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Résumé

Ce projet se concentre sur le développement et l’optimisation d’un UAV quadrirotor, en met-
tant l’accent sur les systèmes de contrôle et les algorithmes de localisation et de cartographie
simultanées (SLAM). Nous commençons par explorer le contrôleur de vol Pixhawk 2.4.8, en
développant un modèle mathématique pour le quadrirotor et en concevant des contrôleurs util-
isant les méthodes LQR, placement de pôles et PID pour assurer des performances optimales.
La mise en œuvre du SLAM visuel est réalisée en utilisant l’algorithme ORB-SLAM sur un
Raspberry Pi 5, avec un examen détaillé de ses fondements théoriques, de son application pra-
tique et de ses tests, soulignant à la fois ses forces et ses défis. De plus, nous effectuons une
sélection approfondie des composants, une analyse des coûts, une identification des paramètres
et des tests en conditions réelles pour valider l’efficacité de nos approches.

Mots clés : UAV, Quadrirotor, Systèmes de contrôle, SLAM, ORB-SLAM, Pixhawk, Naviga-
tion autonome, SLAM visuel.

Abstract

This project focuses on the development and optimization of a quadrotor UAV, emphasizing
control systems and Simultaneous Localization and Mapping (SLAM) algorithms. We begin
by exploring the Pixhawk 2.4.8 flight controller, developing a mathematical model for the
quadrotor, and designing controllers using LQR, pole placement, and PID methods to ensure
optimal performance. The implementation of Visual SLAM is carried out using the ORB-SLAM
algorithm on a Raspberry Pi 5, with a detailed examination of its theoretical foundations,
practical application, and testing, highlighting both its strengths and challenges. Additionally,
we conduct thorough component selection, cost analysis, parameter identification, and real-life
testing to validate the effectiveness of our approaches.

Keywords : UAV, Quadrotor, Control Systems, SLAM, ORB-SLAM, Pixhawk, Autonomous
Navigation, Visual SLAM.
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General Introduction

The rapid advancement in technology has revolutionized various fields, and the deployment
of Unmanned Aerial Vehicles (UAVs) has attracted significant attention across multiple do-
mains, including mining, civil applications, and military operations. This underscores the need
for highly accurate navigation and positioning systems that can adapt to different environ-
ments. Additionally, innovative applications have been developed to utilize autonomous drones
equipped with sensors for tasks such as mapping and inspection in confined spaces where GPS
access is unavailable. Indeed, GPS systems are limited in such environments due to their need
for signals from at least four satellites to accurately determine coordinates. This limitation
renders GPS ineffective in certain areas like buildings, underground mines, and protected out-
door environments. Additionally, Inertial Measurement Units (IMUs), while common, are not
entirely reliable due to error accumulation.

Conversely, research on aerial vehicles and technological advancements in embedded systems,
such as microcomputers and onboard sensors, have significantly enhanced the performance of
these systems. UAVs designed for environments without GPS access can rely on alternative
localization systems using onboard sensors to achieve Simultaneous Localization and Mapping
(SLAM). To address this challenge, the fusion of visual sensors and laser sensors has been
proposed as a viable alternative to traditional positioning methods due to their independence
from external assistance and lower susceptibility to external interferences.

This thesis explores the multiple aspects for developing and optimizing a quadrotor UAV. We
aim to enhance the performance and capabilities of the UAV, making it more efficient and
reliable for real-world applications.

In the first chapter, we examine the Pixhawk 2.4.8 flight controller, its operating system, and
flight stack architecture, develop a mathematical model for the quadrotor, and design three
types of controllers—LQR, pole placement, and PID—to ensure optimal flight performance.

The second chapter discusses implementing Visual SLAM for UAVs using the ORB-SLAM
algorithm. We cover the theoretical foundations, detail the algorithm’s workings, and test
it using the EuRoC MAV Dataset, noting its effectiveness in controlled environments and
challenges in dynamic scenarios.

In the third chapter, we select components, conduct cost analysis, identify robot parameters,
and test SLAM and control systems in real-life scenarios. These tests confirm the effectiveness
of our approaches, and we explore further enhancements like achieving full autonomy, imple-
menting obstacle avoidance, and integrating additional sensors for improved performance.

Overall, this thesis aims to provide a comprehensive guide for developing and optimizing quadro-
tor UAV systems, offering valuable insights into the challenges and solutions encountered in this
field. Our work not only contributes to the academic understanding of UAV control and SLAM
algorithms but also lays the groundwork for future innovations and practical applications in
autonomous aerial systems.
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Chapter 1

UAV System and Control Algorithm:
Overview and Implementation

1.1 UAV System Overview and Component Analysis

1.1.1 Introduction

The primary aim of this thesis is to develop an autonomous UAV capable of efficiently reaching
specific locations for security purposes. The initial requirement is based on this goal, necessitat-
ing the implementation of a sophisticated flight control algorithm with significant computational
power to precisely follow predefined paths.

However, in a dynamic environment with limited space, the control algorithm must be highly
adaptable to rapid changes in input signals from the remote controller and to various distur-
bances. Additionally, for public security purposes, the drone must be capable of operating
under extreme temperature conditions, as it will be deployed in hazardous areas. Finally, the
cost of this machine needs to be kept as low as possible to meet market demands.

Considering all of this, our system must address the following prerequisites:

- Use commercial off-the-shelf (COTS) autopilot hardware with adequate computational
capability.

- Implement a software stack that can adapt to diverse airframes. Ideally, different UAV
airframes with different tasks will use the same flight controller.

- Utilize Model-Based Design with automatic code generation to simulate algorithm results
before moving to the prototyping phase.

After evaluating a large number of flight controllers from both sources [15] and [10], we chose
and tested two different Pixhawk boards: the Pixhawk 4 Mini and the Pixhawk 2.4.8. These
boards are now supported by open-source code for PX4 autopilots, along with the new UAV
Toolbox that enables the use of Simulink and MATLAB codes.
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The decision was also made by analyzing different articles, especially [1] where they built their
own control algorithm using[16] the Pixhawk Pilot Support Package. This package offers the
possibility to design control algorithms using Simulink.

1.1.2 Pixhawk and PX4 Software

1.1.2.1 Pixhawk 2.4.8 and Pixhawk 4 mini

Pixhawk is an independent open-hardware project that provides low-cost autopilot hardware
designs for academic, hobbyist, and industrial use. It began as a master’s thesis project at ETH
Zurich in 2008 and has since evolved into a widely-used, open-source, standardized solution with
the PX4 flight stack. Pixhawk offers a practical alternative for implementing flight control
algorithms in both professional and economical contexts.

This autopilot board allows users to code advanced tasks without needing in-depth knowledge
of autopilot design. For automatic control solutions, an average understanding of control theory
and high-level programming languages (such as C++, Java, or Python) is sufficient.

The Pixhawk project creates open hardware designs in the form of schematics, which define the
components (CPU, sensors, etc.) and their connections/pin mappings. These schematics and
reference designs are licensed under CC BY-SA 3.0, allowing users to use, sell, share, modify,
and build on the files with proper credit and shared changes under the same open-source license.

Each design is designated as FMUvX (Flight Management Unit Version X), where higher num-
bers indicate more recent versions, though not necessarily greater capabilities.

The Pixhawk 2.4.8: a cutting-edge autopilot system tailored for unmanned aerial vehicles
(UAVs). Powered by a robust 32-bit ARM Cortex M4 core with FPU, it offers superior control
and reliability with a clock speed of 168 MHz, 256 KB RAM, and 2 MB Flash memory. Its
advanced sensor suite, including MPU6000, ST Micro gyroscope, and accelerometer/compass,
ensures precise navigation. With a reliable power management system and versatile connectivity
options like UART serial ports, Spektrum/Futaba inputs, and USB interfaces, the Pixhawk
2.4.8 guarantees seamless integration and performance. Compact and lightweight at 38 grams,
it’s the ideal choice for UAV enthusiasts seeking advanced control and precision in their projects.
Obtain your Pixhawk 2.4.8 from trusted manufacturers like mRo to unlock its full potential
and elevate your UAV operations to new heights.

The Pixhawk 4 Mini: Engineered for engineers and hobbyists seeking the power of Pixhawk
4 in compact drones. Derived from the Pixhawk 4, it retains FMU processor and memory
resources while optimizing size for 250mm racer drones. With a 2.54mm pitch connector,
connecting 8 PWM outputs to ESCs is effortless. Developed in collaboration with Holybro®
and Auterion®, it adheres to Pixhawk FMUv5 standards, ensuring compatibility with PX4
flight control software. Features include an aluminum casing for superior thermal performance,
Bosch® and InvenSense® sensor technology, redundant IMUs, NuttX RTOS, and pre-installed
PX4 firmware. Technical specs include an STM32F765 processor, onboard sensors including
ICM-20689 and BMI055, IST8310 magnetometer, MS5611 barometer, and ublox Neo-M8N
GPS/GLONASS receiver. Voltage ratings range from 4.75V to 24V, with max current sensing
at 120A and consumption less than 250mA at 5V. Elevate your drone’s capabilities with the
Pixhawk 4 Mini – the compact powerhouse for precise and reliable performance.
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Figure 1.1: Pixhawk 2.4.8 autopilot board

Figure 1.2: Pixhawk 4 mini autopilot board

We began our project using the Pixhawk 4 Mini autopilot board, achieving excellent results.
However, due to material constraints, we had to switch to the Pixhawk 2.4.8 to complete our
final project. Despite the change, we successfully met all our objectives.

1.1.2.2 NuttX OS

NuttX is a real-time operating system (RTOS) designed to be UNIX-compatible and efficient
in memory usage. It aims to provide standard operating system interfaces for a rich, multi-
threaded development environment on deeply embedded processors. Figure 1.3 illustrates how
NuttX interfaces with the components of an autopilot board, resembling the architecture of a
personal computer where applications interact with hardware through system calls provided by
the RTOS. NuttX is scalable, supporting a range of embedded platforms from tiny to moderate
in size.

The documentation highlights NuttX’s compliance with standards, likening it to a miniature
Linux OS with fewer features but supporting the Executable and Linkable Format (ELF) for
customized applications. NuttX offers robust multithreading capabilities, emulating standard
Unix processes and threads, and is fully preemptible, allowing tasks or threads to be interrupted
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at any time for strict priority scheduling. For I/O management, including USB serial ports,
NuttX has its own implementation, such as the stm32otgfshost.c source code file relevant to
this work.

Figure 1.3: Pixhawk software layers [1].

NuttX includes a lightweight, bash-like shell called NuttShell (NSH) for basic user interaction.
NSH offers a rich set of commands, scripting capabilities, and the ability to run applications
as "built-in." It is implemented as part of a library called nshlib and is optional. If disabled,
NuttX can directly load a specific task at startup instead of NSH, as is the case with the
px4simulinkappmodule.

When NuttX is installed on a Pixhawk board, NuttShell can be accessed via a serial connection
by setting the correct baud rate (57600) and using a terminal emulator like PuTTY, TerraTerm,
or the NSH console in ground station software such as QGroundControl. Some useful PX4-
related commands are documented as well.

These features make NuttX a valuable interface, and understanding its operation is a good
starting point for comprehending the environment in which an autopilot software stack func-
tions. For more information on NuttX, refer to the documentation.

Figure 1.4: NuttShell console view opened from QGroundStation and connected to Pixhawk
2.4.8 autopilot board.

Here in the figure 1.4, this is a simple but very useful debugging command called uorb top. It
shows all the topics in our flight controller, the number of instances of each topic, the number
of subscribers to each topic, the rate, the queue size, and finally, the size. For more information
regarding NuttX, refer to [2].
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1.1.2.3 uORB middleware

An autopilot system operates in a multi-task, multi-thread environment where applications
are divided into modules that must coordinate various operations. To ensure synchronization,
inter-task and inter-thread communication is essential.

In 2015, the micro Object Request Broker (uORB) was developed by the same team behind
the Pixhawk design, leveraging the multithreading capabilities of the NuttX operating system.
The uORB is an asynchronous messaging API based on shared memory, allowing all modules
to share the same memory space.

uORB uses a publish-subscribe design pattern: communication participants are called "nodes,"
with "publishers" (senders) and "subscribers" (receivers). Publishers share information by ad-
vertising a "topic" and updating data at their own pace. Subscribers can subscribe to a topic
and either poll for new data or be notified when new data is available.

Figure 1.5: A single process can subscribe (consume) and publish multiple topics, allowing it
to interface at different rates[2].

A process can act as both a publisher and a subscriber, and can handle multiple topics simul-
taneously. This setup is illustrated in Figure 1.5. Figure 1.6 shows the precedent output of
the uorb top command in NuttShell on our PX4 autopilot, indicating that most sensor topics
update at either 664 Hz (every 1.5 ms) or 111 Hz (every 9 ms). If needed, subscribers can limit
the update rate.
The uORB framework, along with the task priority setup of the operating system, allows for
synchronization between nodes and mixing of low- and high-priority tasks. Additionally, uORB
supports multiple independent instances of the same topic, useful for systems with several sim-
ilar sensors.

With uORB, senders and receivers do not need to know about each other, maintaining an
unknown system topology from each module’s perspective. Data publication and subscriber
access are atomic operations, ensuring data consistency. When data is transmitted, the previous
value is replaced, so subscribers always receive the latest data.

1.1.2.4 PX4 flight stack architecture

PX4 was initially designed for UAVs, particularly multirotors, but has evolved into a versatile
and modular platform suitable for various robotic systems, using the same codebase across
different vehicle types. For instance, in [17] , PX4 is used to control a rover’s ground path, and
in [37], and it manages an Autonomous Surface Vehicle (ASV) on water.
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Figure 1.6: Published topics on a PX4 autopilot. From left to right the columns represent topic
name, multi-instance index, number of subscribers, publishing frequency in Hz, number of lost
messages per second (for all subscribers combined), and queue size

Figure 1.7: a rover controlled by PX4.

The PX4 flight stack comprises an estimation and flight control system, leveraging the uORB
middleware for internal communication between modules and hardware integration via dedi-
cated drivers. For external communication, PX4 utilizes MAVLink, a lightweight messaging
protocol tailored for the drone ecosystem. MAVLink enables communication with ground sta-
tions and integration with other components such as companion computers, cameras, proximity
sensors, and spraying devices. When running on the NuttX operating system, MAVLink can
connect the board with a terminal emulator using NuttShell.

The PX4 system is designed to be reactive, meaning all functionalities are divided into inter-
changeable and reusable components, communicating asynchronously through self-contained
modules (uORB nodes) that share data via topics. This modularity allows rapid and easy re-
placement of modules, even at runtime. This flexibility is crucial for modifying the flight stack
using the MathWorks Embedded Coder Support Package for PX4 autopilots.

The flight stack includes guidance, navigation, and control algorithms. It features estimators
for attitude and position, controllers for various airframes, and mixers to translate outputs into
motor commands, all included in the Estimation and Control Library (ECL). The Extended
Kalman Filter (EKF) algorithm, used for estimation, combines sensor inputs to compute vehicle
states, such as attitude from IMU data. The EKF operates in different modes based on sensor
inputs, starting with a minimum viable sensor combination and incorporating additional data
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Figure 1.8: flight stack architecture

to estimate more states.

Controllers in the flight stack adjust process variables to match setpoints, using Proportional
(P), Proportional-Integrative (PI), and Proportional-Integrative-Derivative (PID) controllers.
These controllers are simple and adaptable but may not provide robust solutions for highly
dynamic systems.

Mixers translate force commands into motor commands, specific to the vehicle type, ensur-
ing operational limits are not exceeded. This separation of mixer logic from attitude control
enhances the software stack’s applicability to various robotic platforms.

Each sensor driver, estimator, controller, or mixer operates as a module, communicating
through the uORB middleware by publishing or subscribing to topics. Figure 1.8 provides
an overview of the flight stack pipeline, illustrating the flow from sensors, manual input (RC),
and autonomous flight control (Navigator-Position Controller-Attitude Rate Controller) to
motor control (Actuators).
1.9
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Figure 1.9: building blocks of the flight stack

1.1.2.5 Support Package for PX4 Autopilots by MathWorks Embedded Coder

In academic research, MATLAB/Simulink environment is frequently used as a tool for system
modeling and control design [18]. In particular, MATLAB/Simulink is the standard tool for
exploiting model-based design approach that consists in the development of embedded soft-
ware, starting from block models. This approach applied to UAVs development cycle is deeply
described in [19]. The most interesting steps in UAV development cycle for the purposes of this
thesis are the Software-in-the-loop (SIL) and Processor-in-the-loop (PIL) simulations: during
these phases, the production code dedicated to the aerial system control and derived from the
model is tested on an emulated environment (SIL) or on the actual autopilot board (PIL), to
check its robustness and to evaluate performances and potential optimizations, before proceed-
ing to real flight tests.

To exploit this framework, in the past, there has been a great effort to give the possibility to
automatically translate algorithms developed in MATLAB/Simulink on the Pixhawk autopilot
series: the original approach can be found in [20]. Nowadays, due to the advances in automated
embedded coding achieved by MathWorks, PX4 development is able to support system models
and control algorithms, designed with a Model-Based Design approach, without the need for the
developers to be proficient in low-level programming [20]. In concrete terms, one of the practical
objectives of this final project has been exploring the potentiality of the means made available
by the Embedded Coder Support Package for PX4 autopilots for implementing the quad-rotor
model and controller design directly on the Pixhawk 4 with automatic code generation [21].

The Embedded Coder Support Package for PX4 autopilots has been available since 2018b
MATLAB/Simulink release [21]. The package is directly derived from the Simulink Pilot Sup-
port Package [22], used for the studies [19, 23] taken as a reference for this work, that in its
turn, was derived from [20]. This development environment enables to access autopilot periph-
erals from MATLAB/Simulink environment and generate C++ code using the PX4 software
stack, building and deploying algorithms while incorporating on-board sensor data. Interfaces
for the PX4 architecture components are provided by Simulink blocks that work as inputs and
outputs for the model [21]. Using these capabilities, position controller and attitude rate con-
troller modules of the general PX4 architecture are replaced with user-defined algorithms: this
is possible thanks to a custom startup script, which needs to be copied on the micro-SD card
mounted on the Pixhawk [21]. This script, launched just after NuttX bootstrap [24], disables
the default Navigator and Commander PX4 modules, substituting them with a module, called
px4_simulink_app, that acts as a "wrapper" for the generated code.

