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صخلم

هبشةحوتفملاةرئادلاطغضبةفورعملا،ديدحلاتافسوفمويثيلتايراطبنحشرادقملقيقدلاريدقتلاىلعزكريانعورشم

انمق،ةئفاكمةرئادلجذومنلامعتساب.ةيراطبلاةرادإماظنلامهمالماعملثمييذلاو،نحشلارادقملةبسنلابتباثلا

رفصلاىلإماظنلاجتانيفأطخلابراقتنمضييكيسالكبقارم:قلزنملاعضولاىلعنودمتعينيبقارمميمصتب

مت.جتانلاأطخىلإةفاضإلابةحوتفملاةرئادلاطغضةلاحريدقتبراقتىلعدمتعيليدببقارمو،ددحمتقويف

ميقجمدلالخنمنيبقارملاةقدرابتخابانمق،كلذدعب.ةتباثتالماعملاضارتفابةيادبلايفةاكاحملاتايلمعءارجإ

روطتلايفلمعلااذهمهاسي.نحشلارادقموةرارحلاةجرد،ةيراطبلارايتفالتخابفلتختيتلاوةيقيقحلاتالماعملا

.ةيراطبلاةرادإماظنءادأززعيامم،ديدحلاتافسوفمويثيلتايراطبنحشرادقممييقتيف

ةحوتفملاةرئادلاطغض،نحشلارادقم،ديدحلاتافسوفمويثيلتايراطب،مويثيللاتايراطب:ةيحاتفمتاملك

.ةناتملاليلحت،فونوبايلليلحت،ريدقت،قلزنملاعضولابقارم،ةئفاكملاةرئادلاجذومن،تباثلا

Résumé

Notre recherche se focalise sur l’estimation de l’état de charge des batteries LiFePO4,
connues pour leur profil OCV constant par rapport à la SOC, un paramètre essentiel
pour le BMS. Nous concevons deux observateurs en mode glissant, l’un mettant l’accent
sur la convergence de l’erreur de tension terminale et l’autre sur la précision de l’estimée
de l’OCV. Les simulations ont initialement utilisé des paramètres constants et ont ensuite
été validées avec des valeurs réelles considérant les variations de courant, de température
et de SOC. Ce travail contribue aux avancées dans l’estimation du SOC des batteries
LiFePO4, améliorant ainsi les performances du BMS.

Mots clés : Batteries Lithium-ion, Batteries LiFePO4, état de charge (SOC), OCV
plate, circuit électrique équivalent, observateur par mode de glissement, estimation, anal-
yse de Lyapunov, robustesse.

Abstract

Our research focuses on SOC estimation for LiFePO4 batteries, known for their flat OCV
profile across SOC values—a vital BMS parameter. We design two sliding mode observers,
one emphasizing battery voltage error convergence and the other OCV estimate accuracy.
Simulations initially used constant parameters and were later validated with real values
accounting for current, temperature, and SOC variations. This work contributes to ad-
vancements in LFP batteries SOC estimation, enhancing BMS performance.

Keywords : Lithium-ion batteries, LiFePO4 batteries, state of charge (SOC), flat
OCV, equivalent circuit model, sliding mode observer, estimation, Lyapunov analysis,
robustness.
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3.5 ỹ estimation error by the first observer. . . . . . . . . . . . . . . . . . . . . 44
3.6 Model and estimated SOC by the first observer. . . . . . . . . . . . . . . . 45
3.7 SOC estimation error by the first observer. . . . . . . . . . . . . . . . . . 45
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Introduction

Lithium-ion batteries are becoming crucial for building a civilization that is both
technologically advanced and sustainable. Lithium-ion batteries are used to power a wide
range of portable devices as well as the rapidly expanding fleet of electric vehicles (EVs)
throughout the world given their comparatively high energy density [1].

Benefits of Lithium-ion batteries include higher power density, quicker charging, no
memory effect, lower maintenance, higher open-circuit voltage and longer lifespan com-
pared to other rechargeable batteries like lead-acid (Pb), nickel-metal hydride (Ni-MH),
and nickel-cadmium (Ni-Cd) batteries [11]. On the other hand, this technology requires
a careful management for safety and reliability purposes. [3].

A well-designed battery management system (BMS) is necessary to enhance efficiency,
reliability and safety by controlling and monitoring battery performance. One crucial
variable for the BMS is the state of charge (SOC), which serves as the fuel gauge for the
battery system. Accurate monitoring of SOC is particularly important for predicting the
battery system’s operating range and improving overall utilization efficiency. It also helps
preventing overcharging and over-discharging of batteries. The SOC is an internal state
that cannot be directly measured by a sensor. It appears that robustly estimating the
SOC is challenging due to the battery nonlinear dynamics. This requires an elaborate
algorithm based on external physical measurements.

In recent years, several techniques have been developed to estimate the SOC for
Lithium-ion batteries. These techniques can be categorized into two groups. The first
group includes the ampere-hour integration method, the open-circuit voltage method, and
artificial intelligence-based methods [22, 21, 30] that do not rely on establishing a battery
model and are not of closed-loop nature and thus are non-robust a priori. The ampere-
hour integration approach is simple and easy to implement for SOC estimation. However,
its accuracy is significantly affected by initial SOC errors and accumulated errors caused
by measurement noise. The open circuit voltage (OCV) method estimates SOC based
on the batteries OCV, but it requires a long rest time, making it impractical for electric
vehicles (EVs) and hybrid electric vehicles (HEVs). Artificial intelligence methods, such
as neural networks and fuzzy logic, can estimate SOC accurately due to their ability to
handle nonlinear functions. However, these methods heavily rely on the quantity and
quality of training data, and battery behavior patterns are random, making real-time
implementation challenging [32]. The second group consists of model-based methods and
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consists in first modeling the battery and then estimating its internal state using observers
such as the Kalman filter (KF) and the sliding mode observer (SMO), and so on [32, 30,
29].

In this work, we focus on the second category of these estimation techniques.

One of the most notable advancements in Lithium-ion battery technology is the grow-
ing adoption of LiFePO4 batteries, which have gained significant interest in recent times.
These lithium iron phosphate batteries, also known as LFP batteries, offer a multitude of
distinct advantages when compared to other types of lithium-ion batteries. LFP batteries
offer cost-effectiveness owing to the availability of iron and phosphate, setting them apart
from other metal variants. Their distinct environmental advantage emerges from their
reduced toxicity and enhanced eco-friendliness, due to the absence of cobalt or nickel con-
tent. Moreover, these batteries provide an extended lifecycle and demonstrate minimal
power degradation over time, enhancing their overall reliability. However, it is important
to acknowledge certain limitations of LFP batteries. Among these, a significant focus in
our current study is their OCV-SOC curve, characterized by its flat profile across a wide
range of SOC values. This distinctive feature poses a challenge in accurately estimating
the battery state of charge, warranting careful consideration in our analysis. The objec-
tive of this work is to address this challenge, namely to develop an algorithm to estimate
the SOC of LFP batteries.

This project is organized in four chapters as follows.

Chapter 1 is an introduction to Lithium-ion Batteries. In this chapter, we provide an
overview of Lithium-ion batteries, aiming to familiarize the readers with this technology.
We begin by explaining the operating principle of a Lithium-ion battery and defining its
key components. Additionally, we delve into the advantages and disadvantages of this
technology, focusing particularly on LiFePO4 batteries.

Chapter 2 explores various Lithium-ion battery models commonly used in literature
to describe their behavior. The pros and cons of each model are discussed to provide a
clear understanding of their strengths and limitations. Subsequently, we select a suitable
model for our work, present its different parameters, and provide numerical simulation
results.

Chapter 3 deals with the main objective of this project: the design of state-observers
for the model selected in Chapter 2. Before that, we present in this chapter, a review
of estimation techniques employed in literature. Furthermore, we introduce two distinct
state observers that we have developed specifically for this purpose. The chapter includes
numerical simulations of both methods, assuming constant parameters.
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In Chapter 4, we address the challenge of non-constant parameters in the battery
model obtained from the SAFT Matlab model. We demonstrate numerical simulations
considering these variable parameters to provide a more realistic representation of the
system’s behavior. Finally, we will do a comparison of the two observers.

Finally, a conclusion that serves to provide a summary of the research undertaken and
offers insights into future perspectives.
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Chapter 1

General knowledge of Lithium-ion
batteries

In 1800, the Italian engineer Alessandro Giuseppe Antonio Anastasio Volta revolu-
tionized the world of energy storage by inventing the first battery known as the voltaic
pile. This groundbreaking innovation allowed for the storage and release of electric charge
through a chemical reaction, marking a pivotal moment in the history of electrical science.

Since then, batteries have become an indispensable component, powering various elec-
trical devices that have become an integral part of our daily lives.

In the automotive industry, the Lithium-ion energy storage system has emerged as the
leading solution to meet the high demands for specific energy and specific power in electric
vehicles (EVs) [18]. The numerous benefits of Lithium-ion batteries include higher power
density, faster charging times, reduced memory effect, lower maintenance requirements,
higher open-circuit voltage, and an extended lifespan compared to other rechargeable
batteries like lead-acid (Pb), nickel-metal hydride (Ni-MH), and nickel-cadmium (Ni-Cd)
batteries.

This chapter aims to delve into the functionality of lithium-ion batteries and present
an overview of their advantages and disadvantages.

1.1 Composition

The battery is an electrochemical accumulator i.e., a device that stores electrical energy
via a chemical reaction and which restores it in the form of current, made up of an anode,
cathode, separator, electrolyte, and two current collectors as shown in Figure 1.1.

Figure 1.1: Constitution of a Lithium-ion battery, taken from [24].
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An electrolyte is a substance containing mobile ions. It can be liquid or solid, organic or
aqueous, what matters is that ions can move there. It is locally electrically neutral and
does not leave past electrons. Electrolytes are usually associated with electrodes.

An electrode is a conductor in contact with an electrolyte, called a cathode when it hosts
a reduction reaction and an anode when it hosts an oxidation reaction.

An oxidation-reduction reaction, or a redox reaction is the transfer of electrons between
two chemical species. The oxidizing agent captures the electrons, the reducing agent
yields them.

