
République Algérienne Démocratique et Populaire
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique d’Alger

Departement : Génie Industriel

Graduation Thesis

To obtain the Industrial Engineering diploma

Option : Data Science and Artificial Intelligence

Entity Resolution in Large Bibliographic
Databases : Case of Author Name

Disambiguation

Written by :
M. CHAALAL Mohamed Elmondhir

Supervised by :
M. ARKI Oussama (ENP)
M. DA SILVEIRA Marcos
(LIST)

Defended on September 21, 2023, before a jury composed of :

Mme. BOUCHAFAA, Bahia : President Professor ENP
Mme. AIT BOUAZZA, Sofia : Examiner MAA ENP
M. ARKI Oussama : Promotor MCB ENP

ENP 2023

République Algérienne Démocratique et Populaire
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique d’Alger

Departement : Génie Industriel

Graduation Thesis

To obtain the Industrial Engineering diploma

Option : Data Science and Artificial Intelligence

Entity Resolution in Large Bibliographic
Databases : Case of Author Name

Disambiguation

Written by :
M. CHAALAL Mohamed Elmondhir

Supervised by :
M. ARKI Oussama (ENP)
M. DA SILVEIRA Marcos
(LIST)

Defended on September 21, 2023, before a jury composed of :

Mme. BOUCHAFAA, Bahia : President Professor ENP
Mme. AIT BOUAZZA, Sofia : Examiner MAA ENP
M. ARKI Oussama : Promotor MCB ENP

ENP 2023

République Algérienne Démocratique et Populaire
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique d’Alger

Département : Génie Industriel

Mémoire de Projet de Fin d’Études

Pour l’obtention du diplôme d’ingénieur en génie industriel

Option : Data Science et Intelligence Artificielle

Résolution d’entités dans les grandes bases
de données bibliographiques : Cas de la

désambiguïsation des noms d’auteurs

Réalisé par :
M. CHAALAL Mohamed Elmondhir

Encadré par :
M. ARKI Oussama (ENP)
M. DA SILVEIRA Marcos
(LIST)

Soutenu le 21 Septembre 2023, Devant le jury composé de :

Mme. BOUCHAFAA, Bahia : President Professor ENP
Mme. AIT BOUAZZA, Sofia : Examiner MAA ENP
M. ARKI Oussama : Promotor MCB ENP

ENP 2023

A Thank You

“
I would like to express my sincere gratitude to Mr. Da Silveira, for his

unwavering support, wise counsel, and invaluable contributions
throughout the completion of this master thesis. Your expertise and

mentorship were instrumental in the success of this research.
I would also like to express my deep gratitude to Mr. Arki, Ms.
Bouchaffa and Ms. Ait Bouazza, for their time, dedication, and
meticulous review of this work. Your constructive feedback and

commitment to academic excellence helped refine the quality of this
work.

In addition, I would like to acknowledge the collaborative spirit and
contributions of my work colleagues at LIST, Jader Martins and Ben

Graffet. Your teamwork, brainstorming sessions and camaraderie
created a stimulating environment for research and personal growth.
To all those mentioned here and to all the others who have supported
me on this academic journey, I express my deepest gratitude. Your

encouragement and help have been essential to the completion of this
work. Thank you for being an essential part of my academic journey.

”
- Elmondhir

Dedicate

First of all, I thank Almighty Allah for giving me the courage and patience to bring this work
to a successful conclusion.
To my parents, my guides and role models, no words could express the love and respect I have
always had for you. Your encouragement, sacrifices and unwavering love have been my driving
force throughout my academic career, and it is you who have made me the person I am today.
To my brother, the support and comfort you have given me have given me undeniable courage
and strength.
To my sister I know very well how important my success is to you, you guided me through all
my most crucial decisions. Your journey and your path were an example to follow and my source
of inspiration.
To my sister, who was there for me from the beginning, who supported me when my challenges
seemed insurmountable, I am deeply grateful for your advice and constant encouragement. Thank
you for being my emotional pillar throughout my entire journey.
To my brother who was my companion, my confidant and my first encourager your presence and
efforts played a huge role in my academic success thank you for being my source of resilience.

ملخص
تحديد في يتمثل تحدٍ مع تتعامل انٕها وشاملة. ضخمة مكتبية بيانات قواعد في الكتاّب اسٔماء تمييز اكتشاف الٕى العمل هذا يهدف
نموذج اتباع المقترح النهج تقترح ومتنوعة. واسعة بيانات مجموعة ضمن مشوشة اسٔماء في يشتركون والذين بدقة، الكتاّب وتمييز
الاعتبارات مناقشة يتم كما التمييز. عملية دقة لزيادة الشبكات وتحليل الالٓي التعلم تقنيات استخدام يشمل مراحل ست من مكونّ
موثوقية اكٔثر بشكل الاكٔاديمية المعلومات ادٕارة تحسين في يساهم العمل هذا الكبيرة. البيانات قواعد في الحلول هذه لتنفيذ العملية

وكفاءة.

: مفتاحية كلمات
(Neo4j). نيوفورج (Spark), سبارك التصنيف, الالٓي, التعلم الكتاّب, اسٔماء تمييز الكيانات, تمييز

Résumé

Cette mémoire explore la désambiguïsation des noms d’auteurs dans de vastes bases de données
bibliographiques. Elle aborde le défi d’identifier et de distinguer avec précision les auteurs
partageant un nom ambigu au sein d’un ensemble de données vaste et diversifié.

L’approche proposée suit un modèle en six phases qui implique l’utilisation de techniques d’ap-
prentissage automatique et d’analyse de réseau pour améliorer la précision de la désambiguï-
sation. Des considérations pratiques pour la mise en œuvre de ces solutions dans de grandes
bases de données sont également abordées. Ce travail contribue à une gestion de l’information
universitaire plus fiable et plus efficace.

Mots clés : Résolution d’Entités, Désambiguïsation des Noms d’Auteurs, Apprentissage Auto-
matique, Classification, Spark, Neo4j.

Abstract

This Master thesis explores author name disambiguation in Large extensive bibliographic
databases. It tackles the challenge of accurately identifying and distinguishing authors who
share an ambiguous name within a vast and diverse dataset.

The approach proposes following a 6 phases model involving the use of machine learning and
network analysis techniques to improve disambiguation accuracy. Practical considerations for
implementing these solutions in large databases are also discussed. This work contributes to
more reliable and efficient scholarly information management.

Keywords :
Entity Resolution, Author Name Disambiguation, Machine learning, Classification, Spark, Neo4j.

Table of contents

List of Tables

List of Figures

Code Listings

List of Abbreviations

General Introduction 14

1 Preliminary Study 16
1.1 Presenting Luxembourg Institute of Science & Technology 16
1.2 Responsible Data Science & Analytics Systems 17
1.3 Knowledge Sharing Platform 18
1.4 Knowledge Graphs: Bridging the Information Gap 19
1.5 Architecture of KSP Plateform 19
1.6 Neo4j: Connecting the Dots 20
1.7 The Platform’s Knowledge Graph 21
1.8 Entity Resolution Preliminaries 22
1.9 Different Application Fields of Entity Resolution 23

2 State of the Art 24
2.1 Entity Resolution in Bibliograhical Databases 24
2.2 Challenges of Entity Resolution in Bibliographic Databases 25
2.3 Data science, Machine Learning and Other Fundamental Notions 25

2.3.1 Data Science 25
2.3.2 Machine Learning 26
2.3.3 Supervised Learning 26
2.3.4 Unupervised Learning 33

2.4 Graph Clustering Techniques 36

3 The Entity Resolution Framework 40
3.1 Phase 1: Data Pre-processing 41
3.2 Phase 2: Blocking Scheme 41

3.2.1 Standard Blocking 42
3.2.2 Sorted Neighborhood Blocking 42

Table of contents

3.2.3 Q-gram Based blocking 43
3.2.4 Suffix Array Blocking 44
3.2.5 Block Filtering 45
3.2.6 Evaluation 45

3.3 Phase 3: Pairwise Comparison 46
3.3.1 Levenshtein Similarity 47
3.3.2 Longest Common Substring Similarity 47
3.3.3 Q-gram Based Similairty 48
3.3.4 Jaro-Winkler Similarity 49
3.3.5 Monge-Elkan Similarity 49

3.4 Phase 4: Classification 50
3.4.1 Probabilistic Classification 50
3.4.2 Rule Based Classification 50
3.4.3 Learning-Based Classification 51

3.5 Phase 5: Clusering as a Post-processing Step 52
3.6 Phase 6: Evaluation 53

4 Proposed Solution 55
4.1 Problem Definition 55
4.2 Data Comprehension 56

4.2.1 Data Collection 56
4.2.2 Data Analysis 56

4.3 Data Preparation 58
4.3.1 Data Cleaning 58
4.3.2 Data Transformations 60
4.3.3 Refrence Dataset 62

4.4 Blocking Scheme 64
4.4.1 Evaluation 64
4.4.2 Block Refinement 64

4.5 Pairwise Comparison 65
4.6 Classification 67
4.7 Clustering 68
4.8 Model Deployement 69
4.9 Step-by-Step Workflow 72

General Conclusion 76

References 78

Appendix A 81

Appendix B 88

List of Tables

Table 2.1 : Confusion Matrix as an evalution metric 32

Table 4.1 : Blocking Phase results 64
Table 4.2 : Blocking Phase results (after block refinement) 65
Table 4.3 : Class distribution of pairs before sampling 66
Table 4.4 : Class distribution of pairs after sampling 66
Table 4.5 : Classification results 67
Table 4.6 : Classification results (after parameters tuning) 67
Table 4.7 : Clustering results 69

List of Figures

Figure 1.1 : ESRIC’s Knowledge sharing platform 18
Figure 1.2 : Key numbers of the platform 19
Figure 1.3 : Nodes and Edges are the building block of KGs 19
Figure 1.4 : High level design of the Platform [1] 20
Figure 1.5 : Graph databases hold the advantage in the case of connected data 21
Figure 1.6 : Knowledge Graph containing different entities and their relationships 21
Figure 1.7 : Example of duplication in customer purchase data 22

Figure 2.1 : Example of a support vector machines margins 29
Figure 2.2 : Example of a decision tree to classify potential purchasers 30
Figure 2.3 : Example of a Random forest 31
Figure 2.4 : Different types of linkages 35
Figure 2.5 : Example of (CC) clustering 37
Figure 2.6 : Nodes, Edges and the Adjacency Matrix 38
Figure 2.7 : Example of Louvain Algorithm steps 39

Figure 3.1 : A high level refrence model of an ER process [17] 40
Figure 3.2 : Result of standard blocking on Last Name 42
Figure 3.3 : Concept of the Sorted-Neighborhood Method [18] 43
Figure 3.4 : Example of Q-gram based blocking with Surnames as BKV [20] 44
Figure 3.5 : Example of suffix array based blocking with minimim length lmin = 4 44
Figure 3.6 : The Block Filtering Approach 45
Figure 3.7 : Example of applying CENTER to partition the subgraph of matches, to solve

intransitivity 53

Figure 4.1 : For more information check: https://dev.elsevier.com/ 56
Figure 4.2 : Percentage of missing values in some of the datasets 57
Figure 4.3 : YAKE workflow pipeline 59
Figure 4.4 : Example of rows in the refrence dataset 63
Figure 4.5 : The Gitlab repository containing the code 70
Figure 4.6 : The components of Apache Spark 70
Figure 4.7 : The timeline of the spark job execution 74
Figure 4.8 : Resultat de regroupement graphic 75
Figure 4.9 : Example of Intransitive closer in a graph (nodes a, and e) 81
Figure 4.10 : The difference between under and over fitting 82

https://dev.elsevier.com/

List of Figures

Figure 4.11 : k-folds cross validation 83
Figure 4.12 : Example of the semantic distance between two analogies 84
Figure 4.13 : Architecture of skip vs CBOW 85
Figure 4.14 : Gradient Descent illustrated in a two dimensional example 86
Figure 4.15 : GridSearch parameter tuning 87
Figure 4.16 : Deduplicator’s python modules 88

Code Listings

Code 4.1 Function to preprocess the dataframe 59
Code 4.2 Function to apply data transformations 62
Code 4.3 Function to create embeddings 66
Code 4.4 Function to tune model’s hyperparameters 67
Code 4.5 Function to read the .csv files 88
Code 4.6 Function to perfom prefix array blocking 89
Code 4.7 Function to perfrom sorted neighborhood blocking 90
Code 4.8 Function to perform Block Filtering 91
Code 4.9 Function to apply similarity comparison 93
Code 4.10 Function to calculate pairwise similarities between candidate records 94
Code 4.11 Function to generate the pairs after blocking 95

List of Abbreviations

AND Author Name Disambiguation

BERT Bidirectional Encoder Representations from Transformers

BKV Blocking Key Value

CC Connected Components

ESRIC European Space Resources Innovation Centre

ER Entity Resolution

HAC Hierarchical Agglomerative Clustering

KG Knowledge Graph

KSP Knowledge Sharing Platform

LIST Luxembourg Institute of Science and Technology

NB Naive Bayes

PC Pairs Completeness

PQ Pairs Quality

RF Random Forest

RR Reduction Ratio

SNM Sorted Neighborhood Method

SVM Support Vector Machine

UDF User Defined Function

YAKE Yet Another Keyword Extractor

General Introduction

With the proliferation of digital devices and the internet, we are generating data at an unprece-
dented scale. According to a report by IBM [2], we generate 2.5 quintillion bytes of data every
day, and this number is only expected to increase as more devices and systems come online.
This data comes from a wide variety of sources, such as social media, sensors, transactions, and
more. As a result, many organizations are struggling to manage this large and diverse data, and
are looking for ways to extract value from it. Among the numerous challenges organizations
face, one prominent issue is dealing with duplicate or inconsistent records in their datasets. For
instance, a customer might have different names or addresses listed across multiple databases,
or a patient might possess multiple medical records scattered across various hospitals. Such
discrepancies can lead to inaccurate analytics, and flawed decision-making. To address these
challenges, organizations need the ability to identify and link records that pertain to the same
real-world entity, regardless of the variations present in the data.

This process is commonly known as Entity Resolution (ER), or alternatively referred to as record
linkage or deduplication. As the volume of data generated and collected continues to escalate,
ER has become increasingly crucial. While it is not a novel problem, ER has received consider-
able attention in domains like government agencies, healthcare, and finance [3]. In these sectors,
accurately identifying entities is paramount to combat fraud, maintain precise records, and en-
sure public safety. However, in recent years, ER has gained prominence across various industries
due to the exponential growth of data and the pressing need to link and match records effectively.

Entity resolution assumes particular significance in vast bibliographic databases. These reposito-
ries house millions of publication records and their respective authors. The primary objective of
entity resolution in this context is to identify all publications attributed to a specific researcher,
even if those publications are listed under slightly different names or affiliations. Unfortunately,
author names can be highly ambiguous, with many authors sharing the same or similar names or
using different variations of their names across different publications. Consequently, accurately
identifying all of a researcher’s publications becomes a challenging endeavor.

The Luxembourg Institute of Science and Technology (LIST), in collaboration with the European
Space Agency (ESA), is currently undertaking a crucial project to construct a comprehensive
space resources knowledge graph encompassing scientific papers and citations. This endeavor
entails collecting and analyzing vast amounts of data from multiple sources, which often refer

14

Code Listings

to the same entity using different identifiers or representations. By implementing entity resolu-
tion techniques, LIST can effectively identify and link records associated with the same entity
across multiple sources. This process enhances the accuracy and completeness of the knowl-
edge graph, enabling researchers to derive more precise conclusions and make better-informed
decisions regarding space resource exploration and utilization.

15

Chapter 1

Preliminary Study

In this chapter, our primary focus will be directed towards the host company, the Luxembourg
Institute of Science and Technology (LIST). We will delve into the organizational structure
of LIST, exploring its various groups and units, each contributing to the institution’s diverse
portfolio of research and innovation. Furthermore, we will shine a spotlight on one of LIST’s most
prominent endeavors: its collaboration with the Luxembourg Space Agency and the European
Space Agency to develop a centralized space knowledge sharing platform. A platform aims to
revolutionize how researchers access and query scientific documents.

1.1 Presenting Luxembourg Institute of Science & Technology

The Luxembourg Institute of Science and Technology (LIST) is a mission-driven Research and
Technology Organization (RTO) that develops competitive and market-oriented product/ser-
vice prototypes for public and private stakeholders. With its 600 employees, 75% of whom
are researchers or innovation experts from all around the world, LIST is active in the fields of
informatics, materials and environment and works across the entire innovation chain: funda-
mental/applied research, incubation and transfer of technologies.

Environment

The Environmental Research and Innovation (ERIN) department, made up of 200 life science,
environmental science and information technology researchers and engineers, provides the in-
terdisciplinary knowledge, expertise and technologies to lead solutions including the major en-
vironmental challenges facing society, such as climate change mitigation, ecosystem resilience,
sustainable energy systems, efficient use of renewable resources, and environmental pollution
prevention and control. The department relies on two cutting-edge platforms, the Biotech-
nologies and Environmental Analytics Platform and the Observatory for the Climate and the
Environment, and the GreenTech Innovation Centre (GTIC): a one-stop-shop for the complete
development of bio-based products and processes.

16

Chapter 1. Preliminary Study

Informatics

The IT for Innovative Services (ITIS) department, with its 100 researchers and engineers, focuses
on the digital transformation of operations in organizations with traditional environments and
digital ecosystems, with the aim of improving their performance and innovation capacity. The
common thread throughout ITIS is to develop the most efficient use of big data to ensure the most
appropriate decision-making processes. The department relies on the Data Analytics Platform:
a hybrid infrastructure covering the entire range of data analytics activities. The platform is
based on three pillars: a high-performance computing (HPC) infrastructure, a cognitive analytics
pillar and an interactive visualization wall (Viswall).