The Embedded Coder [25], leveraging on CMake builder [26], generates and cross-compiles the
code from the models developed in Simulink using blocks . This code is then run by the module
px4_simulink_app inside the PX4 software stack. In some of the PX4 Simulink blocks, they
give the possibility to subscribe or publish uORB topics to retrieve sensors read or to impose
a control output (for more details about uORB middleware, refer to the uROB middleware
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section). This allows building a model referencing directly to peripherals, sensors, commands
of the autopilot board.

For example, the Vehicle Attitude block reads the vehicle_odometry uORB topic and outputs
the attitude measurements from the Pixhawk hardware. With its own frequency, the block
representing the software module checks if a new message is available on the vehicle_odometry
topic. The block outputs the vehicle attitude in roll, pitch and yaw angles [21]. These in-
formation are computed into an attitude control system that, for following a reference signal,
emits control outputs that, through a mixer matrix, are delivered to a Pulse Width Modulation
(PWM) block (for more details about PWM, refer to [27]). Attitude control system and mixer
matrix need to be selected, designed and tuned according to the particular airframe in use.The
following diagram 1.10 explain in a concrete manner the precedent example.

Figure 1.10: diagram of the precedent example

The PWM Block configures the PWM outputs for servo motors: the block accepts the signals
from controller as input and writes those values to the selected channels, that are topics on
their turn, subscribed by motor drivers modules [21]. In the interconnection between PX4
blocks and attitude controller, this model is ready for building process and deployment on the
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selected Pixhawk Series flight controller, that has to be installed on the actual UAV for flight
test. Finnaly the main tools that we used in the final project are:

- PX4 Simulink Blocks & Examples
A library of PX4 Simulink blocks was created for the PX4 Platform Support Package to
interface with the Pixhawk autopilot. In addition, examples of the PX4 Simulink model
are also available in the PX4 Platform Support Package that can be used for developing
the plant or controller of a vehicle.

- PX4 Eclipse
The PX4 Eclipse environment provides the platform to build the application from the
generated C/C++ codes of the Simulink model and download it to the Pixhawk autopilot.

1.2 Quadrotor mathematical model

1.2.1 Identification of quadrotor configuration

A quadrotor consists of four extended arms, each equipped with a BLDC motor and a fixed-pitch
propeller. The propellers are labeled 1 to 4 in a clockwise sequence. The motors are configured
such that one pair of propellers rotates counter-clockwise while the other pair rotates clockwise.
There are two primary flight configurations for a quadrotor, known as the plus configuration
and the cross configuration, as illustrated in Figure 1.11.

In the plus configuration, the quadrotor changes its attitude (roll, pitch, or yaw) by adjusting the
rotational speeds of two propellers. Conversely, in the cross configuration, the quadrotor alters
its attitude by varying the rotational speeds of all four propellers. This arrangement provides
quadrotors in the cross configuration with greater momentum and improved maneuverability
compared to those in the plus configuration.

Figure 1.11: Quadrotor in Plus (+) and Cross (X) Configurations

1.2.2 Plus Configuration Flight Mechanism

For a quadrotor to adopt a plus configuration, its arms are aligned with the quadrotor’s body
x-axis and y-axis (following the right-hand rule orientation). In this configuration, the quadro-
tor changes the speed of its DC motors to perform translational or rotational maneuvers, as
illustrated in Figure 8.
To generate thrust (T) and accelerate the quadrotor along the vertical z-axis, the rotational

27



Figure 1.12: Flight Mechanisms for Quadrotor in Plus Configuration

speed of all four propellers is increased or decreased by the same amount. For a roll maneuver,
the speed of propeller 2 is increased while the speed of propeller 4 is decreased, producing a
torque along the x-axis (). Similarly, for a pitch maneuver, increasing the speed of propeller
1 and decreasing the speed of propeller 3 generates a torque along the y-axis (). Lastly, to
perform a yaw maneuver, different speeds are applied to each pair of propellers rotating in the
same direction, creating a torque along the z-axis ().

1.2.3 Cross Configuration Flight Mechanism

In the cross configuration, the quadrotor’s body x-axis and y-axis are tilted 45 degrees with
respect to the quadrotor arms. The quadrotor in cross configuration adjusts the speed of its
DC motors to execute translational or rotational maneuvers, as shown in Figure 1.13.

The quadrotor in cross configuration increases the rotational speed of all four propellers uni-
formly to generate thrust (T ) and accelerate along the vertical z-axis. For a roll maneuver,
the rotational speed of propellers 3 and 4 is increased, while the speed of propellers 1 and 2 is
reduced, creating a torque along the x-axis (τϕ). For a pitch maneuver, increasing the rotational
speed of propellers 1 and 4 while reducing the speed of propellers 2 and 3 generates a torque
along the y-axis (τθ). Finally, by varying the rotational speeds of the counter-rotating pairs of
propellers, a torque along the z-axis (τψ) is generated to perform a yaw maneuver.

1.2.4 Notations for Quadrotor Mathematical Model

The notations for the quadrotor’s translational and rotational motions are summarized in Table
1.1.
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Figure 1.13: Flight Mechanisms for Quadrotor in Cross Configuration.

1.2.5 The rotational matrix

1.2.5.1 Kinematics and Quaternions

Kinematics is the process of describing the motion of objects without focusing on the forces
involved. it also involves quaternions, which are used to describe rotations in three-dimensional
space. The angular velocities [ωx, ωy, ωz] are fed into a quaternion calculator, resulting in the
quaternion vector q. Quaternions are represented as [q1, q2, q3, q4], where:

- [q1, q2, q3] define the Euler axis in three-dimensional space.

- [q4] is the angle of rotation around that axis.[28]

1.2.5.2 DCM and Euler Angles

The DCM relates the input angular velocities to the Euler angles using one of 12 permutations
of possible rotation sequences. The rows of the DCM show the axes of Frame A represented in
Frame B, and the columns show the axes of Frame B represented in Frame A. The angles of
rotation ϕ, θ, and ψ are used to rotate from orientation A to orientation B.

1.2.5.3 Euler Angles and Rotation Sequences

Euler angles describe the orientation of a rigid body through three successive rotations about
different axes. There are two main types of rotation sequences[28]:

- Proper Euler Angles: Involves rotations about three different axes.

- Tait-Bryan Angles: Involves rotations where one axis is repeated, but not consecutively.
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Table 1.1: Notations for Quadrotor Translational & Rotational Motions.

States Description
xi Quadrotor position along the x-axis in the inertia frame.
yi Quadrotor position along the y-axis in the inertia frame.
zi Quadrotor position along the z-axis in the inertia frame.
ẋi Quadrotor velocity along the x-axis in the inertia frame.
ẏi Quadrotor velocity along the y-axis in the inertia frame.
żi Quadrotor velocity along the z-axis in the inertia frame.
ẍi Quadrotor acceleration along the x-axis in the inertia frame.
ÿi Quadrotor acceleration along the y-axis in the inertia frame.
z̈i Quadrotor acceleration along the z-axis in the inertia frame.
xb Quadrotor position along the x-axis in the body frame.
yb Quadrotor position along the y-axis in the body frame.
zb Quadrotor position along the z-axis in the body frame.
xv Quadrotor position along the x-axis in the vehicle frame.
yv Quadrotor position along the y-axis in the vehicle frame.
zv Quadrotor position along the z-axis in the vehicle frame.
u Quadrotor velocity along the x-axis in the body frame.
v Quadrotor velocity along the y-axis in the body frame.
w Quadrotor velocity along the z-axis in the body frame.
ϕ Quadrotor roll angle with reference to inertia frame axis.
θ Quadrotor pitch angle with reference to inertia frame axis.
ψ Quadrotor yaw angle with reference to inertia frame axis.
p Quadrotor roll rate along the x-axis in the body frame.
q Quadrotor pitch rate along the y-axis in the body frame.
r Quadrotor yaw rate along the z-axis in the body frame.

1.2.5.4 Determining Possible Sequences

For a valid sequence of Euler angles:

- There are 3 choices for the first axis.

- There are 2 remaining choices for the second axis.

- There is 1 remaining choice for the third axis.

Thus, the total number of sequences is 3× 2× 1 = 6.

Tait-Bryan Angles (6 sequences):

- One axis is repeated, but not consecutively.
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- Examples: XYZ, YZX, ZXY.

Hence, there are a total of 12 unique Euler angle sequences for describing 3D rotational motion,
and because the Tait-Bryan angles correspond directly to intuitive notions of orientation. Roll,
pitch, and yaw describe rotations about the quadrotor’s forward axis (X-axis), sideways axis
(Y-axis), and vertical axis (Z-axis), respectively, we chose the XYZ form in our final year
project.

First Rotation

The first rotation is a rotation of ψ around the Z0 axis which aligns the Y0 axis with the Y ′

axis and the X0 axis with the X ′ axis. Its rotation matrix is:

Rψ =


cψ −sψ 0
sψ cψ 0
0 0 1

 (1.1)

Where: cψ = cos(ψ) and sψ = sin(ψ).

Second Rotation

The second rotation is a rotation of θ around the Y ′ axis which aligns the X ′ axis with the X1
axis and the Z0 axis with the Z ′ axis. Its rotation matrix is:

Rθ =


cθ 0 sθ

0 1 0
−sθ 0 cθ

 (1.2)

Where: cθ = cos(θ) and sθ = sin(θ).

Third Rotation

The third rotation is a rotation of ϕ around the X1 axis which aligns the Z ′ axis with the Z1
axis and the Y ′ axis with the Y1 axis. Its rotation matrix is:

Rϕ =


1 0 0
0 cϕ −sϕ
0 sϕ cϕ

 (1.3)

Where: cϕ = cos(ϕ) and sϕ = sin(ϕ).

Total Rotation Matrix

Finally, as shown in the figure 1.14 we obtain the total rotation matrix which allows us to go
from the body frame to frame the global frame by successively multiplying the three previous
rotation matrices:

Ri
b = Rϕ ·Rθ ·Rψ =


cθcψ cψsθsϕ − sψcϕ sψsϕ + cψcϕsθ

cθsψ cψcϕ + sψsθsϕ −cψsϕ + sψcϕsθ

−sθ cθsϕ cθcϕ

 (1.4)
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Notice: This matrix may also be referred to as a direction cosine matrix (DCM), because the
elements of this matrix are the cosines of the unsigned angles between the body-fixed axes and
the world axes.

Figure 1.14: Euler-angle rotation sequence

1.2.6 Quadrotor dynamics

The following assumptions were made in deriving the quadrotor dynamics:

- The quadrotor’s center of gravity is located at the origin of the body frame.

- The quadrotor is considered a rigid body.

- The quadrotor is symmetrical with respect to the x and y-axes, as described in [29, 30,
31, 32, 33, 34].

- The quadrotor propellers are rigid.

- The thrust and drag exerted on the quadrotor are proportional to the square of the
propellers’ angular speed.[35]

1.2.7 Aerodynamic Forces

In this section we will talk about the different aerodynamic forces which are:

1.2.7.1 Quadrotor Thrust Force

The thrust generated by the propellers along the z-axis in the body coordinate frame (zb) can
be described by the following equations:

T b = −KT

(
w2

1 + w2
2 + w2

3 + w2
4

)
(1.5)

T b = −KTU1 (1.6)

where:

- KT is the propeller thrust coefficient.

- U1 is the thrust control input for the propellers’ rotational speed.
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1.2.7.2 Quadrotor Roll Moment

The roll moment for the quadrotor along the x-axis in the body coordinate frame can be
expressed for the cross configuration as follow:

- Plus Configuration
τϕ = KT ly

(
−w2

2 + w2
4

)
(1.7)

- Cross Configuration

τϕ = KT ly
(
−w2

1 − w2
2 + w2

3 + w2
4

)
(1.8)

τϕ = KT lyU2 (1.9)

where:

- ly is the length of the moment arm along the body y-axis.

- U2 is the roll control input for the propellers’ rotational speed.

1.2.7.3 Quadrotor Pitch Moment

The pitch moment for the quadrotor along the y-axis on the body coordinate frame in cross
configurations can be expressed as:

- Plus Configuration
τθ = KT lx

(
w2

1 − w2
3

)
(1.10)

- Cross Configuration
τθ = KT lx

(
w2

1 − w2
2 − w2

3 + w2
4

)
(1.11)

τθ = KT lxU3 (1.12)

where:

- lx is the length of the moment arm on the body x-axis.

- U3 is the pitch control input for the propellers’ rotational velocity.

1.2.7.4 Quadrotor Yaw Moment

The yaw moment for the quadrotor along the z-axis on the body coordinate frame in plus and
cross configurations are the same and can be expressed as:

τψ = KD

(
w2

1 − w2
2 + w2

3 − w2
4

)
(1.13)

τψ = KDU4 (1.14)

where:

- KD is the propellers’ drag coefficient.

- U4 is the yaw control input for the propellers’ rotational velocity.
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1.2.7.5 Summary of Aerodynamic Forces and Moments

The relationship between the aerodynamic forces and the propellers’ rotational velocity can be
represented in matrix form. The matrices for the quadrotor in plus and cross configurations
are expressed as follows:

- Plus Configuration
T b

τϕ

τθ

τψ

 =


−KT −KT −KT −KT

0 −KT ly 0 KT ly

KT lx 0 −KT lx 0
KD −KD KD −KD




w2

w2
2

w2
3

w2
4

 (1.15)

- Cross Configuration
T b

τϕ

τθ

τψ

 =


−KT −KT −KT −KT

−KT ly KT ly KT ly −KT ly

KT lx −KT lx KT lx −KT lx

KD KD −KD −KD




w2

1

w2
2

w2
3

w2
4

 (1.16)

Here, we need to underline that the inverse matrix

−KT −KT −KT −KT

−KT ly KT ly KT ly −KT ly

KT lx −KT lx KT lx −KT lx

KD KD −KD −KD



−1

(1.17)

is called the mixer matrix because, using it, we can find the angular velocity of our system if
we have the torque.

1.2.7.6 Quadrotor Equations of Motion

According to Newton’s second law of dynamics in the inertial frame:

mẌ =
∑

Fext (1.18)

Where:

- m ∈ R+ is the total mass of the quadrotor.

- X =


x

y

z

 ∈ R3 is the position vector of the quadrotor in the inertial frame.

- ∑Fext ∈ R3 is the vector of external forces.
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The external forces applied to the quadrotor are:

Gravitational Force:

This is the gravitational force of the earth. It is given by:

P =


0
0
mg

 (1.19)

Where g ∈ R+ is the acceleration due to gravity on earth.

Lift Force:

This is the total force generated by the rotation of the four rotor blades. It is directed upwards,
meaning it tends to lift the quadrotor. The lift force is calculated in the body frame, so by
multiplying in the rotation matrix we get:

T i = Ri
b ·


0
0
−T b

 (1.20)

Where:

- T = ∑4
i=1 fi is the total lift force from the four blades.

- fi is the lift force produced by the rotation of the i-th blade, given by:

fi = b · w2
i (1.21)

With b ∈ R+ being the lift coefficient. By substituting the expression for external forces into
equation (1.5), we obtain the following system of differential equations after simplification:

ẍ = −T
m

(cϕsθcψ + sϕsψ)
ÿ = T

m
(sϕcψ − cϕsθsψ)

z̈ = −T
m

(cϕcθ) + g

(1.22)

1.2.7.7 Rotation Dynamics

According to Newton’s second law of dynamics:
d(JΩ)
dt

=
∑

Γext (1.23)

And since the angular velocity is expressed in the frame attached to the quadrotor, then:
d(JΩ)
dt

= JΩ̇ + Ω ∧ JΩ (1.24)

Which gives us:
JΩ̇ = −ΩJΩ +

∑
Γext (1.25)

Where:
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- J =


Jx 0 0
0 Jy 0
0 0 Jz

 ∈ R3×3 is the inertia matrix of the quadrotor.

- ∑Γext ∈ R3 is the vector of total external moments.

- Ω =


p

q

r

 ∈ R3 is the vector of instantaneous rotational velocities in the quadrotor’s frame.

The external moments applied to the quadrotor are:

By substituting the expression for external moments 1.15 or 1.16 into equation 1.25, we obtain
the following system of differential equations after simplification:

ṗ =
(
Jy−Jz
Jx

)
qr + τϕ

Jx

q̇ =
(
Jz−Jx
Jy

)
pr + τθ

Jy

ṙ =
(
Jx−Jy
Jz

)
pq + τψ

Jz

(1.26)

1.2.8 Relation between Euler angles and angular velocities

If a solid body rotates at a constant speed, its angular velocity wb (angular velocity of quadrotor
in body coordinates) is constant. However, the variations of the Euler angles will be variable
because they depend on the instantaneous angles between the axes of the two frames. The
sequence of Euler angles is obtained from three successive rotations: yaw, pitch, and roll. The
variation ψ requires two rotations, θ requires one rotation, and ϕ requires no rotation[36]:

wb = RϕRθ


0
0
ψ̇

+Rϕ


0
θ̇

0

+


ϕ̇

0
0

 (1.27)

Which gives us:


p

q

r

 =


1 0 −sθ
0 cϕ sϕcθ

0 −sϕ cϕcθ



ϕ̇

θ̇

ψ̇

 (1.28)

Here, the vector
[
p q r

]T
represents the angular velocity components of the quadrotor in the

body frame:

- p: Roll rate (angular velocity around the x-axis)

- q: Pitch rate (angular velocity around the y-axis)

- r: Yaw rate (angular velocity around the z-axis)
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The transformation of the quadrotor’s angular velocities from the body frame coordinate to
the inertia frame coordinate can be represented by the following equation:


ϕ̇

θ̇

ψ̇

 =


1 sϕ

sθ
cθ

cϕ
sθ
cθ

0 cϕ −sϕ
0 sϕ

cθ

cϕ
cθ



p

q

r

 (1.29)

Notice:If the pitch angle is equal to π/2, we will encounter what is called gimbal lock. A
gimbal is a pivoted support that allows rotation of an object about a single axis. In a three-
dimensional gimbal system, three gimbals are arranged mutually perpendicular to each other,
allowing for movement in any direction.