A separator is a type of polymeric membrane that is positioned between the two elec-
trodes of an accumulator. This positioning helps prevent electrical short-circuiting.

A current collector is a bridging component that collects electrical current generated
at the electrodes and connects with external circuits.

Now equipped with an understanding of the battery’s components, we will explore its
operating principle.

1.2 Operating principle

Lithium-ion batteries functioning is based on the “Rocking Chair” operating principle.
The ions of lithium shift back and forth between the intercalation hosts of the cathode
and anode through redox reactions. The back-and-forth movement of Li+ ions reminds
of the movement of a rocking chair.

Figure 1.2: Lithium-ion battery operating principle, taken from [24].

The core of Lithium-ion battery operation lies in redox (reduction-oxidation) reactions.
As stated in Section 1.1, redox reactions are an essential process for energy storage and
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release. In the context of Lithium-ion batteries, these reactions occur within the cathode
and anode materials.

• Charge Process: During the charging process, lithium ions move from the cathode
to the anode. This involves the insertion of Li+ ions into the host material of the
negative electrode (anode), a process called intercalation. Simultaneously, lithium
ions are deinserted from the host material of the positive electrode (cathode). These
movements of lithium ions are crucial in restoring the battery’s energy for future
use.

• Discharge Process: When the battery discharges, the reverse process takes place.
Lithium ions are inserted into the cathode material while being deinserted from the
anode material. This flow of lithium ions releases stored energy, which is harnessed
as electric current for external use.

The coordinated dance of these redox reactions is what powers the battery’s operation,
enabling it to store and release electrical energy efficiently. This “Rocking Chair” principle,
with its back-and-forth movement of lithium ions, underlies the cyclic charge and discharge
of lithium-ion batteries. Transitioning to the essential characteristics and challenges of
Lithium-ion batteries, the upcoming section will provide a comprehensive exploration of
the advantages and drawbacks associated with this technology.

1.3 Pros and cons of Lithium-ion batteries

Lithium-ion batteries have gained immense popularity due to their remarkable character-
istics, but they also face certain limitations that warrant careful consideration. In this
section, we will explore both the pros and cons of this technology.

1.3.1 Pros

• High specific energy: from 120 to 160 Wh/kg for energy cells. Specific energy refers
to the amount of energy that a battery can store per unit of weight. It indicates
the battery energy density and represents how much energy it can deliver relative
to its weight or volume. Higher specific energy means that a battery can store more
energy in a given size or weight, allowing for longer operating times in devices.

• High specific power: up to several kW/kg for power cells. Specific power refers to
the rate at which a battery can deliver energy per unit of weight. It represents the
battery’s power density and indicates how quickly it can discharge energy. Higher
specific power means that a battery can deliver energy more rapidly, enabling it to
handle high-power applications or fast charging requirements.

• High specific capacity: 3.86 Ah/g. Battery capacity is an essential parameter as it
determines how long a battery can power a device before needing recharging. It is
influenced by factors such as battery chemistry, size, and design.
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• Self-discharge: very low (a few percents per month). The self-discharge of a battery
refers to the gradual loss of charge or capacity over time when the battery is not
in use. It occurs due to various factors such as internal chemical reactions, leakage
currents, and parasitic reactions within the battery.

• Longer cycle life: from 500 to 3000 cycles, depending on technologies. Lithium-ion
batteries generally have a longer cycle life compared to other battery chemistries.
They can endure a larger number of charge and discharge cycles before their capacity
significantly degrades. This makes them a reliable choice for applications where
long-term performance is desired.

• No Memory Effect: Lithium-ion batteries do not suffer from the memory effect, a
phenomenon that affects some other rechargeable batteries. Memory effect refers to
the reduction in a battery capacity when it is not fully discharged before recharging.
With Lithium-ion batteries, users can recharge them at any point in the discharge
cycle without impacting their overall capacity.

1.3.2 Cons

• Sensitivity to High Temperatures: Lithium-ion batteries are sensitive to high temper-
atures. Exposure to elevated temperatures can accelerate the aging process and lead
to capacity loss or even thermal runaway, which can result in safety hazards. Proper
thermal management and operating within recommended temperature ranges are
essential to mitigate these risks.

• Rapid Charging: Lithium-ion batteries can be charged at a faster rate compared to
some other battery chemistries, which increases the risk of lithium plating at the
negative electrode.

• Safety Concerns: While Lithium-ion batteries are generally considered safe, certain
factors can increase the risk of safety incidents. Mishandling, physical damage,
manufacturing defects, or using damaged or counterfeit batteries can lead to thermal
runaways, fires, or explosions. Proper care, usage, and adherence to safety guidelines
are crucial to ensure safe operation.

With a foundational overview of Lithium-ion batteries in place, our exploration now
takes us towards a specific type within this category: LiFePO4 batteries. These batteries
will form the core focus of our study.

1.4 LiFePO4 batteries

Lithium iron phosphate (LiFePO4) batteries, commonly referred as LFP batteries, offer
numerous advantages over other types of Lithium-ion batteries. As a result, they are
rapidly gaining popularity as a prominent alternative for various electric devices across
industries.
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In this work, we will focus on this type of batteries, intending to contribute valuable
insights that can further enhance the utilization of the latter in the industry.

1.4.1 Main advantages

• Environmental Friendliness: LFP batteries are considered more environmentally
friendly compared to some other Lithium-ion chemistries because they don’t contain
toxic metals such as cobalt or nickel. They have lower environmental impact and
are easier to recycle.

• Cycle Life: LFP batteries have a long cycle life, allowing them to endure a large
number of charge and discharge cycles without significant capacity degradation.
They can typically handle thousands of cycles, making them durable and suitable
for applications that require frequent cycling, such as electric vehicles (EVs) and
energy storage systems.

• Low cost: LFP batteries use iron and phosphate which are much more abundant
compared to other types of metals.

• Consistent discharge voltage: Less power loss occurs when discharging compared to
other types of batteries.

1.4.2 Main disadvantages

• Low energy density: requires then more protection.

• Open circuit voltage (OCV): The main drawback of LFP batteries is that the open
circuit voltage, which is a nonlinear function of the SOC, is flat over a long interval
as shown in Figure 1.3, obtained from SAFT Matlab model, where Voc is the OCV.

Figure 1.3: OCV (volts) versus SOC (%) for LiFePO4 batteries.
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This OCV behavior poses a significant challenge for accurate SOC estimation, as
very similar values for Voc are obtained for SOC in [7%, 98%], which limits the ability
of the Battery Management System (BMS) to preserve the battery life. In the next
section, we will introduce the latter.

1.5 Battery Management System

A Battery Management System (BMS) is an electronic system that monitors and manages
the charging, discharging, and overall performance of a rechargeable battery, such as those
used in electric vehicles, renewable energy storage systems, and portable electronics.
Its primary function is to ensure the safe and efficient operation of the battery, prolong
its lifespan, and optimize its performance during various usage scenarios.

The SOC is a fundamental parameter for the proper functioning of the BMS.

Figure 1.4: The BMS functions, taken from [33].

1.6 Conclusion

In this chapter, we gained an understanding of Lithium-ion batteries, as it introduced us
to their components and operating principles. Furthermore, we explored their advantages
and drawbacks, with a specific focus on LFP batteries, which are central to our research.
Armed with this knowledge of the technology, we are now prepared to get into their
modeling in the upcoming chapter.
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Chapter 2

Lithium-ion battery modelling

In this chapter, we will first present the two main types of models used in literature
to describe lithium-ion battery dynamics and discuss their pros and cons. Our focus then
shifts to an Equivalent Circuit Model (ECM) suitable for the battery management system,
which we carefully model. Finally, we will simulate this model to better understand the
behavior of our system’s internal states before getting into the estimation problem.

2.1 Types of Lithium-ion battery models

Several types of models have been developed to describe Lithium-ion dynamics in the
literature. They can be divided into two main categories. Electrochemical models [9, 5],
on the one hand, describe the internal phenomena of the battery by relying on physical
and chemical laws. These models give a faithful description of the battery dynamics but
are generally more challenging to exploit for management purposes as they need to be
of high enough dimension to generate accurate data and they rely on parameters, which
may not be easy to know. On the other hand, the second popular category is made of
Equivalent Circuit Models (ECM) [12, 34], which consist in describing the main battery
variables, like the SOC and the output voltage, using simple electrical circuits. They
basically consist of coupled voltage sources, resistors and capacitors in series and parallel.
Their design is then much simpler to deal with but they usually require a non-trivial
parameterization to fit experimental data.

2.1.1 Electrochemical models

In Lithium-ion batteries, many complex phenomena are involved such as mass transport,
migrations of ions, red-ox reactions and side reactions. Electrochemical models tend to
describe these internal key behaviors of battery cells.

To create a current flow in the external circuit of the battery, it is necessary that a
transfer of lithium takes place between the two electrodes. Depending on the electrode
considered and the direction of the current, two types of phenomena occur:

— Insertion: lithium ions in solution in the electrolyte at the solid-electrolyte interphase
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are reduced in the electrode. This takes place during charge at the negative electrode and
during discharge at the positive electrode;
— Deinsertion: lithium atoms at the solid-electrolyte interphase ionize to release elec-
trons. This occurs during charge at the positive electrode and discharge to the negative
electrode [2].

Figure 2.1: Electrochemical scheme of a lithium-ion battery, taken from [24].

The above phenomena are well captured by partial differential equations [5]. The
P2D model, i.e., the Pseudo-Two-Dimensional model, as the origin of the electrochem-
ical model, was proposed by M. Doyle, T. Fuller, and J. Newman [9, 25]. This model
described the working processes inside the Lithium-ion battery in detail with formulas
based on the porous electrode theory and the concentrated solution. In the Pseudo Two-
Dimensional (P2D) model, the battery behavior is approximated as if it were occurring
in a 2D domain, which simplifies the computational complexity while still capturing im-
portant electrochemical and transport phenomena. Subsequently, it underwent rigorous
review and improvement by the authors e.g., [17, 26]. These equations may then be used
to obtain finite-dimensional models. The latter is more convenient for implementation
but still usually requires high dimensions to generate accurate data. They are hardly
suitable for the BMS design [7].