Materials

Through its research into advanced materials and processes, the “Materials Research andTech-
nology” (MRT) department, with its 200 researchers and engineers, contributes to the emergence
of enabling technologies that underpin the innovation processes of local and international in-
dustry. MRT’s activities hinge on four thematic pillars: nanomaterials and nanotechnology,
scientific instrumentation and process technology, structural composites, and functional poly-
mers. The department also includes four high-tech platforms, focusing on composites, proto-
typing, characterization and testing. These platforms serve both LIST research staff, and other
stakeholders in Luxembourg.

Space

Unique of its kind, the European Space Resources Innovation Centre (ESRIC) is a joint initiative
between LIST, the Luxembourg Space Agency (LSA) and the European Space Agency (ESA).
As a new department within LIST, it aims to become the internationally recognised centre of
expertise for scientific, technical, business and economic aspects related to the use of space
resources for human and robotic exploration, as well as for a future in-space economy. At its
core, ESRIC provides access to unique research facilities and expertise, enabling ground-based
R&D around prospecting, extracting, processing, storing, supplying and using space resources.

1.2 Responsible Data Science & Analytics Systems

The Responsible Data Science & Analytics Systems Unit, within list supports the digital trans-
formation of our society and our economy by focusing on the interplay between people, data,
computers and the physical world. RDSA carries out impact-driven research by combining
the power of computers and human capabilities to take better, faster, more robust, fair and
trustworthy decisions in our complex and changing world. By studying Cyber-Physical-Social
Systems (CPSS) to imagine, design, test and develop the next generation of technologies, where
computers and humans are smoothly and fairly working together to tackle challenging issues.

17

Chapter 1. Preliminary Study

The unit is composed of around 40 scientists, engineers, post-docs and PhD candidates with
complementary scientific and technological expertise, structured in 3 groups.

• Trustworthy AI: Focuses on understanding AI in terms that connect to human-established
concepts and expertise.

• Visualisation & interaction: Focuses on novel visualisation & interactive methods and tech-
nologies that support human-in-the-loop decision-making and collaboration, and improve
human immersion, engagement and involvement in tasks.

• Human Modelling: Focuses on human-aware cognitive IT technologies combining human
modelling with AI to support learning and decision making, perform machine-reasoning
and implementing explainable AI.

1.3 Knowledge Sharing Platform

In May 2022, ESRIC launched its knowledge sharing platform for the space resources community.
This data visualisation tool integrates about 1,000 scientific publications, complemented by news,
patents, books, press articles, legislative documents, or social media posts. It is freely accessible
to the space resources community on a registration basis.

Figure 1.1: ESRIC’s Knowledge sharing platform

The knowledge-sharing platform responds to the motivations and expectations of the community
and follows a survey conducted between April and July 2021 which revealed the great diversity
of the space sector, as well as its economic potential, linked to terrestrial sectors such as mining,
energy or construction.

18

Chapter 1. Preliminary Study

Figure 1.2: Key numbers of the platform

1.4 Knowledge Graphs: Bridging the Information Gap

Knowledge Graphs (KGs) are a sophisticated data structure designed to capture, represent,
and harness complex relationships within information ecosystems. They enable organizations to
represent complex relationships within data, offering a dynamic framework for understanding
and querying interconnected information.

At the heart of a KG are nodes and edges. Nodes represent entities or concepts, such as people,
places, or things, while edges symbolize the relationships between these entities. Each node and
edge can hold attributes or metadata, enriching the graph with additional context.

Figure 1.3: Nodes and Edges are the building block of KGs

As KGs grow in complexity and size, scalability and performance become critical considerations.
Distributed database systems, graph databases, and optimized storage solutions are employed
to ensure fast and efficient access to graph data.

1.5 Architecture of KSP Plateform

The platform’s architecture was built with the aim to respond to the space communities needs,
most notably:

• Extracting Pertinent information from reliable sources

19

Chapter 1. Preliminary Study

• Formalize this information and bring out its semantic meaning in order to transform it
into into knowledge

• Exploit this knowledge through a range of appropriate services

To this end, the architects of the platforms focused on using Semantic web tochnologies that
offer standirzed ways of describing the semantics of domain concepts using ontologies. They
explain at further details their choices in their paper [1].

Figure 1.4: High level design of the Platform [1]

1.6 Neo4j: Connecting the Dots

In the intricate landscape of Knowledge Graphs, selecting the right database management sys-
tem is paramount. Among the array of choices, Neo4j stands out as the preferred choice for
organizations and researchers aiming to harness the full potential of Knowledge Graphs

Graph databases, like Neo4j, depart from the traditional relational database model by focusing
on the relationships between data points as first-class citizens. In a graph database, data is
organized into nodes, which represent entities, and relationships, which represent connections
between entities. This structure enables Neo4j to excel in scenarios where the relationships
between data points are as important as the data itself.

This means that Graph databases far outperform traditional databases when it comes to query-
ing highly connected data. The latter necessitates multiple extensive join operations, while in
the case of graph databases, traversing the graph’s path is all that’s needed.

20

Chapter 1. Preliminary Study

Figure 1.5: Graph databases hold the advantage in the case of connected data

1.7 The Platform’s Knowledge Graph

The ESRIC Knowledge Sharing Platform utilizes a robust knowledge graph that encompasses
a vast number of nodes and relationships. This knowledge graph encompasses a rich collection
of information, including hundreds of thousands of nodes representing various entities such as
documents, authors, institutions, and the intricate relationships between them, such as affilia-
tions and authorship.

The objective of this work is to contribute to the development of methods that enhance the
quality and accuracy of the knowledge graph’s content. This involves tackling challenges such
as identifying and removing duplicate records and resolving entities with similar or ambiguous
representations. By addressing these challenges, the aim is to optimize the knowledge graph’s
capability to effectively respond to user queries and provide reliable and comprehensive infor-
mation.

Figure 1.6: Knowledge Graph containing different entities and their relationships

21

Chapter 1. Preliminary Study

1.8 Entity Resolution Preliminaries

Entity resolution research has a long history, dating back to the mid-20th century [4], and
has garnered significant attention over the years. Depending on the specific application do-
main, entity resolution may be referred to by different names, such as record linkage [5] [6],
de-duplication [7], or even the merge/perge problem [8].

At first glance, entity resolution may appear straightforward since records with similar attributes
are likely to pertain to the same entity. However, as we will explain later, various challenges
emerge during the process. To illustrate the concept of entity resolution further, let’s consider
the following example:

Imagine we are an online retail business currently developing a new recommendation engine that
utilizes customer information to offer personalized product recommendations. Our dataset com-
prises a purchase log where customer details are represented by attributes like names, addresses,
emails, and phone numbers. Each customer interaction is logged with a unique ID.

As we have many returning customers, effectively building a recommender system requires ag-
gregating the order history for each individual customer. However, this task becomes challenging
when customer data exhibits inconsistencies across different rows associated with the same cus-
tomer’s purchases. Let’s examine a table to illustrate this scenario:

Figure 1.7: Example of duplication in customer purchase data

Now, the question arises: how can we aggregate data for each unique customer rather than
just their individual purchase data? Which functions should we employ? Moreover, how do we
handle slight variations in attributes, such as names that might include nicknames, initials, or
misspellings?

This is precisely where entity resolution plays a crucial role. By leveraging existing customer
attributes and extracting relevant features, a robust entity resolution process can identify, for ex-
ample, that purchase records ”148” and ”207” likely correspond to the same individual, namely
”Chris J. Smith.”

22

Chapter 1. Preliminary Study

1.9 Different Application Fields of Entity Resolution

Before moving into the challenges associated with this task, it is important to highlight the
broad applicability of ER across various sectors and fields:

• In healthcare, ER is instrumental in linking patient records from diverse sources, creating
comprehensive profiles that aid in informed decision-making and enhanced patient care.
By identifying and combining records across multiple healthcare facilities, ER ensures a
holistic view of a patient’s medical history, resulting in improved accuracy and better
healthcare outcomes.

• ER plays a vital role in the finance sector by identifying and linking financial transactions
associated with the same entity. This capability helps detect and prevent fraudulent
activities and money laundering. By identifying suspicious transactions across multiple
accounts, ER assists in investigating potential criminal organizations and safeguarding
financial systems.

• In the insurance industry, ER enables the linkage of policyholder records sourced from
various channels, including claims data and customer interactions. This linkage enables
insurers to develop comprehensive profiles of policyholders, facilitating more accurate risk
assessments. By identifying patterns across multiple claims, insurers can better understand
policyholders’ risk levels and make informed decisions.

23

Chapter 2

State of the Art

In this chapter, we will explore the fundamental theoretical concepts that lay the groundwork
for understanding the problem at hand and the proposed solution. Our goal is to provide readers
with a clear understanding of these concepts, which will be further explored in the remainder of
this work.

To begin, we will establish an understanding of entity resolution usage in bibliographic databases.
We will discuss the specific challenges that arise when performing entity resolution tasks, par-
ticularly in our context. Additionally, we will delve into other fundamental notions, such as
Data Science and Machine Learning, which have become synonymous with the task of entity
resolution.

2.1 Entity Resolution in Bibliograhical Databases

Bibliographic dattabases like PubMed, Scopus, and Web of Science store a vast number of
records representing scholarly articles and research publications. However, errors, inconsistent
data entry, and citation variations can lead to duplicate or similar records in these databases.
The process of entity resolution involves identifying and linking records that refer to the same
publication, author, or research entity to ensure data accuracy.

Entity resolution in bibliographic databases is an ongoing and iterative process. It involves reg-
ularly reviewing and improving algorithms and techniques as new publications are added and
existing records are updated.

Accurate entity resolution is crucial for researchers, scholars, and information retrieval systems.
It provides reliable citation data for research, facilitates citation analysis, supports evaluation
based on citations, and contributes to the discovery and sharing of scholarly knowledge.

24

Chapter 2. State of the Art

2.2 Challenges of Entity Resolution in Bibliographic Databases

Entity resolution in bibliographic databases comes with several challenges that researchers and
data professionals encounter. These challenges stem from the unique characteristics of the data
and the complexities of the domain. Here are some key challenges:

• Data Quality: Inconsistent and incomplete information in bibliographic databases can
hinder accurate entity resolution. Missing data, variations in formatting, and errors in
data entry are common issues. Robust techniques like data cleaning, imputation, and
leveraging external sources are needed to address data quality problems.

• Integration of Multiple Data Sources: Bibliographic databases gather data from diverse
sources, including different publishers and disciplines. Integrating data from heterogeneous
sources and resolving entities across them can be challenging due to variations in data
formats, inconsistent naming conventions, and disparate data quality.

• Scalability: Managing the large volume of records in bibliographic databases poses compu-
tational and storage challenges. Efficient algorithms and indexing techniques are necessary
to handle the scale of data and ensure timely resolution of entities.

• Handling Different Entity Types: In the research domain, there are different types of
entities, like authors, publications, and institutions. Each type requires specific techniques
to match and link related records accurately. For example, matching authors might involve
dealing with variations in their names and affiliations, while publications could be matched
based on titles and dates.

2.3 Data science, Machine Learning and Other Fundamental
Notions

In this section, we will explore some concepts related to entity resolution, including the domains
of data science and machine learning. We will also delve into popular techniques used in machine
learning, such as supervised and unsupervised learning.

2.3.1 Data Science

Data science is an interdisciplinary field that involves extracting insights, knowledge, and ac-
tionable information from structured and unstructured data. It combines elements of statistics,
mathematics, computer science, and domain expertise to analyze large and complex datasets and
uncover patterns, trends, and correlations that can be used for decision-making and problem-
solving.

Data science encompasses a range of activities, including data collection, data cleaning and pre-
processing, exploratory data analysis, feature engineering, predictive modeling, and evaluation

25

Chapter 2. State of the Art

of models. It also involves interpreting and communicating the findings to stakeholders in a
clear and understandable manner.

2.3.2 Machine Learning

Machine learning, as a subfield of data science, encompasses the utilization of mathematical and
statistical methods to construct algorithms and models that possess the ability to autonomously
learn from data and subsequently make predictions or informed decisions. This field relies on the
examination and analysis of datasets to identify underlying patterns and relationships, which
are then leveraged to train machine learning models.

These trained models often aim to emulate specific facets of human cognition, including percep-
tion, reasoning, and decision-making. While machine learning does not strive to replicate the
entirety of human intelligence, it endeavors to mimic certain aspects of human-like behavior and
performance
.
Machine learning encompasses various approaches, in this work, we will focus on two fundamental
categories: supervised learning and unsupervised learning. Each category has its own distinct
objectives and techniques, which we will explore in the following sections.

2.3.3 Supervised Learning

Supervised learning is a machine learning paradigm that involves training models using labeled
data. Labeled data consists of input features along with their corresponding target labels. The
main objective of supervised learning is to learn a mapping function that can accurately predict
the labels of unseen data based on their input features.

In the context of supervised learning, we consider a training dataset comprising N instances,
denoted as (X1, y1), (X2, y2), ..., (Xn, yn). Here, Xi represents the input feature vector of size
d, and yi represents the corresponding target label associated with that input instance. The
underlying learning algorithm seeks to find a function f : X− > Y , where X denotes the input
space and Y represents the output space.

The function f is trained to minimize a cost function, which quantifies the prediction error
across all instances in the dataset. This cost function is determined by employing a defined
loss function that measures the discrepancy between predicted and actual labels. In supervised
learning, there are two main categories of tasks: supervised classification and supervised regres-
sion.

26

Chapter 2. State of the Art

Regression:

For regression tasks, we aim to learn a function f(X; 0) that can predict a continuous target
value. Here, 0 represents the model’s parameters that need to be learned. The prediction ŷ for
a given instance X is computed as:

ŷ = f(X; θ) (2.1)

To quantify the discrepancy between the predicted values ŷ and the true target labels y, we
typically use a loss function. One commonly used loss function is the mean squared error
(MSE), defined as:

L(ŷ, y) = (ŷ − y)2 (2.2)

The goal is to minimize the average loss over all instances in the training dataset, which is
commonly known as the cost function:

MSE(θ) =
1

N

N∑
i

L(ŷ, y) (2.3)

The model’s parameters θ are optimized to minimize the cost function using gradient-based
optimization algorithms. The gradients of the cost function with respect to the parameters are
computed, and the parameters are updated iteratively to reduce the loss.

Classification:

In classification tasks, the goal is to assign instances to different predefined classes based on the
input features. That is, by learning a scoring function f(x,0) that maps the input features x
to a predicted score or probability for each class. To obtain class probabilities, we can use the
softmax function (or sigmoid in case of binary classifcatin):

ŷj =
efj∑K
i efi

(2.4)

where ŷj represents the predicted probability for class j, fj is the score for class j, and the
summation is performed over all classes k. The prediction ŷ for a given instance X is the class
with the highest probability :

ŷ = argmax(ŷj)
j

(2.5)

To quantify the discrepancy between the predicted probabilities yŷ and the true target labels
y, we define a suitable loss function, denoted as L(ŷ, y). Commonly used loss functions for
classification tasks include the cross-entropy loss, defined as:

27

Chapter 2. State of the Art

L(ŷ, y) = −
∑
k

yj log(ŷj) (2.6)

As with regression, the goal is to minimize the average loss over all instances in the training
dataset,that is the cost function defined as:

J(θ) =
1

N

N∑
i

L(ŷ, y) (2.7)

To optimize the cost function and learn the model’s parameters θ, various optimization algo-
rithms can be used, such as gradient descent or its variants. The optimization process involves
updating the parameters iteratively based on the gradients of the cost function with respect to
�.

Common Supervised Learning techniques

There exist various supervised learning algorithms for both classification and regression tasks,
However for the sake of brievity we will only talk about common classification algorithms, as
regression task, are not of high relevance to our work.

Logistic Regression

Logistic regression is a statistical model used for binary classification problems. The model uses
a sigmoid function, denoted as σ(z), to transform a linear combination of the features into a
probability value between 0 and 1. The sigmoid function is defined as:

σ(z) = 1/(1 + exp(−z)) given: z = w + wx+ ...+ wdxd (2.8)

where z is the linear combination of the feature vector x and the corresponding weight vector w.
The logistic regression model computes the probability of an instance belonging to class 1 as:

P (Y = 1|x;w) = σ(z) (2.9)

To estimate the model parameters (weights), logistic regression employs a technique called max-
imum likelihood estimation (MLE). The goal is to find the optimal values for the weight vector
w that maximize the likelihood of observing the given dataset.
The likelihood function L(w) represents the probability of observing the given labels y (0 or 1)
given the input features x and the parameters w. It can be defined as:

L(w) =

N∏
i=1

[σ(zi)]
yi [1− σ(zi)]

(1−yi) (2.10)

28

Chapter 2. State of the Art

To maximize the likelihood, we aim to find the values of w and b that maximize L(w). However,
it is more convenient to minimize the negative log-likelihood (NLL) since it converts the product
of probabilities into a sum of log-probabilities, which result into this cost function:

J(w) = − 1

N

N∑
i=1

[yi log(σ(zi)) + (1− yi) log(1− σ(zi))] (2.11)

Support Vector Machine

The main goal of an SVM is to find an optimal hyperplane that can separate data points
belonging to different classes with the maximum margin (see Fig below). This hyperplane acts
as a decision boundary, allowing us to classify new, unseen instances, and is defined by the
equation:

wTx+ b = 0 (2.12)

Figure 2.1: Example of a support vector machines margins

To maximize the margin, SVM seeks to solve the following optimization problem:

minw,b
1

2
||w||2 (2.13)

s.c: yi(w
Txi + b) ≥ 1− ε

where yi = −1 for the negative class and yi = 1 for the positive class. The constraint enforces
that each data point is classified correctly with a margin of at least ε. The parameter ε allows
for some tolerance in the margin to handle noisy or overlapping data points.