Gimbal lock occurs when two of the three gimbals align, effectively reducing the system to a
two-dimensional one. This alignment causes a loss of one degree of freedom, which can lead
to problems in controlling and maneuvering the object. In practical terms, this means that
certain orientations become impossible to achieve or control accurately.

In our case, we don’t have to worry about gimbal lock because our drone is designed for security
purposes, so it does not need to align the pitch angle to π/2 and also for simplification purposes
and as most studies in the literature work with a simplified model [37, 38, 39], we assume that
the roll and pitch angles are of small amplitude, i.e., |ϕ| ≤ π

6 and |θ| ≤ π
6 , which allows us to have

sin(ϕ) ≈ ϕ, sin(θ) ≈ θ, cos(ϕ) ≈ 1 and cos(θ) ≈ 1. We also assume that the angular velocities
around the three axes of the quadrotor are small, and therefore equation (1.16) becomes:

ϕ̇

θ̇

ψ̇

 =


1 sϕ

sθ
cθ

cϕ
sθ
cθ

0 cϕ −sϕ
0 sϕ

cθ

cϕ
cθ



p

q

r

 ≈

p

q

r

 (1.30)

And equation 1.29 becomes: 
ϕ̈ =

(
Jy−Jz
Jx

)
θ̇ψ̇ + τϕ

Jx

θ̈ =
(
Jz−Jx
Jy

)
ϕ̇ψ̈ + τθ

Jy

ψ̈ =
(
Jx−Jy
Jz

)
ϕ̇θ̇ + τψ

Jz

(1.31)

1.2.9 Aerodynamic Effects and Uncertainties

There are many aerodynamic and gyroscopic effects associated with a quadrotor that modify the
model presented above. Most of these effects only cause minor disturbances and do not justify
being taken into account, even if they are important for the design of a complete system. Blade
flapping and induced drag, however, are fundamental effects that are significantly important in
understanding the natural stability of quadrotors. These effects are particularly important as
they induce forces in the x-y plane of the quadrotor, its underactuated directions, which cannot
be easily dominated by a high-gain control.

1.2.9.1 Air Friction

The chassis of the quadrotor as well as the propellers offer resistance to the air. This generates
a friction force that opposes the linear and rotational movement of the quadrotor. This force
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is proportional to the square of the difference between the speed of the quadrotor and that of
the wind, and it depends on the geometry of the quadrotor. Its expression is given by[40, 41]:

Fr =


−Ax|ẋ− wx|(ẋ− wx)
−Ay|ẏ − wy|(ẏ − wy)
−Az|ż − wz|(ż − wz)

 (1.32)

Where:

- Ax ∈ R+, is the viscous friction coefficient along the X0 axis;

- Ay ∈ R+, is the viscous friction coefficient along the Y0 axis;

- Az ∈ R+, is the viscous friction coefficient along the Z0 axis;

- wx ∈ R+, is the wind speed along the X0 axis;

- wy ∈ R+, is the wind speed along the Y0 axis;

- wz ∈ R+, is the wind speed along the Z0 axis.

1.2.9.2 Gyroscopic Effect

The rotational motion of the propeller-rotor combination generates a gyroscopic effect that acts
on the quadrotor in the body coordinate frame. The gyroscopic effect is contributed by the
rotor’s moment of inertia, the rotor’s angular velocity, and the body attitude rate, which can
be expressed by equation:

Gb = Irotor(wb ×


0
0
1

)Ω = Irotor


p

q

r

×

0
0
1

Ω (1.33)

where:

- wb is the angular velocity of the quadrotor (body coordinate frame) during the flight,

- w is the sum of the 4 rotors’ rotational velocities (i.e. w = w1 + w2 + w3 + w4),

- Irotor is the rotor moment of inertia given by:

Irotor =
(1

4mmotor · r2
motor

)
+
( 1

12mprop · L2
prop

)
, (1.34)

- mmotor is the motor mass,

- rmotor is the motor radius,

- mprop is the propeller mass, and

- Lprop is the propeller length.
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Thus,

Gb = Irotor


q

p

0

Ω (1.35)

Assuming the attitude control system functions as intended and effectively regulates the angular
dynamics to near-hover conditions, the UAV’s body rates approach zero during flight. Given the
constant and small moment of inertia of the rotor-propeller combination (Irotor), the product
Gb in the final equation remains small as long as the roll and pitch attitude rates in b are
maintained near zero. Consequently, the gyroscopic effect’s contribution to the quadrotor’s
total moment is minimal and can be initially neglected during the initial phase of the linear
control design approach.

1.2.9.3 Propeller Flapping

The propeller flapping effect is created when the propeller moves horizontally. This movement
creates a difference in speed, and thus thrust, between the part of the propeller that attacks
the airflow and the part that withdraws from the airflow. This difference in thrust between
these elements causes the propeller plane to tilt, which changes the direction of the thrust
vector[40, 41].

1.2.9.4 Ground Effect

The ground effect is created when a surface, sufficiently close to the propeller, disturbs the
airflow generated by the propeller, thereby improving the thrust of the propeller. At low speed,
this effect can be modeled by[42, 41]: ∣∣∣∣TEST0

∣∣∣∣ = 1
1−

(
r

4h

)2 (1.36)

Where:

- TES ∈ R+, is the thrust generated by the propeller with the ground effect;

- T0 ∈ R+, is the thrust generated by the propeller without the ground effect;

- r ∈ R+, is the radius of the propeller;

- h ∈ R+, is the height of the propeller relative to the ground.

It is noted that the thrust increases due to the ground effect, but this effect decreases signif-
icantly even at low heights. The thrust increase is only 7% when the height is equal to the
radius of the propeller[42].

In this respect, we will treat all these effects as well as all the variations due to the simplifications
we have made and any possible modeling errors such as uncertainties and disturbances, and

39



we group them in the vector ρd ∈ R4 that we add to equations (1.31) and (1.22) so that they
become: 

ẍ = T
m

(cϕsθcψ + sϕsψ) + ρdx

ÿ = T
m

(cϕsθsψ − sϕcψ) + ρdy

z̈ = T
m

(cϕcθ)− g + ρdz

(1.37)


ϕ̈ =

(
Jy−Jz
Jx

)
θ̇ψ̇ + τϕ

Jx
+ ρdϕ

θ̈ =
(
Jz−Jx
Jy

)
ϕ̇ψ̇ + τθ

Jy
+ ρdθ

ψ̈ =
(
Jx−Jy
Jz

)
ϕ̇θ̇ + τψ

Jz
+ ρdψ

(1.38)

1.3 Controller design

1.3.1 Pole placement and LQR Control Techniques

1.3.1.1 State-Space Model

To put the quadrotor equations into state-space form, we choose the state vector:

X = [x y ẋ ẏ ϕ θ ψ ϕ̇ θ̇ ψ̇ z ż]T (1.39)

And to simplify the calculations, we chose to work with the plus configuration:
U1 = T = KT (w2

1 + w2
2 + w2

3 + w2
4)

U2 = τϕ = KT · ly(w2
4 − w2

2)
U3 = τθ = KT · lx(w2

3 − w2
1)

U4 = τψ = KD · (−w2
1 + w2

2 − w2
3 + w2

4)

(1.40)

The obtained state representation is as follows:

ẋ1 = x3

ẋ2 = x4

ẋ3 = U1
m

(cθsψsϕ − sθcϕ) + ρdy

ẋ4 = U1
m

(cθsψcϕ + sθsϕ) + ρdx

ẋ5 = x8

ẋ6 = x9

ẋ7 = x10

ẋ8 =
(
Jy−Jz
Jx

)
x9x10 + U2

Jx
+ ρdϕ

ẋ9 =
(
Jz−Jx
Jy

)
x8x10 + U3

Jy
+ ρdθ

ẋ10 =
(
Jx−Jy
Jz

)
x8x9 + U4

Jz
+ ρdψ

ẋ11 = x12

ẋ12 = g − U1
m

(cθcψ) + ρdz

(1.41)

1.3.1.2 1st Lyapunov method

Now, to work with these two methods, we need to linearize around the equilibrium point, which
is the origin. Applying linearised equations to this LQR and pole placement design was a bit
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difficult since their state-space equations would not conform to the format of a traditional state
space. According to [43], Taylor series could be applied in linearising non-linear equations.
However, in the LQR design, linearisation was simply achieved by approximating 1.41. Using
the linearisation process removes the offsets from the dynamics of the system. These offsets
are accounted for in the controller design after the gains are calculated and found to achieve
satisfactory results [18]. The same technique was implemented in this application to design the
LQR controller. The following equations show the linear equations that were achieved after
applying this technique:



ϕ̈ = 1
Ix
U2

θ̈ = 1
Iy
U3

ψ̈ = 1
Iz
U4

ẍ = ux
1
m
U1

ÿ = uy
1
m
U1

z̈ = uz

(1.42)

where


ux = cos θ sinϕ cosψ + sinϕ sinψ
uy = cos θ sinϕ sinψ − sinϕ cosψ
uz = g − (cosϕ cos θ) 1

m
U1

(1.43)

Another technique that was adopted in this LQR and pole placement design was the reduction
technique [18]. This was implemented in order to simplify the mathematical calculations here.
With this technique, the state vector which is given as X = (ϕ, θ, ψ, ϕ̇, θ̇, ψ̇, x, y, z, ẋ, ẏ, ż)T ,
though consisting of 12 members, will be reduced into the following: altitude, attitude, and
position controls as in 1.39. The altitude control would be characterised by (z, ż)T while the
attitude control would be characterised by (ϕ, θ, ϕ̇, θ̇, ψ̇)T . On the other hand, the position
control would be characterised by (x, y, ẋ, ẏ)T . After linearization at the origine :

X =



x

y

ẋ

ẏ

ϕ

θ

ψ

ϕ̇

θ̇

ψ̇

z

ż



=



0
0
0
0
0
0
0
0
0
0
0
0



(1.44)

we obtain the following matrices:
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For the position:


ẋ1

ẋ2

ẋ3

ẋ4

 = Axy


x1

x2

x3

x4

+Bxy

Ux
Uy

 (1.45)

Axy =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Bxy =


0 0
0 0
a 0
0 a

 (1.46)

For the attitude:



ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

˙x10


= Aypr



x5

x6

x7

x8

x9

x10


+Bypr


U2

U3

U4

 (1.47)

Aypr =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, Bypr =



0 0 0
0 0 0
0 0 0
1
Jx

0 0
0 1

Jy
0

0 0 1
Jz


(1.48)

For the altitude:

 ˙x11

˙x12

 = Az

x11

x12

+Bz

[
Uz
]

(1.49)

Az =
0 1
0 0

 , Bz =
0
1

 (1.50)

where symbol a in matrix Bxy is equal to 1
m
U1

1.3.1.3 Pole placement

Now, for the pole placement, finding the gain is relatively easy. We just use the MATLAB
function ‘place‘ and choose the poles. For the xy plane, the poles are [−1,−2,−3,−4], for
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attitude, the poles are [−1,−2,−3,−4,−5,−6], and for altitude, the poles are [−1,−2]. The
poles are chosen so that we can get the fastest dynamics possible. After executing the MATLAB
code, we find the following results:

K1 =
0.6008 0.8003 0.0317 0.0127
0.0242 0.0104 1.5992 1.1997

 (1.51)

K2 =


0.9000 0.5250 0.0000 0.0000 −0.0000 −0.0000
0.0000 0.0000 2.2500 0.8250 −0.0000 −0.0000
−0.0000 −0.0000 −0.0000 −0.0000 0.0026 0.0039

 (1.52)

K3 =
[
2.0000 3.0000

]
(1.53)

- Simulation Results
We designed two systems for our quadrotor using Simulink. The first one is for the linear
system to test the gains, and the second one is for the nonlinear system. Both blocks take
the commands of position x, y, z, yaw and output the system position, yaw, pitch, roll of
the system, and the angular velocities.

Results of simulation

- Linear Model
In Figure 1.16,Here we can see that the position is not tracking the setpoint, which is why
we add a precompensator after that we can see In Figure 1.15, the position is perfectly
tracking the setpoints, which are x = 1, y = 2, and z = 3, and also the yaw, pitch, and
roll angles are satisfying the conditions in Equation 1.30.
In Figure 1.17, we can see that the four angular velocities are giving us very good results.
Our brushless motors, as discussed in the chapter on identification, have a maximum
angular velocity of 363 tr/s. In the four plots, the maximum is about 255 tr/s, so the
results are acceptable. 1.30.

(a) XYZ of our Linear system (b) yaw pitch roll Linear system

Figure 1.15: position and attitude of our Linear system
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(a) XYZ of our Linear system with compen-
sator

(b) yaw pitch roll Linear system with compen-
sator

Figure 1.16: Position and attitude of our linear system with compensator

(a) angular velocity of motor 1 (b) angular velocity of motor 2

(c) angular velocity of motor 3 (d) angular velocity of motor 4

Figure 1.17: angular velocity of the four motors

Nonlinear Model

As we can see in 1.18, our nonlinear model gives us good results With some steady error because
the precompensator we designed was based on the linear equations. The condition regarding
the angles in Equation 1.30 is verified. In Figure 1.19, we can see that the four angular velocities
are good results for the nonlinear system. Our brushless motors, as discussed in the chapter on
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(a) XYZ of our Nonlinear system with com-
pensator

(b) yaw pitch roll of our Nonlinear system
with compensator

Figure 1.18: postion and attitude of our Nonlinear system with compensator

(a) angular velocity of motor 1 (b) angular velocity of motor 2

(c) angular velocity of motor 3 (d) angular velocity of motor 4

Figure 1.19: angular velocity of the four motors

identification, have a maximum angular velocity of 363 tr/s. In the four plots, the maximum
angular velocity reaches about 246 tr/s, indicating that the results are acceptable.
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1.3.1.4 LQR design

In LQR designs, the system’s performance index is characterised by a cost function J for
which the controller seeks to minimise [43]. This cost function is given by the formula:

J =
∫ ∞

0
[xTQx+ uTRu]dt (1.54)

where Q is the state weighting matrix with real symmetry and positive semi-definite in
nature. R is the control weighting matrix of real symmetry but positive definite in nature
[44]. These weighting matrices help determine the relative importance of the existing
error as well as the energy expenditure of the system [45]. It is, therefore, important
that, for a successful LQR design, these parameters be chosen accurately. Here, a hybrid
form of the classical approach based on the Bryson’s method [46] and the trial-and-error
methods are combined. This method was chosen for its ability to offset the disadvantages
of just using the trial-and-error or Bryson’s method. The Bryson’s method was first
used in determining the initial Q and R weighting matrices. The trial-and-error, then,
was relied on to fine-tune these two parameters to achieve a better performance of the
controller [47]. The Bryson’s Rule: According to this rule, Q and R are diagonal matrices
whose diagonal elements are, respectively, expressed as the reciprocals of the squares of
the maximum acceptable values of the state variable (x) and the input control variable
(u). The diagonal elements Qii of matrix Q, thus, can be written as [47]:

Qii = 1
(maximum acceptable value of Xi)2 (1.55)

where i = (1, 2, 3, . . .) The diagonal elements Rjj of matrix R, also, can be written as
[44]:

Rjj = 1
(maximum acceptable value of uj)2 (1.56)

where j = (1, 2, 3, . . . k) Applying Bryson’s rule to the state-space equation for attitude,
as in [45], the following initial Q and R values were obtained:

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.57)

R = 0.3 (1.58)
Also applying Bryson’s rule to the state-space equation for position, the following initial
Q and R values were obtained;

Q =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


R = 0.5 (1.59)

Finally applying Bryson’s rule to the altitude, the following initial Q and R values were
achieved;

Q =
1 0
0 1

 R = 1 (1.60)
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Obtaining the feedback gain matrix through Riccati equation
After obtaining the Q and R matrices above, they had to be substituted into the algebraic
Riccati equation, to solve for P [8].

A× P + P × A− P ×B ×R−1 ×BT × P +Q = 0 (1.61)

With P solved, the feedback gain matrix (K) would then be calculated using [8].

K = R−1 ×BT × P (1.62)

MATLAB was used as it provides a convenient way of solving for K by just using the
following command

K = lqr(A,B,Q,R) (1.63)
The MATLAB command, was also used to derive the K values for attitude, position, and
altitude controllers. In the altitude controller, for instance, where

A =
0 1
0 0

 B =
0
1

 Q =
1 0
0 1

 R = 1 (1.64)

the values obtained for K are:

K1 =
1.0000 1.1832 −0.0000 −0.0000
0.0000 0.0000 1.0000 1.1832

 (1.65)

K2 =


1.0000 122.4786 −0.0000 −0.0000 −0.0000 −0.0000
−0.0000 −0.0000 1.0000 122.4786 0.0000 0.0000
−0.0000 −0.0000 0.0000 0.0000 1.0000 16.1555

 (1.66)

K3 =
[
1.0000 1.7321

]
(1.67)

Simulation results

-- Linear system

The structure of our Simulink blocks remains the same as before 1.30. These blocks
accept commands for position x, y, z, yaw and provide the system’s position, yaw, pitch,
roll, and angular velocities as output. In Figure 1.20, we can see that the position is
perfectly tracking the setpoints, which are x = 2, y = 3, and z = 4. Additionally, the
yaw, pitch, and roll angles are satisfying the conditions in Equation 1.30.
In Figure 1.21, we can see that the four angular velocities are giving us very good results.
Our brushless motors, as discussed in the chapter on identification, have a maximum
angular velocity of 363 tr/s. In the four plots, the maximum is about 247 tr/s, making
these results acceptable.