2.1.2 Equivalent Circuit Models

Lithium-ion batteries are often modeled using ECM since they are easy to manipulate,
more intuitive and easily integrated into the BMS.

Various battery equivalent circuit models have been proposed to reflect dynamic char-
acteristics of the battery as a result of the trade-off between modelling accuracy and
complexity [12, 23], such as the first-order RC [34, 8, 16], second-order RC [6, 10] and
N -order RC models [13, 14, 20]. The parameters in these models need to be adjusted,
either using data-driven methods or a bank of Kalman filters [3]. They are related to
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several physical quantities:

• the terminal voltage;

• the current;

• the state of charge (SOC);

• the temperature.

2.2 Selected model

In this study, based on experimental validations from SAFT, we have chosen to work with
the first-order Equivalent Circuit Model shown in Figure 2.2.

Figure 2.2: First order Equivalent Circuit Model.

• The series resistance R0 stands for the ohmic voltage drop that occurs in electrode
and electrolyte.

• The RC parallel circuit represents behavior during transients.

• URC is the voltage across the RC network.

• Voc is the open circuit voltage.

• V is the battery terminal voltage.

• I is the battery current.
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We derive from Figure 2.2 the next equalities

V = Voc(SOC)− URC −R0I (2.1)

I = iC + iR (2.2)

URC = RiR (2.3)

Since
ic = C

dURC

dt
, (2.4)

then
dURC

dt
= U̇RC =

(I − iR)

C
(2.5)

From (2.3) and (2.5), we obtain

U̇RC = −URC

RC
+

I

C
(2.6)

On the other hand, the state of charge is defined as the ratio of the remaining capacity
to the nominal capacity of the battery

SOC(t) = 100
(
SOC(0) +

∫ t

0

I(z)

Q
dz
)

∀t ≥ 0 (2.7)

where Q = 3600Qn with Qn the nominal capacity of the battery in Ampere-hour (AH)
when time is expressed in seconds. We derive from (2.3) that

˙SOC = 100
I

Q
(2.8)

Our goal is to have a state space model of the following form
ẋ = Ax+Bu

y = h(x) +Du

(2.9)

Given (2.1), (2.6) and (2.8) we obtain

˙SOC = 100
I

Q

U̇RC = −URC

τ
+

I

C

y = V = Voc(SOC)− URC −R0I

(2.10)

where the state vector is x =

(
SOC

URC

)
, h(x) = V = Voc(SOC)− URC − R0I, D = −R0,

u = I, and the dynamics matrix and the input matrix are respectively
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A =

 0 0

0
−1

τ

, B =


100

Q

1

C



where τ = RC, and Voc is a nonlinear function. In this thesis, as mentioned in Chapter 1,
we focus on LFP cells, which are characterized by an almost flat part for a large interval,
as illustrated in Figure 2.3 obtained from SAFT Matlab model by experiments with the
real parameters.

Figure 2.3: Voc versus SOC curve for LiFePO4 batteries.

2.3 Numerical simulations

We have used Matlab-Simulink to simulate model (2.10) with the parameters values given
in Table 2.1.

Parameters R0 R C τ Qn URC(0) SOC(0)

Values 0.0005 0.002 3500 7 189 0 1
Units Ω Ω F s AH V %

Table 2.1: Parameters values and initial conditions

The current profile and real terminal voltage figures are shown below, induced from
SAFT Matlab model. The resulting SOC, URC and y are respectively given in Figures
2.4, 2.5 and 2.6.
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Chapter 2. Lithium-ion battery modelling

(a) Battery current Icell (amperes). (b) Real terminal voltage Ucell (volts).

Figure 2.4: (a) The current profile and (b) real terminal voltage figures drawn from SAFT
Matlab model.

We are considering successive charge and discharge cycles as shown in the SOC curve in
Figure 2.5.

Figure 2.5: Model SOC in %.

The convention used for the current sign is positive in charge and negative in discharge.
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Figure 2.6: Model URC .

The value of URC varies nearly in [−0.36 0.36] V as shown in Figure 2.6.

Figure 2.7: Model terminal voltage y.

The model terminal voltage varies in [2.65, 3.77] V . Let us note that it is slightly different
from the real terminal voltage that varies in [2.5, 3.65] V as shown in Figure 2.7, due to
the use of constant parameters without considering their dependencies.

2.4 Conclusion

In this chapter, we have presented the main types of models used in literature to describe
lithium-ion battery dynamics. We have seen their pros and cons and expressed the selected
model for this work, based on experimental validations done by SAFT.

Now that we are familiar with the battery cell model, we will focus in the next chapter
on the main challenge of this thesis: observer design for the online estimation of the state
of charge.
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Chapter 3

Observer design

As mentioned in Chapters 1 and 2, obtaining an accurate estimation of the SOC holds
significant importance for the BMS, as it plays a crucial role in preventing overcharge
or discharge, ultimately extending the battery lifespan. However, due to its dependence
on internal chemical parameters within the battery cell, the SOC cannot be directly
measured by a sensor. In this chapter, our objective is to develop a state observer that is
both suitable and precise for SOC estimation, specifically tailored for LFP batteries.

Initially, we will assume that the model parameters are known and constant. By
establishing this foundation, we can focus on creating an effective SOC estimation algo-
rithm, laying the groundwork for further advancements in our pursuit of accurate battery
monitoring and management. The case of varying parameters is discussed in Chapter 4.

3.1 State of the art

A variety of estimation techniques are available for Lithium-ion models in the literature
in order to estimate the SOC precisely and accurately. They can be classified into four
main categories [4] which are summarized below

• Direct measurement methods are employed to estimate the SOC by exploiting the
battery physical properties. One such method is the Open Circuit Voltage approach,
which relies on the stable battery electromotive force in the open circuit state and
its relationship with SOC to estimate the SOC value. However, as highlighted in
Chapter 2, the OCV function for LFP batteries exhibits a nearly flat behavior over
a wide range of SOC values. This inherent characteristic poses a significant issue,
rendering accurate SOC estimation through the OCV curve unfeasible [22].

• Bookkeeping estimation methods utilize the battery charge and discharge currents
as inputs to estimate the state of charge (SOC). One prominent method in this
category is the Coulomb counting method, which involves integrating the battery
charging and discharging currents over time to calculate the SOC. However, it is
essential to note that the accuracy of these bookkeeping methods can be significantly
influenced by two critical factors: initial SOC error and measurement noise [21].

• Artificial intelligence-based methods offer promising data-oriented approaches for
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accurately estimating the SOC even without precise initial information. However,
it is crucial to acknowledge that these methods demand significant computational
time and storage capacity as they need a large amount of data to train [30].

• Lastly, the model-based methods where the battery parameters and SOC are esti-
mated using adaptive filters and observers such as variants of Kalman filter, sliding
mode observers, etc. These methods have the advantage of being insensitive to
initial SOC, which seems to be a better tradeoff between accuracy and computing
efficiency [28, 19].

In this thesis, our focus will be on the last category as they are of a closed-loop nature
and thus robust in general.

3.2 Observability analysis

To ease the observability analysis, we approximate the OCV by a piecewise linear function.
This allows to analyse the observability of the original model (2.10) in the different regions
separately by exploiting linear systems theoretic tools. The piecewise linear approximation
leads to the following linear system

˙SOC = 100
I

Q

U̇RC = −URC

τ
+

1

C
I

y = V = Voc − URC −R0I = α(SOC)SOC + β(SOC)− URC −R0I

(3.1)

where

α(SOC) =


α1 > 0 if SOC ∈ [0%, 7%]

α2 ' 0 if SOC ∈ [7%, 98%]

α3 > 0 if SOC ∈ [98%, 100%]

and

β(SOC) =


β1 < 0 if SOC ∈ [0%, 7%]

β2 > 0 if SOC ∈ [7%, 98%]

β3 < 0 if SOC ∈ [98%, 100%]

System (3.1) can be written in the form
ẋ = Ax+Bu

y = Cx+Du

(3.2)
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where the dynamics matrix and the output matrix are respectively:

A =

[ −1
τ

0

0 0

]
, C =

[
α(SOC) −1

]

The observability matrix is then given by O =

[
C

CA

]
=

[
α(SOC) −1

−1
τ
α(SOC) 0

]
The observability matrix is full rank which means the system (3.1) is observable for α = α1

or α = α3. On the flat region, the observability is lost due to the nearly constant value
of Voc.

3.2.1 Nonlinear observability analysis

In order to test the observability of the non-linear system, we have the following observ-
ability matrix:

M =
∂

∂x

[
h(x)

Lfh(x)

]

where h(x) = Voc − URC −R0I, Lfh(x) =
∂h

∂x
f(x), f(x) =

[
0

−URC

τ

]
.

We have

Lfh(x) =

[
∂h

∂SOC

∂h

∂URC

] [
f1
f2

]

We obtain then

Lfh(x) =

[
∂Voc(SOC)

∂SOC
−1

][ 0
−URC

τ

]
= URC

τ

This gives us the following

M =
∂

∂x

[
Voc − URC −R0I

URC

τ

]
=

∂Voc(SOC)

∂SOC
−1

0
1

τ


We deduce from the observability matrix that the system is weakly locally observable.

In the next section, we aim to explore the regions of observability in the OCV curve
by employing sliding mode observers.
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3.3 Sliding mode observer

The Sliding Mode Control (SMC) technique was first introduced by Utkin [31]. It is a
robust control technique applicable to uncertain, perturbed nonlinear systems. It aims to
construct a sliding surface in which the system has a desirable behavior, and then drive
the model state to that surface and maintain it, as illustrated in Figure 3.1, i.e., once the
system state reaches the sliding surface, it continuously slides along it, achieving robust
and stable performance.

Figure 3.1: Sliding mode control general principle.

where X1 and X2 are the state variables and S is the sliding surface.

The sliding mode observer (SMO) is a copy of the plant model in addition to a feedback
term that corrects the estimates by injecting back the discrepancy between its output and
the output of the system via the discontinuous sign function [27]. In this case, the sliding
surface is the error between the real output and its estimate s = y − ŷ.

