90] Zoghlami, N. Stabilite et stabilisation en temps fini des systemes dynamiques in-
terconnectes et probleme de consensus en temps fini. PhD thesis, Universite d’Evry
Vald’Essonne; Ecole nationale d’ingenieurs de Tunis (Tunisie), 2014.

116



Appendix A
Lyapunov stability theorems

A.1 Autonomous systems
When the function f of the system (1.1) is not explicitly time-dependent, i.e

#

ẋ = f(x(t)),

x(t0) = x0,
(A.1)

the system becomes an autonomous system. The behavior of an autonomous system is
invariant to the time change. So the solution x(t) depends on x0 and t´ t0 only, indepen-
dently of t0. This leads to the following fact :

For autonomous systems, uniform stability (resp. asymptotic uniform stabil-
ity) is the same as stability (resp. asymptotic stability)..

Before stating the stability theorems, let’s recall some useful Definitions.

Definition A.1.1 (Positive-definite function (PDF)) A continuously differentiable func-
tion V : Rn Ñ R is said to be PDF in a domain D Ă R containing the origin, if :

(a) V (0) = 0,

(b) V (x) ą 0, x P D and x ‰ 0,

The function V is said to be Positive semi-definite (PSDF), if the condition (b) is replaced
by V (x) ě 0.

Theorem A.1.1 (Lyapunov’s theorem)[37] Let D Ă Rn containing the origin. If there
exists a function V : D Ñ R continuously differentiable and positive definite such that :

V̇ (x) =
BV

Bx

dx

dt
=

BV

Bx
f(x),

is negative semi-definite (NSDF) in D, then the origin of the system (A.1) is LS. Further-
more, if V̇ is NDF, then the origin of the system (A.1) is AS.
In addition, if D = Rn and V is radially unbounded, i.e

lim
||x||Ñ+8

V (x) = +8,
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then the origin of the system (A.1) is GAS.

For autonomous systems, when V̇ in the above Theorem is only negative semidefinite, the
asymptotic stability can still be obtained by applying the following simplified version of
LaSalle’s Theorem.

Theorem A.1.2 (LaSalle’s invariance principle)[37] Let D Ă Rn containing the origin.
If there exists a function V : D Ñ R continuously differentiable and positive definite such
that :

V̇ (x) =
BV

Bx
f(x),

in D, and let’s define the set S as :

S = tx P D|V̇ (x) = 0u,

and assume that no solution other than the origin can remain identically in S, then the
origin of the system (A.1) is AS. If on top of that, D = Rn and V is radially unbounded,
the origin of the system (A.1) is GAS.

Theorem A.1.3 (Linear systems) The following statements are equivalent :

(a) The origin of the linear system
ẋ = Ax

is globally exponentially stable.

(b) All eigenvalues of A have negative real values.

(c) For any symmetric positive-definite matrix Q, there is a unique symmetric positive-
definite matrix P which is a solution to the following Lyapunov equation :

PA+ ATP = ´Q.

A.2 Non-autonomous systems
Definition A.2.1 :(Class K function)[37] The continuous function α : [0, a) Ñ R+ is
said to be of class K if :

(a) α(0) = 0.

(b) α is strictly increasing.

α is said to be of class K8, if a = +8 and

lim
xÑ+8

α(x) = +8.

Definition A.2.2 :(Class KL function)[37] The continuous function β : [0, a)ˆ[0,+8) Ñ

R+ is said to be of class KL, if for each fixed t, β(x, t) belongs to class K (with respect
to x), and for each fixed x, β(x, t) is decreasing (with respect to t) and

lim
tÑ+8

β(x, t) = 0.
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Definition A.2.3 :(Locally positive function (LPDF)) A continuous function V : R+ ˆ

D Ñ R+ is said to be Locally positive definite function (LPDF), if there exists a function
α of class K such that :

(a) V (t, x) ě α(||x||), @t ě 0 and @||x|| ď r with r ą 0,

(b) V (t, 0) = 0,

Definition A.2.4 :(Positive-definite function (PDF)) A continuous function V : R+ ˆ

Rn Ñ R+ is said to be Positive-definite function(PDF), if there exists a class K function
α such that :

(a) V (t, x) ě α(||x||), @t ě 0 and @x P (R)n,

(b) V (t, 0) = 0.

Definition A.2.5 (Decrescent function) A continuous function V : R+ ˆ D Ñ R+ is
said to be locally decrescent,if there exists a class K function α such that :

V (t, x) ď α(||x||), @t ě 0, @x ď r with r ą 0

V is said decrescent, if α is a class K8 function and the previous inequality holds for all
x P Rn.