◦ Noninear system

In Figure 1.22, we can see that the position is perfectly tracking the setpoints,
which are x = 2, y = 3, and z = 4. Additionally, the yaw, pitch, and roll angles are
satisfying the conditions specified in Equation 1.30 . In Figure 1.23, we can see that
the maximum value of our angular velocity is 750 tr/s, which is significantly greater
than 363 tr/s. This is why we will not apply this method in our flight controller.
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(a) X Y Z of our Linear system (b) yaw pitch roll of our Linear system

Figure 1.20: position and attitude of our Linear system

(a) angular velocity of motor 1 (b) angular velocity of motor 2

(c) angular velocity of motor 3 (d) angular velocity of motor 4

Figure 1.21: angular velocity of the four motors

1.3.2 Overview of PID controller

1.3.2.1 PID components

The quadrotor model in this final project uses a PID controller, as elaborated in [48], [49], and
[50], to stabilize the attitude during flight. A PID controller consists of three tunable gain
values: Proportional gain (i.e., KP ), Integral gain (i.e., KI), and Derivative gain (i.e., KD), as
shown in Figure 1.24. The transfer function of a PID controller can be represented by equation
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(a) X Y Z of our nonLinear system (b) yaw pitch roll of our Nonlinear system

Figure 1.22: position and attitude of our Nonlinear system

(a) angular velocity of motor 1 (b) angular velocity of motor 2

(c) angular velocity of motor 3 (d) angular velocity of motor 4

Figure 1.23: angular velocity of the four motors

1.68.
G(s) = KP + KI

s
+KD · s (1.68)

Each gain in the PID controller can be tuned to modify a particular transient response pa-
rameter of the feedback system (see Figure 1.25). The effects of increasing each gain value
separately are elaborated below:

1. Proportional Gain, KP
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Figure 1.24: Illustration of System designed with PID Controller

The KP value is increased to reduce the time required for the output signal to reach
the desired signal (i.e., system response time, tr). By increasing the KP value alone in
the PID controller, a steady-state error can be reduced and expected to be between the
desired signal and the output signal. However, setting an overly high KP value will also
propagate any inherent disturbance signal within the system and cause the system to
undergo unstable oscillations.

2. Integral Gain, KI

The KI value is increased to eliminate the steady-state error of the feedback system.
However, as the integral term introduces a pole at the origin of an S-plane plot, the
system might become increasingly unstable when the KI value is increased (i.e., the
system will become increasingly oscillatory in the steady-state).

3. Derivative Gain, KD

The KD value is increased to reduce the overshoot, MP , and the settling time, td, of the
feedback system’s output signal. Although derivative control does not affect the steady-
state error directly, it introduces damping to the feedback system. This allows the system
to use a larger KP value, which improves the system’s steady-state performance. As de-
scribed in [49] and [50], “derivative control operates on the rate of change of the actuating
error and not the actuating error itself; this mode is never used alone.” Therefore, KD

gain is generally used in combination with KP and KI control actions.

1.3.2.2 Advantages of PID Control for Drone Design

Using PID control for the design of a drone controller offers several advantages. Firstly, sim-
plicity and ease of implementation are notable benefits. PID controllers are straightforward
to design, implement, and understand, making them accessible to many practitioners due to
their fundamental nature taught in engineering. Secondly, proven effectiveness is a significant
advantage. PID control has been proven effective in stabilizing drone orientation and posi-
tion in numerous studies and practical applications. It demonstrates reliable performance and
robustness, handling disturbances and uncertainties well to ensure stable flight in various con-
ditions. Thirdly, PID control provides flexibility. It allows easy tuning of proportional, integral,
and derivative gains to achieve desired performance and can be combined with other control
methods for enhanced performance. Lastly, stability and precision are key strengths. PID con-
trollers are effective at maintaining stable hover and accurate trajectory following, achieving
high accuracy in maintaining desired setpoints for flight parameters.
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Figure 1.25: Transient Response for a Feedback System (from [3]).

1.3.3 Cascade Control

1.3.3.1 Principle

Cascade control involves multiple nested control loops, where each loop has its own specific
measurement and control objectives. In this system, we have three nested control loops: the
first controller for position, the second for velocity, and the third for attitude. The position
control loop (C1(p)) sets the desired velocities for the velocity control loop (C2(p)). The velocity
control loop adjusts the desired attitudes for the attitude control loop (C3(p)). Finally, the
attitude control loop sets the desired attitude rates for the attitude rate control loop (C4(p)).

1.3.3.2 Example of two controllers

For example if we had two controllers, Each controller in the hierarchy receives its setpoint from
the output of the previous controller and uses its measurement signals to minimize the control
errors. The secondary controllers (inner loops) change quickly, while the primary controllers
(outer loops) change slowly. This hierarchical structure ensures that disturbances affecting the
inner loops do not propagate to the outer loops, thereby enhancing the stability and performance
of the control system.

The diagram1.26 illustrates this cascade structure with the control loops and their interactions
clearly labeled.

If the intermediate variable is the controlling variable of H1(p), it is referred to as "cascade on
the controlling variable". Otherwise, it is referred to as "cascade on an intermediate variable".
This type of regulation is justified when the system has a large inertia with respect to a
disturbance on the controlling variable or on an intermediate variable. The internal loop should
be tuned first, followed by the external loop with the slave controller closed.
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Figure 1.26: Cascade control structure

1.3.4 Ziegler-Nichols closed-loop tuning method

The Ziegler-Nichols closed-loop tuning method allows you to use the ultimate gain value, Ku,
and the ultimate period of oscillation, Pu, to calculate Kc. It is a simple method of tuning
PID controllers and can be refined to give better approximations of the controller. You can
obtain the controller constants Kc, Ti, and Td in a system with feedback. The Ziegler-Nichols
closed-loop tuning method is limited to tuning processes that cannot run in an open-loop
environment.

Determining the ultimate gain value, Ku, is accomplished by finding the value of the proportional-
only gain that causes the control loop to oscillate indefinitely at steady state. This means that
the gains from the I and D controllers are set to zero so that the influence of P can be de-
termined. It tests the robustness of the Kc value so that it is optimized for the controller.
Another important value associated with this proportional-only control tuning method is the
ultimate period (Pu). The ultimate period is the time required to complete one full oscillation
while the system is at steady state. These two parameters, Ku and Pu, are used to find the
loop-tuning constants of the controller (P, PI, or PID). To find the values of these parameters,
and to calculate the tuning constants, we use the following procedure:

Figure 1.27: System tuned using the Ziegler-Nichols closed-loop tuning method

1.3.4.1 Closed Loop (Feedback Loop)

Remove integral and derivative action. Set integral time (Ti) to 999 or its largest value and set
the derivative controller (Td) to zero.
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Create a small disturbance in the loop by changing the set point. Adjust the proportional gain,
increasing and/or decreasing, until the oscillations have constant amplitude.

Record the gain value (Ku) and period of oscillation (Pu).

Kc Ti Td

P Ku/2 - -
PI Ku/2.2 Pu/1.2 -

PID Ku/1.7 Pu/2 Pu/8

Table 1.2: Ziegler-Nichols Tuning Parameters

The Ziegler-Nichols approach offers several advantages, including the ease of experimentation,
as it only requires changing the P controller, and the inclusion of the dynamics of the entire
process, which provides a more accurate representation of how the system behaves. However,
there are also disadvantages: the experiment can be time-consuming, and there is a risk of
venturing into unstable regions while testing the P controller, which could cause the system to
become uncontrollable.

1.3.5 Implemented controllers

The control modeling of our quadrotor is summarized and presented in the block diagram, as
shown in Figure 1.28 below. A hierarchical approach that was presented in [47] divides the
control tasks into different levels. Each level is responsible for specific aspects of the control
process, with distinct bandwidth requirements.

Figure 1.28: Block Diagram of Quadrotor Control Model

1.3.6 Guidance and Navigation

In this block, we output the desired positions (x, y, z, yaw) that we want our quadrotor to
follow. These trajectories are directly sent to the controller block to generate the desired angles
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(roll, pitch, yaw) that will be regulated. It is important to note that if we are using an RC,
this block won’t send anything because the desired angles (roll, pitch, yaw) are then directly
sent through the RC.

1.3.7 Controller Blocks

The control of the quadrotor’s position and attitude is accomplished by the design of the
feedback controller and the method was well documented in [51] and [52].As we previously
mentioned, we will use the cascade form and PID for the controller design. In general, we use
two controllers: the first one is the position and velocity controller, which operates in cascade
mode, and the second one is the attitude controller. The figure 1.29 illustrates our design
strategy.

Figure 1.29: Controller Block

1.3.7.1 Position & Velocity Controller Block

As you can see in 1.30 our Simulink code, we aim to reduce the position error using the pitch,
yaw, and roll angles. To adjust the attitude of our drone based on the position, we use the
velocity. This means that we first reduce the position error by adjusting the velocity along each
axis. Then, we reduce the error in velocity using the attitude angles.

Figure 1.30: Simunlik blocks of Position & Velocity Controller Block
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1.3.7.2 Tuning the PID Controllers

As previously mentioned, this is a cascade control structure. This means we need to start by
tuning the inner loop first, followed by the outer loop. In our case, we will begin by tuning the
velocity controller using the Ziegler-Nichols method, followed by the position controller.

- Velocity and Position Controller

◦ Velocity Controller
Since we are using a cascade configuration, the position controller must be in open
loop while tuning the velocity controller. This allows us to regulate the velocity
controller effectively, as shown in Figure 1.31.

Figure 1.31: Open loop position controller

◦ Position Controller
After tuning the velocity controller, we proceed to tune the position controller.
During this step, the velocity controller operates with the regulated gains in a
closed loop configuration.

- Attitude Controller
In the Attitude controller, we regulate the yaw, pitch, and roll angles using the corre-
sponding torques, as shown in the figure 1.32

Figure 1.32: Attitude Controller

All the results and simulations are shown in the appendix 3.9. The following table 1.3 shows
the gains that we found using the Ziegler-Nichols method.
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Table 1.3: Summary of PID Controller Gains using Ziegler-Nichols Method

Command Kcr K

Roll 55 25
Pitch 60 27

Thrust 8 4
Vx 6.7 3.35
Vy 6.5858 3.2929
Vz 4.5 2.25

Torque Yaw 0.01 0.005
Torque Pitch 0.054 0.027
Torque Roll 0.06 0.03

1.3.8 Conclusion

In conclusion, this chapter covered the characteristics of the Pixhawk 2.4.8 flight controller,
including its operating system and flight stack architecture. We then explored the quadrotor
mathematical model, identifying all necessary parameters to write the state-space representa-
tion. Following this, we designed three types of controllers using different methods: the LQR
method, pole placement, and finally, the PID method. These steps ensure a stable and optimal
flight performance.
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Chapter 2

Visual SLAM overview and testing

2.1 Introduction

Simultaneous localization and mapping (SLAM) is a groundbreaking technology in the field of
robotics. For nearly four decades, it was a popular problem between researchers, a popularity
that could be explained by how incredibly useful and versatile this technology is. Simultaneous
localization and mapping ,as its name suggests, has two main functions that work in harmony
and synchronicity. It addresses the dual challenge of constructing a map of an unknown en-
vironment all while keeping track of the robot’s location. This complex task is solved by an
ecosystem based on a set of sensors that keep track of the external environment and form the
hardware half of the equation and a set of algorithms that form the software half.

SLAM gives the robot the ability to represent and reason about the relationship between itself
and other objects in its vicinity hence reducing the locational uncertainty is a necessary step
in order to achieve more complex tasks like navigation and obstacle avoidance amongst various
others.This is how SLAM found its way to numerous application like autonomous navigation
with self driving cars or military exploration with drones or even augmented and virtual reality
(AR and VR) applications. But the bread and butter of SLAM is used for indoor applications
where there’s no access to a global positioning system (GPS).

In this chapter we’re going to address the problem of SLAM for indoor environments, as well as
the most important works that helped develop the SLAM ecosystem to what it is today. We’ll
also dive deeper in the classification of those algorithms,based on the hardware and software
used, and of course go in depth in our proposed method.

2.2 Literature review

In the earliest works, the SLAM problem was dubbed a "State Estimation" problem which was
instigated by Smith and Cheeseman’s work in 1986 [53] that dealt with the estimation of spatial
uncertainty. In 1991, building upon the foundation laid in [53], Leonard et al. [54] were the
first to implement a probabilistic approach to solving this estimation problem. They utilized
an Extended Kalman Filter (EKF) to localize a mobile robot by tracking the geometric shape
of landmarks. In 1996, Durrant-Whyte and Bailey [55] took a significant step by combining the
environment states with the vehicle states into one large vector to estimate them simultaneously,
thereby formulating the first SLAM problem. This integration led to the development of the
first recorded solution to the problem in 2001, known as EKF-SLAM [56].
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Following these pioneering efforts, various improvements and alternative methods emerged to
address the limitations of EKF-SLAM. One such advancement was the introduction of Fast-
SLAM by Montemerlo et al. in 2002 [57], which leveraged a particle filter to manage the high
computational costs associated with EKF-SLAM, allowing for more efficient handling of larger
maps. FastSLAM 2.0, an improved version of this algorithm, was later introduced in 2003 [?],
further enhancing the accuracy and efficiency of SLAM systems.

In parallel, research on Graph-Based SLAM started gaining traction. Thrun and Montemerlo’s
work in 2006 [58] highlighted the advantages of representing the SLAM problem as a graph of
poses connected by constraints derived from observations and odometry. This representation
paved the way for optimization techniques such as Pose Graph Optimization (PGO), which
refined both the robot’s trajectory and the map by minimizing a global error function.

The development of robust feature extraction and matching techniques also significantly con-
tributed to the evolution of Visual SLAM. For instance, the introduction of ORB-SLAM by
Mur-Artal et al. in 2015 [9] marked a significant milestone. ORB-SLAM utilized Oriented
FAST and Rotated BRIEF (ORB) features, known for their efficiency and robustness in real-
time applications, and combined them with sophisticated optimization techniques like Bundle
Adjustment to achieve high accuracy in pose estimation and mapping.

As research progressed, newer SLAM algorithms started incorporating advanced machine learn-
ing techniques. For example, Deep Learning-based SLAM approaches began to emerge, leverag-
ing Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to enhance
feature extraction, data association, and overall system robustness in challenging environments.

The journey from the initial state estimation problems to contemporary SLAM solutions un-
derscores a continuous evolution driven by both theoretical advancements and practical imple-
mentations, each building upon the successes and addressing the limitations of its predecessors.
This rich history of development highlights the collaborative and iterative nature of progress
in the field of SLAM, setting the stage for future innovations and applications.

2.3 Problem statement

The goal of this thesis is to deploy an unmanned aerial vehicles (UAVs) for social security tasks
such as exploration and surveillance, so there’s a critical need to design systems that are both
cost-effective and compact. This is a direct consequence of the fact that we want to reproduce
these systems for widespread use in various scenarios. Given these constraints, the use of Lidar
sensors, which are typically expensive and bulky, is not feasible which exludes Lidar-based
SLAM. This leaves us with techniques that utilize cameras as a promising alternative to lidars
due to their affordability and lightweight nature.

Moreover, these applications require real-world and real-time implementation which demands
that the algorithms used are highly optimized to ensure timely processing of data. Out of all
state of the art visual slam algorithms, ORB-SLAM meets this criterion through its efficient
use of computational resources, making it the most suitable for deployment on UAVs with
limited processing power. In the following sections we’ll be providing the necessary theoretical
background needed in order to establish an ORB-SLAM framework.
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2.4 The classical visual slam framework

2.4.1 Mathematical formulation of the SLAM problem

We know that SLAM the problem of constructing or updating a map of an unknown environ-
ment while simultaneously keeping track of an agent’s location within that environment. The
SLAM problem is typically formulated in a probabilistic framework and consists of two main
components: the motion model and the measurement model.

2.4.1.1 State Vector

The state vector xt at time t includes the robot’s pose pt and the map m:

xt = [pt,m]

where:

- pt is the pose of the robot at time t, typically represented as position and orientation.

- m represents the map, which can be a collection of landmarks or a continuous represen-
tation of the environment.

2.4.1.2 Motion Model

The motion model describes how the robot’s pose evolves over time based on the control inputs.
It is represented as:

pt = f(pt−1,ut) + wt (2.1)

where:

- f is the motion function that describes how the previous pose pt−1 and the control input
ut produce the new pose pt.

- wt represents the process noise.

2.4.1.3 Measurement Model

The measurement model relates the observed measurements to the robot’s pose and the map.
It is represented as:

zt = h(pt,m) + vt (2.2)

where:

- h is the measurement function that maps the current pose pt and the map m to the
expected measurement zt.
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- vt represents the measurement noise.

So the whole problem is how to estimate the state vector based on these two equations.

A typical VSLAM eco-system can be dissected into five very different but equally important
steps as shown in 2.1

Figure 2.1: The Visual SLAM framework [4]

2.4.2 Data Acquisition

As visual SLAM refers to the process of using visual features to localize and construct a map of
the environment, then data acquisition mainly means the process of getting images using dif-
ferent camera sensors and prepossessing them before passing them through the SLAM pipeline.
So before advancing further in the SLAM core we need to explain how the data acquisition
varies by changing the camera sensor.

2.4.2.1 Monocular camera

Monocular SLAM refers to the SLAM achieved through a Monocular cameras. These are cam-
eras that use one lens for the acquisition, they are very simple and relatively very cheap which
makes them incredibly attractive to researchers which is why MonoSLAM [59] or monocular
slam is one of the most researched SLAM algorithms out there. But how does the transforma-
tion from the 3D world in meters to a 2D image plane in pixels work ?