For a state space model of the form of (2.9), the SMO takes the form below


˙̂x = Ax̂+Bu+ Lsign(y − ŷ)

ŷ = h(x̂) +Du

(3.3)

where L is a 2x1 real matrix gain to be determined. The sign function is defined as
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∀e ∈ R sign(e) =


1 if e > 0

0 if e = 0

−1 if e < 0

The SMO layout is illustrated in Figure 3.2 below.

Figure 3.2: Sliding mode observer matlab scheme

Our idea behind the use of SMOs for the estimation of the SOC in this type of
battery is to be able to exploit the areas where the OCV is not flat to ensure a finite-
time convergence to the sliding surface, then try to maintain it there, and be also able to
compensate the model uncertainties with the switching gains.

3.3.1 Conventional sliding mode observer

Our first attempt was to design a conventional first order SMO as presented next.

3.3.1.1 Change of coordinates

To design a SMO for system (2.10), we first need to change the coordinates. We define

for this purpose the following state variable v =

(
ỹ

SOC

)
. ỹ is the output of the system

defined as

ỹ = Ṽ = Voc(SOC)− URC = y +R0I (3.4)

We derive ỹ from (3.4)
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˙̃y = −U̇RC +
∂Voc(SOC)

∂SOC
˙SOC = −

(
− 1

τ
URC +

1

C
I
)
+

∂Voc(SOC)

∂SOC
˙SOC,

That brings us to the following equation of ˙̃y

˙̃y = −1

τ
ỹ +

1

τ
Voc(SOC) + I

(
− 1

C
+

100

Q

∂Voc(SOC)

∂SOC

)
(3.5)

We deduce from (2.8) and (3.5)
˙̃y = −1

τ
ỹ +

1

τ
Voc(SOC) + I

(
− 1

C
+

100

Q

∂Voc(SOC)

∂SOC

)

˙SOC = 100
I

Q

(3.6)

The output is ỹ = Voc(SOC)−URC . It is important to note that this change of coordinates
is bijective. In fact, we can seamlessly switch between the previous model (see Chapter
2) and the current one without losing any information.

3.3.1.2 Observer equations

The SMO equations, which are a copy of the model’s equations in addition to a correction
term, are given below

˙̃̂y = −1

τ
ˆ̃y +

1

τ
Voc(ŜOC) + I

(
− 1

C
+

100

Q

∂Voc(ŜOC)

∂SOC

)
+ L1sign(e1)

˙̂
SOC = 100

I

Q
+ L2sign(e1)

(3.7)

where e1 := ỹ− ˆ̃y, ˆ̃y is the integral of ˙̃̂y defined in equation (3.7), and let e2 := SOC−ŜOC,
L1 and L2 are scalars to be determined.

3.3.1.3 Error dynamics

Subtracting (3.6) from (3.7) gives the dynamical reconstruction error system as
ė1 = −1

τ
(ỹ − ˆ̃y) +

1

τ
(Voc(SOC)− Voc(ŜOC)) + 100

I

Q

(∂Voc(SOC)
∂SOC

− ∂Voc(ŜOC)

∂SOC

)
− L1sign(e1)

ė2 = −L2sign(e1)

(3.8)

Our objective is now to determine L1 and L2 so that the stability of the system (3.8) is
guaranteed.
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3.3.1.4 Lyapunov analysis

The stability of the previous error system has to be studied. This can be done by the Lyapunov
analysis by exploiting the next theorem.

Theorem : [15]

Consider the autonomous system
ẋ = f(x) (3.9)

Let V : D → R be a contnuously differentiable function defined in a domain D ⊂ Rn that
contains the orgin. The derivative of V along the trajectories of (3.9), denoted by V̇ (x),
is given by

V̇ (x) =

n∑
i=1

∂V

∂xi
ẋi =

n∑
i=1

∂V

∂xi
fi(x) =

[ ∂V
∂x1

,
∂V

∂x2
, ...,

∂V

∂xn

]


f1(x)

f2(x)

.

.

.

fn(x)


=
∂V

∂x
f(x) (3.10)

The derivative of V along the trajectories of a system is dependent on the system’s equa-
tion. Hence, V̇ (x) will be different for different systems. If ψ(t;x) is the solution of (3.9)
that starts at initial state x at time t = 0, then

V̇ (x) =
d

dt
V (ψ(t;x)) for t = 0 (3.11)

Therefore, if V̇ (x) is negative, V will decrease along the solution of (3.9). We are now
ready to state Lyapunov’s stability theorem.

Let x = 0 be an equilibrium point for (3.9) and D ⊂ Rn be a domain containing x = 0.
Let V : D → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D − {0} (3.12)

V̇ (x) ≤ 0 in D (3.13)

then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (3.14)

then x = 0 is asymptotically stable.

Let us consider the following function: V1 = 1
2e

2
1 ∀e1 ∈ R

V̇1 = e1

[1
τ
(Voc(SOC)−Voc(ŜOC))+100

I

Q

(∂Voc(SOC)
∂SOC

− ∂Voc(ŜOC)

∂SOC

)]
−e1L1sign(e1) (3.15)

Assume
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
Voc(SOC)− Voc(ŜOC) ≤ m1

∂Voc(SOC)

∂SOC
− ∂Voc(ŜOC)

∂SOC
≤ m2

We have:

V̇1 ≤ |e1|(
1

τ
m1 + 100

|I|
Q
m2)− L1|e1|

By taking

L1 =
m1

τ
+ 100

|I|
Q
m2 + ε1, ε1 > 0

the following holds
V̇1 ≤ −ε1|e1| (3.16)

Now, considering the Lyapunov function:

W1 =
√
V1 (3.17)

By deriving equation (3.17) we obtain Ẇ1 =
1

2

V̇1√
V1

≤ −ε1|e1|
2
√
V1

which gives

Ẇ1 ≤
−
√
2ε1
2

∀e1 6= 0 (3.18)

then, Ẇ1 is a negative definite function.

Let us consider the following function: V2 = 1
2e

2
2 ∀e2 ∈ R

V̇2 = e2
[
− L2sign(e1)

]

V̇2 = e2

[
− L2

L1

(
1

τ
(Voc(SOC)− Voc(ŜOC)) + 100

I

Q

(∂Voc(SOC)
∂SOC

− ∂Voc(ŜOC)

∂SOC

))]

V̇2 = −L2

L1
e2∆Voc − 100

L2

L1

I

Q
e2∆∂Voc (3.19)

where ∆Voc = Voc(SOC)− Voc(ŜOC), ∆∂Voc =
∂Voc(SOC)

∂SOC
− ∂Voc(ŜOC)

∂SOC

Since Voc(SOC) is a monotonous function, then (SOC − ˆSOC)(Voc(SOC)− Voc(ŜOC)) ≥ 0.

Therefore, one has

−L2
L1
e2∆Voc ≤ 0
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Similarly, we have, assuming the monotony of the function ∂Voc(SOC)

∂SOC

(SOC − ŜOC)
(∂Voc(SOC)

∂SOC
− ∂Voc(ŜOC)

∂SOC

)
≥ 0

V̇2 ≤ −L2

L1
e2∆Voc + 100

L2

L1

|I|
Q
e2∆∂Voc (3.20)

V̇2 ≤ −L2

L1
|e2∆Voc|+ 100

L2

L1

|I|
Q

|e2∆∂Voc| (3.21)

By taking ε2 = L2
L1

(
|∆Voc|+ 100 |I|

Q |∆∂Voc|
)

, we obtain the inequality:

V̇2 ≤ −ε2|e2| (3.22)

Now, considering the Lyapunov function:

W2 =
√
V2 (3.23)

Deriving equation (3.23) gives us Ẇ2 =
1

2

V̇2√
V2

≤ −ε2|e2|
2
√
V2

That leads to this final inequality:

Ẇ2 ≤
−
√
2ε2
2

∀e2 6= 0 (3.24)

then, Ẇ2 is a negative definite function.

3.3.1.5 Numerical simulations

We have used Matlab-Simulink to simulate model (3.7) with the parameters values and initial
conditions given in Table 3.1.

Parameters R0 R C τ Qn L1 L2 ỹ(0) ˆ̃y(0) SOC(0) ˆSOC(0)

Values 0.002 0.002 3500 7 189 0.2 2 2.7 0 2 0
Units Ω Ω F s AH V V % %

Table 3.1: Parameters values and initial conditions.

The current profile used as an input to the system, as presented in the previous chapter, is
shown in Figure 3.3, drawn from SAFT Matlab model.
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Figure 3.3: Battery current used as an input.

Figures 3.4 and 3.5 show respectively model and estimated ỹ and ỹ estimation error.

Figure 3.4: Model and estimated ỹ by the first observer.

Figure 3.5: ỹ estimation error by the first observer.
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Figures 3.6 and 3.7 show respectively model and estimated SOC and SOC estimation error.

Figure 3.6: Model and estimated SOC by the first observer.

Figure 3.7: SOC estimation error by the first observer.

We have observed a significant amount of chattering, which is noticeably impeding the
analysis of the results.
To smoothen the results and reduce the chattering effect, we replaced the sign function in the
SMO equations with the following continuous function that can approximate it:

f(e) =
e√

e2 + ε2
(3.25)

With ε = 0.01

We will present the results for different initial SOC and ˆSOC conditions, within and outside
the flat region, without and under measurement noise.

•Without measurement noise
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We will first consider both SOC and ŜOC initial conditions outside the flat region as shown
in Table 3.2.

Variables SOC(0) ŜOC(0) ỹ(0) ˆ̃y(0) L1 L2

Values 6 0 2.7 0 7 15
Units % % V V

Table 3.2: Initial conditions and gain values.

Figures 3.8 and 3.9 show respectively model and estimated ỹ, and its estimation error.

Figure 3.8: Model and estimated ỹ by the first observer, without measurement noise,
assuming constant parameters and initial conditions outside the flat region.

Figure 3.9: ỹ estimation error by the first observer, without measurement noise, assuming
constant parameters and initial conditions outside the flat region.