Decision Trees

Decision trees are a popular and intuitive machine learning algorithm used for both classification
and regression tasks. They are constructed using a tree-like structure, where each internal node

29

Chapter 2. State of the Art

represents a decision based on a feature, and each leaf node represents a class label or a predicted
value, as is shown in Fig below:

Figure 2.2: Example of a decision tree to classify potential purchasers

The decision tree can be constructed recursively as follows:

• Selecting the best feature: At each internal node of the tree, a feature f is selected based
on a measure of impurity, such as Gini impurity or entropy. The feature f is chosen to
maximize the reduction in impurity across the child nodes.

• Splitting the data: The selected feature f is used to partition the data into different subsets
based on the feature values. Let v represent a specific value or threshold for feature f. The
data is split into two branches based on the condition xi, fv for one branch and xi, f > v

for the other branch.

• Recursion on child nodes: The above steps are recursively applied to each child node until
a stopping criterion is met. This criterion can be a maximum depth limit, a minimum
number of samples per leaf, or a minimum decrease in impurity.

• Assigning labels: Once the recursion ends and we reach a leaf node, the leaf node is
assigned a class label based on the majority class in the corresponding subset of samples.

The Gini impurity is a commonly used cost function in decision tree classification. It quantifies
the impurity or uncertainty of a node in terms of class labels. It is defined as the probability of
misclassifying a randomly chosen element in the node if it were randomly labeled according to
the class distribution of the node dist(pc), it can be calculated as:

G(N) = 1−
C∑
c=1

p2c (2.14)

Random Forrest & Ensemble Methods

Ensemble methods are machine learning techniques that combine multiple models to make pre-
dictions. The idea behind ensemble methods is to leverage the diversity and collective wisdom

30

Chapter 2. State of the Art

of multiple models to improve the overall performance and robustness.
In Random Forest, an ensemble of decision trees is constructed. Let’s denote the ensemble as F ,
and each decision tree in the ensemble as fi, where i ranges from 1 to the total number of trees
in the forest. Each decision tree is built using a subset of the training data. Given a training
dataset X, where each instance is denoted as xi, and the corresponding target variable values
are yi, the Random Forest algorithm proceeds as follows:

• For each tree fi in the ensemble F: a. Randomly select a subset of the training data with
replacement, denoted as Xi. This is known as bootstrap sampling. b. Construct the
decision tree fi using Xi, where the tree is recursively built by selecting the best split at
each node based on a selected criterion, such as Gini impurity or information gain.

• Aggregate the predictions of all trees in the ensemble to obtain the final prediction. For
classification tasks, this can be done through majority voting, where the class with the
most votes is selected as the predicted class. For regression tasks, the predictions of all
trees can be averaged.

Figure 2.3: Example of a Random forest

The Random Forest algorithm provides several advantages. It helps mitigate overfitting by using
random subsets of the data for each tree and combining their predictions. Additionally, it offers
robustness to noisy data and can handle high-dimensional feature spaces effectively.
Ensemble methods, including Random Forest, improve the overall performance by leveraging the
diversity among individual models. By combining multiple models, the ensemble can capture
different aspects of the data and reduce the variance in predictions.

Evaluation Metrics for Supervised Learning

There exists several evalution metrics for supervised learning tasks, we will talk about the one
used to assess the performance of classification models.

31

Chapter 2. State of the Art

Predicted Negatives Predicted Positives
Actual Negatives TP FP
Actual Positives FN TN

Table 2.1: Confusion Matrix as an evalution metric

For simplicity let’s assume we have a binary classification problem with two classes, denoted
as positive (P) and negative (N). Each prediciton of the model will fall into one of the four
categories.

• True Positives (TP): The number of instances that are correctly predicted as positive

• True Negatives (TN): The number of instances that are correctly predicted as negative

• False Positives (FP): The number of instances that are incorrectly predicted as positive,
but are actually negative.

• False Negatives (FN): The number of instances that are incorrectly predicted as negative,
but are actually positive.

Based on this, we can define the following metrics:

• Accuracy: measures the proportion of correctly classified samples out of the total number
of samples.

Acc =
TP + TN

FP

• Precision: measures the proportion of true positive predictions (correctly predicted positive
samples) out of the total predicted positive samples.

Acc =
TP + TN

FP

• Recall: measures the proportion of true positive predictions (correctly predicted positive
samples) out of the total actual positive samples.

Acc =
TP + TN

FP

• F-1 score: represents the harmonic mean of precision and recall, providing a balanced
measure of a model’s performance.

Acc =
TP + TN

FP

• Confusion matrix: while not a scalar metric, the confusion matrix is a tabulation of pre-
dicted classes against actual classes, which helps visualize the performance of a classifica-
tion model, it can be represented as:

32

Chapter 2. State of the Art

2.3.4 Unupervised Learning

Unsupervised learning is a branch of machine learning where the task involves discovering pat-
terns, structures, or relationships in unlabeled data. Unlike supervised learning, unsupervised
learning does not rely on predefined target labels or explicit feedback.
Unsupervised learning algorithms typically fall into two main categories: clustering and dimen-
sionality reduction.

Clustering

The goal clustering algorithms is to group similar instances together based on their patterns
or similarities, that is to identify distinct clusters in the data, where instances within the same
cluster are more similar to each other than those in different clusters. Let’s denote a dataset
with N instances as (x�, x�, ..., x�), where each x� represents a feature vector.

A clustering algorithm aims to partition the dataset into K clusters, denoted as C1, C2, ..., Ck,
where each C� represents a cluster. The objective of clustering is to find an assignment function,
denoted as g(x), that assigns each instance x to a cluster Cj .

g(x) : x− > Cj (2.15)

The choice of the assignment function and the objective function of the clustering algorithm
depends on the specific algorithm employed. Further details regarding these aspects will be
discussed in the subsequent section.

Dimensionality Reduction

Dimensionality reduction techniques aim to reduce the number of input features while preserv-
ing important information. These techniques help overcome the difficulties encountered with
multi-dimentional data, improve computational efficiency, and facilitate data visualization and
analysis.

Let’s consider a dataset with N instances, denoted as (x1, x2, ..., xn), where each xi represents
a feature vector of dimension r. The goal of dimensionality reduction is to find a transfor-
mation function f(x) that maps the high-dimensional feature vectors x to a lower-dimensional
representation z.

f(x) : x− > z x ∈ Rrz ∈ Rd (2.16)

The transformed lower-dimensional representation z typically has a reduced number of dimen-
sions, denoted by d, where d «< r. The objective of dimensionality reduction is to minimize the
information loss or reconstruction error during the reduction process. This can be achieved by
optimizing a specific criterion or objective function, which varies depending on the technique
used.

33

Chapter 2. State of the Art

Common Unupervised Learning Techniques

There are various unsupervised algorithms for both clustering and dimensionality reduction.
However, for the sake of brevity, we will focus solely on discussing common methods used for
clustering, as dimensionality reduction is beyond the scope of this work.

K-Means

In the K-Means algorithm, each cluster is represented by a centroid µj . The objective is to
minimize the sum of squared distances between instances and their assigned centroids. The
objective function for K-Means is given as:

J(µ, g) =
∑
i

||xi − µj || (2.17)

Where µ represents the centroids, g represents the assignment function, and || · || represents
the Euclidean distance. The K-Means algorithm proceeds iteratively. It starts by initializing K
centroids randomly or using a heuristic. Then, in each iteration, it performs two steps:

• Assignment step: each data point xi is assigned to the nearest centroid uj based on the
Euclidean distance. the cluster assignment variable is then defined as:

rij =

1 if xi is assigned to cluser j

0 otherwise
(2.18)

• Update step: The centroids are updated by calculating the mean of the data points assigned
to each cluster. The updated centroid �j is computed as:

uj =
1∑N

i=1 rij

N∑
i=1

rijxi (2.19)

Agglomerative Clustering

Hierarchical Agglomerative Clustering (HAC) is a bottom-up hierarchical clustering algorithm
that iteratively merges similar data points or clusters to form a hierarchical structure of clusters.
It does not require a predefined number of clusters and can be summarized as follows:

• Initialization: Start with N individual clusters, each containing a single data point from
the dataset Ci = {xi} for i = 1, 2, ..., N

• Similarity/Dissimilarity Calculation: Compute the similarity or dissimilarity between clus-
ters using a distance metric, such as the Euclidean distance d.

Dij = d(Ci, Cj) for i,j = 1, 2, ..., N

• Merge Similar Clusters: Iterate through the clusters and merge the two most similar clus-
ters based on a linkage criterion. The linkage criterion determines the distance or similarity
between clusters (see fig below). Single, average and complete linkage are common criteria.

34

Chapter 2. State of the Art

For Single Linkage: D(Ci, Cj) = min{Dkl}, for all k ∈ Ci, l ∈ Cj

For Complete Linkage: D(Ci, Cj) = max{Dkl}, for all k ∈ Ci, l ∈ Cj

For Complete Linkage: D(Ci, Cj) = avg{Dkl}, for all k ∈ Ci, l ∈ Cj

• Repeat and update: Continue merging the most similar clusters and updating the similar-
ity/dissimilarity matrix until a stopping criterion is met. This criterion can be a desired
number of clusters or a specific threshold for similarity/dissimilarity.

Figure 2.4: Different types of linkages

Evaluation Metrics

Evaluation metrics for clustering assess the quality and performance of clustering algorithms,
can be divided into two categories: intrinsic and extrinsic measures.
Intrinsic measures evaluate the quality of the clustering based solely on the clustering results
themselves, without reference to external information. Some intrinsic evaluation metrics are:

• Silhouette Coefficient: measures the quality of a clustering result by computing the average
silhouette coefficient for each data point. For a data point i, the silhouette coefficient is
given by:

SC(i) =
b(i)− a(i)

max

where a(i) is the average distance between i and other data points in the same cluster, and
b(i) is the average distance between i and data points in the nearest neighboring cluster.
The overall Silhouette Coefficient is the average of SC(i) for all data points.

• Dunn Index (DI): is calculated as the ratio between the minimum inter-cluster distance
and the maximum intra-cluster distance. Mathematically, the Dunn Index is defined as:

D =
mini 6=j d(i, j)

maxk dintra(k)

35

Chapter 2. State of the Art

where d(i,j) represents the distance between clusters i and j, and d intra (k) represents
the intra-cluster distance for cluster k. The inter-cluster distance is the minimum distance
between any two clusters, and the intra-cluster distance is the maximum distance within
each cluster.

Extrinsic measures, on the other hand, assess the quality of clustering by comparing the clus-
tering results to externally provided ground truth information, that is the correct clustering of
the data points. some common extrinsic evaluation metrics are:

• Rand Index (RI): The Rand Index measures the similarity between two clusterings by
comparing pairs of data points and evaluating if they are assigned to the same or different
clusters in both clusterings. To Calculate we first define the following.

– a represents the number of pairs that are assigned to the same cluster in both the
true and predicted clusterings.

– b represents the number of pairs that are assigned to different clusters in both the
true and predicted clusterings.

– c represents the number of pairs that are assigned to the same cluster in the true
clustering but to different clusters in the predicted clustering.

– d represents the number of pairs that are assigned to different clusters in the true
clustering but to the same cluster in the predicted clustering.

RI =
a+ b

a+ b+ c+ d

• Adjusted Rand Index (ARI): The ARI improves upon the Rand Index by considering the
expected agreement by chance, taking into account the cluster sizes and the number of
possible agreements. The ARI is calculated using the following notation:

ARI =
RI − E[RI]

max(RI)− E[RI]

Here, max(RI) represents the maximum possible value of the Rand Index (equal 1). The
ARI ranges from -1 to 1, where a value of 1 indicates a perfect agreement between the
clusterings, a value of 0 indicates the agreement expected by chance, and negative values
suggest a disagreement beyond what would be expected by chance.

2.4 Graph Clustering Techniques

Graph clustering approaches are a category of data analysis methods that aim to group data
points or elements based on their relationships within a graphical representation, typically in
the form of a network or graph. These approaches are widely used in various fields, including
social network analysis, biology, recommendation systems, and more. They leverages the inher-
ent structure of the data to uncover patterns and groupings that might not be apparent through

36

Chapter 2. State of the Art

other methods.

Connected components and the Louvain algorithm are two widely used techniques in the realm
of graphical clustering, particularly for community detection within networks.

Weakly Connected Components

In the context of graph theory, connected components represent subgraphs within a larger graph
where each node is reachable from every other node in the same component by following edges.
This concept serves as a building block for clustering and partitioning in graph theory.

Weakly Connected components algorithm leverages that concept to finds sets of connected nodes
in directed and undirected graphs. It only needs a path to exist between pairs of nodes in one
direction, whereas Strongly Connected Components needs a path to exist in both directions.

Figure 2.5: Example of (CC) clustering

Louvain Algorithm

Louvain Algorithm is a sophisticated modularity-based community detection algorithm. It aims
to maximize the modularity of a network, a measure that quantifies the quality of the community
structure based on the density of connections ”within’ and ”between” clusters.

37

Chapter 2. State of the Art

Figure 2.6: Nodes, Edges and the Adjacency Matrix

The Modularity Q formula:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

+ σ(Ci, Cj)

]
(2.20)

Where:

G The graph with n nodes and m edges.
Aij The adjacency matrix of the graph, representing the connections between nodes i and j.
Ci The community to which node i belongs.
Ki The degree (number of connections) of node i.

The Louvain algorithm optimizes this modularity Q by iteratively moving nodes between com-
munities to maximize it. The algorithm consists of two phases:

Phase 1: Agglomeration Phase

• Start with each node in its own community: Ci=i for i=1 to n.

• For each node i, compute the change in modularity ΔQ by moving i to the community of
its neighbor j if ΔQ is positive. Repeat this for all nodes until no further improvement in
modularity can be achieved.

• Aggregate the communities formed in this phase, treating them as nodes in a new network.

Phase 2: Hierarchical Iteration

• Repeat Phase 1 on the aggregated network until no further improvement in modularity
can be achieved.

• This process creates a hierarchy of communities, revealing both fine-grained and coarse-
grained structures.

38

Chapter 2. State of the Art

Figure 2.7: Example of Louvain Algorithm steps

39

Chapter 3

The Entity Resolution Framework

Entity resolution (ER) is a multi-step process that tackles the challenges of resolving entities in
a systematic manner. It involves a series of subtasks or steps aimed at achieving accurate entity
resolution. In this section, we will explore the main steps of the ER task and examine various
techniques developed to address each subtask within these steps.

Figure 3.1: A high level refrence model of an ER process [17]

To provide a visual representation of the ER process, Figure 4.4 is included as a helpful reference.
The process starts with the data pre-processing stage, where inconsistencies and errors are
addressed to improve data quality. Next, the data is partitioned into blocks based on specific
attributes, reducing the search space for comparisons. Comparisons are then performed using
similarity metrics to identify potential matches between records. Classification or clustering
techniques are applied to group similar records or to unique entities. Finally, the effectiveness
of the entity resolution process is evaluated using metrics like recall, pair completeness, and
overhead time. The following sections describe each of these steps in detail.

40

Chapter 3. The Entity Resolution Framework

3.1 Phase 1: Data Pre-processing

The significance of clean and standardized data cannot be overstated when it comes to enhancing
the quality and accuracy of any data integration endeavor. Given that entity resolution involves
data from disparate sources, it is common for the data to exhibit variations in format or even
inconsistencies and errors. Extensive research has underscored the criticality of data cleaning
and standardization as essential steps for successful entity resolution [9] [10].

Data quality encompasses several dimensions, with accuracy, consistency, and completeness be-
ing particularly relevant to the entity resolution problem [11]. Accuracy reflects the correctness
and precision of the data, while completeness assesses the extent to which data elements are ad-
equately present and useful for the task at hand. Consistency ensures coherence and uniformity
across records, fostering a cohesive and harmonized dataset.

To tackle these challenges, various standard data preprocessing techniques are commonly em-
ployed. These techniques involve a range of processes aimed at improving data quality, such
as:

• Standardization: The goal of Standardization is to bring consistency and uniformity to
the data. Techniques such as case normalization are used to convert names to a consistent
case, such as converting ”John Smith” and ”JOHN SMITH” to ”john smith”. Punctuation
and symbol removal techniques aim to eliminate punctuation marks, special symbols, non-
alphanumeric characters and rectify misspellings to ensure consistency in the data.

• Parsing: This crucial step involves analyzing the structure and syntax of textual data
to extract meaningful information and identify specific elements within the data. It is
particularly important when dealing with complex textual data such as citation records
or publication metadata.Two commonly employed techniques for parsing are rule-based
parsing and statistical parsing. Rule-based parsing utilizes predefined grammatical rules to
capture elements based on specific patterns, for example: author names based on patterns
like ”Last name, First name” or ”First name Last name”. Statistical parsing, on the other
hand, leverages algorithms to analyze the syntax and structure of the data

• Transformation: This key step involves performing various operations to ensure data
quality and consistency. General transformation steps encompass different actions such as
converting data types, renaming fields, decoding encoded values, checking data ranges, and
validating dependencies [14]. In certain scenarios due to specific indexing or comparison
techniques, data tokenization and segmentation are employed as additional steps [15].

3.2 Phase 2: Blocking Scheme

The blocking (indexing) phase in entity resolution is essential to reduce the computational com-
plexity of the matching process. When dealing with a dataset of n records, the naive approach for

41

Chapter 3. The Entity Resolution Framework

entity resolution would require n(n− 1)/2 comparisons, resulting in a quadratic computational
complexity of O(n2). As the dataset size grows, this approach becomes increasingly inefficient
and can create performance bottlenecks [13].

To address this challenge, blocking partitions the input dataset into smaller blocks of similar
records, utilizing a blocking criterion or key. Each block consists of records that share the same
blocking key value (BKV) for a specific criterion. By grouping similar records together, the
number of pairwise comparisons is significantly reduced, leading to improved efficiency and scal-
ability in the entity resolution process.