Figure 2.2: The transformation pipeline

This is described by several geometrical models [60], the simplest one is the pinhole camera
model [61] used for monocular cameras. We’ll explain this model based on figure 2.3.
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Figure 2.3: The pinhole camera model[5]

Let O - x - y - z be our used camera coordinate system, with the z axis being in the front of
the camera and the camera’s optical center O representing the camera aperture . The point P
is in the 3D camera frame, and after its projection to the 2D image sensor frame O’ - x’ - y’ -
z’ we get the point P’. The coordinates of the point P in the camera frame P =

[
X Y Z

]⊤
,and the coordinates of P’ in the imaging plane are P’ =

[
X’ Y’ Z’

]⊤
. The final thing we

need to define is the physical distance between the camera lens and the imaging plane which is
denoted by f and is know as the focal length. Now using the law of similarity of triangles, we
get the following equation :

Z
f = X

X’ = Y
Y’ (2.3)

which means by putting X’ and Y’ to the left side we get :

X’ = f X
Z ,Y’ = f Y

Z (2.4)

The formula 2.4 indicates the spatial relationship between the point P and its image . But as
it is shown in figure 2.2 the end goal is to end up in the pixel plane through the sampling and
the discretization of the image, and with that comes the new pixel plane denoted as o - u -
v. o is the upper left corner of the image meaning the origin is translated by

[
cx cy

]⊤
, and

of course there’s not only a translation but an apparent "zoom" due to the scale change of the
image. So we define the two quantities α and β that represents respectively the scale on the
u and the v axis. So the relationship between the coordinates of P’ and the pixel coordinate
system

[
u v

]⊤
is :

u = αX ′ + cx (2.5a)
v = βY ′ + cy (2.5b)

If we inject this into 2.4 we get the following relationship :

u = fx
X

Z
+ cx (2.6a)

v = fy
Y

Z
+ cy (2.6b)
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α and β are in pixels/meter, which means that fx, fy and cx, cy are in pixels. And if we write
this in matrix form, we get the following:

u
v
1

 = 1
Z


fx 0 cx
0 fy cy
0 0 1




X
Y
Z

 (2.7)

The matrix showcased in 2.7 is called the intrinsic parameter matrix. These parameters are
fixed during the manufacturing and are generally giving by the manufacturing company.In the
case of their unavailability, we perform calibration using a set of famous algorithms such as the
Zhang Zhengyou algorithm [62].

Now, we successfully got the latter part of the transformation pipeline 2.2 that allows the trans-
formation from the camera coordinates to the pixel coordinates using the intrinsic parameters
matrix. Now for the former part that allows the transformation from the world coordinates to
the camera, we use what we call the extrinsic parameter matrix which is a 4× 4 homogeneous
transformation matrix that takes this form :

X

Y

Z

1

 =


R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3

0 0 0 1




Xw

Yw

Zw

1

 (2.8)

where


R11 R12 R13

R21 R22 R23

R31 R32 R33

 is the rotation matrix that represents the orientation of the camera

with respects to the world frame and


t1

t2

t3

 that represents the translation vector from the

origin of the world frame to the origin of the camera frame. By getting both the intrinsic and
the extrinsic parameter matrices we get proceed with our data acquisition as shown in 2.9.


u
v
1

 = 1
Z


fx 0 cx
0 fy cy
0 0 1



R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3

0 0 0 1




Xw

Yw

Zw

1

 (2.9)

The transformation from the 3D world frame to the 2D image is a loss of a dimension, that is
translated by the loss of the very important quantity in SLAM which is Depth. So by using a
single image from a monocular camera getting depth is impossible, and a critical consequence
of loosing depth is loosing scale because the size of a particular object in an image is relative
to the other object in the same image. This mean that getting a 3D structure using monocular
camera can’t be done by using a single frame, we need multiple frames. Another solution to
this problem is adding either another camera to create a different type of model that we call a
stereo system [63] or adding a Time Of Flight (TOF) system to create depth cameras.
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2.4.2.2 Stereo and RGB-D cameras

As the work presented in this thesis will deal primarily with a monocular camera system, we
won’t go into to much detail in the explanation of both types of cameras but we will cite some
works that go into much more depth.
Stereo and RGB-D cameras have the same purpose of eliminating the scale ambiguity that we
get from using a monocular camera by creating a 3D structure of the environment from a single
snapshot, but they have very different ways of achieving that purpose.

Figure 2.4: Getting depth from disparity [5]

Stereo cameras consist of two synchronized monocular cameras separated by a distance known
as the baseline, the larger the baseline the further the camera can estimate depth. The way
that’s done is very similar to how the human eyes work, by using the principle of disparity.

- Step 1: Take two snapshots from both the cameras in the stereo system that are separated
by the baseline.

- Step 2: Perform "stereo matching", which is the process of matching features from the
image captured by the left camera to the one captured from the right and vice-versa.

- Step 3: After matching the features, calculate the disparity between each matching
features from the same image pair, which means how much a features is displeased in one
camera frame with respect to the other.

- Step 4: Turn that disparity into a pixel intensity, which means the features who are
more displaced will be more intense or more luminescent while the other features will be
less intense.

After the fourth step you should get an image as shown in figure 2.4,where the luminescent
object are the the closest and the darker objects are the furthest. This can be verified by a
simple eye test; if you put two hands in front of each other and then very quickly close one eye
at a time, you can tell that the hand that’s closest to you seems like it’s moving more from
one eye to the other. By using the same logic, we can estimate depth as shown in figure ??.
Again this is just an intuitive understanding of the stereo principle for depth estimation, to get
a deeper understanding of the mathematical model you can view [63].

RGB-D cameras on the other hand provide a more active approach to calculating depth. By
emitting an infrared light beam on the target object and then calculating the distance based
on the object and the camera as well as the structure of the returned light beam. Which means
that from a single picture u can get a full on point cloud depth estimation.
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2.4.3 Visual Odometry

Now after getting our input data from the camera model, we move on to the frontend of our
visual SLAM pipeline also known as Visual Odometry (VO), which was first introduced in 1986
by the revolutionary work of Hans P. Moravec in [64]. VO refers to the process of getting a
estimates of the camera movement based on the consecutive information extracted from images,
so this task can be done with one chain of movement at a time, which is why we can say that
VO has a short term memory. This can be done by choosing pixels in our image as landmarks
(features), then tracking the 3D position of those pixels based on adjacent frames. But how do
we choose these landmarks and how do we describe them ?

Figure 2.5: Visual Odometry pipeline [6]

The work done in [65] was the first that came up with the pipeline presented in figure 2.5, in
which it describes the features using key points and descriptors.

2.4.3.1 Feature detection

This part of the pipeline deals with the selection landmarks for the SLAM problem using various
criterias. We will be presenting only a few solutions while keeping our chosen method for later
on in this chapter.

Features are selected using a set of rules that can be resumed in these four points :

1. Repeatability: In order for us to be able to track this specific feature, we need to
detect it in multiple frames. Meaning we need to ensure that this feature can be found
in different images.

2. Distinctiveness: On the other side of repeatability, we need the feature to be distinctive.
So that the feature will be recognized in the following frame easily and not be confused
with a bunch of others.

3. Efficiency: The number of features need to be relatively small so that the computational
load can be kept to a minimum. A general good criteria for this is that the number of
feature should be far smaller than the number of pixels.

4. Locality: We need to be able to trace that image directly to the a specific area of the
image, hence the feature need to only be related to that specific location.

These features can be divided into either corners or Binary Large Objects (Blobs).
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2.4.3.2 Corner detection

A corner is a highly distinctive feature, as it is invariant to translation, rotation and even pixel
illumination. It can be considered as simply an intersection of two edges, so if we’re able to
detect an edge successfully we’ll be able to detect their intersection and hence detect the corner.
An edge, in the world of image processing is considered as a shift in pixel intensity, so if we
detect that big change in intensity we’ll be able to say with a certain degree of confidence that
we have been able to detect an edge. Using this logic, we’re going to look at two of the most
popular corner detectors and review their suitability for our application.

1. The Harris detector:
Let I(x, y) be the intensity of an image at the specific pixel (x, y), and let w be the
window (the local part of the image) that contains the pixel (x, y). If we want to quantify
the rate of change of intensity of a pixel in the x and y direction, then we can use the
image gradients :

Ix = ∂I

∂x
, Iy = ∂I

∂y
(2.10)

In order to calculate the change of intensity in the same window w, we need to offset the
pixel (x, y) by a quantity (δu, δv) that keeps it inside the window to get the intensity of
the offseted pixel (x+ δu, y + δv). Now we can define our change function f(u, v) :

f(u, v) =
∑

(x,y)∈w
[I(x+ δu, y + δv)− I(x, y)]2 (2.11)

where f(u, v) is the sum of squared differences (SSD) that measures the shift in intensity
in both direction x and y.
If we substitute the Taylor equation :

I(x+ δu, y + δv) ≈ I(x, y) +
[
Ix Iy

] δu
δv

 (2.12)

we get the following :

f(u, v) =
∑

(x,y)∈w

[Ix Iy
] δu
δv

2

f(u, v) =
[
δu δv

] ∑
(x,y)∈w

 I2
x IxIy

IxIy I2
y

δu
δv

 (2.13)

And if we transfer the sum to inside the matrix, we get the following :

f(u, v) =
[
δu δv

]  ∑(x,y)∈w I
2
x

∑
(x,y)∈w IxIy∑

(x,y)∈w IxIy
∑

(x,y)∈w I
2
y

δu
δv

 (2.14)

The matrix in 2.14 is called the structure matrix which accumulates all the information
about the image gradient in the x and y direction (and the xy direction as well). We’re
basically encoding information on the change of intensity.

H =
 ∑(x,y)∈w I

2
x

∑
(x,y)∈w IxIy∑

(x,y)∈w IxIy
∑

(x,y)∈w I
2
y

 (2.15)
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Now for us to able to tell in which direction the change of intensity is more dominant
around a specific point (x, y), we can look at the values inside the structure matrix.

Figure 2.6: Corner detection with the image gradient

If we find ourselves in this case :

H =
≫ 1 ≈ 0
≈ 0 ≫ 1

 (2.16)

Then we successfully detected a corner as shown in figure 2.7(a), as the gradients are
found equally dominant in the x and y directions. However if we found ourselves in the
following cases :

H =
≈ 0 ≈ 0
≈ 0 ≫ 1

 (2.17)

and

H =
≈ 0 ≈ 0
≈ 0 ≈ 0

 (2.18)

Then respectively detected an edge and a flat region as shown in figure 2.7(b) and 2.7(c).
An efficient way of getting the same result is by checking the eigenvalues of the structure
matrix H, we can say that a corner has successfully been detected simply by finding two
large eigenvalues.

det
h11 − λ h12

h21 h22 − λ

 = 0

And using a specific score function to test this criteria, we’ll get very accurate results. For
example the Harris score function for corner strength detection that was first presented
in 1988 by Harris in [66]:

R = det(H)− k · (trace(M))2

where:
- det(H) is the determinant of our structure matrix H,

- trace(H) is the trace of the same matrix H,

- k is a sensitivity parameter (usually 0.04 ≤ k ≤ 0.06).
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This will result in the following set of rules :
a. If R ≈ 0 then λ1 ≈ λ2 ≈ 0 , this is a flat region.

b. If R < 0 then λ1 ≫ λ2 or λ2 ≫ λ1, this is an edge.

c. If R≫ 0 then λ1 ≈ λ2 ≫ 0, this is a corner.
By putting everything together, we get the following algorithm for the Harris corner
detection:

Algorithm 1 Harris Corner Detection
1: Input: Grayscale image I, sensitivity parameter k
2: Output: Harris corner response map R

3: Step 1: Compute image gradients
4: Ix ← convolve(I, Sobel kernelx)
5: Iy ← convolve(I, Sobel kernely)
6: ▷ The Sobel kernel is an operator used for computing the image gradients of the image,

basically a derivation of the image’s pixel intensity.

7: Step 2: Compute products of gradients
8: Ix2 ← Ix ⊙ Ix
9: Iy2 ← Iy ⊙ Iy

10: Ixy ← Ix ⊙ Iy

11: Step 3: Apply Gaussian filter to the products of gradients
12: Sx2 ← convolve(Ix2 ,Gaussian filter)
13: Sy2 ← convolve(Iy2 ,Gaussian filter)
14: Sxy ← convolve(Ixy,Gaussian filter)
15: ▷ The Gaussian filter is applied to smooth out the image

16: Step 4: Compute the Harris response
17: for each pixel (x, y) in the image do

18: H ←

Sx2(x, y) Sxy(x, y)
Sxy(x, y) Sy2(x, y)


19: det(M)← Sx2(x, y) · Sy2(x, y)− (Sxy(x, y))2

20: trace(M)← Sx2(x, y) + Sy2(x, y)
21: R(x, y)← det(M)− k · (trace(M))2

22: end for

23: Return: Harris corner response map R

ENP Example :
We applied the Harris corner detection algorithm on a frame taken of Ecole Nationale
Polytechnique 2.7 which classifies as a relatively large image that contains very distinct
features.
Commentary :
After applying the algorithm, we can see that the Harris detector provides accurate lo-
calization of corner points with a detected number of features of 84746, however a lot of
features are condescend on each other. We noticed that when it comes to such a large
image, despite of the decently accurate results, the algorithm took too long to compute
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the points with an execution time of 0.124 seconds which eliminates all our hopes of using
it in real-time processing.

Figure 2.7: Harris corner detection on Ecole Nationale Polytechnique

2. The Features from Accelerated Segment Test (FAST) detector
The principle behind corner detection in the FAST algorithm is derived from the human
perceptual sense of corners, where significant changes in gray levels occur in all direc-
tions. The algorithm defines a corner point as a pixel that exhibits substantial intensity
differences with enough pixels in its neighborhood, so if a pixel p exhibits a significant dif-
ference in intensity compared to a predefined number of pixels in its surrounding circular
neighborhood, it is classified as a corner.

Figure 2.8: The 16 considered neighboring pixels

Here are the steps of the Fast algorithm :

a. Pixel Selection:
For each candidate pixel p, consider a circle of 16 surrounding pixels. Their position
form what is known as a Bresenham circle of radius 3 as shown in figure 2.8, which
ensures that the selected pixels are equidistant from the candidate pixel.
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b. Intensity Threshold:
Define a threshold t which is used to determine whether the intensity of the candi-
date pixel p significantly differs from the intensities of the surrounding pixels. So
for each pixel Pi in the circle, we compare its intensity I(Pi) with the intensity I(p)
of the candidate pixel:

∆Ii = |I(Pi)− I(p)|

If ∆Ii exceeds the threshold t, then the pixel Pi is considered significantly different
in intensity from p.
We note that a common default value for the intensity threshold t is around 10 to
20 but it depends on various factors such as image contrast and noise. We will show
the effect of the threshold in the ENP example.

c. Initial Test:
We then perform a quick test by comparing p to the pixels at positions 1, 5, 9, and
13 in the circle. These four pixels are chosen because they are spaced evenly around
the candidate pixel, providing a quick and efficient initial check. If at least three of
these pixels are either all brighter or all darker than p by at least t, proceed to the
next step. Mathematically, this can be expressed as:

Initial Test Pass =
 ∑
i∈{1,5,9,13}

((I(Pi) > I(p) + t) ∨ (I(Pi) < I(p)− t))
 ≥ 3

If the initial test passes, continue with the full test.

d. Full Test:
If the initial test is passed, compare p with all 16 pixels in the circle. Count how
many pixels are at least t brighter or t darker than p. If there are at least 12 pixels
that meet this criterion, classify p as a corner. This can be formalized as:

Full Test Pass =
( 16∑
i=1

((I(Pi) > I(p) + t) ∨ (I(Pi) < I(p)− t))
)
≥ 12

If the full test passes, p is identified as a corner point.

ENP Example :
We applied the Fast algorithm to the same image for comparison as shwon in figure 2.9.
Commentary:

Threshold Number of Features Execution Time (seconds)
1 40916 0.0107
10 24817 0.0059
100 912 0.0004
1000 0 0.0001

Table 2.1: Number of Features and Execution Time for Different Threshold Values
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(a) Threshold = 1 (b) Threshold = 10

(c) Threshold = 100 (d) Threshold = 1000

Figure 2.9: FAST feature detection with different threshold values on Ecole Nationale Poly-
technique

The table above shows the execution times for the FAST algorithm with various threshold
values. As the threshold increases, the execution time decreases significantly as well as the
number of features. This behavior can be explained by the nature of the FAST algorithm:
- The initial test in the FAST algorithm involves comparing the intensity of the candi-
date pixel to the intensities of the pixels at positions 1, 5, 9, and 13 in the circle of 16
surrounding pixels, this means that with higher threshold values, fewer pixels will meet
the criteria in the initial test, thus reducing the number of candidate corners that need to
be processed further in the full test. This means that fewer features are chosen, resulting
in faster execution times.

The FAST algorithm is incredibly quick and optimized for real-time application as shown
by the results. So we confidently say that we’ll be choosing it for our method.

2.4.3.3 Binary Large Object detection

Binary Large Objects or blobs in the world of image processing are defined as a region in an
image or a set of connected pixels that share properties such as intensity or color that separates
them from surrounding regions. The main difference between blobs and corners, is that corners
represents the outer structure of the image while blobs form the internal features of it. This is
further highlighted in figure 2.10

The process of blob detection was first shown by Marr in 1980 [67], where we were introduced
to the Difference of Gaussian algorithm that became the golden standard for blob detection.
The algorithm is done in 3 steps.

- Step 1 : This step is responsible for finding a stable set of features that are invariant to
the scale change of the image as well rotation and translation, and it has already been
proven in [68] that the only scale-space kernel that allows the examination of an image
in different scales is the Gaussian function.
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Figure 2.10: Corners vs Blobs

Let’s define L(x, y, σ) as the image scale space function, and it’s a result of convoluting
the input image multiple times at multiple scales with the Gaussian function G(x, y, σ) :

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.19)

where
G(x, y, σ) = 1

2πσ2 e
−x2+y2

2σ2 (2.20)

We can explain this step in more simpler terms as just applying increasing degrees of
Gaussian blur, blurring the image more and more, exactly as shown in figure 2.11

Figure 2.11: Gaussian filter scale

- Step 2: In this step, we’ll try and find those stable keypoints in the scale space, by
trying to find extremas which are points that locally stand out from the other regions.
This is done through an operation called Difference Of Gaussians (DoG) performed over
differently sampled images. As shown in figure 2.12.
This step is done to increase visibility of corners, edges , blobs and every other detail
present in the image.
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We can also note that the Difference of Gaussians acts as a band-pass filter where we first
filter out the high-frequencies by performing the normal blur, then by subtracting the
blurred images 2.21 we only keep the frequencies that lie in between those two images.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (2.21)

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (2.22)

Figure 2.12: Difference of Gaussians

- Step 3: This step is called keypoint localization, as of now the DoG algorithm has
produced various keypoints. Some of them are less useful than other, for example : not
enough contrast or too many edges detected. So in order to keep only the most usefull
points we go through a two part process : localization of those keypoints, then discard of
the less expressive.