We notice that the estimated ỹ smoothly tracks the real one and the error is around 0.001V .

Figures 3.10 and 3.11 show respectively model and estimated SOC, and its estimation error.
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Figure 3.10: Model and estimated SOC by the first observer, without measurement noise,
assuming constant parameters and initial conditions outside the flat region.

Figure 3.11: SOC estimation error by the first observer, without measurement noise,
assuming constant parameters and initial conditions outside the flat region.

Let us note that the state of charge estimation error is less than 0.005 %, which proves the
observer’s good tracking using these initial conditions.

Next, we will consider both model and estimated SOC initial conditions within the flat
region as shown in Table 3.3.

Variables SOC(0) ŜOC(0) ỹ(0) ˆ̃y(0) L1 L2

Values 10 90 2.7 0 7 15
Units % % V V

Table 3.3: Initial conditions and gain values.

Figures 3.12 and 3.13 show respectively model and estimated ỹ, and its estimation error.
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Figure 3.12: Model and estimated ỹ by the first observer, without measurement noise,
assuming constant parameters and initial conditions within the flat region.

Figure 3.13: ỹ estimation error by the first observer, without measurement noise, assuming
constant parameters and initial conditions within the flat region.

We can see that changing the initial conditions does not affect ỹ estimation. The error is still
around 0.001V .

Figures 3.14 and 3.15 show respectively model and estimated SOC and its estimation error.
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Figure 3.14: Model and estimated SOC by the first observer, without measurement noise,
assuming constant parameters and initial conditions within the flat region.

Figure 3.15: SOC estimation error by the first observer, without measurement noise,
assuming constant parameters and initial conditions within the flat region.

Even by challenging the observer and considering both initial conditions within the flat region
with an 80 % difference between them, the tracking is still good with an estimation error of less
than 0.05 %.

Our observer demonstrates good performance in estimating the state of charge (SOC) under
various initial conditions, whether the system is within or outside the flat region. The estimated
SOC maintains an error margin of less than 0.05%. Additionally, the tracking of ỹ is flawless,
with a low estimation error of 0.001 V, equivalent to 0.02%.

•Under measurement noise

To test the observer’s robustness, we chose the following measurement noise to add to our
model

n = 0.01sin(30t) (3.26)
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This choice has been based on experimentations. Its frequency f = w
2π = 2.38Hz.

We will test the observer for the same previous initial conditions to be able to do a com-
parison. Therefore, we will first consider both SOC and SOC initial conditions outside the flat
region as shown in Table 3.2.

Figures 3.16 and 3.17 show respectively model and estimated SOC, and its estimation error.

Figure 3.16: Model and estimated SOC by the first observer, under measurement noise,
assuming constant parameters and initial conditions outside the flat region.

Figure 3.17: SOC estimation error by the first observer, under measurement noise, as-
suming constant parameters and initial conditions outside the flat region.

We can notice that the state of charge tracking is still good with an estimation error that slightly
increases under noise to less than 0.05 %. We also notice an increase in chattering.

Figures 3.18 and 3.19 show respectively model and estimated ỹ, and its estimation error.
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Figure 3.18: Model and estimated ỹ by the first observer, under measurement noise,
assuming constant parameters and initial conditions outside the flat region.

Figure 3.19: ỹ estimation error by the first observer, under measurement noise, assuming
constant parameters and initial conditions outside the flat region.

Similarly for ỹ, the estimation error increases to less than 0.015V which is still very acceptable.

Next, we will consider both model and estimated SOC initial conditions within the flat
region as shown in Table 3.3.

Figures 3.20 and 3.21 show respectively model and estimated SOC, and its estimation error.
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Figure 3.20: Model and estimated SOC by the first observer, under measurement noise,
assuming constant parameters and initial conditions within the flat region.

Figure 3.21: SOC estimation error by the first observer, under measurement noise, as-
suming constant parameters and initial conditions within the flat region.

As noticed in the first case, the state of charge estimation error is overall less than 0.2 % even
while considering both initial conditions within the flat region and with a difference of 80 %.

Figures 3.22 and 3.23 show respectively model and estimated ỹ, and its estimation error.
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Figure 3.22: Model and estimated ỹ by the first observer, under measurement noise,
assuming constant parameters and initial conditions within the flat region.

Figure 3.23: ỹ estimation error by the first observer, under measurement noise, assuming
constant parameters and initial conditions within the flat region.

Similarly, we obtained a ỹ estimation error mostly stable at 0.01V .

We have observed that even in the presence of measurement noise, the state of charge SOC
and ỹ estimation errors remain minimal regardless of the initial conditions chosen, indicating a
high level of robustness in the system. It is interesting to note that the good results we obtained
are due to the fact that in the flat region, the open circuit voltage is not absolutely constant.

3.3.2 Alternative sliding mode observer

The idea of this observer is to force the open circuit voltage of the estimated SOC values
Voc(ŜOC) to be equal to the real estimation of Voc i.e., Voc(ŜOC) = V̂oc = ˆ̃y + ÛRC . First, we
will estimate URC and Voc, only after, we construct the estimate of the state of charge.
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3.3.2.1 Change of coordinates

Let us consider the following state variable: i =
(

ỹ

URC

)

ỹ = Voc(SOC)− URC (3.27)

Deriving ỹ from (3.27)

˙̃y = −
[
− 1

τ
URC +

1

C
I
]
+
∂Voc(SOC)

∂SOC
˙SOC (3.28)

That brings us to the following equation for ˙̃y :

˙̃y =
1

τ
URC + I

(
− 1

C
+

100

Q

∂Voc(SOC)

∂SOC

)
(3.29)

We deduce from (2.6) and (3.29)
˙̃y =

1

τ
URC + I

(
− 1

C
+

100

Q

∂Voc(SOC)

∂SOC

)

U̇RC = −URC

τ
+
I

C

(3.30)

The output is ỹ = Voc(SOC)− URC

By estimating ỹ and URC , we can have the estimate of Voc.

Our goal in the next sections is to build the estimate of SOC so that Voc(ŜOC) = V̂oc.

3.3.2.2 Observer equations

The SMO equations, which are a copy of the model’s equations in addition to a correction term,
are given below

˙̃y =
1

τ
ÛRC − 1

C
I +

∂Voc(ŜOC)

∂SOC

(
100

I

Q

)
+ L11e1 + L12sign(e1)

˙̂
URC = −1

τ
ÛRC +

1

C
I + L2e1

(3.31)

ŜOC will be generated in the following; L11 and L12 are scalars to be designed; e1 := ỹ− ˆ̃y, and
let e2 := URC − ÛRC .

3.3.2.3 The error dynamics

Subtracting equation (3.30) from equation (3.31) gives the dynamical reconstruction error system
as
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
ė1 =

1

τ
e2 +

[
∂Voc(SOC)

∂SOC
− ∂Voc(ŜOC)

∂SOC

](
100

I

Q

)
− L11e1 − L12sign(e1)

ė2 = −1

τ
e2 − L2e1

(3.32)

3.3.2.4 Lyapunov analysis

The stability of the previous error system has to be studied. This can be done by the Lyapunov
analysis.
Let the first Lyapunov function be V1 = 1

2e
2
1 ∀e1 ∈ R and the second function be V2 = 1

2λe
2
2

∀e2 ∈ R with λ > 0 to be determined.

We derive V1 as follows

V̇1 =
1

τ
e2e1 +∆∂Voc

(
100

I

Q

)
e1 − L11e

2
1 − L12|e1| (3.33)

Since one has |∆∂Voc| ≤M , we obtain

V̇1 ≤ −L11e
2
1 − L12|e1|+

1

τ
e1e2 + 100M

|I|
Q

|e1| (3.34)

By taking L12 := 100M
|I|
Q

+ L̃12 with L̃12 > 0, we obtain

V̇1 ≤ −L11e
2
1 − L̃12|e1|+

1

τ
e1e2 (3.35)

On the other hand, we have

V̇2 = −λ
τ
e22 − λL2e1e2 (3.36)

Hence, for V = V1 + V2, we obtain

V̇ ≤ 〈
[
e1
e2

] −L11
1

2τ
− λL2

2
1

2τ
− λL2

2

−λ
τ

[ e1
e2

]
〉 − L̃12|e1| (3.37)

By taking M1 =

 −L11
1

2τ
− λL2

2
1

2τ
− λL2

2

−λ
τ

 We can always find L11 and L2 so that M1 < 0

For instance, by considering that L11 > 0 and L2 =
1

τλ
, we obtain the following matrix: M1 =−L11 0

0
−λ
τ

 < 0

Hence, we obtain V̇ ≤ −εV with ε > 0, we have then e = 0 Globally Exponentially Stable (GES).
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• Finite time convergence of e1

Since one has V̇1 ≤ −L11e
2
1 − L̃12|e1|+ 1

τ |e1||e2|

And that, for any c > 0, ∃T > 0 so that ∀t > T , |e2| ≤ c, by taking L12 >
c

τ
, we will have:

V̇1 ≤ −
(
L12 −

c

τ

)
|e1| from which we deduce that e1 converges in finite time to 0.

3.3.2.5 Construction of the estimate of SOC

Now, let us consider ˙̂
SOC be free. We would like ŜOC to be so that limt→+∞ Voc(ŜOC)−V̂oc → 0

with V̂oc = ˆ̃y + ÛRC

Let e3 = Voc(ŜOC)− (ˆ̃y + ÛRC)

ė3 =
∂Voc(ŜOC)

∂ŜOC

˙̂
SOC −

[
∂Voc(ŜOC)

∂ŜOC

(
100

I

Q

)
+ L11e1 + L12sign(e1) + L2e1

]
(3.38)

Let ˙̂
SOC =

(
100

I

Q

)
+ f

ė3 =
∂Voc(ŜOC)

∂SOC
f − (L11 + L2)e1 − L12sign(e1) (3.39)

Let V3 = 1
2e

2
3, we derive it and obtain:

V̇3 = e3
∂Voc(ŜOC)

∂ŜOC
f − e3

[
(L11 + L2)e1 + L12sign(e1)

]
(3.40)

Let us consider f = −α13sign(e3)− α23e3

V̇3 = −∂Voc(ŜOC)
∂ŜOC

[
α13|e3|+ α23e

2
3

]
− e3[(L11 + L2)e1 + L12sign(e1)] (3.41)

Once e1 has converged to 0 at time T , from equation (3.33), we will have[
L12sign(e1)

]
eq

=
1

τ
e2 +∆∂Voc

(
100

I

Q

)
(3.42)

Hence, for t ≥ T

V̇3 = −∂Voc(ŜOC)
∂ŜOC

[
α13|e3|+ α23e

2
3

]
− e3

[1
τ
e2 +∆∂Voc

(
100

I

Q

)]
(3.43)

By taking α13 and α23 so that ∂Voc(ŜOC)
∂SOC

[
α13|e3|+ α23e

2
3

]
>> 0, we will be able to make

e3 converge to 0 in finite time.