While blocking reduces the complexity of the matching stage, it introduces the challenge of
finding an optimal blocking strategy, this involves finding the right balance between minimizing
the possibility of matching records assigned to different blocks and reducing the number of false
matches that are incorrectly considered as true matches. There have been numerous blocking
strategies developed, we will highlight a few notable approaches:

3.2.1 Standard Blocking

Standard blocking, initially proposed by Fellegi et al. [4], introduced an early approach to
perform blocking in record linkage tasks. This method involves representing each entity with
one or more BKVs. Each block is linked to a unique key value and encompasses all entities
that share that same key value. Records in the same block are compared, which can reduce the
number of record comparisons in the initial entity resolution process.

Figure 3.2: Result of standard blocking on Last Name

Although standard blocking does not have explicit parameters, the size of the blocks can vary
based on the frequency distribution of the BKVs, which, in turn, is influenced by the definition
of the blocking keys themselves. This variation poses challenges in predicting the number of
record pairs to be compared during the process. Additionally, it is apparent that this method is
highly susceptible to errors in the data, such as instances of noisy data or data containing typos
and misspellings.

3.2.2 Sorted Neighborhood Blocking

Hernandez et al [8] proposed an alternative to standard blocking known as the sorted neigh-
bourhood method (SNM). The main idea is to sort the records in alphabetical orders, based on

42

Chapter 3. The Entity Resolution Framework

their BKVs. It then constructs blocks by passing a sliding window over sorted records. Records
enclosed in one sliding window belong to the same block, Figure 3.3 shows the concept.

Figure 3.3: Concept of the Sorted-Neighborhood Method [18]

One key parameter to this approach is the sliding window size. If the size of the window is
too small, and many records share the same BKVs, matching record pairs will be missed. On
the other hand, large values of window size will introduce more false postives. Hence, there’s a
trade-off between recall and efficiency. There exist However an Adapative SNM that dynamically
changes the size of the window, based on a comparison function and a threshold value.

3.2.3 Q-gram Based blocking

When employing the above mentioned blocking strategies, a significant number of true matches
can be inadvertently missed, especially when the blocking keys for these true matches are not
identical due to noisy data. To this effect, Gavarno et al [19] introduced the concept of positional
q-grams, which involves considering sub-sequences of q characters with their respective positions
within the characters. Assuming q= 2, and an attribute value ”Smith”, the list of the positional
q-grams would be [”Sm”,”mi”,”it”, ”th”].

The algorithm is based on the assumption that entities that share a large number of q-grams are
more likely to be matches. While the approach showcases high resilience against noisy data, it
comes at the cost of relatively lower efficiency due to the increased number of blocks generated.
In order to improve the performance of Q-grams based blocking, Christen [20] uses combinations
of q-grams, instead of individual q-grams. It generates these combinations as sublists from the
initial list of q-grams, down to a certain minimum length l determined based on a user-defined
threshold t. The minimum length l calculation is as follows: l = max(1, [k× t]), where k denotes
the number of q-grams, t ∈ [0, 1), and [] denoting the rounding to the next lower integer value.
Each set of q-grams is then concatenated to provide the indexing key value. An example is
shown in figure 3.4

43

Chapter 3. The Entity Resolution Framework

Figure 3.4: Example of Q-gram based blocking with Surnames as BKV [20]

3.2.4 Suffix Array Blocking

Similar to Q-gram based blocking, Aizawa et al. [21] propose a method that addresses errors
and variations in BKVs by generating all of their suffixes, down to a minimum length lmin. A
suffix of a string is a substring obtained by removing one or more characters from the beginning.
For instance, the suffixes of the string ’Adams’ would be ’dams’, ’ams’, ’ms’, and ’s.

The basic idea involves inserting the BKV and its generated suffixes into an array-based inverted
index called the suffix array. Subsequently, the algorithm sorts this index alphabetically to
establish the blocking scheme. The process is visually illustrated in Figure 3.5.

Figure 3.5: Example of suffix array based blocking with minimim length lmin = 4

To control the size and number of blocks generated, the algorithm relies on two parameters:

• Minimum suffix length lmin: This parameter determines the minimum length of suffix
strings that are generated. For instance, if lmin is set to 4, the string ’Johnson’ would
generate the following suffixes: ’ohnson’, ’hnson’, and ’nson’. In cases where the BKVs are
already shorter than the minimum length of lmin characters, their actual values are used
directly as index keys.

• Maximum block size bmax: To limit the size of the generated blocks, this parameter sets
maximum block size that is allowed. After the BKVs and the suffixes have been generated
and inserted to the suffix array structure, all suffixes that group more than bmax record
identifiers within their block will be removed. This deletion is performed as these suffixes
typically represent common substrings present in certain names, such as ”ane” or ”ana”
in Western names.

44

Chapter 3. The Entity Resolution Framework

The algorithm demonstrates robustness against noise occurring at the beginning of blocking
keys, as illustrated in the example of ”Catherina” and ”Katerina” above. However, it does not
effectively handle noise located at the end. For instance, ”Smith” and ”Smithe” do not share
any common suffix.

3.2.5 Block Filtering

The Block Filtering approach in entity resolution is a technique used to reduce the number of
initial blocks generated by a blocking function in order to improve the efficiency and reduce the
computational load in the subsequent phases of the process.

The approach was first proposed in [12] it leverages the idea that smaller blocks tend to be more
precise because they contain records with higher similarities or matching attributes, while larger
blocks indicate a suboptimal choice of blocking key and contain a mix of both matching and
non-matching records, making them less informative.

Figure 3.6: The Block Filtering Approach

While sorting and filtering blocks based on size is a straightforward approach, it’s worth noting
that the choice of threshold can significantly impact the effectiveness of the entity resolution
process. Selecting an appropriate threshold requires a good understanding of the data and
domain-specific knowledge. Experimentation and validation with real data may be necessary to
fine-tune the threshold for optimal results

3.2.6 Evaluation

There are several metrics used to evaluate a blocking strategy. Here, we will talk about some of
the most notable ones:

• Reduction Ratio: This measure assess the efficiency of an indexing technique by com-
paring the number of candidate record pairs generated to the total number of possible

45

Chapter 3. The Entity Resolution Framework

combinations of record pairs. The calculation for the reduction ratio is as follows:

RR = 1− ||B||
||E||

(3.1)

where:

||B|| = number of potential matching pairs generated by a blocking algorithm
||E|| = number of all pairs in the set E

• Pairs Completeness: Also referred to as ”recall,” quantifies the number of true match-
ing record pairs generated by a blocking technique, divided by the total number of true
matching pairs within the entire comparison space. The value of pairs completeness ranges
between 0 and 1 and directly corresponds to the effectiveness of the algorithm. The formula
for calculating pairs completeness is as follows:

PC =
MB

ME
(3.2)

where:

MB = number of true matching pairs captured by a blocking algorithm
ME = number of true matching pairs in the set E

• Pairs Quality: A metric that corresponds to ”precision”, it represents the ratio of true
matching pairs generated by a blocking algorithm to the total number of potential matching
pairs generated. The calculation for pairs quality is as follows:

PQ =
MB

||B||
(3.3)

where:

MB = number of true matching pairs captured by a blocking algorithm
||B|| = number of potential matching pairs generated by a blocking

3.3 Phase 3: Pairwise Comparison

An essential step in the ER process, and one that makes it such a compute-intensive and time-
consuming task. This step involves performing detailed comparisons once the initial comparison
space has been significantly reduced by identifying candidate pairs.

In contrast to the blocking step, which relies on one or a combination of a few attribute values,
the comparison step utilizes multiple attribute values (e.g., last name, first name, address, zip
code, etc.). The comparisons are performed by applying various similarity functions to the given
attributes, resulting in a similarity vector that consists of one or more numerical values that

46

Chapter 3. The Entity Resolution Framework

represent the overall similarity of two records.

For the sake of brevity, we will focus solely on a subset of similarity measures utilized for com-
paring strings. Other similarity measures for different data types are beyond the scope of this
work.

3.3.1 Levenshtein Similarity

One of the early approaches to measuring string similarity based on the concept of edit distance
(i.e. count of the smallest number of edit operations that are required to convert one string into
another). The allowed operations for Levenshtein Distance are character insertions, character
deletions, and character substitutions. It assigns a unit cost to each operation and is given by
the following formula.

leva,b(i, j) =

max(|i|, |j|), if min(|i|, |j|) = 0

min

leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + k

otherwise
(3.4)

where:

a, b strings to compare
|a|, |b| length of strings
i, j indexes of strings a, b respectively

k = 0 if (ai = bj), 1 otherwise

Finally, to calculate the Levenshtein similarity:

simlev(a, b) = 1− lev(a, b)

max(|a|, |b|)
(3.5)

A commonly used variation of the Levenshtein distance is the Damerau-Levenshtein distance [22],
which incorporates an additional edit operation known as transposition. This operation involves
swapping two adjacent characters in the string.

3.3.2 Longest Common Substring Similarity

The longest common substring algorithm compares the characters of two strings to identify
matching subsequences. It repetitively searches for the longest matching substring, removes
it, and repeats the process until no substrings with a minimum number of characters, denoted
as lmin, are found. In practice, the value of lmin is typically determined based on the specific
attributes being compared. A similarity value is then calulated using either the Overlap, Jaccard
or Dice coefficient, as follows:

47

Chapter 3. The Entity Resolution Framework

simlcs−overlap(a, b) =
lc

min(|a|, |b|
(3.6)

simlcs−jaccard(a, b) =
lc

|a|+ |b| − |lc|
(3.7)

simlcs−dice(a, b) =
2× lc
|a|+ |b|

(3.8)

where:

a, b strings to compare
lc =

∑n
i=1 |sci| total summed length of all found common substrings sci

Edit distance utilises the strings as a whole without splitting them into segments or token,
which for longer strings results in an increased computational complexity, to this end several
token-based similarity measure exist, the following overview some of them:

3.3.3 Q-gram Based Similairty

The q-gram similarity is a measure of how similar two strings are based on their shared sub-
strings of length q, known as q-grams. Q-grams are obtained by using a sliding window of length
q that moves through the strings, extracting substrings at each position. The q-gram similarity
is calculated by comparing the sets of q-grams of the two strings and determining the number
of common q-grams they share.

After identifying the common q-grams, various similarity coefficients can be used to calculate
the similarity value. These coefficients include the Overlap coefficient, Jaccard coefficient, and
Dice coefficient:

simqgram−overlap(a, b) =
qcommon

min(qa, qb)
(3.9)

simqgram−jaccard(a, b) =
qcommon

qa + qb − qcommon
(3.10)

simqgram−dice(a, b) =
2× qcommon

qa + qb
(3.11)

where:

qa, qb number of q-grams generated from strings a, b repectively
qcommon number of common q-grams between a and b

The q-gram similarity is known for its computational efficiency and ease of implementation.
It enables approximate matches by considering shared q-grams, even when the strings are not
exact matches. However, it’s important to recognize that the q-gram similarity has limitations.
It focuses solely on the shared q-grams and does not consider the semantic or contextual mean-
ing of the strings. As a result, it may not be suitable for applications that require a deeper
understanding or interpretation of the string content.

48

Chapter 3. The Entity Resolution Framework

3.3.4 Jaro-Winkler Similarity

The Jaro and Winkler comparison functions are A special group of string comparison methods
primarily designed for measuring name similarity [31] [32].
The basic Jaro comparison method integrates edit distance and q-gram distance techniques.
It calculates the number of shared characters between two strings within a defined character
window, which is half the length of the longer string, and the number of transpositions (the
swapping of adjacent characters). The Jaro similarity value can then be calculated as:

simjaro(a, b) =
1

3

(
c

|a|
+

c

|b|
+

c− t

c

)
(3.12)

Where:

c number of common characters between strings a and b
t number of transpositions between strings a and b

The Jaro-Winkler method increases the similarity value between two strings if they share the
same number of starting characters (prefix). It is calculated as:

simwinkler(a, b) = simjaro(a, b) + (1.0− simjaro(a, b))
p

10
(3.13)

Where:

p(0 ≤ p ≤ 4) the number of common characters of the prefixes of the strings

3.3.5 Monge-Elkan Similarity

A specialized approximate string comparison function designed for estimating the similarity of
multi-word string values, such as addresses or institution names.

The fundamental concept behind this approach involves initially extracting tokens (i.e., words
or elements separated by whitespace characters) from the two input strings. Subsequently, and
then identify the best matching pairs of tokens in the sets of tokens using a secondary similarity
function referred to as sim’ (typically Jaro or Jaro-Winkler). In accordance with the notation
initially introduced in [26], this recursive matching scheme divides the two strings, denoted as
s1 and s2, into two token sets, A and B. The similarity between s1 and s2 is then computed as:

simmongeelkan(s1, s2) =
1

|A|

|A|∑
i=1

max
|B|
j=1sim

′(Ai, Bj) (3.14)

49

Chapter 3. The Entity Resolution Framework

3.4 Phase 4: Classification

As disscused earlier, the comparison phase generates a bunch of similarity vectors between each
candidate record pairs, it’s in the classification phase when a decision is made about these record
pairs, as being either a match or non-match (and in some cases, potential matches) based on
the decision model used. There are various classification methods developed, we will list them
based on the categories they fall into in the ER literature:

3.4.1 Probabilistic Classification

In their widely recognized seminar paper, Fellegi and Sunter introduced the concept of ”Prob-
abilistic record linkage” [4]. Their approach examines the discriminatory power of individual
identifiers (attributes) and assesses the likelihood of two records being a true match, considering
the agreement or disagreement on different identifiers. Furthermore, they emphasized that the
assigned weights for these identifiers should not solely rely on the general attributes’ character-
istics but also consider the specific attribute values themselves. For example, two records with
the surnames, “Johnson” should receive less matching weight than two records that share the
surname “Vanderheim”, assuming that the number of people with the surname ”Johnson” is
more significant than the number of people with surname ”Vanderheim”.
Considering Datasets A and B, the sets M and U, such as:

M = {(a, b); a = b, a ∈ A, b ∈ B} (3.15)

U = {(a, b); a 6= b, a ∈ A, b ∈ B}

where M represents the set of true matches and U the set of true non-matches. Then for each
attribute i compared, the induvidual weight wi for that attribute is calculated as:

wi =

log2(mi
ui
) if ai = bi

log2(1−mi
1−ui

) if ai 6= bi
(3.16)

mi and ui are the probabilities that two records having the same value in attribute i are a true
match or a true non-match. A limitation of the conventional Fellegi and Sunter approach is
the challenge of estimating the conditional probabilities m and u. These probabilities typically
require prior knowledge and often rely on domain experts’ expertise. To address this, various
extensions have been proposed that consider the frequency of attribute values to calculate the m
and u probabilities [24] [10]. Furthermore, alternative approaches integrate Bayesian networks
with the traditional probabilistic model [25].

3.4.2 Rule Based Classification

Rule-based techniques employ a predefined set of rules to classify candidate record pairs as either
matches or non-matches (or potential matches) [27]. The rules can be applied to the similar-
ity values of the comparison vectors. They represent a set of tests on the similarity values,
combining logical operators such as conjunctions (logical AND), disjunctions (logical OR), and

50

Chapter 3. The Entity Resolution Framework

negations (logical NOT).

The formal notation of a rule is P =⇒ C, where P is a predicate that is applied on the similarity
values, and C is the classification outcome. For example:

(s(LastName)[a, b] ≥ 0.9) ∧ (s(BirthDate)[a, b] = 1) =⇒ [a, b] −→ Match

The left-hand side represents the predicate that is applied. Once the predicate is triggered
(i.e. the record pair has a similarity of more than 0.9 on LastName and an exact match on
BirthDate), the record pair is classified as a match. The effectiveness of rule-based methods
heavily relies on the expertise of domain specialists in defining a well-crafted set of rules. As
a result, the generation and assessment of rules pose significant challenges in these approaches.
Alternatively, some studies generate rules by directly learning them from the training data [28].

3.4.3 Learning-Based Classification

Learning-based approaches have emerged as a powerful paradigm for tackling entity resolution
tasks. Instead of relying on predefined rules or heuristics, these approaches leverage machine
learning algorithms to automatically learn patterns and relationships from the data. There have
been various learning-based techniques applied to entity resolution. In the subsequent sections,
we will delve into the explanation of some of these techniques.

Supervised Classification

Supervised classification approaches consider two distinct classes: matches and non-matches.
These approaches train a classifier on a labeled training dataset. The trained model is subse-
quently applied to classify record pairs whose match status is unknown. Two of the most popular
supervised learning classifiers applied in the ER process are Decision trees and support vector
machines [29] [30]:

Supervised classification approaches have two significant drawbacks. Firstly, the nature of the
entity resolution task leads to the creation of a highly imbalanced dataset, where the number of
record pairs representing true non-matches significantly outweighs the number of record pairs
representing true matches. This hinders the perfomance of most supervised classification meth-
ods, which results in poor performance.

The second challenge revolves around acquiring and generating training data. In many instances,
these data necessitate manual labeling by human experts, which can be both costly and time-
consuming. This further compounds the complexity of implementing the supervised classification
approach effectively.

Unsupervised Approaches

The techniques mentioned above are all aimed toward performing entity resolution through pair-
wise comparisons of records. In contrast, various unsupervised approaches have been developed

51

Chapter 3. The Entity Resolution Framework

to cluster or group records together, with each cluster representing a distinct entity.

Clustering approaches aim to create clusters characterized by high intra-cluster similarity and
low inter-cluster similarity. This implies that elements within a cluster exhibit similarity to one
another, while elements belonging to different clusters are dissimilar to each other.

In their unsupervised approach, Verykios et al. proposed utilizing similarity vectors generated
from pairwise comparisons. The authors assumed that these vectors can be categorized into
three groups: Match, Non-Match, and Potential Match. They aimed to cluster the vectors into
these categories. Identifying the Match and Non-Match clusters was relatively straightforward.
For the Match cluster, the centroid vector would closely resemble a perfect match vector [1.0,
... 1.0], consisting of high similarity values in all components of the comparison vector. On
the other hand, the centroid vector of the Non-Match cluster would closely resemble a perfect
non-match vector [0.0, ... 0.0], indicating low similarity in all components of the comparison
vector. These two clusters are then used as training data for a decision tree classifier, which can
then be used on the remaining records.