1. Localization: We use a Taylor series expansion for the scale-space functionD(x, y, σ)
around an initial keypoint :

D(x) = D + ∂D

∂x
x + 1

2xT
∂2D

∂x2 x (2.23)

Where x = (x, y, σ) is the keypoint position in the scale space, and the gradient ∂D
∂x

and the Hessian matrix ∂2D
∂x2 are calculated from the DoG images.

And then to find the accurate position of the keypoint, we solve this equation for x̂
which is the location of the extremum.

x̂ = −∂
2D

∂x2

−1
∂D

∂x
(2.24)

This gives the offset from the initial keypoint position to the refined position. If the
offset x̂ is large, it indicates that the keypoint is not stable, and such keypoints are
discarded.

2. Thresholding: We discard features will low contrast through the following thresh-
old test :

D(x̂) > threshold (2.25)

In the Lowe paper that presented this method [69], a value of 0.03 was used as a
threshold. Which is the value we used in the example shown in figure 2.13
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ENP Example :

We applied the DoG algorithm to the same image for comparison.

Figure 2.13: DoG blob detection on Ecole Nationale Polytechnique

Commentary:

The DoG algorithm due to it’s scale invariance produces more accurate results, meaning it
chooses the most robust features (Number of Blobs: 113),which makes the algorithm more
suitable for complex and dynamic environments. However what it gains in robustness, it looses
in time (Execution Time: 0.0985 seconds). Due to all the extra processing to achieve those
results, DoG turned out to be significantly slower than the Harris algorithm which again make
it non suitable for real-time applications.

2.4.3.4 Descriptor extraction

Now in order for us to be able to match keypoints or features to each other in different frames,
we need to be able to describe them in a way that will allow us to both be able to distinguish
them from each other while also keeping the operation of comparison as lightweight as possible
when it comes to computation.

Lowe in his groundbreaking article published in 2004[69] introduced the notion of feature de-
scriptors which are vectors that summarizes the local structure around the specific keypoint.

Based on what descriptor we use, meaning what that vector contains, we can formulate different
types of features descriptor algorithms. In this part we’ll present and test two different golden
standards for descriptor extraction.

1. Scale-Invariant Feature Transform (SIFT)

The SIFT descriptor [69] is one of the most robust and widely studied descriptors in
the field, where we transform the image content into features that are invariant to image
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translation, rotation and scale, while staying partially invariant to pixel illumination (if
the image gradient remains unchanged).
The SIFT features are extracted from the difference of gaussians algorithm that we have
shown previously,and they are given by a vector computed at a local extreme point in the
scale space as explained previously as well. Here’s the vector :

(
p, s, r, f

)
(2.26)

Where
- p is the pixel location of the feature on the image (x, y)

- s is the scale of the extrema in the scale-space from the DoG.

- r is the orientation of the point which we will explain briefly how to get.

- f which is a 128-dim descriptor that is generated from the local image gradients.
Now the question is, how de we calculate the orientation. This is done throughout the
following process.

a. Gradient Calculation
After detetcting each keypoint, our SIFT algorithm calculates the image gradients in
a local neighborhood around each of those keypoint. Those gradients are computed
at the scale of the each selected feature, which we obtained during the scale-space
extrema detection process.
Gradient Magnitude m(x, y) and Orientation θ(x, y):

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.27)

θ(x, y) = tan−1
(
L(x, y + 1)− L(x, y − 1)
L(x+ 1, y)− L(x− 1, y)

)
(2.28)

where L represents the Gaussian-smoothed image at the appropriate scale.

b. Orientation Histogram
After computing the gradients, we create a histogram of their orientations taken
within a circular window around each keypoint. This histogram typically covers
360 degrees of orientation.
Note that each sample’s contribution to the histogram is weighted by its gradi-
ent magnitude and it’s placement within the centered window. This reduces the
influence of gradients far from the keypoint.

weight = m(x, y) · exp
(
−(x− xk)2 + (y − yk)2

2σ2

)
(2.29)

c. Peak Selection
Now form the peak of our histogram, we can select the dominant orientation. This
orientation is assigned to that keypoint. Additionally, peaks within 80% of the
highest peak are also used to create new keypoints with the same location and scale
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but different orientations. This ensures robustness to changes in viewpoint and local
appearance. This whole process is shown in figure 2.14.

Figure 2.14: Allocating orientation to keypoints

Dominant Orientation:
θk = arg max

θ
hist(θ)

Now for the descriptor, we select a 16× 16 window around the keypoint, where we
compute the gradient of each pixel in the neighborhood, after that we rotate the
coordinates of the gradients to align with the keypoint’s orientation (this is what
ensures invariance to image rotation). After that we create a histogram of the 8
gradient orientations for each sub-region in that window. Meaning 16 regions times
8 directions, that will give us a 128-dim vector that concatenates each histogram of
those regions. This process is shown in figure 2.15.

Figure 2.15: Creating the SIFT descriptor

Now in order to match the features together, we just compare the descriptors for
each keypoints. Note that there are different methods to optimize this matching
process and making it much more robust by dealing with outliers but we won’t be
discussing them in this thesis.
ENP Example :
Now we apply the SIFT algorithm with DoG blob detection on our ENP example
image and a on a 45 degrees rotated variant of it.
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Figure 2.16: SIFT feature extraction on Ecole Nationale Polytechnique (rotated by 45 degrees

Commentary:
The SIFT algorithm’s took 0.4522 seconds to execute which reflects its computa-
tional intensity due to the multi-step process, including scale-space construction
and descriptor generation. Because of this longer processing time, SIFT achieves
a high accuracy of 80.81% for matches, attributed to its robust and distinctive
128-dimensional descriptors and its invariance to scale and rotation. But its long
computational time eliminates it from our real-time processes.

2. Binary descriptors
Although descriptors such as SIFT or SURF (Speeded Up Robust Features)[70] are in-
credibly robust and accurate, they trade off speed in order to get those desired results.
Hence they’re pretty much useless for applications that require online and in real time
slam.
So most modern application today use what we call Binary descriptors, where the image
patch around a feature can be described using a relatively small number of pair-wise
intensity comparisons. So instead of the sophisticated image gradient histograms we only
use small binary scripts. Following these steps :

- Step 1: After selecting a keypoint using a feature extraction method, we select a
local path of pixels around that feature.

- Step 2: We select pairs of those pixels, following a specific distribution which we
will address shortly.

- Step 3: For each chosen pair, we perform a comparison based on intensity values
of the pixel pair

b =

1 if I(s1) < I(s2)
0 otherwise

(2.30)

So we’re basically saying that if the pixel intensity of pixel s1 is smaller than that
of pixel s2 return a 1, otherwise return a 0.

- Step 4: After each comparison, We concatenate all the pixel pair result into one
bit string. Thus we get our descriptor.

These descriptors are incredibly compact, very fast to compute and specifically trivial in
their way of comparison to achieve the matching as shown in equation 2.31 .

dHamming(B1, B2) =
∑

xor(B1, B2) (2.31)
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This method of comparison called the Hamming distance is a metric used to measure the
difference between two binary strings of equal length. It counts the number of positions
at which the corresponding bits are different, so the smaller the hammer distance means
fewer bits are different and the better it is.
Binary descriptors differ in their strategy of choosing the bit pairs. A very important
thing is that if we choose a bit pair, we must keep the same pairs and maintain the
same order in which those pairs are tested. This is how we keep the comparison viable,
otherwise it will be useless. We’ll be presenting the state of the art descriptor BRIEF
than we’ll present our chosen one later on.

- Binary Robust Independent Elementary Features (BRIEF)
Also known as BRIEF is the first ever binary image descriptor, proposed by Calonder
in his 2010 paper [71]. It’ a 256 bit descriptor, meaning that it compares 256 pairs.
Since BRIEF deals with the image at a pixel level, it’s very sensitive to noise so
a pre-smoothing step on the path using a Gaussian kernel is necessary. BRIEF
provides five different geometries for choosing the bit pairs as shown in figure 2.17.

Figure 2.17: Different approaches to choosing BRIEF test locations

a. Uniform (G I): Both x and y pixels in the random pair is drawn from a
Uniform distribution or spread of S/2 around keypoint. The pair(test) can lie
close to the patch border.

b. Gaussian (G II): Both x and y pixels in the random pair is drawn from a
Gaussian distribution or spread of 0.04 ∗ S2 around keypoint.

c. Gaussian (G III): The first pixel(x) in the random pair is drawn from a
Gaussian distribution centered around the keypoint with a stranded deviation
or spread of 0.04 ∗ S2. The second pixel(y) in the random pair is drawn from
a Gaussian distribution centered around the first pixel(x) with a standard
deviation or spread of 0.01 ∗ S2. This forces the test(pair) to be more local.
Test(pair) locations outside the patch are clamped to the edge of the patch.
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d. Coarse Polar Grid (G IV): Both x and y pixels in the random pair is
sampled from discrete locations of a coarse polar grid introducing a spatial
quantization.

e. Coarse Polar Grid (G V): The first pixel(x) in random pair is at (0, 0) and
the second pixel(y) in the random pair is drawn from discrete locations of a
coarse polar grid.

We note that in [71], it has been proven that the first four distribution perform
similarly while outperforming the last non random distribution (G V).
Despite of BRIEF speed and efficiency when it comes to feature matching, there
are inherent problems such as it’s lack of rotation and scale invariance that cause it
to yield worst results in certain situation. We will tackle these problems later on.

ENP Example :

Figure 2.18: BRIEF feature extraction on Ecole Nationale Polytechnique (rotated by 45 degrees

Commentary :
The BRIEF algorithm achieved an impressive execution time of 0.0199 seconds, showcas-
ing its efficiency due to its binary descriptor approach and the use of the FAST keypoint
detector. However, the accuracy of matches was inadequate at 19.90%, reflecting BRIEF’s
limitation in handling significant scale and rotation changes. The article that created the
algorithm [?] indicated that if the rotation is larger than 30 degrees, the matching looses
all it’s accuracy. Despite detecting 1377 matches, the algorithm’s focus on speed over pre-
cision makes it suitable for real-time applications where minor inaccuracies in keypoint
matching can be tolerated. So we will choose the BRIEF algorithm for our method but
we will apply changes that we will discuss later on to make it more robust.

2.4.3.5 Motion estimation

Now, after we have been able to detect the keypoints or features using methods such as the
Harris corner detection algorithm or the difference of gaussians, and after describing them and
matching them together using descriptors such as the SIFT descriptor or the BRIEF descriptor,
we need to estimate the motion. This step differs depending on the camera model and settings.

- If the camera model is monocular, then we only have the 2D estimate of the pixel coor-
dinates. So the problem is estimating motion according to two sets of 2D points, this is
solved using epipolar geometry. We will go more in depth into this method later on.
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- If the camera is binocular (stereo), RGB-D or we obtain the distance through another
method, then we have two sets of 3D points. This is solved using one of the most efficient
alignment algorithms that’s even used for Lidar-based SLAM, ICP or iterative-closest-
point.

- If we have two sets that differ in nature, a 3D set and a 2D set then this problem is solved
using PnP or Perspective-n-Point.

As this thesis will deal with a monocular camera setup, we will only be explaining the epipolar
geometry method. But the following articles [72] and [73] are perfect for a more in depth
understanding of the two other methods.

- Epipolar Geometry

Let’s assume we have a pair of matched feature points from two images as displayed
in figure 2.19. Our goal is to find the motion between the two consecutive frames, and for
easing the explanation process we’ll look at the two frames as coming from a right and a
left camera.
The motion from the first frame to the second frame is descried by a rotation matrix R
and a translation vector t. Each camera has its own coordinate system with axes x̂l, ŷl, ẑl
for the left camera and x̂r, ŷr, ẑr for the right camera, and they’re centered in Ol and Or.
Let’s consider a 3D point P in our scene which is detected as a feature point in the right
camera denoted as ur and matched in the left camera image denoted as ul.

Figure 2.19: The epipolar constraint scene [7]

Now, if we consider the projection of the left camera center Ol into the right camera frame
we get the point er and on the opposite side we get el. We define these two points as the
epipoles of the scene, and they’re unique to each frame pair. We also define the plane
formed by the origins, the epipoles and the scene point P as the Epipolar plane which is
unique to every point in the scene 2.20.

We can also define the normal vector n which is perpendicular to the epipolar plane.
Hence we can calculate it as the cross product between the unknown translation vector t
and the vector xl.

n = t× xl (2.32)
And since the normal vector is perpendicular to xl then their dot product is null so we
can define our epipolar constraint as follows :

xl.(t× xl) = 0 (2.33)
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Figure 2.20: The epipolar plane [7]

The goal is to write the epipolar constraint equation with respect to our unknowns t and
R.
So, firstly using the definition of a cross-product we get :

[
xl yl zl

] 
tyzl − tzyl
tzxl − txzl
txyl − tyxl

 = 0 (2.34)

Then we write it in a matrix-vector form to get the following:

xTl .[t]×.xl =
[
xl yl zl

] 
0 −tz ty

tz 0 −tx
−ty tx 0



xl

yl

zl

 = 0 (2.35)

Where [t]× is a skew-symmetric matrix of the translation vector t between the two camera
positions. We also define the homogeneous transformation from the right to the left
coordinate frame as :

xl = Rxr + t

with t3×1 being the position of the right Camera in the left camera’s frame, and R3×3
being the orientation of the left camera in the right camera’s frame.

xl

yl

zl

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33



xr

yr

zr

+


tx

ty

tz

 (2.36)

After substituting 2.36 in 2.35, we get the following equation :

[
xl yl zl

]


0 −tz ty

tz 0 −tx
−ty tx 0



r11 r12 r13

r21 r22 r23

r31 r32 r33



xr

yr

zr

+


0 −tz ty

tz 0 −tx
−ty tx 0



tx

ty

tz


 = 0

(2.37)
And to further simplify this equation, we have the second term that is equivalent to the
cross product of the translation vector t with itself t × t, and we know this equates to
zero.
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
0 −tz ty

tz 0 −tx
−ty tx 0



tx

ty

tz

 = t× t = 0 (2.38)

And if we multiply the first two matrices together, we get the Essential matrix E = [t]×R.
A term first introduced in 1981 by Longuet [74] as a way to encapsulate the intrinsic
geometry between two views in the same scenes. After substituting it in 2.37, we get our
new epipolar constraint :

xTr .E.xl =
[
xl yl zl

] 
e11 e12 e13

e21 e22 e23

e31 e32 e33



xr

yr

zr

 = 0 (2.39)

As stated before, the translation matrix is a skew-symmetric matrix and the rotation
matrix R is an orthonormal matrix. Their product can be decoupled using Singular
Value Decomposition (SVD), this means that from the essential matrix we can extract
our two unknowns t and R.

e11 e12 e13

e21 e22 e23

e31 e32 e33

 =


0 −tz ty

tz 0 −tx
−ty tx 0

 .

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.40)

So now we need to find the essential matrix E based on our new epipolar constraint
equation 2.39. The equation still contains the coordinates of our point P in both the
camera frames which are unknowns to us, so we replace them with their 2D projections
2.6 as explained in the Data acquisition section.
For that we use their perspective projection equations. We’ll derive the formula for the
left camera but it’s the same for both views.

ul = f (l)
x

xl
zl

+ o(l)
x (2.41)

vl = f (l)
y

yl
zl

+ o(l)
y (2.42)

We multiply by zl
zlul = f (l)

x xl + zlo
(l)
x (2.43)

zlvl = f (l)
y yl + zlo

(l)
y (2.44)

Then we write it in matrix form to get the following equation based on the intrinsic
parameters of our camera k:

zl


ul

vl

1

 =


fx 0 ox

0 fy oy

0 0 1



xl

yl

zl

 (2.45)

zr


ur

vr

1

 =


fx 0 ox

0 fy oy

0 0 1



xr

yr

zr

 (2.46)
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So we can express our unknowns coordinate vectors using the 2D projection points and
the intrinsic parameter matrix K .

xTl =
[
ul vl 1

]
zlK

−1T (2.47)

xr = K−1zr


ur

vr

1

 (2.48)

Now we substitute 2.47 and 2.48 in our new epipolar constraint equation 2.39 and we
rewrite it in terms of image coordinates.

[
ul vl 1

]
zlK

−1T


e11 e12 e13

e21 e22 e23

e31 e32 e33

K−1zr


ur

vr

1

 = 0 (2.49)

zl and zr are the relative depths of the point P with respect to the two frames, meaning
they can’t be zero (otherwise the point P will be on the image plane). So we get the
following :

[
ul vl 1

]
K−1T


e11 e12 e13

e21 e22 e23

e31 e32 e33

K−1


ur

vr

1

 = 0 (2.50)

We define a new matrix, called the Fundamental matrix [75], as such

K−1T


e11 e12 e13

e21 e22 e23

e31 e32 e33

K−1 =


f11 f12 f13

f21 f22 f23

f31 f32 f33

 (2.51)

This gives us the final form of our epipolar constraint equation.

[
ul vl 1

] 
f11 f12 f13

f21 f22 f23

f31 f32 f33



ur

vr

1

 = 0 (2.52)

This form tells us that in order to calibrate our system, meaning in order to get the
homogeneous transformation matrix that contains the translation vector t and rotation
matrix R and get our visual odometry, we only need to estimate this Fundamental matrix.
So our problem of visual odometry is solved by following these steps :
◦ Step A : Firstly, we need to find a number of corresponding features that are

in the frames through one of the feature extraction algorithms that we presented
earlier. And then match them together, then we write our epipolar constraint for
each correspondence.