The SMO algorithm is summarized below :

˙̂
ỹ =

1

τ
ÛRC − 1

C
I +

∂Voc(ŜOC)

∂SOC

(
100

I

Q

)
+ L11e1 + L12sign(e1)

˙̂
URC = −1

τ
ÛRC +

1

C
I + L2e1

˙̂
SOC = −α13sign(e3)− α23e3 + 100

I

Q

(3.44)
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where L11 and L2 are so that ∃λ > 0 for which

 −L11
1

2τ
− λL2

2
1

2τ
− λL2

2

−λ
τ

 < 0, L12 > 0 and

α13,α23 > 0

3.3.2.6 Numerical simulations

We have used Matlab-Simulink to simulate model (3.30) and SMO model (3.44) with the pa-
rameters values given in Table 3.4 and initial conditions given in Table 3.5. We have used the
same current profile as for the conventional SMO, shown in Figure 3.2.

Parameters R0 R C τ Qn L11 L12 L2 α13 α23 λ

Values 0.002 0.002 3500 7 189 0.1 2 1
τλ 2 0.1 2

Units Ω Ω F s AH

Table 3.4: Parameters values.

Variables ỹ(0) URC(0) SOC(0) ˆ̃y(0) ÛRC(0) ŜOC(0)

Initial conditions Voc(SOC(0))+

URC(0)

0 1 Voc(ŜOC(0))+

ÛRC(0)

0.2 0

Units V V % V V %

Table 3.5: Initial conditions.

Figures 3.24 and 3.25 show respectively model and estimated ỹ, and its estimation error.

Figure 3.24: Model and estimated ỹ by the second observer.
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Figure 3.25: ỹ estimation error by the second observer.

Figures 3.26 and 3.27 show respectively model and estimated URC , and its estimation error.

Figure 3.26: Model and estimated URC by the second observer.

Figure 3.27: URC estimation error by the second observer.
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Figures 3.28 and 3.29 show respectively model and estimated SOC, and its estimation error.

Figure 3.28: Model and Estimated SOC by the second observer.

Figure 3.29: SOC estimation error by the second observer.

Similarly here, we have observed a significant amount of chattering, which is noticeably
impeding the analysis of the results.
To smoothen the results and reduce the chattering effect, we replaced the sign function in the
SMO equations with the following continuous function that can approximate it:

f(e) =
e√

e2 + ε2
(3.45)

With ε = 0.01

We will present the results for different initial SOC and ŜOC conditions, within and outside
the flat region, without and under measurement noise, using the parameters values given in Table
3.6.

Parameters R0 R C τ Qn L11 L12 L2 α13 α23 λ
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Values 0.002 0.002 3500 7 189 10 10 1
τλ 5 5 2

Units Ω Ω F s AH

Table 3.6: Parameters values.

•Without measurement noise

First, we will consider both model and estimated SOC initial conditions outside the flat
region as shown in Table 3.7.

Variables ỹ(0) URC(0) SOC(0) ˆ̃y(0) ÛRC(0) ŜOC(0)

Initial conditions Voc(SOC(0))+

URC(0)

0.4 6 Voc(ŜOC(0))+

ÛRC(0)

0 0

Units V V % V V %

Table 3.7: Initial conditions.

Figures 3.30 and 3.31 show respectively model and estimated SOC, and its estimation error.

Figure 3.30: Model and estimated SOC by the second observer, without measurement
noise, assuming constant parameters and initial conditions outside the flat region.
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Figure 3.31: SOC estimation error by the second observer, without measurement noise,
assuming constant parameters and initial conditions outside the flat region.

We notice a very good tracking of the estimated SOC. The estimation error is around 0.0001%.
We also notice the immediate convergence of the observer.

Figures 3.32 and 3.33 show respectively model and estimated ỹ, and its estimation error.

Figure 3.32: Model and estimated ỹ by the second observer, without measurement noise,
assuming constant parameters and initial conditions outside the flat region.
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Figure 3.33: ỹ estimation error by the second observer, without measurement noise, as-
suming constant parameters and initial conditions outside the flat region.

The ỹ estimation error is less than 10−6V . The estimated ỹ tracks smoothly the real one.

Figures 3.34 and 3.35 show respectively model and estimated URC , and its estimation error.

Figure 3.34: Model and estimated URC by the second observer, without measurement
noise, assuming constant parameters and initial conditions outside the flat region.
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Figure 3.35: URC estimation error by the second observer, without measurement noise,
assuming constant parameters and initial conditions outside the flat region.

We can see that, similarly for URC , its estimation error is on the order of 10−7, which shows
excellent tracking.

Now, we will consider both model and estimated SOC within the flat region as shown in
Table 3.8.

Variables ỹ(0) URC(0) SOC(0) ˆ̃y(0) ÛRC(0) ŜOC(0)

Initial conditions Voc(SOC(0))+

URC(0)

0.4 10 Voc(ŜOC(0))+

ÛRC(0)

0 90

Units V V % V V %

Table 3.8: Initial conditions.

Figures 3.36 and 3.37 show respectively model and estimated SOC, and its estimation error.

Figure 3.36: Model and estimated SOC by the second observer, without measurement
noise, assuming constant parameters and initial conditions within the flat region.
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Figure 3.37: SOC estimation error by the second observer, without measurement noise,
assuming constant parameters and initial conditions within the flat region.

We can once again observe the immediate convergence of the observer and the good tracking of
the state of charge with an estimation error of 0.0001%, even while both initial conditions are
chosen within the flat area.

Figures 3.38 and 3.39 show respectively model and estimated ỹ, and its estimation error.

Figure 3.38: Model and estimated ỹ by the second observer, without measurement noise,
assuming constant parameters and initial conditions within the flat region.
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Figure 3.39: ỹ estimation error by the second observer, without measurement noise, as-
suming constant parameters and initial conditions within the flat region.

The ỹ estimation error is on the order of 10−7V , the estimated ỹ value is very close the the
model ỹ one.

Figures 3.40 and 3.41 show respectively model and estimated URC , and its estimation error.

Figure 3.40: Model and estimated URC by the second observer, without measurement
noise, assuming constant parameters and initial conditions within the flat region.
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Figure 3.41: URC estimation error by the second observer, without measurement noise,
assuming constant parameters and initial conditions within the flat region.

Likewise, the estimated URC value is very close to the model URC one. its estimation error is
on the order of 10−7V .

We can notice that, regardless of the initial conditions chosen, all SOC, ỹ and URC exhibit
flawless tracking with an estimation error as low as 10−4, 10−6 and 10−7, respectively.

Let us test the robustness of this observer to noise in the following.

•Under measurement noise

Using the same noise as for the conventional SMO, we will first consider both model and
estimated SOC initial conditions outside the flat region as shown in Table 3.7.

Figures 3.42 and 3.43 show respectively model and estimated SOC and its estimation error.

Figure 3.42: Model and estimated SOC by the second observer, under measurement noise,
assuming constant parameters and initial conditions outside the flat region.
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Figure 3.43: SOC estimation error by the second observer, under measurement noise,
assuming constant parameters and initial conditions outside the flat region.

Even after adding noise to our model, the state of charge tracking is still good with an estimation
error that increases to a maximum of 0.2% under noise. We also notice a rise in chattering.

Figures 3.44 and 3.45 show respectively model and estimated ỹ and its estimation error.

Figure 3.44: Model and estimated ỹ by the second observer, under measurement noise,
assuming constant parameters and initial conditions outside the flat region.
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Figure 3.45: ỹ estimation error by the second observer, under measurement noise, assum-
ing constant parameters and initial conditions outside the flat region.

The ỹ tracking is still good with an estimation error that increases to 10−3V under noise.

Figures 3.46 and 3.47 show respectively model and estimated URC and its estimation error.

Figure 3.46: Model and estimated URC by the second observer, under measurement noise,
assuming constant parameters and initial conditions outside the flat region.
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Figure 3.47: URC estimation error by the second observer, under measurement noise,
assuming constant parameters and initial conditions outside the flat region.

Likewise, the URC estimation error increases to 10−6V under noise, which still shows excellent
tracking.

Next, we will consider both model and estimated SOC within the flat region as shown in
Table 3.8.

Figures 3.48 and 3.49 show respectively model and estimated SOC, and its estimation error.

Figure 3.48: Model and estimated SOC by the second observer, under measurement noise,
assuming constant parameters and initial conditions within the flat region.
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Figure 3.49: SOC estimation error by the second observer, under measurement noise,
assuming constant parameters and initial conditions within the flat region.

Even when both model and estimated SOC initial conditions are taken within the flat region,
the state of charge tracking is still good and its estimation error is on the order of 10−4%.

Figures 3.50 and 3.51 show respectively model and estimated ỹ, and its estimation error.

Figure 3.50: Model and estimated ỹ by the second observer, under measurement noise,
assuming constant parameters and initial conditions within the flat region.
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Figure 3.51: ỹ estimation error by the second observer, under measurement noise, assum-
ing constant parameters and initial conditions within the flat region.

Likewise, the ỹ estimation error is on the order of 10−7, the tracking is excellent.

Figures 3.52 and 3.53 show respectively model and estimated URC , and its estimation error.