3.5 Phase 5: Clusering as a Post-processing Step

Clustering can be applied as a post-processing step to handle the match probabilities or scores
obtained from a trained supervised model. This approach aims to address a common issue en-
countered by supervised methods, referred to as ”intransitive closure” (see Appendix A).

Hassanzadeh et al. [16] proposed a clustering method called CENTER, which involves generating
a graph of matching record pairs based on the output of a supervised model. In this graph, each
node represents a record, and the edges between them represent the match probabilities provided
by the supervised model. The algorithm performs clustering by partitioning the record graph,
ensuring that each cluster has a center, and all records within a cluster are similar to that center.

To achieve this, the edges (pairs) are sorted in descending order of their match probabilities.
When processing the edges, the algorithm identifies the first occurrence of an edge (ui, uj),
designating ui as the center of the cluster. All subsequent nodes uj that appear in an edge (ui,
uj) are assigned to the cluster of ui and are not considered again. If an edge is encountered
where both nodes are already assigned to clusters, that edge is discarded. Figure 2.9 provides
an illustrative example of the algorithm’s result.

52

Chapter 3. The Entity Resolution Framework

Figure 3.7: Example of applying CENTER to partition the subgraph of matches, to solve
intransitivity

3.6 Phase 6: Evaluation

Evaluation of entity resolution processes serves various purposes, such as parameter tuning,
benchmarking, and ensuring quality before deployment. While some metrics are borrowed from
the classification and clustering domains, there are key differences that distinguish entity reso-
lution from general classification or clustering tasks.

Given an input set of entities and the predicted clustering P , and the ground truth clustering
T , The evaluation metrics can be categorized into two main groups:

Pairwise performance measures

When considering ER as a binary classification task, metrics from supervised learning can be
adapted to the ER problem. Each pair of entities is classified as a True Positive (True Match),
True Negative (True Non-match), False Positive (False Match), or False Negative (False Non-
match). The following metrics can be applied to measure performance in entity resolution:

Pair_Precision =
|Pairs(P) ∩ Pairs(T)|

|Pairs(P)|
Pair_Recall =

|Pairs(P) ∩ Pairs(T)|
|Pairs(P)|

The advantage of these pairwise metrics is their ease of interpretability. However, they may not
always provide a comprehensive overview of performance, and that’s were the next metrics help.

Clustering Performance Measures

While some metrics defined in the clustering domain can still be used for entity resolution
evaluation, their results may be difficult to interpret due to the nature of the entity resolution
task. In entity resolution, the number of generated clusters is often significantly higher compared

53

Chapter 3. The Entity Resolution Framework

to the number of elements within a cluster. Therefore, in evaluating entity resolution, it is
common to only consider matches (intra-cluster pairs) and exclude non-matches (inter-cluster
pairs). The following cluster metrics have been proposed in the literature:

• Cluster precision, recall, and F1: These cluster-level metrics are defined in terms of exact
cluster matches. They calculate the precision and recall of the predicted clusters compared
to the ground truth clusters:

C_Precision =
|P ∩ T |
|P |

C_Recall =
|P ∩ T |
|T |

The F1 score is the harmonic mean of precision and recall. It is important to note that
these metrics are more stringent because a single mismatched link would result in the
exclusion of the entire cluster. Consequently, they are less frequently used compared to
the next set of metrics.

• Closest Cluster Precision, Recall, and F1: An alternative measure to the ones described
earlier is the closest cluster metrics. These metrics are less strict and use the Jaccard
similarity coefficient to capture cluster similarity. They calculate the precision and recall
of the predicted clusters based on the closest matching cluster in the ground truth:

CC_Precision =

∑
p∈P maxt∈T J(p, t)

|p|
CC_Recall =

∑
t∈T maxp∈P J(p, t)

|t|

where p and t are clusters in P and T, respectively. These metrics consider the similarity
between clusters rather than exact matches, providing a more flexible evaluation approach
for entity resolution.

• Average Cluster Purity :measures the quality of clustering results by evaluating the purity
of each individual cluster. It assesses how well the instances within each cluster belong to
the same class or category. It is defined as:

ACP =
1

N

∑
p∈P

∑
t∈T

|p ∩ t|
p

54

Chapter 4

Proposed Solution

Having reviewed the current state of entity resolution techniques and established the essential
knowledge required to comprehend the proposed solution, we will now proceed to present the
solution for entity resolution in bibliographic datasets.

While bibliographic datasets encompass various entities (authors, journals, institutions, etc.),
our solution will primarily address the challenge of author name disambiguation. This problem,
in its own right, is widely recognized within the field of entity resolution. We will first introduce
the mathematical formulation of the problem. Next, we will navigate through the framework
described in Section 2.5, providing explanations of the various methods employed at each step.
Additionally, whenever possible, we will evaluate the performance of these methods.

4.1 Problem Definition

The problem of author name disambiguation (AND) can be formulated as follows:
Given:

• A set of scholarly publications P = p1, p2, ..., pn, where each publication pi is associated
with a set of authors A(pi) = a1, a2, ..., am. The publications are indexed by i = 1, 2, ..., n.

• A set of author names N = n1, n2, ..., nm, where each name nj corresponds to one or more
authors in the set of publications.

Objective:
The objective of AND models is to partition the set of author names N into clusters, such that
author names within the same cluster are likely to represent the same author (entity). It should
be noted that:

• Each author can be associated with multiple names that refer to them, such as variations
in spellings or different name representations (e.g., Thompson, L. A. - Thompson, Larnes
A., etc.).

• An author name can refer to multiple authors, as different individuals may share the same
or similar names (e.g., Smith, J can refer to Smith, James or Smith, John, etc.)

55

Chapter 4. Proposed Solution

In this section, we will delve deeper into the data that will be used for our analysis. We
will explore the data generation process, examine data properties, and conduct a preliminary
analysis.

4.2 Data Comprehension

Data comprehension is a crucial step in any data analysis process. It involves understanding the
data collection process, examining data sources, analyzing the structure of the data, identifying
patterns, and gaining insights into the underlying characteristics of the data. Furthermore, data
comprehension helps in detecting and resolving any issues or problems related to the data.

4.2.1 Data Collection

The data utilized in the solution is sourced from Scopus, an online multidisciplinary citation
database. Scopus stands as the largest abstract and citation database encompassing peer-
reviewed literature, including scientific journals, books, and conference proceedings. This ex-
tensive repository comprises a vast collection of over 75 million research papers authored by
millions of contributors.

Figure 4.1: For more information check: https://dev.elsevier.com/

To extract the data, a Python script is employed, which continuously runs and utilizes Scopus’
API to access the database. Through the script, queries are executed to retrieve all publications
within a specific domain, such as space resources in the context of this study. Unfortunately, the
specific content and details of the script are proprietary information belonging to the company
and cannot be shared in this context.

4.2.2 Data Analysis

The script is designed to execute specific queries that retrieve data from various time periods, en-
compassing everything prior to 2000 as well as every year from 2000 to the present. Subsequently,
the data obtained from each time range is consolidated into a single file. Each consolidated file

56

https://dev.elsevier.com/

Chapter 4. Proposed Solution

encompasses comprehensive information pertaining to publications within a particular domain
and time range. These files include the following relevant information:

• Title: The title of each publication.

• Author names: A list of all co-authors associated with each publication.

• Journal: The name of the publication journal where each article was published.

• Affiliations∗: The institutes that the authors associate to.

• Abstract∗: A concise summary of each research paper, typically comprising around 200-250
words.

• Author keywords∗: Terms selected by the authors to best reflect the content of the docu-
ment

Upon closer examination of the datasets, we can analyze the presence of missing values in certain
attributes and assess the coverage of these attributes. The figure presented below provides
insights into the percentages of missing values across nine datasets:

Figure 4.2: Percentage of missing values in some of the datasets

The figure (Figure 1) depicts the extent of missing values in the aforementioned datasets. As
we delve into the data, we observe that several columns exhibit missing values, specifically in

∗Not always availible

57

Chapter 4. Proposed Solution

the fields of author names, affiliations, keywords, and descriptions (abstracts). An analysis of
these missing values reveals certain patterns and observations:

• Author Names: The missing values in the author names column are not due to data errors
but rather indicate conference proceedings where an actual author name is not applicable.

• Abstracts: The majority of missing values in the abstract column correspond to conference
proceedings. Since these proceedings compile research papers, there is no abstract specif-
ically associated with them. However, it is worth noting that a small number of actual
research papers also have missing abstracts.

• Affiliations: Similar to author names and abstracts, missing values in the affiliations col-
umn primarily occur in conference proceedings. Nevertheless, the total number of missing
affiliations surpasses that of author names or abstracts, indicating that there is a significant
number of actual research papers with missing author affiliations.

• Keywords: The column containing author keywords exhibits the highest percentage of
missing values across all datasets. In papers published before the year 2000, this percentage
can exceed 80%. As a result, addressing the missing keywords becomes our primary
concern, which we will address in the subsequent section.

These observations highlight the specific columns where missing values are prevalent and provide
insights into their underlying causes. The focus now shifts towards addressing the substantial
number of missing author keywords, considering their high prevalence in the datasets.

4.3 Data Preparation

Effective data preparation is essential for successful entity resolution and its subsequent phases.
In this section, we will delve into the measures employed to ensure that the data is clean, well-
formatted, and ready for further analysis. Additionally, we will discuss the creation of a golden
dataset for evaluation purposes.

4.3.1 Data Cleaning

Cleaning the data involves applying various techniques to address inconsistencies, errors, and
noise present in the dataset. This step aims to enhance the quality and reliability of the data.
During data cleaning, the following actions were performed:

• Standardizing Author Names: Standardizing author names is a crucial aspect of data
cleaning. This involves ensuring consistent formatting and removing extraneous characters.
For example, the name ”Wolff, J. Michael” is standardized as ”WolffJMichael” by removing
spaces and punctuation. This step ensures that author names are represented uniformly,
enabling accurate matching.

58

Chapter 4. Proposed Solution

• Dealing with Parsing Issues: Parsing issues can arise during data extraction, leading to
erroneous values in certain columns. For example, an affiliation column might contain
numerical values like ”2021,” indicating an error during data extraction. These cases are
not frequent in the datastes, so for now we will just drop them. ??

• Handling Missing Data: Missing data represent a common challenge in data analysis
projects. In our datasets, the author keywords column poses a significant concern as it
contained a considerable number of missing values. To address this issue, we used Spark-
NLP library, more specifically the YAKE keyword extractor model, to generate keywords
from the abstract when the author keywords were missing.

YAKE

YAKE (Yet Another Keyword Extractor) is an open source Python library designed for key-
word extraction and text analysis. It enables users to effortlessly identify and extract the most
important keywords or key phrases from text documents. YAKE boost multilingual capabili-
ties, independence from annotated data, adaptability across different domains and languages,
precision at the single-document level, and impressive computational efficiency, making it ideal
processing extensive text data like research paper abstracts.

Figure 4.3: YAKE workflow pipeline

The code to apply all the afromentioned operations can be seen in the listing below:

1 from sparknlp . base import ∗
2 from sparknlp . annotator import ∗
3

4 def preprocess_data (df , normalize_name : bool = False) :
5 ”””
6 Performs data proces s ing l i k e tokeniz ing , dformatting nu l l values , normalize , etc .
7 @param df : The Pyspark dataframe to proce s s e s .
8 @param normalize_name : A Boolean to normalize author names or not .
9

10 @return : A new dataframe
11 ”””
12

13 # Normalize author names (remove spaces , and c a p i t a l i z a t i o n)
14 i f normalize_name :

59

Chapter 4. Proposed Solution

15 df = df . withColumn (”author_name_clean” , lower (trim (regexp_replace (co l (”
author_name”) , ’ [.] ’ , ’ ’))))

16

17 # Preprocess a f f i l i a t i o n s (pars ing)
18 extract_names = F. udf (lambda a f f i l i a t i o n s , a f f i l s : [a f f i l [’ a f f i lname ’] f o r a f f i l

in a f f i l s i f a f f i l [’ a f i d ’] in a f f i l i a t i o n s] or None , ArrayType (StringType ()))
19 df = df . withColumn (’ author_affil_name ’ , extract_names (F. co l (’ author_a f f i l ’) , F .

co l (’ a f f i l s ’)))
20

21 # Format nu l l va lues in a f f i l i a t i o n s
22 df= df . withColumn (’ author_a f f i l ’ , F . when(F. s i z e (F. co l (’ author_a f f i l ’)) == 1 , F.

when(F. co l (’ author_a f f i l ’) [0] == ’ ’ , None) . otherwise (F. co l (’ author_a f f i l ’))) .
otherwise (F. co l (’ author_a f f i l ’)))

23

24 # Add Index in each row (to i d e n t i f y l a t e r)
25 df = df . withColumn (”row_index” , monotonical ly_increasing_id ())
26

27 # Define the keywords ext rac tor p i p e l i n e
28 p i p e l i n e = Pipe l ine () . s e tStages ([
29 documentAssembler ,
30 sentenceDetector ,
31 tokenizer ,
32 keyword_extractor
33])
34

35 # Apply p i p e l i n e
36 df = p i p e l i n e . f i t (df) . transform (df)
37

38 return df

Code Listing 4.1: Function to preprocess the dataframe

4.3.2 Data Transformations

Data transformations encompass a range of techniques aimed at converting the data into a
suitable format for further analysis and entity resolution. These transformations involve tasks
such as tokenization, segmentation, and reformatting of the dataset structure. Key aspects of
data format transformations include:

• Tokenization: Tokenization is the process of breaking down textual data into individual
tokens or words. In the context of entity resolution, tokenization is applied to attributes
such as titles, abstracts, and keywords. Additionally, removing stopwords is often per-
formed during tokenization. Stopwords are common words (e.g., ”the,” ”is,” ”and”) that
do not carry much semantic meaning and can be safely excluded from analysis. For exam-
ple, the keyword ”machine learning in healthcare” is tokenized into [”machine”, ”learning”,
”healthcare”], enabling more precise comparisons and disambiguation.

• Segmentation: Segmentation involves dividing data into meaningful units or segments. In

60

Chapter 4. Proposed Solution

the case of authors’ affiliations, segmentation can be applied to associate each author with
their respective affiliation, in case When an author has multiple affiliations, segmentation
is even more important to ensure that the affiliations don’t get mixed up.

• Reformatting the Dataset structure: The shape and structure of the dataset are refor-
matted to align with the requirements of entity resolution algorithms. Specifically, author
names and their corresponding authorship relationships are extracted, and the dataset
is transformed to represent instances where an author’s name appears in a specific pa-
per. Each row in the reformatted dataset indicates the presence of an author, denoted as
”Authori is listed as an author for paperj .” This reformatted dataset captures the rela-
tionships between authors, papers, and their associated metadata.

61

Chapter 4. Proposed Solution

The code to applying these transformations is as follows

1 import pyspark . s q l . funct ions as F
2

3 def transform_data (df) :
4 ”””
5 Performs a l i s t o f t rans format ions to c reate the new author−paper dataframe
6 that i s compatible f o r the ent i ty r e s o l u t i o n task
7 @param df : The Pyspark dataframe to proce s s e s
8

9 @return : A new dataframe
10 ”””
11

12 #Tokenizing s t r i n g f i e l d s
13 df = df . withColumn (”author_names” , F. s p l i t (F. co l (”author_names”) , ” ; ”))
14 df = df . withColumn (” author_ids ” , F. s p l i t (F. co l (” author_ids ”) , ” ; ”))
15 df = df . withColumn (” author_afids ” , F. s p l i t (F. co l (” author_afids ”) , ” ; ”))
16 df = df . withColumn (” a f i d ” , F. s p l i t (F. co l (” a f i d ”) , ” ; ”))
17 df = df . withColumn (” a f f i lname ” , F. s p l i t (F. co l (” a f f i lname ”) , ” ; ”))
18

19 # Segmentation o f compound f i e l d s (l i s t s)
20 df = df . withColumn (” authors ” , F. arrays_zip (df [”author_names”] , df [” author_afids ”

] , df [” author_ids ”]))
21 df = df . withColumn (” a f f i l s ” , F . arrays_zip (df [” a f i d ”] , df [” a f f i lname ”]))
22 df = df . withColumn (”exploded_author” , F. explode (df [” authors ”]))
23

24 # Expanding rows and re s t r cu tu r ing the dataframe
25 df = df . withColumn (”author_name” , F. co l (” exploded_author . author_names”))
26 df = df . withColumn (”author_id” , F. co l (” exploded_author . author_ids ”))
27 df = df . withColumn (” author_a f f i l ” , F . co l (” exploded_author . author_afids ”))
28 df = df . withColumn (” author_a f f i l ” , F . s p l i t (F. co l (” author_a f f i l ”) , ”−”))
29

30 df = df . withColumn (” other_authors ” , F. array_except (F. co l (”author_names”) , F .
array (F. co l (”author_name”))))

31

32 c o l s = [” e id ” , ”author_id” , ”author_name” , ” author_a f f i l ” , ” other_authors ”
33 ” t i t l e ” , ” publicationName ” , ” de s c r i p t i on ” , ”authkeywords” , ’ a f f i l s ’ ,
34 ” description_embeddings ”]
35

36 # Se l e c t i ng only the requ i red columns (drop everything e l s e)
37 df = df . s e l e c t (c o l s)
38

39 return df

Code Listing 4.2: Function to apply data transformations

4.3.3 Refrence Dataset

In order to evaluate and assess the effectiveness of author name disambiguation techniques, a
high-quality reference dataset, referred to as the ”golden dataset,” was curated. Collaborators

62

Chapter 4. Proposed Solution

and experts in the project contributed to the creation of this dataset, employing reliable author
identifiers and ensuring the provision of accurate and dependable ground truth annotations for
comparison purposes.