[
u

(i)
l v

(i)
l 1

] 
f11 f12 f13

f21 f22 f23

f31 f32 f33



u(i)
r

v(i)
r

1

 = 0 (2.53)

We expand the matrix to get the linear equation:

(f11u
(i)
r +f12v

(i)
r +f13)u(i)

l +(f21u
(i)
r +f22v

(i)
r +f23)v(i)

l +f31u
(i)
r +f32v

(i)
r +f33 = 0 (2.54)
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◦ Step B: Rearrange terms to form a linear system Af = 0, where f is our only
unkown.



u
(1)
l u(1)

r u
(1)
l v(1)

r u
(1)
l v

(1)
l u(1)

r v
(1)
l v(1)

r v
(1)
l u(1)

r v(1)
r 1

u
(2)
l u(2)

r u
(2)
l v(2)

r u
(2)
l v

(2)
l u(2)

r v
(2)
l v(2)

r v
(2)
l u(2)

r v(2)
r 1

... ... ... ... ... ... ... ... ...
u

(m)
l u(m)

r u
(m)
l v(m)

r u
(m)
l v

(m)
l u(m)

r v
(m)
l v(m)

r v
(m)
l u(m)

r v(m)
r 1





f11

f12

f13

f21

f22

f23

f31

f32

f33



=



0
0
...
0



(2.55)

◦ Step C : The properties of a homogeneous transformation are unaffected by scale
meaning if we enlarge everything in a scene, the transformation would still be the
same. Our fundamental matrix acts directly on the homogeneous coordinates, this
indicates that we can set an arbitrary scale for f as follows

∥f∥2 = 1 (2.56)

◦ Step D : We want Af as close to 0 as possible and ∥f∥2 = 1:
There are a lot of algorithms coined specifically for solving this problem, but they’re
all based on a least squared solution.

min
f
∥Af∥2 such that ∥f∥2 = 1 (2.57)

◦ Step E : Now that we have our Fundamental matrix F, we can find the Essential
matrix E

E = KT
l .F.Kr (2.58)

◦ Step F : And finally, using the liner algebra property of the Essential matrix E, we
can decouple it using Singular Value Decomposition.

E = [t]×.R (2.59)

And the visual odometry problem is now solved.

2.4.3.6 Depth estimation through Triangulation

After extracting our features, describing them and matching them together, and after calculat-
ing our homogeneous transformation from the visual odometry, we need to get the coordinates
of our chosen features in the 3D world.
This step relies heavily on the chosen camera sensor, we have touched on the methods of es-
timating depth briefly for Stereo and RGB-D cameras in section 2.4.2.2. So, we will address
this problem for a monocular setup as the one we have, and we do so using a method called
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Triangulation.

Figure 2.21: The 2D-3D outgoing ray[8]

Assuming we have a fully calibrated monocular system, meaning the intrinsic and extrinsic
parameter matrices are in our disposal then we have the 3D-to-2D point projection as proven
previously in 2.6. The 2D-to-3D projection is what we don’t have, but we know with full cer-
tainty that they lay within a specific ray as shown in 2.21 that satisfies the following equations:

x = z
u− ox
fx

(2.60)

y = z
v − oy
fy

(2.61)

z > 0 (2.62)

A single frame isn’t enough for 3D image reconstruction, we need more information. We do
so by adding another frame to make a stereo like system as shown in figure 2.27 In the given
stereo vision setup, (ul, vl) and (ur, vr) are the 2D coordinates of the matched features in the
left and right camera images, respectively. These coordinates correspond to the projections of
the same 3D point (x, y, z) in the scene.

ul = fx
x

z
+ ox,

vl = fy
y

z
+ oy,

ur = fx
x− b
z

+ ox,

vr = fy
y

z
+ oy.

(2.63)

The cameras are separated by a horizontal baseline b, which represents the translation vector t
between the left and right frames. This means that we have a system of four equation to solve
for four unknowns, and solving for (x, y, z) gives us our 3D projection.

x = b(ul − ox)
(ul − ur)

(2.64)
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Figure 2.22: Finding 2D-3D outgoing ray using a stereo system [8]

y = bfx(vl − oy)
fy(ul − ur)

(2.65)

z = bfx
(ul − ur)

(2.66)

Note that the z coordinate represents the depth of our point, and as we can see it is inversely
proportional to (ul − ur) which we call disparity, this tells us that the closer the point gets to
the image the bigger the disparity will be. And this disparity is proportional to the baseline.
Now we have successfully reconstructed the 3D coordinates of the features.

2.4.4 State Estimation

In a perfect world, the Visual SLAM problem is solved just using visual odometry. We were
able to detect features and extract their 3D coordinates which form the landmarks of our map,
as well as extract the trajectory of our camera by estimating its movement just from image
frames. But the perfect case does not exist; the measurements are noisy due to their quality,
which accounts for large errors that accumulate over time. Therefore, we care about how much
noise our measurements contain, how it is carried from one time step to the other, and how
confident we are in those measurements.

These problems are solved through backend optimization techniques that estimate our states,
which include the robot’s own trajectory as well as the environment map. This part is so
vital that in early works [53], SLAM was dubbed a state estimation problem only. In contrast,
the visual odometry part is usually referred to as the frontend, where it provides data to be
optimized by the backend as well as initial values.

There are many state estimation algorithms, which can be categorized into two classes :

1. Incremental methods : These methods are all based on the Bayes filter where we have
a prediction step and a correction step and our aim is to update the state estimate as new
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measurements arrive. The different implementation of the Bayes filter based on different
assumptions for some popular incremental methods that include:

- Extended Kalman Filter : Extended Kalman Filters (EKF) are used in SLAM
to estimate the robot’s pose and the map by maintaining a Gaussian distribution
of the state belief. EKF-SLAM linearizes the non-linear motion and measurement,
allowing the use of Kalman filter techniques. The algorithm involves predicting
the state and covariance based on the motion model, updating them with sensor
measurements, and correcting the estimates using the Kalman gain. EKF-SLAM
is efficient for real-time applications and handles uncertainties in the state and
measurements, but it may struggle with highly non-linear systems and large-scale
environments due to linearization errors and computational complexity. It was
introduced by [53].

- Particle Filter: Particle filters, are used in SLAM to estimate the distribution
of a robot’s pose and map by representing the belief with a set of particles. Each
particle represents a possible state (pose) of the robot and is associated with a
weight indicating its likelihood given the observations and controls. The algorithm
involves initializing particles, predicting their movement based on the motion model,
updating their weights based on sensor measurements, and resampling particles to
focus on more likely states. Particle filters can handle non-Gaussian and multi-
modal distributions, making them robust for complex, real-world environments,
but they can be computationally intensive and require efficient resampling to avoid
degeneracy.. This approach was introduced in [57] and [76].

2. Batch Methods: These methods reprocess all past measurements to optimize the state
estimates. Given their relevance to our chosen approach, we will be exploring two of the
most widely used batch methods in detail in the following sections.

2.4.4.1 Pose Graph Optimization (PGO)

Pose graph optimization is method that not only estimates the most recent pose of the camera
but also helps refine the estimation of past poses over time. In this approach, these poses are
referred to as nodes and are linked by edges as shown in figure 2.23, which represent constraints
between poses that must be respected to accurately optimize the motion path. Consequently,
the state of the robot is represented by a high-dimensional state vector containing selected
poses to approximate the true trajectory.

1. Mathematical formulation
The poses of the camera as well as the constraints, are retrieved through the process
of visual odometry as discussed previously. The goal of the optimization approach is
to find the node configuration (pose graph) that minimizes the error introduced by the
constraints, we add landmark point nodes to make the graph more expressive, and form
a non-optimized map of the environment as shown in figure 2.24.
The graph consists of n nodes x = x1:n, where each xi is a pose of the robot at time ti.
A constraint or edge exists between the nodes xi and xj if :

a. The robot moves from xi to xi+1, with the edge corresponding to visual odometry.
As shown in figure 2.23

b. if the robot observes the same part of the environment from xi and xj, representing
measurements from both poses. As shown in figure 2.24
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Figure 2.23: A pose graph of nodes and edges

Figure 2.24: A pose graph with added landmarks

In pose graph optimization, the key challenge is dealing with the uncertainty in the con-
straints between poses, which can cause drift over time as shown in 2.25. This drift is a
result of accumulated errors in the odometry and observations. To address this, we rely
on the concept of loop closure to do a closed loop estimation. A loop closure is when
the robots returns to a previously seen location, in our case when the camera detects the
same set of features. When the loop closure takes place, the graph optimization algorithm
runs to help improve the estimation of all poses in the state vector.
To express this approach we use homogeneous coordinates to show transformations be-
tween poses. The odometry-based edge is expressed as (X−1

i Xi+1) where this how the
node i sees the node i+1, which describes how node i sees node j, is expressed as (X−1

i Xj).
The pose graph consists of nodes representing robot poses and edges representing con-
straints or transformations between these poses.
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Figure 2.25: A pose graph with added landmarks

To incorporate the uncertainty, we define an information matrix Ωij for each edge, which
encodes the confidence in the corresponding constraint. This matrix is typically the
inverse of the covariance matrix of the measurement noise. The "bigger" Ωij is, the more
that edge "matters" in the optimization process, the less noisy it is.
Using what we have we can now formulate our error function as depicted in figure 2.26

Figure 2.26: Formulation of the error

Mathematically, the error function for a single constraint is defined as:

eij(xi, xj) = t2v(Z−1
ij (X−1

i Xj)) (2.67)

where Zij is the observed transformation between poses xi and xj, and X−1
i Xj is the

estimated transformation. This basically indicates that we took a forward transformation
form the node xi to the node xj and then a backward transformation from the observed
xj to xi, and we check their difference which forms our error function eij.
Hence we can formulate our quadratic objective function to minimize the error as such :

x∗ = arg min
x

∑
k

eTk (x)Ωkek(x) (2.68)

We note that the function t2v converts the homogeneous transformation matrix to a vector
representation for the purpose of simplifying the error function before optimizing it,as it
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is simpler and less computationally costly to work with vectors rather than matrices.
Here’s a simple example for a 2D transformation matrix T :

T =


cos(θ) − sin(θ) tx

sin(θ) cos(θ) ty

0 0 1


The t2v function would convert this into:

t2v(T ) =


tx

ty

θ


2. Objective function minimization

a. Linearizing the Error Function
We can approximate the error functions around an initial guess x via Taylor expan-
sion:

eij(x+ ∆x) ≈ eij(x) + Jij∆x (2.69)

with
Jij = ∂eij(x)

∂x

b. Derivative of the Error Function
A crucial result of having constraints depend only on the actual and previous node
only, is that the error function does not depend on all state variables but only on
xi and xj.
This will have a direct result on the structure of the Jacobian because it will be
non-zero only in the rows corresponding to xi and xj:

∂eij(x)
∂x

=
[
0 · · · ∂eij(x)

∂xi
· · · 0 · · · ∂eij(x)

∂xj
· · · 0

]
c. Jacobian and Sparsity

Error eij(x) depends only on the two parameter blocks xi and xj:

eij(x) = eij(xi, xj)

The Jacobian will be zero everywhere except in the columns of xi and xj:

Jij =
[
0 · · · ∂eij(x)

∂xi
· · · 0 · · · ∂eij(x)

∂xj
· · · 0

]
d. Building a linear system out of Sparsity

By substituting 2.69 in the objective function 2.68, and after further development
we find the following equation∑

(i,j)∈C

(
2eij(xk)TΩijJij∆x+ ∆xTJTijΩijJij∆x

)
(2.70)
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That can be written as ∆xTH∆x + bT∆x. The optimal increment ∆x is found
by setting the gradient of the quadratic function to zero, so to find the node con-
figuration that minimizes the error, we’ll have to solve the following linear system
:

H∆x = b

Where the he Hessian matrix is:

Hij = JTijΩijJij

And that the gradient vector is:

bTij = eTijΩijJij

Summing over all state variables and constraints we get :

bT =
∑
ij

bTij =
∑
ij

eTijΩijJij

H =
∑
ij

Hij =
∑
ij

JTijΩijJij

Where it is non-zero only at the indices corresponding to xi and xj. This will give
us a very sparse structure of H which is a direct result on the sparse structure of
the Jacobian Jij.

The process can be compacted through the following algorithm that runs each time a loop
closure is detected:

Algorithm 2 Pose Graph Optimization Algorithm
1: Initialize: Initial guess for poses x
2: while not converged do
3: Build the linear system: (H,b)← buildLinearSystem(x)
4: Solve the sparse linear system: ∆x← solveSparse(H∆x = −b)
5: Update the poses: x← x + ∆x
6: end while
7: Return: Optimized poses x∗

Here’s an example that shows how the PGO algorithm relied on that loop closure to correct
the accumulated drift.

Figure 2.27: Loop Closure detected [9]
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2.4.4.2 Bundle Adjustment (BA)

Bundle adjustment is a backend optimization technique used in visual slam with the goal of
refining the 3D coordinates of the landmarks (features) and the camera poses simultaneously.
This is done by minimizing the reprojection error as shown in figure 2.28, which is the difference
between the observed 2D points in the images and their projected 3D points. The reprojection
fault occur due to various factors such as the imperfections of the camera model from lens
distortion, inaccurate intrinsic parameters and even bad camera calibration, as well is subpar
feature matching. By optimizing these parameters, BA improves the accuracy of both the
camera trajectory and the mapped environment.

1. Mathematical Formulation
In BA, we define the problem as follows: Given a set of observed 2D points in multiple
images, we aim to find the 3D coordinates of the corresponding landmarks and the cam-
era poses that minimize the reprojection error. The reprojection error is the difference
between the observed 2D points and the projected 3D points.
The reprojection of a 3D point Xi in the world frame to a 2D point uij in the image frame
of the j-th camera is given by:

uij = π(K[Rj|tj]Xi)

where π is the projection function, K is the camera intrinsic matrix, Rj and tj are the
rotation and translation of the j-th camera respectively.
The objective function to be minimized is:

min
Rj ,tj ,Xi

M∑
i=1

∑
j∈O(i)

∥uij − π(K[Rj|tj]Xi)∥2

where O(i) is the set of observations of the i-th landmark.

Figure 2.28: Bundle adjustement
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2. Objective function minimization
We follow the same procedure for the PGO algorithm.

a. Linearizing the Error Function
To minimize the objective function, we linearize the error function around the cur-
rent estimate using a first-order Taylor expansion:

eij(Xi, Rj, tj) ≈ eij(X0
i , R

0
j , t

0
j) + ∂eij

∂Xi

∆Xi + ∂eij
∂Rj

∆Rj + ∂eij
∂tj

∆tj (2.71)

where eij is the reprojection error, and ∆Xi, ∆Rj, ∆tj are the increments to the
estimates.

b. Jacobian and Sparsity
The Jacobian matrix of the error function with respect to the parameters Xi, Rj,
and tj is sparse because each error term depends only on a subset of the parameters.
This sparsity is exploited to efficiently solve the resulting linear system.
The Jacobian for the reprojection error can be written as:

Jij =
[
∂eij
∂Xi

∂eij
∂Rj

∂eij
∂tj

]
(2.72)

c. Building a Linear System
By stacking the linearized error functions for all observations, we obtain a linear
system of the form:

H∆x = −b

where H is the Hessian matrix, ∆x is the stacked vector of increments, and b is the
gradient vector.
The Hessian matrix and the gradient vector are computed as:

H =
∑
i,j

JTijJij

b =
∑
i,j

JTijeij

d. Solving the Linear System
The linear system is solved iteratively using methods such as Gauss-Newton or
Levenberg-Marquardt. The solution ∆x is used to update the estimates of the
camera poses and landmark positions:

x← x+ ∆x

Bundle Adjustment achieves high accuracy by jointly optimizing the 3D points and camera
poses. However, the main limitation of BA is its computational intensity. The optimization
process is complex and can be slow, especially for large-scale maps or when performing global
BA. Efficient implementations and approximations are necessary to make it feasible for real-
time applications.
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2.4.5 Mapping

Mapping has the goal of constructing a representation of the environment. This representation
helps a robot or drone navigate and understand its surroundings. There are several types of
mapping techniques, each with distinct characteristics and applications.

(a) Dense mapping (b) Sparse mapping (c) Grid mapping

Figure 2.29: Types of mapping

2.4.5.1 Dense mapping

Dense mapping involves creating a highly detailed and continuous representation of the envi-
ronment. It captures fine-grained details of surfaces and objects, providing a rich 3D model.
These maps are characterized by high resolution and complete surface representation, offering a
continuous surface model that includes all visible surfaces in the environment. However, dense
mapping is computationally intensive and requires significant resources and storage, which
excludes it from our application.

2.4.5.2 Sparse mapping

Sparse mapping creates a representation of the environment using a limited number of signifi-
cant features or landmarks, focusing on capturing essential elements rather than every detail.
This method relies on key points or features, such as corners and edges, and is computationally
less intensive compared to dense maps, making it suitable for real-time applications. Sparse
maps are compact and require less storage since they only include crucial landmarks.This tech-
nique is ideal for mobile robotics or for our application of SLAM in drones, which is why it will
be used in our method.

2.4.5.3 Grid mapping

Grid mapping involves dividing the environment into a grid of cells, with each cell representing
a small area with a certain occupancy status (occupied, free, or unknown). This technique pro-
vides a structured and straightforward representation of space, often in the form of occupancy
grids where each cell has a probability of being occupied. Grid maps are simple to understand
and implement, making them a popular choice for many robotic applications. They are scal-
able to cover large areas by increasing the number of cells, though this increases memory usage.
Grid mapping is commonly used in robotic navigation and path planning, autonomous vehicle
systems, and environments where a straightforward representation of free and occupied space
is needed.
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2.5 The chosen approach ORB SLAM

2.5.1 Introduction to ORB SLAM

ORB-SLAM (Oriented FAST and Rotated BRIEF SLAM) is a feature-based simultaneous lo-
calization and mapping (SLAM) system that utilizes monocular, stereo, and RGB-D cameras.
Developed by Mur-Artal, Montiel, and Tardos in 2015 [9],and it’s renowned for its real-time per-
formance, robustness, and accuracy. The system combines the efficiency of ORB features,which
we will showcase shortly, with advanced SLAM techniques to provide a highly reliable solution
for visual SLAM applications.

2.5.2 ORB feature extraction and matching

After testing multiple state of the art feature extraction methods and multiple feature descrip-
tors, we proved that binary detectors and descriptors such as FAST and BRIEF, outperform
the others when it comes to speed. But they lack robustness due to their lack of scale and ro-
tation invariance, that’s why we opted for the ORB features which provide additional changes
to those two algorithms.