Figure 3.52: Model and estimated URC by the second observer, under measurement noise,
assuming constant parameters and initial conditions within the flat region.
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Figure 3.53: URC estimation error by the second observer, under measurement noise,
assuming constant parameters and initial conditions within the flat region.

Lastly, the URC estimation error is on the order of 10−3V , which is still good and shows the
good performance of the observer.

We notice then that the alternative SMO estimates smoothly all states even under noise and
regardless of the initial conditions chosen which proves the robustness of the system.

3.4 Conclusion

In this chapter, we developed two distinct sliding mode observers with the primary goal of
accurately estimating the state of charge, regardless of the flat region within the open circuit
voltage. We validated the effectiveness of these observers through rigorous Lyapunov analysis.
Additionally, we conducted comprehensive numerical simulations, exploring various initial con-
ditions while accounting for both noise-free and noisy measurements, all while assuming known
and constant parameters. Our findings revealed good performance from both observers, with
smooth state tracking and acceptable estimation errors.

In the upcoming chapter, we will relax the assumption of constant parameters by incorpo-
rating their real values, which will depend on battery current (I), temperature (T), and state of
charge (SOC). This step will serve as a rigorous test of observer accuracy. Furthermore, we will
conduct a comparative analysis of these observers.
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Chapter 4

Parameters dependencies

In the previous chapter, we successfully developed and simulated two state observers to
estimate the state of charge, assuming constant parameters. However, in order to enhance
the realism and accuracy of our model, we must now challenge this assumption. We will move
forward by incorporating real-world parameters that dynamically vary with temperature, state of
charge, and battery current. Within our Matlab model, each of these parameters was contingent
upon dedicated look-up tables driven from SAFT Matlab model, constructed from experimental
data. They were conditioned by the current (I), temperature (T), and generated SOC as inputs
into their respective look-up tables. Finally we will compare between the two built observers.

4.1 Conventional sliding mode observer

Considering the parameters dependencies on the battery current I, the temperature T and the
state of charge SOC, the model (3.6) becomes


˙̃y = − 1

τ(T )
ỹ +

1

τ(T )
Voc(SOC) + I

(
− 1

C(I, T, SOC)
+

100

Q

∂Voc(SOC)

∂SOC

)

˙SOC = 100
I

Q

(4.1)

Since one has ỹ = Voc(SOC)− URC = y +R0(I, T, SOC)I, the model (4.1) becomes



˙̃y = − 1

τ(T )
(y +R0(I, T, SOC)I) +

1

τ(T )
Voc(SOC) + Iβ

˙SOC = 100
I

Q

y = ỹ −R0(I, T, SOC)I

(4.2)

where β =
(
− 1

C(I,T,SOC) +
100
Q

∂Voc(SOC)
∂SOC

)
, the states vector is x =

(
ỹ

SOC

)
; and the measured

output is y.
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4.1.1 Observer equations

The conventional SMO equations are given below

˙̂
ỹ = − 1

τ(T )
ˆ̃y +

1

τ(T )
Voc(ŜOC) + Iβ̂ + L1sign(e1)

˙̂
SOC = 100

I

Q
+ L2sign(e1)

ŷ = ˆ̃y −R0(I, T, ŜOC)I

(4.3)

where β̂ =
(
− 1

C(I,T,ŜOC)
+ 100

Q
∂Voc(ŜOC)

∂SOC

)
, e1 := y − ŷ := (ỹ − R0(I, T, SOC)I) − (ˆ̃y −

R0(I, T, ŜOC)I)

4.2 Alternative sliding mode observer

Considering the parameters dependencies on the battery current I, the temperature T and the
state of charge SOC, the model (3.30) becomes



˙̃y =
1

τ(T )
URC + I

(
− 1

C(I, T, SOC)
+

100

Q

∂Voc(SOC)

∂SOC

)

U̇RC = −URC

τ(T )
+

I

C(I, T, SOC)

y = ỹ −R0(I, T, SOC)I

(4.4)

4.2.1 Observer equations

The alternative SMO equations are given below



˙̂
ỹ =

1

τ(T )
ÛRC − 1

C(I, T, ŜOC)
I +

∂Voc(ŜOC)

∂SOC

(
100

I

Q

)
+ L11e1 + L12sign(e1)

˙̂
URC = − 1

τ(T )
ÛRC +

1

C(I, T, ŜOC)
I + L2e1

˙̂
SOC = −α13sign(e3)− α23e3 + 100

I

Q

(4.5)

where e1 := y − ŷ := (ỹ − R0(I, T, SOC)I) − (ˆ̃y − R0(I, T, ŜOC)I), e3 := Voc(ŜOC) − V̂oc,
V̂oc := ˆ̃y + ÛRC
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4.3 Numerical simulations for the conventional SMO

Numerical simulations will be conducted using the same current profile used in Chapter 3 as
an input as shown in Figure 4.1. We will simulate, as done in Chapter 3, for different initial
conditions without and under measurement noise. The real parameters values are obtained from
SAFT Matlab Model.

Figure 4.1: First current profile.

4.3.1 Without measurement noise

We will start by presenting simulations of the conventional SMO without the presence of mea-
surement noise. These simulations encompass various initial conditions and employ the first
current profile.
We will first consider both model and estimated SOC initial conditions outside the flat region
as shown in Table 4.1.

Variables SOC(0) ŜOC(0) ỹ(0) ˆ̃y(0) L1 L2

Values 6 0 2.7 0 20 70
Units % % V V

Table 4.1: Initial conditions and gain values.

Figures 4.2 and 4.3 show respectively model and estimated SOC, and its estimation error.
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Figure 4.2: Model and estimated SOC by the first observer, considering parameter de-
pendencies and initial conditions outside the flat region.

Figure 4.3: SOC estimation error by the first observer, considering parameter dependen-
cies and initial conditions outside the flat region.

We can notice that the state of charge tracking is good with an estimation error ranging between
0% and 0.4%.

Figures 4.4 and 4.5 show respectively model and estimated ỹ, and the output estimation
error.
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Figure 4.4: Model and estimated ỹ by the first observer, considering parameter depen-
dencies and initial conditions outside the flat region.

We can see the smooth tracking of ỹ in Figure 4.4.

Figure 4.5: The output estimation error by the first observer, considering parameter
dependencies and initial conditions outside the flat region.

The output estimation error does not exceed 0.005V which shows a good estimation of y.

Now, we will consider both model and estimated SOC initial conditions within the flat
region as shown in Table 4.2.

Variables SOC(0) ŜOC(0) ỹ(0) ˆ̃y(0) L1 L2

Values 10 90 2.7 0 20 70
Units % % V V

Table 4.2: Initial conditions and gain values.

Figures 4.6 and 4.7 show respectively model and estimated SOC, and its estimation error.
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Figure 4.6: Model and estimated SOC by the first observer, considering parameter de-
pendencies and initial conditions within the flat region.

Figure 4.7: SOC estimation error by the first observer, considering parameter dependen-
cies and initial conditions within the flat region.

We can observe that even when both initial conditions are situated within the flat region, the
state of charge estimation remains accurate, with an estimation error ranging from 0

Figures 4.8 and 4.9 show respectively model and estimated ỹ, and the output estimation
error.
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Figure 4.8: Model and estimated ỹ by the first observer, considering parameter depen-
dencies and initial conditions within the flat region.

Similarly, the ỹ estimation is smooth regardless of the initial conditions chosen.

Figure 4.9: y estimation error by the first observer, considering parameter dependencies
and initial conditions within the flat region.

Likewise, the output estimation error is on the order of 10−3V .

4.3.2 Under measurement noise

We will now present the simulations conducted under measurement noise to test the robustness
of the conventional SMO with the real parameters.
We will first consider both model and estimated SOC initial conditions outside the flat region
as shown in Table 4.1.
Figures 4.10 and 4.11 show respectively model and estimated SOC, and its estimation error.
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Figure 4.10: Model and estimated SOC by the first observer, under measurement noise,
considering parameter dependencies and initial conditions outside the flat region.

Figure 4.11: SOC estimation error by the first observer, under measurement noise, con-
sidering parameter dependencies and initial conditions outside the flat region.

We can notice that the state of charge tracking is good with an estimation error ranging between
0% and 0.4%.

Figures 4.12 and 4.13 show respectively model and estimated ỹ, and the output estimation
error.
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Figure 4.12: Model and estimated ỹ by the first observer, under measurement noise,
considering parameter dependencies and initial conditions outside the flat region.

We can see the smooth tracking of ỹ in Figure 4.12.

Figure 4.13: The output estimation error by the first observer, under measurement noise,
considering parameter dependencies and initial conditions outside the flat region.

The output estimation error does not exceed 0.05V which shows a good estimation of y.

Next, we will consider both model and estimated SOC initial conditions within the flat
region as shown in Table 4.2.

Figures 4.14 and 4.15 show respectively model and estimated SOC, and its estimation error.
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Figure 4.14: Model and estimated SOC by the first observer, under measurement noise,
considering parameter dependencies and initial conditions within the flat region.

Figure 4.15: SOC estimation error by the first observer, under measurement noise, con-
sidering parameter dependencies and initial conditions within the flat region.

We can observe that even when both initial conditions are situated within the flat region, the
state of charge estimation remains accurate, with an estimation error ranging between 0% and
0.6%.

Figures 4.16 and 4.17 show respectively model and estimated ỹ, and the output estimation
error.
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Figure 4.16: Model and estimated ỹ by the first observer, under measurement noise,
considering parameter dependencies and initial conditions within the flat region.

Similarly, the ỹ estimation is smooth regardless of the initial conditions chosen.

Figure 4.17: y estimation error by the first observer, under measurement noise, considering
parameter dependencies and initial conditions within the flat region.

Likewise, the output estimation error is mostly on the order of 0.01V .
We observed that the conventional SMO maintains its performance even in the presence of pa-
rameter dependencies. The simulations consistently exhibited minimal estimation errors and
reliable tracking.

In the next section, we will present the numerical simulations conducted on the second
observer in order to do a comparison between both observers.