Each author in the database has an ID, however because of the duplication problem authors can
have multiple IDs. Using Scopus API, you can query all the IDs that belong to certain Author
(Scopus recently started their own attemp at disambuguating authors), and then normalize them
into a single one. However that query is expensive since it has to be made for each other found,
which would cause the API to rach the monthly query limit easily. So The refrence dataset was
created by using this approach for all authors in the 3 cvs files for 2020, 2021, and 2022. Key
characteristics of the golden dataset include:

• Total rows: the dataset comprises a total of 105,403 rows, representing the number of
distinct instances or entries contained within.

• Unique authors: a collection of 58,674 unique authors is included in the dataset. Each
author represents an individual entity that requires disambiguation.

• Author names: across the dataset, there are 63,840 unique author names associated with
the authors, signifying the different variations and aliases used.

• Research papers: the dataset encompasses 17,342 research papers, with each paper
serving as a distinct publication linked to one or more authors.

Figure 4.4: Example of rows in the refrence dataset

To ensure the integrity of the evaluation process, the reference dataset was further divided into
separate train and test sets. This separation guarantees that the blocking and pairwise com-
parison steps are conducted independently on each set, eliminating any potential data leakage
during the subsequent classification and clustering stages.

63

Chapter 4. Proposed Solution

4.4 Blocking Scheme

After generating the golden dataset, blocking is the next step in the ER process, as discussed in
section (2.5) blocking aims to group records togetehr that are likely to be a match, while ensuring
a balance between capturing all possible matching (recall) and minimizing the number of false
matches, i.e. increasing the precision. we will look at he evaluation result of some common
blocking schemes, and discuss how we can further optimize them for efficiency consideration.

4.4.1 Evaluation

Different indexing approaches are applied to the datasets. The results of the evaluation of these
approaches on the train set are provided in the table below. † But first, some statistics regarding
the train dataset and blocking phase are worth mentioning:

• Total number of comparisons: There are 5,55 b comparisons in the comparison space
of the train set. This represents the size of the space in which potential matches are
evaluated.

• Number of matches: Out of these comparisons, only 288,963 pairs are actual matches,
indicating instances where authors with similar or identical names were correctly recog-
nized as the same person.

Method PC PQ # of comparisons
signature Blocking 95.51% 29.27% 942,657

prefix_array(lmin = 5) 98.34% 5.1% 5,567,565
sorted_neighborhood(t = 0.7) 94.40% 13.49% 2,021,713
imp_qgrams(q = 2, t = 0.9) 62.51% 76.18% 237,117

Table 4.1: Blocking Phase results

4.4.2 Block Refinement

We can see from the blocking results that in some isntancs we get a higher PC (recall) values,
but the PQ values is low. That means the blocking scheme generates a lot of false pairs, which
would need to be compared in details later using the similarity function, this would obviously
have negative impact on the efficiency (speed) of the process. To takle this problem, we use a
block filtering approach with a threshold value of 0.8.

†Prefix array: is analogous to suffix array blocking, except it stores prefixes(beginning) of minimum length in
an inverse suffix array structure

64

Chapter 4. Proposed Solution

Method PC PQ # of comparisons
signature blocking 95.51% 29.27% 942,657

prefix_array(lmin = 5) 95.71% 16.28% 1,698,107
sorted_neighborhood(t = 0.7) 94.40% 13.49% 2,021,713
imp_qgrams(q = 2, t = 0.9) 58.81% 87.04% 195,270

Table 4.2: Blocking Phase results (after block refinement)

An important point to note here is that signature blocking and sorted neighborhood methods do
not benefit from block filtering. This is because each record exists in only one block only, defined
by a single BKV, in contrast to other methods where a record can be linked to multiple blocks.
Therefore, when selecting a blocking scheme, it’s essential to consider whether the blocks can
be further enhanced for scalability‡. In this regard, we will utilize the prefix_array approach
in conjunction with block filtering

4.5 Pairwise Comparison

After the blocking phase, and generating the pairs. we can move ahead to the detailed compari-
son between records. This stage utilizes the remaining metadata associated with the publications
and authors to make informed decisions about potential matches or mismatches.
We experimented with different similarity functions (see previous section), to find the best
method to be applied for each attribute, the final feature set is decribed below:

• Author Name Similarity: High similarity between the names of two authors suggests
that they refer to the same entity. The Jaro-Winkler method is used to calculate the
similarity between author names.

• Affiliation Similarity: If two ambiguous authors share the same affiliation, it is likely
that they refer to the same entity. However, affiliations are also susceptible to ambiguity.
To address this, we employ the hybrid Monge-Elkan similarity function (with Jaro-winkler
as an internal similarity function). This function performs well for names with multiple
words, including abbreviations.

• CoAuthors Similarity: The presence of common co-authors between two ambiguous
authors across different publications can serve as evidence that they are the same author.
Again, the Monge-Elkan similarity function, similar to the affiliation similarity approach,
can be utilized to compare co-author names and assess their similarity.

• Abstract and title similarity: The paper title and abstract are important metadata
to help disambiguate author, since authors usually publish in the same scientific domain.
to compare these attributes, we use BERT sentence embeddings to create a high dimen-
tional vector representation of abstracts/titles. More specifically the SciBERT pretrained

‡Altough signature blocking produced better result that prefix array, it was only evaluated on 3 files, and it
will not scale well when using the more data

65

Chapter 4. Proposed Solution

embeddings that were trainer on large corpuses of scintific papers, we then apply cosine
simiarity between the embeddings.

• Keywords Similarity: When publications associated with ambiguous authors share sev-
eral common keywords, it’s highly likely that they belong to the same author. Authors
generally focus on specific fields and use similar keywords in their work. For this metrics,
because keywords are often represented in different ways, like ”asteroids” vs ”asteroid”
or ”asteroid impact”, we need a semantic representation of these keywords, therefore we
will use another pretrained BERT word embeddings for the keywords and calculate their
cosine similarity.

1 from dedupl i cator . t r a in import ∗
2

3 def create_embeddings (df : DataFrame , column_name : str , Type : s t r) :
4 ”””
5 Calculate the Word/Sentence BERT Embeddings o f abs t rac t s /keywords
6 @param df : The Pyspark dataframe to process
7 @param column_name : The conta in ing the abs t rac t s /keywords
8 @param Type : the type o f p i p e l i n e to use [” word” or ” sentence ”]
9

10 @return : A dataframe
11 ”””
12 i f type==”word” :
13 model = BERTWordPipeline . f i t (df , InputCol=column_name)
14 df = model . transform (df)
15

16 i f type==” sentence ” :
17 model = BERTSentencePipeline . f i t (df , InputCol=column_name)
18 df = model . transform (df)
19

20 return df
21

22

Code Listing 4.3: Function to create embeddings

As explained above all blocking methods used above would have high number of false matches,
which results in the creation of an unbalanced dataset (see Annexe). To address this issues we
will we randomly sampled there are several methods we can use, for now we used the Random
Undersampling approach to balance the number of instances per class.

d’instances
False Match 1 413 088
True Match 274 737

Table 4.3: Class distribution of pairs before
sampling

d’instances
False Match 274 737
True Match 274 737

Table 4.4: Class distribution of pairs after
sampling

66

Chapter 4. Proposed Solution

4.6 Classification

After generating the feature vectors from the pairwise comparisons step, several classifiers were
trained to identify the matching pairs, these classifiers were evaluated on the train set, which
was also subsequently split into a 90-10% split. We also used 10-fold cross-validation, to see if
there is any over-fitting happening. The result are below:

F-1
Train Train+CV

Gaussian NB 90.1 % 89.6%
Logistic Regression 91.4% 90.3%

Support Vector Machines 93.7% 93.1%
Decision Trees 98.49 % 93.45%
Random Forest 99.10 % 94.36%

Table 4.5: Classification results

Results analysis:

• It is apparent from the results that the Decision trees and random forrest models are
overfitting, which is likely due to their complexity compared to the limited set of feautures
used.

• GaussianNB, Logistic Regression and SVM do not seem to be overfiitng, However the first
two have low result.

• We will retain the SVM model for optimazation due to it’s consistent performance, and
apply some regularization to the Random forest model

We also evaluate the results of the new models on both the train and test set as shown in table,
as for tuning the hyperparameters we used a GridSearchCV approach:

F-1
Train Train + CV Test

Best-SVM 94.4 % 94.0 % 93.2%
Best-Random-Forest 96.8 % 96.4 % 95.4%

Table 4.6: Classification results (after parameters tuning)

The results of this Random Forest model do not show signs of severve overfitting, same with the
SVM model. For now we will retain both model for the clustering steps.

1 from dedupl i cator . t r a in import ∗
2 from pyspark . ml . eva luat ion import Evaluator
3 from pyspark . ml import Model
4 from pyspark . ml . tuning import CrossVal idator

67

Chapter 4. Proposed Solution

5

6 def tune_model (train_data : DataFrame , model : Model , params : l i s t [ParamMap] , cv : int ,
metric : Evaluator) :

7

8 ”””
9 Performs hyperparams tuning a the model , w/o cross−va l ida t i on

10 @param train_data : The Pyspark dataframe to process
11 @param model : The Pyspark mlib model to tune
12 @param params : A parameter gr id to use with gr idSearch Algorithm
13 @param cv : number o f c ro s s va l i da t i on f o l d s
14 @param Evaluator : The metric to evaluate the models , and chose the best one
15

16 @return : A new tuned and tra ined model
17 ”””
18 c r o s s v a l = CrossVal idator (est imator=model ,
19 estimatorParamMaps=params ,
20 eva luator=metric ,
21 numFolds=cv)
22

23 # Run cross−va l idat ion , and choose the best s e t o f parameters .
24 cvModel = c r o s s v a l . s e t P a r a l l e l i s m (4) . f i t (train_data)
25

26 # Get the best model from the CV
27 bestModel = cvModel . best model
28

29 return bestModel , model_metrics

Code Listing 4.4: Function to tune model’s hyperparameters

4.7 Clustering

The ultimate goal of author name disambiguation extends beyond predicting pairwise matches
and involves the formation of clusters that group together matching records referring to the
same entity. For instance, we want to identify all papers written by a specific author like ”Jade,
Williams” who may have been referred to by various aliases such as ”Jade, Wil” or ”Jade, W.”

Clustering can serve as a post-processing step following pairwise classification. The basic idea
is to transform the predicted probabilities from the classifier into distances. Since the probabil-
ity of two records being a match is an equivalent measure of their similarity, we can therefore
define the distance between any pair of records as follows: dij = f(pij), where p represents the
probability of records i and j being a match, and f(x) = 1 − x is a monotonically decreasing
function of the probabilities (similarities).

Once we have computed these distances, we can construct the D∗ matrix, where D∗[i, j] = dij .
Finally, we can apply clustering approaches to this distance matrix, enabling the grouping of
similar records together.

68

Chapter 4. Proposed Solution

Method Classifier ACP Pair_F1
HAC SVM 91.1% 94.9%

RF 92.6% 96.4%
Lou-
vain

SVM 90.3% 93.2%
RF 90.9% 93.5%

CC SVM 88.7% 87.9%
RF 88.8 % 86.4%

Table 4.7: Clustering results

Results analysis:

• Random Forest vs SVM: Across all clustering methods, the Random Forest classifier con-
sistently achieves higher Classifier Accuracy (ACP) and Pairwise F1 Score (Pair_F1) com-
pared to the SVM classifier. This suggests that Random Forest is more effective in pre-
dicting matches between author records.

• HAC Leads to Highest Accuracy: Among the clustering methods, hierarchical agglom-
erative clustering combined with Random Forest achieves the highest accuracy (92.6%
ACP and 96.4% Pair_F1). This indicates that this combination is particularly effective
in grouping similar author records together.

• Accuracy vs Efficiency: It’s important to consider the trade-off between accuracy and com-
putational efficiency when choosing a clustering method. While hierarchical agglomerative
clustering performs well, it is computationally more intensive - O(log(n)n2) - compared to
the other two algorithms.

4.8 Model Deployement

In this section, we will talk about the methodlogy of model deployement, and how it will be used
in the LIST project. First we will begin by examining the structure of the code repository, tehn
we will talk a little bit about Apache Spark, its core components, and its deployement modes.
finally we will discjuss the full python script that will be run in the Spark clusters. as well as
the structure of the modules and dependencies needed to run the job.

The Structure of the Code

The solution code is accessible through the company’s private GitLab repository, encompass-
ing various modules within separate .py files, each responsible for distinct facets of the entity
resolution process. Additionally, the repository contains essential components such as:

• The ’data’ folder housing .csv files.

• The ’deduplicator’ folder, containg separate .py files.

69

Chapter 4. Proposed Solution

• The ’config.py’ file containing configurations pertinent to the Spark job, including session
parameters and function parameters.

• The ’requirements.txt’ file specifying the project’s requisite dependencies.
• the Neo4j connector employed for facilitating data transfer to and from the Spark session.
• A comprehensive README file offering project documentation and guidance.
• The ’main.py’ file serving as the central entry point for execution and coordination of the

resolution process.

Figure 4.5: The Gitlab repository containing the code

For more details on the full code inside each module, see (Annex code).

Apache Spark

Apache Spark is a powerful open-source, distributed computing framework designed for pro-
cessing and analyzing large datasets in a distributed and parallel manner. It was developed to
overcome the limitations of the Hadoop MapReduce model by providing faster and more flexible
data processing capabilities.

Figure 4.6: The components of Apache Spark

70

Chapter 4. Proposed Solution

Apache Spark consists of several key components and provides support for different programming
languages, including Python, R, Java and Scala. The main components are:

• Spark Core: The foundation of Apache Spark is the Spark Core. It provides essential
functionality like task scheduling, memory management, fault recovery, and distributed
data processing. At the core, Spark represents data as Resilient Distributed Datasets
(RDDs), which are immutable distributed collections of data.

• Spark SQL: Spark SQL is a Spark module for structured data processing. It allows you
to execute SQL queries on structured data and seamlessly integrate with other Spark com-
ponents. Spark SQL also supports reading and writing data in various formats, including
Parquet, JSON, and CSV.

• Spark Streaming: Spark Streaming is used for processing real-time data streams. It
ingests data in small, discrete batches and performs batch processing on them, making it
suitable for applications like log processing and monitoring.

• Spark MLlib: Spark MLlib is Spark’s machine learning library, offering various machine
learning algorithms and tools for building and evaluating models on large datasets. It
provides support for classification, regression, clustering, and more.

• Spark GraphX Spark GraphX is a library for graph processing, enabling graph compu-
tations and graph-parallel algorithms. It is well-suited for analyzing and processing graph-
structured data. Although as of this date, the library is only available to use through the
Scala Driver.

Spark deployement modes

Spark offers several running modes to accommodate various deployment scenarios, each with its
advantages and use cases. These modes include:

• Local mode: the simplest way to run Spark is using local mode. this means the Spark
job is ran on a single machine, typically for development, testing, and debugging purposes.
In local mode, Spark runs in a single JVM (Java Virtual Machine) process on your local
machine.

• Standalone Mode: Standalone mode is Spark’s built-in cluster manager. It’s a basic
cluster manager that can be used to run Spark applications on clusters. It’s suitable for
small to medium-sized clusters.

• Apache Hadoop YARN: YARN (Yet Another Resource Negotiator) is the resource
management framework in the Apache Hadoop ecosystem. Spark can be run on YARN
clusters, which allows for efficient resource management and sharing resources with other
Hadoop ecosystem components. It’s well-suited for larger clusters and organizations al-
ready using Hadoop.

71

Chapter 4. Proposed Solution

For our research and development purposes, we have chosen to deploy the code in Standalone
mode. This selection enables us to simulate the conditions of running the code on clusters,
allowing us to harness the full capabilities of Spark and parallelism. The job will run on my
laptop that boasts an Intel Core i7-10750H CPU with a clock speed of 2.60GHz, along with 16.0
GB of RAM and 12 processing cores.

4.9 Step-by-Step Workflow

In this part we will explore the comprehensive step-by-step workflow to successfully run the
Spark job in Standalone mode, while also ensuring the inclusion of essential dependencies.

Step1: Create a Python Virtual Environment

Before initiating the Spark job, it’s essential to establish a Python virtual environment to isolate
project dependencies. The following commands should be executed in a terminal within the
project directory to create the venv and activate it:

keywordstyle
Microsoft Windows [Version 10.0.22621.2134]
Copyright (c) 2022 Microsoft Corporation. All rights reserved.

c:\User\Azus\deduplicator >python -m venv venv1

c:\User\Azus\deduplicator >venv1\Scripts\activate.bat

(venv1) C:\Users\Azus\project>

Step 2: Install Dependencies from requirements.txt

After having created the virtual enviroment we need to install the project dependecies from the
venv terminal using the pip command.

keywordstyle

(venv1) C:\Users\Azus\project>pip install -r requirements.txt

Step 3: Zip the Dependencies

In this step, we package all the dependencies into a zip file. This zipped package is vital for
efficient distribution to all worker nodes in the Spark cluster, ensuring that each worker has
access to the necessary codes and functions throughout the job execution.

keywordstyle
(venv1) C:\Users\Azus\project> zip -r deduplicator.zip deduplicator/

72

Chapter 4. Proposed Solution

(venv1) C:\Users\Azus\project >(cd venv1/Lib/site-packages/ && zip -r \
dependencies.zip ./* && mv dependencies.zip ../../../)

Step 4: Initializing Spark Master & Worker Nodes:

The first step in deploying Spark in Standalone mode on your laptop is to initialize the Spark
Master. This can be achieved by running the following command:

keywordstyle
Microsoft Windows [Version 10.0.22621.2134]
Copyright (c) 2022 Microsoft Corporation. All rights reserved.

c:\User\Azus>spark-class org.apache.spark.deploy.master.Master

After successfully initializing the Spark Master, the next step is to launch the Spark Workers,
for this task we will use 3 worker nodes, while allocating 4 processing cores and 2gb of RAM for
each worker. This is done with the following command:

keywordstyle
Microsoft Windows [Version 10.0.22621.2134]
Copyright (c) 2022 Microsoft Corporation. All rights reserved.

c:\User\Azus>spark-class org.apache.spark.deploy.worker.Worker \
spark://127.0.0.1:7077 --cores 4 --memory 2g

Step 5: Running the Spark Job with spark-submit

In conclusion, we execute the Spark job in Standalone mode using the spark-submit command.
We configure it with specific parameters, including additional settings for the number of cores and
memory allocation for each driver. Furthermore, we ensure that the job has access to essential
resources by including both the dependencies.zip file and deduplicator.zip as supplementary
assets through the –py-files option

keywordstyle
(venv1) C:\Users\Azus\project>spark-submit --master spark://127.0.0.1:7077 \

--driver-memory 8g --executor-memory 2 \
--py-files dependencies.zip ,\
deduplicator.zip \
main.py

Step 7: Monitor Job Progress Using SparkUI

After submitting the Spark job, we can closely monitor its progress and performance using
Spark’s built-in web-based interface, SparkUI. To access SparkUI, we open a web browser and
navigate to the following address: http://127.0.0.1:4040/

73

Chapter 4. Proposed Solution

Figure 4.7: The timeline of the spark job execution

After the job is done, we can find the new duplicated .csv files in a new ”output” folder, we
can also visualize the created clusters in the Neo4j applications

74

Chapter 4. Proposed Solution

Figure 4.8: Resultat de regroupement graphic

75

General Conclusion

In the culmination of this internship at LIST, it is imperative to provide a comprehensive con-
clusion that encapsulates the nuanced journey we undertook in addressing the complex challenge
of Author Name Disambiguation within large databases. This chapter aims to reflect upon each
phase or stage of the disambiguation process while also highlighting our involvement in the re-
viewing of multiple research papers, underscoring the enriched nature of our research experience.