Theorem A.2.1 :[79] The origin of the system (1.1) is LS, if there exists a locally
positive-definite function V (t, x) such that:

V̇ (t, x) ď 0, @t ě t0, @||x|| ă r with r ą 0

Theorem A.2.2 :[79] The origin of the system (1.1) is US, if there exists a locally
positive-definite function and locally decrescent V (t, x) such that :

V̇ (t, x) ď 0, @t ě t0, @||x|| ă r with r ą 0

Theorem A.2.3 :[79] The origin of the system (1.1) is UAS, if there exists a LPDF et
locally decrescent V (t, x), such that ´V̇ (t, x) is LPDF.

Theorem A.2.4 :[79] The origin of the system (1.1) is GUAS, if there is a positive
definite decrescent function V (t, x), such that ´V̇ (t, x) is PDF.

The function V is called a Lyapunov function of the system (1.1).
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Appendix B
Finite time stability theorems

B.1 Autonomous systems
Haimo proposed in [32] a necessary and sufficient condition for the finite-time stability of
the system (A.1) in the case when (A.1) is a scalar system.

Theorem B.1.1 :[32] The origin of the system (A.1) when n = 1 is finite-time stable if
and only if there exists a neighborhood V from the origin such that for any x P V ´ t0u

(a) xf(x) ă 0,

(b)
ş0

x
dz
f(z)

ă 8.

Example B.1.1[52] Let’s consider the following scalar autonomous system :

ẋ = ´rxua, x P R, a P]0, 1[, (B.1)

with :
rxua = |x|

asign(x).

We have :
´xrxua ă 0, pour x ‰ 0,

and if x P R, so :
ż 0

x

dz

f(z)
=

ż 0

x

dz

´sign(z)|z|a
=

|x|1´a

1 ´ a
ă 8.

So according to the Theorem B.1.1, The origin of the system (B.1) is finite-time stable
with a settling time T (x0) = |x0|1´a

1´a
. The explicit solution of the system (B.1) is given by

:

x(t) =

#

sign(x0)(|x0|
1´a ´ t(1 ´ a))

1
1´a ) si 0 ď t ď

|x0|1´a

1´a
,

0 si t ą
|x0|1´a

1´a
.

(B.2)

Whereas for autonomous systems of higher dimensions, we present the following theorem :

Theorem B.1.2 :[12] If there exists a Lyapunov function V : D Ă Rn Ñ R such as :

(a) V is PDF.
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(b) There is a neighborhood of the origin V Ă D such that

V̇ + c(V (x))β ď 0, x P V ´ t0u with c ą 0 et β P]0, 1[

Then the origin of the system (A.1) is finite-time stable and the settling time function
T (x0) is continuous and bounded as follows :

T (x0) ď
V (x(0))1´β

c(1 ´ β)
.

Furthermore, if D = Rn and V̇ is positive on Rn, then the origin of the system (A.1) is
globally finite-time stable.

Example B.1.2 :[90] Consider the following autonomous system of dimension 2 :
#

ẋ1 = ´rx1ua ´ x31 + x2,

ẋ1 = ´rx2ua ´ x32 ´ x1,
(B.3)

with a P]0, 1[. We set :

V (x) =
||x||22

2
=

1

2
(x21 + x22).

We derive and find :

V̇ (x) = ´x41 ´ x42 ´ |x1|
a+1

´ |x2|
a+1

ď 0.

The Lyapunov function V verifies the following inequality :

V̇ ď ´2
a+1
2 V

a+1
2 .

So according to Theorem B.1.2, The origin of the system (B.3) is globally finite-time
stable with a continuous settling time bounded by T (x0) ď

2||x0||
1´a
2

1´a
.

Remark B.1.1 : There is no Lyapunov function V that satisfies the conditions of Theorem
B.1.2 for a finite-time stable system with a discontinuous settling time function.

In the case where the settling time function of a finite-time stable system is continuous,
the following Theorem represents an inverse to the above Theorem :

Theorem B.1.3 :[12] if The origin of the system (A.1) is finite-time stable and its settling
time function T is continuous. Let V be a neighborhood of the origin and β P]0, 1[. Then,
there exists a continuous function V : V Ñ R that verifies

(a) V is positive definite.

(b) V̇ is continuous over V and there exists a real c ą 0 such that

V̇ + c(V (x))β ď 0, x P V .
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B.2 Non-autonomous systems
Theorem B.2.1 :[53] The origin of the system(1.1) is said to be :

- Finite-time stable, if there exists a continuously differentiable Lyapunov function
V : Rě0 ˆ D Ñ Rě0 (D Ă R) and r : Rą0 Ñ Rě0 is continuous PDF such that
r(0) = 0 verifying the following differential inequality :

V̇ (t, x) ď ´r(V (t, x)), @(t, x) P R+ ˆ D,

such that there exists ε ą 0 for which :
ż ε

0

dz

r(z)
ă +8.

The settling time function of the system (1.1) satisfies the following inequality :

T0(t, x) ď

ż V (t,x)

0

dz

r(z)
.