4.4 Numerical simulations for the alternative SMO

We now proceed to present the simulations conducted for the alternative SMO, both in the
absence and presence of measurement noise, using the first current profile.
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4.4.1 Without measurement noise

We will consider both model and estimated SOC initial conditions outside the flat region as
shown in Table 4.1.
Figures 4.18 and 4.19 show respectively model and estimated SOC, and its estimation error.

Figure 4.18: Model and estimated SOC by the second observer, considering parameter
dependencies and initial conditions outside the flat region.

Figure 4.19: SOC estimation error by the second observer, considering parameter depen-
dencies and initial conditions outside the flat region.

We notice that the SOC estimation error does not exceed 0.06%. We also notice the fast con-
vergence of the alternative observer.

Figures 4.20 and 4.21 show respectively model and estimated URC , and its estimation error.
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Figure 4.20: Model and estimated URC by the second observer, considering parameter
dependencies and initial conditions outside the flat region.

Figure 4.21: URC estimation error by the second observer, considering parameter depen-
dencies and initial conditions outside the flat region.

The URC estimation error ranges between 0V and 0.01V .

Figures 4.22 and 4.23 show respectively model and estimated ỹ, and the output estimation
error.
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Figure 4.22: Model and estimated ỹ by the second observer, considering parameter de-
pendencies and initial conditions outside the flat region.

Figure 4.23: The output estimation error by the second observer, considering parameter
dependencies and initial conditions outside the flat region.

The output estimation error is on the order off 10−5V , which shows the good tracking of the
observer.

Next, we will consider both model and estimated SOC initial conditions within the flat
region as shown in Table 4.2.
Figures 4.24 and 4.25 show respectively model and estimated SOC, and its estimation error.
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Figure 4.24: Model and estimated SOC by the second observer, considering parameter
dependencies and initial conditions within the flat region.

Figure 4.25: SOC estimation error by the second observer, considering parameter depen-
dencies and initial conditions within the flat region.

We observe that, in this scenario, the estimation error for SOC experiences an increase when
compared to the results of previous simulations.

Figures 4.26 and 4.27 show respectively model and estimated URC , and its estimation error.
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Figure 4.26: Model and estimated URC by the second observer, considering parameter
dependencies and initial conditions within the flat region.

Figure 4.27: URC estimation error by the second observer, considering parameter depen-
dencies and initial conditions within the flat region.

Similarly, we notice an increase in the URC estimation error attaining 3V .

Figures 4.28 and 4.29 show respectively model and estimated ỹ, and the output estimation
error.
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Figure 4.28: Model and estimated ỹ by the second observer, considering parameter de-
pendencies and initial conditions within the flat region.

We can notice the good tracking of ỹ.

Figure 4.29: The output estimation error by the second observer, considering parameter
dependencies and initial conditions within the flat region.

The output estimation error ranges between 0 and 0.005%.

4.4.2 Under measurement noise

In this section, we will show simulations conducted on the second observer under measurement
noise.
First, we will consider both model and estimated SOC initial conditions outside the flat region
as shown in Table 4.1.

Figures 4.30 and 4.31 show respectively model and estimated SOC, and its estimation error.
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Figure 4.30: Model and estimated SOC by the second observer, under measurement noise,
considering parameter dependencies and initial conditions outside the flat region.

Figure 4.31: SOC estimation error by the second observer, under measurement noise,
considering parameter dependencies and initial conditions outside the flat region.

We notice that the SOC estimation error increases and attains 4− 6% under noise.

Figures 4.32 and 4.33 show respectively model and estimated URC , and its estimation error.
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Figure 4.32: Model and estimated URC by the second observer, under measurement noise,
considering parameter dependencies and initial conditions outside the flat region.

Figure 4.33: URC estimation error by the second observer, under measurement noise,
considering parameter dependencies and initial conditions outside the flat region.

The URC estimation error is on the order of 10−3V .

Figures 4.34 and 4.35 show respectively model and estimated ỹ, and the output estimation
error.
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Figure 4.34: Model and estimated ỹ by the second observer, under measurement noise,
considering parameter dependencies and initial conditions outside the flat region.

Figure 4.35: The output estimation error by the second observer, under measurement
noise, considering parameter dependencies and initial conditions outside the flat region.

The output estimation error slightly increases and attains 0.01V .

Next, we will consider both model and estimated SOC initial conditions within the flat
region.

Figures 4.36 and 4.37 show respectively model and estimated SOC, and its estimation error.
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Figure 4.36: Model and estimated SOC by the second observer, under measurement noise,
considering parameter dependencies and initial conditions within the flat region.

Figure 4.37: SOC estimation error by the second observer, under measurement noise,
considering parameter dependencies and initial conditions within the flat region.

The SOC estimation error ranges between 0% and 0.04%.

Figures 4.38 and 4.39 show respectively model and estimated URC , and its estimation error.
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Figure 4.38: Model and estimated URC by the second observer, considering parameter
dependencies and initial conditions within the flat region.

Figure 4.39: URC estimation error by the second observer, considering parameter depen-
dencies and initial conditions within the flat region.

The URC estimation error is on the order of 10−4V .

Figures 4.40 and 4.41 show respectively model and estimated ỹ, and the output estimation
error.
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Figure 4.40: Model and estimated ỹ by the second observer, considering parameter de-
pendencies and initial conditions within the flat region.

Figure 4.41: The output estimation error by the second observer, considering parameter
dependencies and initial conditions within the flat region.

The output estimation error slightly increases and attain 0.008V .

We have observed that the alternative SMO method does not maintain its performance when
confronted with parameter dependencies, particularly in the presence of noise, which leads to
an increase in estimation errors.

4.5 Comparison of the two observers

We have developed two distinct sliding mode observers. The first is a conventional SMO, which
primarily focuses on driving the output error to zero (e1 = ỹ − ˆ̃y = 0). In contrast, the second
observer is an alternative SMO designed not only to achieve output error convergence but also
to utilize the estimated OCV and enforce its convergence to the OCV corresponding to the
estimated SOC (V̂oc = Voc(ŜOC)).
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In Chapter 3, under the assumption of constant parameters, both SMOs demonstrated robust
performance, exhibiting precise state variable tracking and minimal estimation errors, even in
the presence of measurement noise. Notably, the alternative SMO exhibited faster convergence
and a swifter arrival at the sliding surface than the conventional SMO.

However, in Chapter 4, when considering parameter dependencies on current, temperature,
and SOC, we observed that the first SMO continued to yield commendable results with minimal
estimation errors, even in the presence of measurement noise. On the other hand, the second
SMO, while still achieving rapid convergence and quicker arrival at the sliding surface, did
not maintain the same level of performance as with constant parameters, particularly when
confronted with measurement noise.

4.6 Conclusion

In this chapter, we have undertaken an evaluation of the accuracy and robustness of the two
observers introduced in Chapter 3. Our investigation accounts for the parameter dependencies
on current, temperature, and SOC. Through extensive numerical simulations involving diverse
SOC initial conditions, both within and outside the flat region, and conducted under conditions
with and without measurement noise, we sought to comprehensively assess their performance.

Our findings reveal the robustness and reliability of the conventional SMO. Even when real
parameters are introduced, this observer continues to exhibit consistent and minimal estimation
errors across all scenarios. While there is a slight uptick in errors in the presence of measurement
noise, they remain well within acceptable limits.

In contrast, the alternative SMO, while demonstrating impressive speed in convergence, ex-
hibits a decrease in performance when confronted with real parameters, particularly in scenarios
involving measurement noise. It falls short in accurately tracking the true values across all
conditions.

These insights underscore the resilience and stability of the conventional SMO, making it a
dependable choice for SOC estimation under varied conditions. However, the alternative SMO,
although swift in convergence, requires further refinement to maintain its accuracy, particularly
when faced with the challenges posed by real parameter variations and measurement noise.
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In this project, our primary objective was to improve the State of Charge (SOC) estimation
for LFP batteries in order to enhance their overall lifespan.

In Chapter 1, we established a foundational understanding of Lithium-ion batteries, with a
specific emphasis on LFP batteries. We delved into their composition, operational principles,
and conducted a comparative analysis of their advantages and disadvantages in relation to other
battery types.

Chapter 2 immersed us in the world of Lithium-ion battery modeling. We introduced two
prominent modeling approaches commonly found in literature, highlighting their respective
strengths and weaknesses. Additionally, we selected a model that best suited our study and
performed simulations to gain familiarity with its key variables.

Chapter 3 focused on exploring the observability regions within the Open Circuit Voltage
(OCV) function. To achieve this, we developed two sliding mode observers, primarily designed
for SOC estimation. Leveraging their finite-time convergence characteristics and assuming con-
stant parameters, we conducted a Lyapunov analysis prior to numerical simulations. The first
observer, a conventional SMO based on output estimation error convergence, demonstrated
promising results across various initial conditions, even in the presence of measurement noise.
The SOC estimation error remained consistently below 1

Chapter 4 sought to evaluate the accuracy of both observers by relaxing the assumption
of constant parameters and accounting for their dependencies on the current, the temperature,
and the SOC. The conventional SMO maintained its performance, offering reliable results across
different initial conditions, even when dealing with measurement noise. However, the alterna-
tive SMO, despite its faster convergence, did not consistently track states under various initial
conditions, particularly in the presence of measurement noise.

Overall, this work contributes significantly to prolonging the lifespan of LFP batteries by
providing precise state of charge estimations to BMS. Particularly noteworthy is the fact that, in
the existing literature, Sliding Mode Observers (SMOs) have not been extensively investigated
for the examination of the flat Open Circuit Voltage (OCV) function in LFP batteries and their
associated State of Charge (SOC) estimation.

In the future, our goal is to seamlessly incorporate these observers into the Battery Manage-
ment System (BMS) software, where we will rigorously assess their effectiveness in real-world
scenarios for accurate State of Charge (SOC) estimation.

The potential for improvement in this project could lie in the utilization of larger datasets
than those employed in these simulations. With an expanded dataset, it becomes feasible to
identify the OCV function through mathematical expressions to enhance the overall results.

Alternatively, investigating the implementation of adaptive gains for the sliding mode ob-
servers developed in this project can contribute to enhancing both the outcomes and the func-
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tionality of the Battery Management System (BMS).
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