The Data Pre-processing phase laid the groundwork for our disambiguation efforts. Here, we
delved into the nitty-gritty of data quality enhancement, standardization, and transformation.
We addressed missing data, inconsistencies, and outliers with important care
The Indexing/Blocking phase, focusing on computational optimization, has had implications
beyond disambiguation. By judiciously partitioning the dataset into manageable blocks, this
phase has significantly reduced computational complexity. Which was extremely important for
resource-efficient data processing across the organization.
Our exploration of Pairwise Similarity Calculation enriched our analytical toolkit. We evaluated
and compared various similarity functions, recognizing the importance of choosing the right one
for the data type. Beyond the technicalities, this phase underscores the challenge of selecting
the most suitable similarity function. It’s about understanding the data and the problem at
hand to make an informed choice.
In the Classification phase, we encountered the challenge of data biases and class imbalance.
Understanding these biases and the presence of majority classes is crucial. It’s not just about
building classifiers; it’s about recognizing that imbalanced data can skew results. Another
common challenge in Machine Learning in general (and certainly in our case) is overfitting. To
address potential overfitting, we tested diffrenet classifers with different levels of complexities,
coupled with cross-validation. This approach allowed us to asses how each classifier handles the
large data load and evaluate the perfomance on the validation set.
Selecting the right model for the task and fine-tuning its parameters were critical aspects of the
Classification and Clustering phases. The task revolved around understanding the nuances of
different algorithms and making informed choices based on data characteristics. Parameter tun-
ing ensured that our classifiers operated at peak performance, striking at the balance between
complexity(overfitting) and generalization(underfitting).

Integral to our success was the transformative impact of leveraging Spark and Neo4j. Spark
empowered us with distributed data processing capabilities, allowing us to scale our analyses

76

Chapter 4. Proposed Solution

efficiently. Neo4j facilitated graph-based data modeling, enabling us to create and traverse au-
thorship networks with ease. These technologies were instrumental in handling the extensive
datasets and complex relationships inherent in our disambiguation task.

Notably, our disambiguation framework has extened its initial project scope, finding a new
purpose as an internal tool at LIST. Within the organization, it serves as a part of an instrument
for researcher performance evaluation, disambiguating researchers’ names and ensuring that their
contributions to the body of research are accurately accounted for. This internal application
extends to the evaluation of quarterly and yearly Key Performance Indicators (KPIs), including
metrics like the number of publications.

77

Bibliography

[1] Pruski, Cedric & Deladiennée, Louis & Scolan, Emmanuel & Silveira, Marcos. (2023). Une
plateforme de management des connaissances pour le domaine des ressources spatiales.

[2] IBM. ”What is big data?”. https://www.ibm.com/analytics/hadoop/big-data-analytics

[3] Christen, P. ”A survey of indexing techniques for scalable record linkage and deduplication.”
IEEE Transactions on Knowledge and Data Engineering 24.9 (2012): 1537-1555

[4] Fellegi, I. and Sunter, A. (1969) A Theory for Record Linkage. Journal of the American
Statistical Association, 1969, 64(328), 1183-1210.

[5] A. Adelstein, “Record linkage techniques in studies of the ætiology of cancer,” Proceedings
of the Royal Society of Medicine, vol. 61, no. 7, p. 732, July 1968

[6] H. B. Newcombe, J. M. Kennedy, S. Axford, and A. P. James. Automatic linkage of vital
records. Science, 130:954–959, Oct 1959

[7] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In Inter-
national Conference on Knowledge Discovery and Data Mining, pages 269–278, 2002.

[8] M. A. Hernandez and S. J. Stolfo, “The merge/purge problem for large databases,” in
Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’95. New York, NY, USA: Association for Computing Machinery, 1995, p.
127–138

[9] Clark, D.E.: Practical introduction to record linkage for injury research. Injury Prevention
10, 186–191 (2004)

[10] Herzog, T., Scheuren, F., Winkler, W.: Data quality and record linkage techniques. Springer
Verlag (2007)

[11] F. Naumann and M. Herschel, An introduction to duplicate detection. Morgan and Claypool
Publishers, 2010.

[12] G. Papadakis, G. Papastefanatos, T. Palpanas, and M. Koubarakis. Scaling entity resolution
to large, heterogeneous data with enhanced meta-blocking. In EDBT, pages 221–232, 2016.

[13] P. Christen and K. Goiser, “Quality and complexity measures for data linkage and dedu-
plication,” Studies in Computational Intelligence, vol. 43, 01 2007.

78

Bibliography

[14] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record detection: a
survey,” IEEE Trans. on Knowl. and Data Eng., vol. 19, no. 1, p. 1–16, Jan. 2007

[15] Tim Churches, Peter Christen, Kim Lim, and Justin Xi Zhu. Preparation of Name and
Address Data for Record Linkage Using Hidden Markov Models. BMC Medical Informatics
and Decision Making, 2(1):9, 2002.

[16] Hassanzadeh, Oktie Miller, Renée. (2009). Creating probabilistic databases from duplicated
data. VLDB J.. 18. 1141-1166. 10.1007/s00778-009-0161-2.

[17] Neil G. Marchant. Statistical Approaches for Entity Resolution under Uncertainty, 2021

[18] Lehti, Patrick & Fankhauser, Peter. (2006). Unsupervised Duplicate Detection Us-
ing Sample Non-duplicates. Lecture Notes in Computer Science. 4244. 136-164.
10.1007/11890591_5.

[19] Gravano, Luis & Ipeirotis, Panos & Jagadish, H. & Koudas, Nick & Muthukrishnan,
Senthilmurugan & Srivastava, Divesh. (2003). Approximate String Joins in a Database
(Almost) for Free.

[20] Christen P. A survey of indexing techniques for scalable record linkage and deduplication.
IEEE Transactions on Knowledge and Data Engineering, 2011, 24(9): 1537-1555.

[21] Aizawa A, Oyama K. A fast linkage detection scheme for multi-source information integra-
tion. In Proc. the 2005 International Workshop on Challenges in Web Information Retrieval
and Integration, Apr. 2005, pp.30-39

[22] Damerau, F.J.: A technique for computer detection and correction of spelling errors.Com-
munications of the ACM 7(3), 171–176 (1964)

[23] Temple F Smith, Michael S Waterman, et al. Identification of Common Molecular Subse-
quences. Journal of Molecular Biology, 147(1):195–197, 1981.

[24] Winkler, W.E., Thibaudeau, Y.: An application of the Fellegi-Sunter model of record
linkage to the 1990 U.S. decennial census. Tech. Rep. RR1991/09, US Bureau of the Census,
Washington, DC (1991)

[25] Winkler, W.E.: Methods for record linkage and Bayesian networks. Tech. Rep. RR2002/05,
US Bureau of the Census, Washington, DC (2001)

[26] Monge, A.E., Elkan, C.P.: The field-matching problem: Algorithm and applications. In:
ACM SIGKDD, pp. 267–270. Portland (1996)

[27] Hernandez, M.A., Stolfo, S.J.: Real -world data is dirty: Data cleansing and the
merge/purge problem. Data Mining and Knowledge Discovery 2(1), 9–37 (1998)

[28] Mudgal, Sidharth et al. “Deep Learning for Entity Matching: A Design Space Exploration.”
Proceedings of the 2018 International Conference on Management of Data (2018): n. pag.

79

Bibliography

[29] Christen, Peter. “Automatic record linkage using seeded nearest neighbour and support
vector machine classification.” Knowledge Discovery and Data Mining (2008).

[30] V.S. Verykios, A.K. Elmagarmid, and E.N. Houstis. Automating the Approximate Record
Matching Process. Journal of Information Sciences, 126(1-4), pages 83-98, July 2000.

[31] Jaro, M.A.: Advances in record-linkage methodology a applied to matching the 1985 Census
of Tampa, Florida. Journal of the American Statistical Association 84, 414–420 (1989)

[32] Winkler, W.: String comparator metrics and enhanced decision rules in the Fellegi-Sunter
model of record linkage. In: Proceedings of the Section on Survey Research Methods, pp.
354–359. American Statistical Association (1990)

[33] Verykios, Vassilios & Elmagarmid, Ahmed & Houstis, Elias. (2002). Automating the
approximate record-matching process. Information Sciences. 126. 83-98. 10.1016/S0020-
0255(00)00013-X.

[34] Hassanzadeh, O., Miller, R.J. Creating probabilistic databases from duplicated data. The
VLDB Journal 18, 1141–1166 (2009). https://doi.org/10.1007/s00778-009-0161-2

80

Appendix A

Intransitive closure

In entity resolution, ”intransitive closure” occurs when there are pairwise matches between
records, such as A-B and B-C, but the classifier or matching algorithm doesn’t consider A-C as
a match. In other words, based on individual pairwise comparisons, A-C appears dissimilar or
doesn’t meet the threshold for a match, even though there is a transitive relationship through B
that suggests A-C should also be considered a match. This can be a significant challenge in entity
resolution because it can lead to incomplete or inaccurate results. When the intransitive closure
problem is not addressed, related records may remain unlinked, and the true consolidation of
entities is not achieved

Figure 4.9: Example of Intransitive closer in a graph (nodes a, and e)

Sous/sur-apprentissage

Underfitting and overfitting are common challenges in machine learning that arise when a model
fails to generalize well to unseen data. They can occur when the model’s complexity is not
appropriately matched to the complexity of the underlying data.
Underfitting refers to a situation where the model is too simple to capture the underlying
patterns in the data. It typically occurs when the model has high bias and fails to learn the

81

Bibliography

complexities of the training data. As a result, the model tends to have high error rates both on
the training data and on new, unseen data. Underfitting can lead to poor performance and lack
of generalization.
Overfitting, on the other hand, occurs when the model becomes too complex and learns the noise
or random variations in the training data. The model starts to memorize the training examples
instead of learning the underlying patterns. This results in a low error rate on the training data
but a high error rate on new, unseen data. Overfitting is often associated with models that have
high variance, where the model is too flexible and tries to fit the training data too closely.

Figure 4.10: The difference between under and over fitting

Cross Validation

To address overfitting and evaluate the performance of a machine learning model, cross-validation
is often used. Cross-validation is a technique that involves splitting the available data into mul-
tiple subsets or folds. The model is trained on a subset of the data called the training set and
evaluated on the remaining subset called the validation set or test set. This process is repeated
multiple times, with different subsets serving as the validation set each time.
One common approach to cross-validation is k-fold cross-validation. In k-fold cross-validation,
the data is divided into k equal-sized folds. The model is trained on k-1 folds and evaluated on
the remaining fold. This process is repeated k times, with each fold serving as the validation set
exactly once. The performance of the model is then averaged over the k iterations to obtain an
overall evaluation metric.

82

Bibliography

Figure 4.11: k-folds cross validation

Unbalanced Datasets

In machine learning, an unbalanced dataset refers to a dataset where the distribution of class
labels is heavily skewed, with one or more classes having significantly fewer instances compared
to other classes. Dealing with unbalanced datasets can pose challenges for learning algorithms, as
they tend to be biased towards the majority class and may struggle to effectively learn patterns
from the minority class(es).
Several methods exist for handling class imbalance, such as Random Under/Over sampling,
Synthetic Minority Over-sampling Technique (SMOTE), and ensemble-based approaches. The
choice of method depends on the specific characteristics of the dataset and the learning algorithm
being used.

Random Undersampling

A technique that aims to balance the dataset by reducing the number of instances from the
majority class to match the number of instances in the minority class(es). Let’s denote the
original dataset as D with N total instances. Let D0 represent the instances belonging to the
majority class (class 0) and D1 represent the instances belonging to the minority class (class 1).
The number of instances in D0 is denoted as N0, and the number of instances in D1is denoted
as N1.
The desired sample size for each class is denoted as n, which can be equal to N1 or a user-
defined value. Random Under sampling involves randomly selecting n instances from D0 without
replacement.
The steps involved in Random Under sampling are as follows:

1. Random selection of instances: Randomly select n instances from D0 without replacement.
This can be represented as D

′
0 = {xi|xi ∈ D0}, i = 1, 2, ..., n

83

Bibliography

2. Create the balanced dataset: Combine the randomly selected instances from the majority
class D

′
0 with all instances from the minority class D1 to form the balanced dataset D

′

The balanced dataset D
′ consists of n instances from class 0 and N1 instances from class

1.

Vector embeddings

Vector embeddings, also known as word embeddings or word vectors, are a method used to
represent words or entities as vectors in a high-dimensional continuous space. The main idea
behind vector embeddings is to capture the semantic and syntactic relationships between words
based on their contextual usage in a given corpus.
In this approach, each word is assigned a dense vector representation, where words with similar
meanings or usage patterns are represented by vectors that are close to each other in the vec-
tor space. This enables machines to perform computations and make inferences based on the
geometric relationships between these vectors.
The resulting word vectors can capture various linguistic properties, such as word analogies
(e.g., ”king” - ”man” + ”woman” � ”queen”) and semantic similarities (e.g., ”cat” and ”dog”
are closer in the vector space compared to ”cat” and ”car”). These embeddings provide a rich
representation of words that can be utilized in various natural language processing (NLP) tasks.

Figure 4.12: Example of the semantic distance between two analogies

”Word2Vec”

Word2Vec is a neural network-based algorithm that learns word embeddings by maximizing the
likelihood of predicting context words given a target word or vice versa. It represents words
as vectors in a continuous vector space. There exist two main architectures: Skip-gram and
CBOW.

84

Bibliography

Figure 4.13: Architecture of skip vs CBOW

The Skip-gram model is a type of word embedding model that aims to predict the context words
given a target word. In Skip-gram, we represent each word in a high-dimensional vector space,
where the position of each word vector captures its semantic meaning.
The CBOW model, on the other hand, predicts the target word based on its surrounding context
words. It aims to learn the word vectors that can best represent the context information.
Both Skip-gram and CBOW models utilize a neural network architecture, typically a shallow
neural network with a single hidden layer. The word vectors are learned through the training
process, where the model adjusts the word vectors to improve the prediction performance.

Gradient Descent

When it comes to solving machine learning problems, optimization plays a crucial role in finding
the best set of model parameters. Optimizers are algorithms or methods that guide the learning
process by iteratively updating the model parameters to minimize a defined objective function or
maximize a desired performance metric. One commonly used optimization algorithm is Gradient
Descent.
The goal of Gradient Descent is to minimize the cost or loss function of the classification model
by iteratively updating the model parameters. It achieves this by computing the gradient of the
cost function with respect to each parameter and taking steps in the direction of the steepest
descent. Given a cost function J(θ), where θ is the vector of weights (parameters). The updated
values at each step can be calculate using the following rule:

θ = θ − α · ∂J
∂θ

where α is the learning rate, controlling the size of the parameter updates, and ∂J
∂θ denotes the

gradient of the cost function with respect to θ.

85

Bibliography

To compute the gradient, we can use the chain rule of calculus to obtain:

∂J

∂θ
=

1

m
·
∑

(h(xi, θ)− yi) · xi

The weights are updated iteratively for a specified number of iterations or until convergence.

Figure 4.14: Gradient Descent illustrated in a two dimensional example

GridSearch

Grid search is a hyperparameter tuning technique used in machine learning to find the best
combination of hyperparameter values for a given model.
The grid search algorithm works by exhaustively searching through a predefined grid of hyper-
parameter values. For each combination of hyperparameters, the model is trained and evaluated
using a chosen evaluation metric, such as accuracy or mean squared error. The performance of
the model is then recorded.
Once the grid search is complete, the best combination of hyperparameters can be determined
based on the evaluation metric. This set of hyperparameters can then be used to train the final
model on the full training dataset and evaluate its performance on a separate test set to obtain
an unbiased estimate of its generalization performance.

86

Bibliography

Figure 4.15: GridSearch parameter tuning

87

Appendix B

In this appendix, we will explore the structure of the (.py) modules within the deduplicator
repository. These modules are categorized based on their respective functions in the workflow
process, allowing us to gain insights into how each module plays a distinct role in the overall
functionality of the deduplication system.

Figure 4.16: Deduplicator’s python modules

4.10 Preprocessing Dataframe (preprocess.py)

Within this file, we find a collection of functions dedicated to the various aspects of handling
the Spark Dataframe. Many of these functions were already encountered the previous section.
These functions are designed to facilitate the loading, processing, transformation, and reshaping
of the Dataframe
These functions perform the operations mentioned in the Data preparation phase.