- Furthermore, if V is decrescent, then the origin of the system (1.1) is uniformly
finite-time stable.

- if V is radially unbounded and D = Rn, then the origin of the system (1.1) is globally
finite-time stable.

Example B.2.1 :[52] Consider the following non-autonomous scalar system :

ẋ = ´(1 + t)rxua,

t ě 0, x P R. We choose the following decrescent Lyapunov function :

V (x) = x2,

its derivative is given by :

V̇ (t, x) = ´2(1 + t)xrxua ď ´2rxu
a+1
2 (x2) = ´r(V (x)),

with r(z) = 2rxu
a+1
2 .

We have already seen in Example 1 that
şε

0
dz
r(z)

=
şε

0
dz

sign(z)|z|a
ă +8, therefore, according

to Theorem B.2.1, The origin of the system (1.1) is uniformly finite-time stable with the
settling time function verifying the following inequality :

T (t, x0) ď
4|x0|1´a

1 ´ a
.
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Appendix C
Observability

C.1 Observability of non-linear systems

C.1.1 SISO systems
Let be the system (2.1), we assume that u and y are known and are derivable, we can
study the observability of a SISO system (m = p = 1) in the following way [89]

- We define y1 and u1, such that :

y1 = [y ẏ ÿ ... y(n´1)],

u1 = [u u̇ ü ... u(n´1)],

- y(i) is dependent on x, u, ü, ü, ..., ui for il ď n´ 1. This justifies the following equation
:

y(i) = ψi(x, u
1).

- The derivative of y(i) is therefore given by

y(i+1) = [
Bψi(x, u

1)

Bx
]f(x, u) + [

Bψi(x, u
1)

Bu1
]
du1

dt
,

which in turn equals to ψi+1(x, u
1) for i+ 1 ď n ´ 1.

- We define the linear operator Mf by :

(Mfψ)(x, u
1) = [

Bψ(x, u1)

Bx
]f(x, u) + [

Bψ(x, u1)

Bu1
]
du1

dt
.

- y1 can be expressed as :

y1 = ω(x, u1) =


h(x, u)

(Mfh)(x, u
1)

...
(Mn´1

f h)(x, u1)

 , (C.1)

where ω(x.u1) is called the observability matrix.

- If the observability matrix (C.1) is invertible, i.e., there exists ω´1 such that

x = ω´1(y1, u1),
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then the corresponding system is observable, since there is a function ω´1 that can recon-
struct the state vector from the measurements y and the control input u . Furthermore,
if the Jacobian of the observability matrix

Ω(x, u1) =
Bω(x, u1)

Bx
,

is invertible at x0, then there exists a neighborhood Vx0 of x0 in which ω is invertible. The
corresponding system is therefore locally observable, meaning that x0 is distinguishable
from all points in Vx0 .

C.1.2 MIMO systems
In the case of MIMO systems (y P Rp, p ą 1), the approach is similar [89] :
- We define : N as a positive integer vector such that :

N =
[
n1 n2 . . . np

]T
,

verifying Σi=p
i=1ni = n.

- Let :

y =
[
y1 y2 . . . yp

]T and h(x, u) =
[
h1(x, u) h2(x, u) . . . hp(x, u)

]T
.

- y1
j is written as follows

y1
j =

[
yj ẏj . . . y

nj

j

]T
= ωj(x, u

1) with j = 1, 2, . . . , p.

where

ωj(x, u
1) =


hj(x, u)

(Mfhj)(x, u
1)

...
(Mn´1

f hj)(x, u
1)

 .
- The observability matrix in this case is given by

ωN(x, u
1) =


ω1(x, u

1)
ω2(x, u

1)
...

ωp(x, u
1)

 .
- If there exists N such that ωN(x, u1) is invertible, then the state x can be reconstructed
from u1 and measurements y and each of their derivatives yj can be calculated up to the
order nj. The corresponding system is therefore said to be observable.

Remark C.1.1 : The literature offers several definitions of the observability for nonlinear
systems. For example, in [28], a method using Lie derivatives has been introduced to
study the observability of nonlinear affine systems in control.
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C.2 Observability of linear systems
Consider the following autonomous linear dynamic system

#

ẋ(t) = Ax(t) +Bu(t)

y = Cx(t) +Du(t)
(C.2)

with x(t) P Rn, u(t) P Rm and y(t) P Rp. A,B and C are matrices of appropriate dimen-
sions. It is assumed that D = 0 without loss of generality.

The observability of the system (C.2) can be algebraically characterized by the following
theorem.

Theorem C.2.1 :[24] The linear system (C.2) is said to be observable, if and only if the
Kalman observability matrix given by 

C
CA
CA2

...
CAn´1

 ,
is of rank n. The pair (A,C) is then said to be observable.

Remark C.2.1 : This theorem is a direct result of the approach introduced in [28] using
Lie derivatives.
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