4.10.1 Reading the files

1 from pyspark . s q l import SparkSession
2

3 def read_data (f i l e s : l i s t , Sess ion : SparkSession) :
4 ”””
5 Reads the CSV f i l e s and combine them into a Pyspark Dataframe
6 @param f i l e s : A l i s t o f csv f i l e paths to read
7 @param Sess ion : a Pyspark Sess ion object that has already been created .

88

Bibliography

8

9

10 @return : A new dataframe
11 ”””
12 df = Sess ion . read \
13 . option (” header ” , True) \
14 . option (” ignoreLeadingWhiteSpace ” , True) \
15 . option (” de l im i t e r ” , ” ; ”) \
16 . option (” quote ” , ’ ” ’) \
17 . option (” escape ” , ’ ” ’) \
18 . csv (f i l e s)
19

20 # columns to keep
21 c o l s =[’ e id ’ , ’ t i t l e ’ , ’ c r ea to r ’ , ’ a f i d ’ , ’ a f f i lname ’ , ’ a f f i l i a t i o n _ c i t y ’ , ’

a f f i l i a t i o n _ c o u n t r y ’ , ’ author_count ’ , ’ author_names ’ , ’ author_afids ’ , ’ author_ids ’ ,
’ coverDate ’ , ’ publicationName ’ , ’ d e s c r i p t i on ’ , ’ authkeywords ’]

22

23 df= df . s e l e c t (∗ c o l s)
24

25 return df

Code Listing 4.5: Function to read the .csv files

4.11 Blocking functions (predicate.py)

4.11.1 Perfom prefix array blocking

1 from pyspark . s q l import DataFrame
2 import pyspark . s q l . funct ions as F
3

4 def pref ix_array (df : DataFrame , column_name : str , l_min : in t) :
5 ”””
6 Performs p r e f i x array blocking on a dataframe column (author_name)
7 @param df : The Pyspark dataframe to proce s s e s
8 @param column_name : The column to block based on (usua l ly author_name)
9 @param l_min : the minimum length of p r e f i x e s to ext ract (eg : f o r l_min=

10 5 , ”Johnson” becomes [” Johns ” , ”Johnso ” , ”Johnson ”])
11

12 @return : A dataframe
13 ”””
14 def generate_substr ings (row , l_min = l_min , column_name=column_name) :
15 author_name = row [column_name]
16

17 subs t r ings = []
18

19 f o r j in range (l_min , l en (author_name) + 1) :
20 subs t r ings . append (author_name [0 : j])
21 return [row [’ row_index ’] , author_name , subs t r ing s]
22

23 df = df . s e l e c t (”row_index” , column_name)

89

Bibliography

24

25 # Apply the map funct ion to generate subs t r ings
26 df = df . rdd .map(generate_substr ings)
27 df = df . toDF ([”row_index” , column_name , ”BKVs”])
28

29 # Explode the BKV column
30 df = df . s e l e c t (”row_index” , column_name , F. explode (”BKVs”) . a l i a s (”BKV”))
31

32 # Group by BKV and c o l l e c t row_index values
33 df . createOrReplaceTempView (”temp_df”)
34 df = spark . s q l (”””
35 SELECT BKV, c o l l e c t _ l i s t (row_index) AS i n d i c e s
36 FROM temp_df
37 GROUP BY BKV
38 ”””)
39

40 #Create the s i z e column
41 df = df . withColumn (” s i z e ” , F. s i z e (F. co l (” i n d i c e s ”)))
42

43 # F i l t e r rows where ” s i z e ” i s g rea te r than 1 (can ’ t have a pa i r with only 1
value)

44 df = df . f i l t e r (df [” s i z e ”] > 1)
45

46 # Sort the rows block f i l t e r i n g l a t e r
47 df = df . s o r t (df . s i z e . asc () , df .BKV. asc ())
48

49 return df

Code Listing 4.6: Function to perfom prefix array blocking

4.11.2 Perfrom sorted neighborhood blocking

1 from pyspark . s q l import DataFrame
2 import pyspark . s q l . funct ions as F
3 import j e l l y f i s h
4

5 def sorted_neighborhoud (df : DataFrame , column_name : str , thresho ld : in t) :
6 ”””
7 Performs adaptive sorted neighbourhoud blocking on a dataframe column
8 @param df : The Pyspark dataframe to proce s s e s
9 @param column_name : The column to block based on (ex : author_name)

10 @param thresho ld : the thresho ld value when comparing records to block together
11

12 @return : A dataframe
13 ”””
14 df = df . s e l e c t (F. co l (column_name) , F. co l (”row_index”))
15 df = df . r e p a r t i t i o n (1)
16 df = df . sor tWith inPart i t ions (column_name , ascending=True)
17

18 def reformat (part i t ionData) :

90

Bibliography

19 a l l_blocks = []
20 current_block = []
21 block_index = []
22 f o r row in part i t ionData :
23 i f not current_block :
24 # I n i t i a l i z e the f i r s t row as the current block
25 current_block . append (row)
26 block_index . append (row [”row_index”])
27 e l s e :
28 # Calculate Jaro−Winkler s i m i l a r i t y
29 s i m i l a r i t y = j e l l y f i s h . j a ro_s im i l a r i t y (current_block [0] \
30 [column_name] , row [column_name])
31 i f s i m i l a r i t y >= thresho ld :
32 current_block . append (row)
33 block_index . append (row [”row_index”])
34 e l s e :
35 a l l_blocks . append (block_index)
36 current_block = []
37 block_index = []
38 current_block . append (row)
39 block_index . append (row [”row_index”])
40

41 f o r row in a l l_blocks :
42 y i e l d [row]
43

44 df=df . rdd . mapPartitions (reformat) . toDF ([” i n d i c e s ”])
45

46 #Create the s i z e column
47 df = df . withColumn (” s i z e ” , F. s i z e (F. co l (” i n d i c e s ”)))
48

49 # F i l t e r rows where ” s i z e ” i s g rea te r than 1 (can ’ t have a pa i r with only 1
value)

50 df = df . f i l t e r (df [” s i z e ”] > 1)
51

52 # Sort the rows block f i l t e r i n g l a t e r
53 df = df . s o r t (df . s i z e . asc () , df .BKV. asc ())
54 return df

Code Listing 4.7: Function to perfrom sorted neighborhood blocking

4.11.3 Perfrom block filtering

1 from pyspark . s q l import SparkSession
2 from pyspark . accumulators import AccumulatorParam
3

4 #Define the counter c l a s s
5 c l a s s IndexCounterAccumulator (AccumulatorParam) :
6 def zero (s e l f , value) :
7 return {}
8

91

Bibliography

9 def addInPlace (s e l f , v1 , v2) :
10 f o r key , value in v2 . items () :
11 v1 [key] = v1 . get (key , 0) + value
12 return v1
13

14 def b l o c k _ f i l t e r i n g (Sess ion : SparkSession , pairs_df : DataFrame , thresho ld : in t) :
15 ”””
16 Performs the block f i l t e r i n g algorithm on the dataframe column
17 @param Sess ion : a Pyspark Sess ion object that has already been created .
18 @param pairs_df : The dataframe conta in ing the pa i r s row indexes generated in

block ing phase .
19 @param thresho ld : the f i l t e r i n g thresho ld value to use f o r the algorithm
20

21 @return : A dataframe
22 ”””
23

24 def count_appearances (row) :
25 g loba l accum
26 i n d i c e s = row . i n d i c e s
27 f o r index in i n d i c e s :
28 accum += {index : 1}
29 return (row .BKV, i n d i c e s)
30

31 accum = Sess ion . sparkContext . accumulator ({} , IndexCounterAccumulator ())
32

33 # Use map to apply the funct ion to the DataFrame and transform i t into an RDD
34 counted_df = pairs_df . rdd .map(count_appearances)
35

36 # Trigger an act ion that f o r c e s Spark to execute the trans format ions and
accumulate the counts

37 counted_data = counted_df . count ()
38

39 # Access the accumulator ’ s value to see the counts
40 externa l_dict = accumulator . value
41 # pr int (” External Dict ionary : ” , externa l_dict)
42

43 f o r key , value in externa l_dict . items () :
44 externa l_dict [key] = round (thresh ∗(value))
45

46 # I n i t i a l i z e a Python d i c t i onary to s to r e counts
47 count_dict = {}
48

49 def app ly_f i l t e r i ng (data) :
50 # Extract the values from the c o l l e c t e d data
51 BKV, ind i ce s , s i z e = data
52

53 g loba l count_dict
54 updated_indices = []
55

56 f o r index in i n d i c e s :
57 i f index not in count_dict :

92

Bibliography

58 count_dict [index] = 1
59 e l s e :
60 count_dict [index] += 1
61

62 # Check i f the count f o r the index exceeds the thresho ld
63 i f count_dict [index] <= externa l_dict . get (index , f l o a t (’ i n f ’)) :
64 updated_indices . append (index)
65

66 return {”BKV” :BKV, ” updated_indices ” : updated_indices}
67

68 # Col l e c t the data to the dr ive r
69 co l lected_data = resu l t_df . c o l l e c t ()
70

71 # Apply the f i l t e r i n g funct ion to each element in the c o l l e c t e d data
72 r e s u l t _ l i s t = [app ly_f i l t e r i ng (data) f o r data in col lected_data]
73

74 r e s u l t = Sess ion . createDataFrame (r e s u l t _ l i s t)
75

76 # F i l t e r rows where ” s i z e ” i s g rea te r than or equal to 2
77 r e s u l t = r e s u l t . withColumn (”new_size” , F. s i z e (F. co l (” updated_indices ”)))
78

79 # F i l t e r rows where ” s i z e ” i s g rea te r than or equal to 2
80 r e s u l t = r e s u l t . f i l t e r (r e s u l t [”new_size”]>= 2)
81

82 return r e s u l t

Code Listing 4.8: Function to perform Block Filtering

4.12 Comparison Functions (similarity_functions.py)

1 import numpy as np
2 from j e l l y f i s h import jaro_wink ler_s imi lar i ty
3

4

5 @udf(returnType=DoubleType ())
6 def jaro_winkler_simi lar ity_udf (str1 , s t r2) :
7 ”””
8 Def ines a UDF f o r the jaro_winkler_s imi lar i ty funct ion
9 ”””

10 return d i s tance . get_jaro_distance (str1 , s t r2)
11

12

13 def j acca rd_s imi l a r i ty (l i s t 1 , l i s t 2) :
14 ”””
15 Computes the jaccard_s imi l a r i ty between two l i s t s
16 @param l i s t 1 , l i s t 2 : The l i s t s to be compared
17

18 @return : A measure o f s i m i l a r i t y between 0−1
19 ”””
20 try :

93

Bibliography

21 se t1 = se t (l i s t 1)
22 se t2 = se t (l i s t 2)
23 i n t e r s e c t i o n = set1 . i n t e r s e c t i o n (set2)
24 union = set1 . union (set2)
25 s i m i l a r i t y = len (i n t e r s e c t i o n) / len (union) i f l en (union) > 0 e l s e math . nan
26 return s i m i l a r i t y
27 except ZeroDivis ionError :
28 return np . nan
29

30 @udf(returnType=DoubleType ())
31 def jaccard_simi lar i ty_udf (str1 , s t r2) :
32 ”””
33 Def ines a UDF f o r the jaccard_s imi l a r i ty funct ion
34 ”””
35 return jaccard_s imi l a r i ty (str1 , s t r2)

Code Listing 4.9: Function to apply similarity comparison

4.13 Calculating pairwise similarities (pairwise.py)

1 from pyspark . s q l import DataFrame
2 import pyspark . s q l . funct ions as F
3

4 def pa i rw i s e_s imi l a r i ty (df : DataFrame , pairs_df : DataFrame , s i m i l a r i t y _ d i c t : d i c t) :
5 ”””
6 Calculate the pa i rwi se s i m i l a r i t y between pa i r s generated in block ing phase
7 @param df : The Pyspark dataframe to process
8 @param pairs_df : The dataframe conta in ing the pa i r s row indexes generated in

block ing phase .
9 @param s i m i l a r i t y _ d i c t : a d i c t i onary conta in ing key : value pa i r s or columns and

the s i m i l a r i t y funct ion to apply (ex : {”author_name ” : ja ro_s imi la r i ty , ”co−
authors_names ” : j a cca rd_s imi l a r i ty })

10

11 @return : A dataframe
12 ”””
13 f o r column_name , s imi la r i ty_func in s i m i l a r i t y _ d i c t . items () :
14 # Join the pa i r s DataFrame with the second DataFrame based on smal lest_value

and largest_value
15 pairs_df = pairs_df . j o i n (df . s e l e c t (”row_index” , column_name) . a l i a s (
16 f ’ df1_{column_name} ’) , F . co l (’ smal lest_value ’) == F. co l (f ’ df1_{
17 column_name } . row_index ’) , ’ inner ’) \
18 . j o i n (df . s e l e c t (”row_index” , column_name) . a l i a s (f ’ df2_{column_name}
19 ’) , F . co l (’ largest_value ’) == F. co l (f ’ df2_{column_name } . row_index ’)
20 , ’ inner ’)
21

22 # Calculate the s i m i l a r i t y using the provided s i m i l a r i t y funct ion f o r the
s p e c i f i e d column

23

24 s imilarity_column = f ’ {column_name} _s imi la r i ty ’
25 pairs_df = pairs_df . withColumn (similarity_column , s imi la r i ty_func (F

94

Bibliography

26 . c o l (f ’ df1_{column_name}.{column_name} ’) , F . co l (f ’ df2_{column_name
27 } .{column_name} ’)))
28

29 output_columns = [’ smal lest_value ’ , ’ largest_value ’] + [f ’ { co l }
30 _simi la r i ty ’ f o r co l in s i m i l a r i t y _ d i c t . keys ()]
31 # Se l e c t the des i r ed columns in the f i n a l output
32 output_df = pairs_df . s e l e c t (∗ output_columns)
33

34 return output_df

Code Listing 4.10: Function to calculate pairwise similarities between candidate records

4.14 Utility functions (utils.py)

Utility functions do not neccesarily have an impact on the performance of the models, but
they are a convenient way to restructure code in a neat way, that allows for ease of read and
reproducibility

1 import pyspark . s q l . funct ion as F
2

3 def generate_pairs (pred icates , column : s t r) :
4 ”””
5 Generate a dataframe of row indexes o f pa i r s to be compared l a t e r .
6 @param pred i ca t e s : The dataframe containg the pred i ca t e s r e s u l t s (p r e f i x array ,

or q−grams , etc .)
7 @param column : column name conta in ing the r e s u l t o f applying the pred icate (

de fau l t : ’ i n d i c e s ’) .
8

9 @return : A new dataframe
10 ”””
11

12 # Generate pa i r s o f i n d i c e s within each p r e f i x
13 def generate_pa i r s_l i s t (i n d i c e s) :
14 pa i r s = l i s t (combinations (ind i ce s , 2))
15 # added t h i s condi t ion
16 pa i r s = [(smal lest , l a r g e s t) i f sma l l e s t < l a r g e s t e l s e (l a rge s t , sma l l e s t)

f o r smal lest , l a r g e s t in pa i r s]
17

18 return pa i r s
19

20 generate_pairs_udf = F. udf (generate_pairs_l i s t , ArrayType (ArrayType (LongType ()))
)

21

22 pred i ca t e s = pred i ca t e s . withColumn (” pa i r s ” , generate_pairs_udf (F. co l (column))) .
s e l e c t (column , F. explode (” pa i r s ”) . a l i a s (” pa i r ”))

23

24 # Extract the sma l l e s t and l a r g e s t va lues from each pa i r
25 pred i ca t e s = pred i ca t e s . s e l e c t (F. co l (” pa i r ”) . getItem (0) . a l i a s (” smal lest_value ”) ,

F . co l (” pa i r ”) . getItem (1) . a l i a s (” largest_value ”))
26

95

Bibliography

27 return pred i ca t e s
28

29

Code Listing 4.11: Function to generate the pairs after blocking

96

	A Thank You
	Dedicate
	 ملخص
	Résumé
	Abstract
	List of Tables
	List of Figures
	Code Listings
	List of Abbreviations
	General Introduction
	Preliminary Study
	Presenting Luxembourg Institute of Science & Technology
	Responsible Data Science & Analytics Systems
	Knowledge Sharing Platform
	Knowledge Graphs: Bridging the Information Gap
	Architecture of KSP Plateform
	Neo4j: Connecting the Dots
	The Platform's Knowledge Graph
	Entity Resolution Preliminaries
	Different Application Fields of Entity Resolution

	State of the Art
	Entity Resolution in Bibliograhical Databases
	Challenges of Entity Resolution in Bibliographic Databases
	Data science, Machine Learning and Other Fundamental Notions
	Data Science
	Machine Learning
	Supervised Learning
	Unupervised Learning

	Graph Clustering Techniques

	The Entity Resolution Framework
	Phase 1: Data Pre-processing
	Phase 2: Blocking Scheme
	Standard Blocking
	Sorted Neighborhood Blocking
	Q-gram Based blocking
	Suffix Array Blocking
	Block Filtering
	Evaluation

	Phase 3: Pairwise Comparison
	Levenshtein Similarity
	Longest Common Substring Similarity
	Q-gram Based Similairty
	Jaro-Winkler Similarity
	Monge-Elkan Similarity

	Phase 4: Classification
	Probabilistic Classification
	Rule Based Classification
	Learning-Based Classification

	Phase 5: Clusering as a Post-processing Step
	Phase 6: Evaluation

	Proposed Solution
	Problem Definition
	Data Comprehension
	Data Collection
	Data Analysis

	Data Preparation
	Data Cleaning
	Data Transformations
	Refrence Dataset

	Blocking Scheme
	Evaluation
	Block Refinement

	Pairwise Comparison
	Classification
	Clustering
	Model Deployement
	Step-by-Step Workflow

	General Conclusion
	References
	Appendix A
	Appendix B