2.5.2.1 Oriented FAST

- Assigning orientation :
As previously discussed, FAST does not have an orientation component, which is necessary
for rotation invariance. To address this, ORB incorporates the orientation of keypoints
detected by FAST. For each keypoint, the orientation is computed using the intensity
centroid method. That is based on the moment of a patch of the image around the
keypoint. The moments mpq of the patch are defined as:

mpq =
∑
x,y

xpyqI(x, y) (2.73)

Where the zeroth moment m00 represents the sum of the pixel intensities in the image.
Essentially, it is the total "mass" of the intensity function.

m00 =
∑
x

∑
y

I(x, y) (2.74)

And the first moments m10 and m01 represent the weighted sums of the pixel intensities
along the x and y axes, respectively.

m10 =
∑
x

∑
y

xI(x, y) (2.75)

m01 =
∑
x

∑
y

yI(x, y) (2.76)

where I(x, y) is the intensity at pixel (x, y). The centroid (Cx, Cy) of the patch is then
calculated as:

Cx = m10

m00
, Cy = m01

m00
(2.77)

The orientation of the keypoint is determined by the angle θ of the vector from the
keypoint to the centroid:

θ = atan2(m01,m10) (2.78)
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- Assigning Scale :
Scale invariance refers to the ability to extract the same feature even if the it is bigger
or smaller size, meaning even if the camera gets closer or further. So its importance is
understandable. Fast however doesn’t provide that invariance so we need to include it
though what is known as a scale pyramid.

1. Blurring and Downsampling: The image is repeatedly smoothed and downsam-
pled to create a series of images at different scales. This is done using a Gaussian
blur, which can be represented as:

Iσ(x, y) = I(x, y) ∗Gσ(x, y) (2.79)

where I(x, y) is the original image, Gσ(x, y) is the Gaussian kernel with standard
deviation σ, and ∗ denotes convolution.

2. Constructing the Scale Pyramid: Each level of the pyramid is constructed by
applying a Gaussian blur followed by downsampling. Let I0 be the original image,
then the image at level s of the pyramid Is can be constructed as:

Is(x, y) = Is−1(x′, y′) ∗Gσs(x, y) (2.80)

where σs is the standard deviation of the Gaussian kernel at scale s, and (x′, y′) are
the downsampled coordinates.

3. FAST Corner Detection at Multiple Scales: Apply the FAST corner detection
algorithm on each level of the pyramid. For a point to be detected as a corner, it
must satisfy the corner detection criteria at its respective scale.

FAST(Is)

This results in a set of keypoints detected at each scale.

4. Combining Keypoints: The keypoints detected at different scales need to be
combined. This involves scaling the coordinates of the keypoints detected in the
downsampled images back to the original image scale. If a keypoint is detected at
scale s with coordinates (xs, ys), its coordinates in the original image scale (x, y)
can be computed as:

x = xs · 2s

y = ys · 2s

2.5.2.2 Rotated BRIEF

The key idea behind Rotated BRIEF (rBRIEF) is that, regardless of the rotation of the
image, the keypoint’s orientation remains consistent. That’s why we use the orientation
calculated by the oFAST algorithm , and each time that feature is detected it will be
rotated to that orientation before being matched.

1. Rotation of Sampling Pattern
With the orientation θ determined, the BRIEF sampling pattern is rotated. For
each point pair (xi, yi) in the BRIEF pattern, the rotated coordinates (x′

i, y
′
i) are

computed as: x′
i

y′
i

 =
cos(θ) − sin(θ)

sin(θ) cos(θ)

xi
yi


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2. Descriptor Computation
Using the rotated sampling pattern, the binary descriptor is computed. For each
pair of points (x′

i, y
′
i) and (x′

j, y
′
j), the binary string is formed based on intensity

comparisons:

rBRIEFk =

1 if I(x′
i, y

′
i) < I(x′

j, y
′
j)

0 otherwise

where I(x, y) represents the intensity at coordinates (x, y).

2.5.2.3 ENP Example

We apply the ORB feature algorithm to the same image and try and compare the results

Figure 2.30: ORB feature extraction on Ecole Nationale Polytechnique (rotated by 45 degrees

◦ Commentary
The ORB feature detection and matching process resulted in identifying 343 matches
with a high matching accuracy of 92.42% in an efficient execution with a time of
0.0527 seconds. This highlights ORB’s robustness and reliability in feature detec-
tion and matching, even under significant image transformations such as rotation.
Which is due to the changes we made to the FAST and BRIEF algorithms.

◦ Comparison

Algorithm Keypoint Detector Execution Time (seconds) Number of Matches Matching Accuracy

ORB oFAST + rBRIEF 0.0527 343 92.42%
SIFT DoG 0.4522 N/A 80.81%
BRIEF FAST 0.0199 1377 19.90%

Table 2.2: Comparison of Feature Detection Algorithms

Based on the performance metrics, we can see that ORB offers a good balance be-
tween speed and accuracy, making it suitable for real-time applications.And BRIEF,
while extremely fast, lacks robustness against rotations and scale changes, necessi-
tating enhancements for better performance. Finally SIFT, although accurate, is
too slow for real-time processes.
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2.5.3 System Overview

The ORB-SLAM algorithm workflow can be divided into three main threads that run in parallel
as shown 2.31, which are tracking, local mapping and loop closing

Figure 2.31: ORB SLAM Workflow [9]

We will explain each part separately in a brief manner because most of the algorithms used
have already been presented extensively in the previous section. ORB SLAM just proposed a
novel way on how to connect each part in the most optimized manner possible.

2.5.3.1 Tracking

1. Feature Extraction:
The ORB feature extraction is performed as presented in [9] via an 8-level pyramid scale.
This method has been shown to improve accuracy by ensuring a homogeneous distribu-
tion of detected corners. The pyramid scale is divided into grids, with each cell containing
at least five features. The benchmark number of features, as indicated in [77], is 2000.
This distribution helps maintain consistency and robustness in feature detection across
different scales.

2. Pose Prediction:
In ORB-SLAM, the tracking thread uses a motion model to predict the camera’s current
pose based on previous poses and velocities. This prediction provides a good initial
estimate for the pose optimization process. One commonly used motion model is the
constant velocity model, which assumes that the camera moves with a constant velocity
between frames.
The constant velocity model assumes that the camera’s motion between consecutive
frames can be approximated by a constant velocity. Mathematically, this can be ex-
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pressed as:
Tk+1 = TkT−1

k−1Tk (2.81)

Here, Tk represents the camera pose at time step k, and Tk−1 represents the camera pose
at the previous time step k − 1. The term T−1

k−1Tk computes the relative transformation
between the previous two frames, which is then applied to the current pose Tk to predict
the pose Tk+1 at the next time step.

3. Initial Pose Estimation and Local Map Tracking:
The local map consists of keyframes and map points that are close to the current camera
pose Tk+1. ORB features are extracted from the current frame and matched with the
features in the local map using a descriptor matcher. The matching process involves
finding correspondences between the 2D keypoints in the current frame and the 3D map
points in the local map, using the predicted pose to narrow down the search space.

4. Keyframe Decision:
Deciding whether or not to insert a new keyframe depends on three main factors: tracking
quality, distance from the last keyframe, and scene changes.

- Tracking Quality: The system checks the number of points that are being suc-
cessfully tracked in the current frame. If the number of tracked points falls below
a certain threshold, it may indicate that a new keyframe is needed to stabilize the
tracking. Additionally, the spatial distribution of matched points across the image
is considered. If the matches are unevenly distributed, a new keyframe may be
required to ensure robust tracking.

- Distance from the Last Keyframe: The system measures the distance the cam-
era has moved since the last keyframe. If this distance exceeds a certain threshold,
it suggests that a new keyframe should be inserted to capture the new area of the
environment. Similarly, the system evaluates the rotational change since the last
keyframe. Significant rotation may warrant a new keyframe to maintain accurate
orientation tracking.

- Scene Changes: If the viewpoint changes significantly, which can be detected by
large changes in the relative positions of the tracked points, a new keyframe might
be necessary. Changes in lighting conditions can affect tracking as well. If there
are substantial changes in illumination, inserting a new keyframe can help adapt
to these conditions. The introduction of new objects or significant changes in the
scene can lead to the insertion of a new keyframe to capture these new elements
accurately.

2.5.3.2 Local Mapping

This process involves several key components:

- Insertion of New Keyframes:
When a new keyframe is added to the system, it is integrated into the local map. This
step is essential to keep the local map consistent and up-to-date with the latest visual
information.
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- Optimization of the Local Map:
The core of the local mapping is local bundle adjustment as explained in 2.28, in or-
der to refine the camera poses of keyframes and the 3D positions of the map points, we
apply BA within a local window that contains only a specific set of features and keyframes.

- Search for New Correspondences:
Another important task in local mapping is searching for new correspondences. The map-
ping thread searches for matches between unmatched features in the new keyframe and
features in connected keyframes within the graph. By finding new correspondences, the
system adds to the the map and improves tracking accuracy. This search process uses
descriptors and geometric constraints to validate potential matches, ensuring robustness
and reliability.

- Map Point Culling:
To maintain the quality and manage the complexity of the map, local mapping includes
the culling of low-quality map points. Map points that are not observed by multiple
keyframes and that have high reprojection errors, or are located outside the view are
considered for removal. This culling process helps in maintaining a high-quality map by
eliminating points that could degrade the overall accuracy and consistency.

- Redundant Keyframe Removal:
Finally, the local mapping process involves the removal of redundant keyframes. Keyframes
that have a high degree of overlap with others and do not significantly contribute to the
map’s accuracy are identified and removed. This step ensures that the map remains
compact and computationally efficient, facilitating real-time performance.

2.5.3.3 Loop Detection and Correction

1. Loop Detection:
The system employs a place recognition module that uses bag-of-words (BoW) to quickly
identify similar places. This module uses ORB features to create a visual dictionary,
which allows the system to recognize revisited places even under different viewpoints or
lighting conditions. When a potential loop closure is detected, the system verifies it by
comparing the geometric consistency of the features.

2. Pose Graph Optimization (PGO):
Once a loop is detected, a similarity transformation is applied to correct the drift. This
transformation aligns the current frame with the corresponding frame in the detected
loop.
Pose graph optimization (PGO) is then performed to refine the pose estimates of all
keyframes and ensure global consistency as explain previously in 2.4.4.1.

3. Similarity Transformation:
When a loop closure is detected, the system computes a similarity transformation to align
the current pose with the corresponding pose in the loop. This transformation compen-
sates for the accumulated drift and corrects the trajectory. The similarity transformation
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includes scaling, rotation, and translation components, ensuring that the map is globally
consistent.
The transformation can be expressed as:

Tglobal = STlocal

where S is the similarity transformation matrix, Tlocal is the local pose, and Tglobal is the
globally optimized pose.

4. Global Bundle Adjustment:
After applying the similarity transformation, the system performs global bundle adjust-
ment to refine the entire map. This step ensures that all keyframes and map points are
optimally aligned, further improving the accuracy and consistency of the map.
The objective function for global bundle adjustment is similar to local bundle adjustment
but applied to the entire map.

2.5.4 Testing the algorithm

In this section, we will be testing our algorithm against a benchmark dataset.

2.5.4.1 The EuRoC MAV Dataset for Drones

The EuRoC MAV Dataset is designed for evaluating visual-inertial SLAM (Simultaneous Lo-
calization and Mapping) algorithms, particularly for drones. It was collected using a MAV with
stereo cameras and an IMU (Inertial Measurement Unit) in various indoor environments. The
dataset is widely used in the robotics and computer vision communities due to its high-quality
data and accurate ground truth trajectories.

- Key Features of the EuRoC MAV Dataset
1. Stereo Images: Synchronized stereo images captured at 20 Hz, essential for visual

SLAM.

2. IMU Measurements: Inertial data recorded at 200 Hz, crucial for motion esti-
mation.

3. Ground Truth Trajectories: Accurate trajectories obtained using high-precision
motion capture systems.

4. Diverse Environments: Includes sequences from:

◦ Vicon Room: Controlled environment with accurate ground truth, consid-
ered easy.

◦ Machine Hall: Large industrial environment with challenges like featureless
areas and dynamic objects, considered medium to hard.

◦ Outdoors: Environments with significant lighting changes and dynamic ele-
ments, considered hard.
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2.5.4.2 Test Results

We conducted benchmark tests on three sequences from the EuRoC MAV Dataset to evaluate
the performance of our algorithm. The selected sequences represent different levels of difficulty:

- MH_01_easy (Machine Hall, Easy)

- V1_02_medium (Vicon Room, Medium)

The following figures show the comparison between the ground truth and the estimated trajec-
tories for the selected sequences, along with the maps generated by our SLAM algorithm:

Figure 2.32: Trajectory comparison for MH_01_easy (Machine Hall, Easy).

Figure 2.33: Generated map for MH_01_easy (Machine Hall, Easy).
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2.5.4.3 Commentary

MH_01_easy: The trajectory for MH_01_easy shows a close alignment between the esti-
mated and ground truth paths with a RMSE value of 0.1403 m, demonstrating the algorithm’s
effectiveness in controlled, easy environments. The generated map accurately represents the
environment, further confirming the algorithm’s reliability.

V1_02_medium: For V1_02_medium, the estimated trajectory maintains good accuracy with
an RMSE value of 0.25, though some deviations are present, highlighting the increased com-
plexity and challenges in medium difficulty environments. The generated map captures most
features but shows slight inconsistencies in dynamic areas.

(a) Trajectory comparison for V1_02_medium (Vicon Room, Medium).

Figure 2.34: Trajectory for V1_02_medium (Vicon Room, Medium).

(a) Generated map for V1_02_medium (Vicon Room, Medium).

Figure 2.35: Map for V1_02_medium (Vicon Room, Medium).
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2.5.4.4 Commentary

MH_01_easy: The trajectory for MH_01_easy shows a close alignment between the esti-
mated and ground truth paths with a RMSE value of 0.1403 m, demonstrating the algorithm’s
effectiveness in controlled, easy environments. The generated map accurately represents the
environment, further confirming the algorithm’s reliability.

V1_02_medium: For V1_02_medium, the estimated trajectory maintains good accuracy with
an RMSE value of 0.25, though some deviations are present, highlighting the increased com-
plexity and challenges in medium difficulty environments. The generated map captures most
features but shows slight inconsistencies in dynamic areas.

2.6 Conclusion

In this chapter, we have introduced and discussed the implementation of Visual SLAM for
UAVs using the ORB-SLAM algorithm. We covered the theoretical foundations of Visual
SLAM, detailed the workings of the ORB-SLAM algorithm, and demonstrated its practical
implementation and testing using the EuRoC MAV Dataset.

Our testing results show that the ORB-SLAM algorithm performs well in controlled environ-
ments (easy) but faces challenges in more dynamic and complex scenarios (medium and hard).
The generated maps, while generally accurate, also reflect these difficulties, indicating areas for
further improvement.
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Chapter 3

Implementation

3.1 Introduction

In this chapter, we explore into the practical aspects of building and implementing a quadrotor
UAV equipped with a robust control system and SLAM capabilities. We begin with a detailed
exploration of the component selection process, discussing the criteria for choosing each part and
analyzing the associated costs. This comprehensive guide ensures that the selected components
align with the performance requirements and budget constraints.

Following the component selection, we move on to the implementation of the control system.
This involves identifying key parameters such as mass, arm lengths, and moments of inertia,
which are crucial for the accurate modeling and control of the UAV. We also discuss the
implementation of the Extended Kalman Filter (EKF) for sensor fusion and state estimation,
highlighting its importance in achieving precise control and navigation.

The chapter also covers the use of Software-in-the-Loop (SITL) simulations to test and validate
the control algorithms in a virtual environment before deploying them to the real quadrotor.
This approach helps in refining the control strategies and ensures their reliability.

Finally, we present the implementation of the SLAM algorithm using ROS and Docker, pro-
viding a detailed overview of the frameworks and tools used. We conduct various experiments
to test the SLAM performance in different scenarios, analyzing the results to understand the
algorithm’s strengths and limitations

3.2 Component Selection and Cost Analysis

In this section, we will explore the various components required for building a drone, discuss
the criteria for selecting each component, and analyze the associated costs. The objective is
to provide a comprehensive guide to understanding the importance of each component and
how to make informed decisions to ensure optimal drone performance while adhering to budget
constraints.
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3.2.1 Component Overview

The following components are essential for building a functional and efficient drone. Each
component has been selected based on specific criteria to ensure the best performance and
value.

3.2.1.1 Drone Frame

The drone frame is the structural backbone of a drone, serving as the skeleton on which all other
components are mounted and providing protection for the electronics. A typical drone frame
is constructed from carbon fiber plates and metal hardware as shown in figure 3.1, including:

Figure 3.1: Typical drone frame [10]

- 4x Arms

- Top and bottom plates

- Camera mount

- Standoff

- Bolts

While most frames share a similar shape and construction, the choice of drone frame can signif-
icantly impact flight performance. Factors such as weight, aerodynamics, resonance frequency,
and rigidity influence how well the drone flies. Frames not specifically designed for racing
are often considered freestyle frames, which are versatile and suitable for various activities like
freestyle flying, capturing cinematic shots, or casual cruising. In contrast, race frames prioritize
performance, featuring lightweight and low-drag designs at the expense of durability and ease
of build.

Freestyle frames are generally more durable and versatile, making them a better choice for
non-racing applications. The ideal drone frame balances strength, practicality, and lightweight
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construction. However, achieving this balance often requires trade-offs between protection,
practicality, and weight.

Modern drone frames typically adopt a minimalist design with skinnier arms and thicker carbon
fiber to save weight and reduce frame resonance.

Carbon fiber is the preferred material for drone frames due to its:

- Low cost

- Light weight

- Durability

- Rigidity

- High customizability

Despite its advantages, carbon fiber has downsides, including electrical conductivity, which can
cause short circuits if live wires touch the frame, and the ability to block or attenuate radio
frequencies, necessitating external antenna mounts for optimal signal strength.

QAV250 Frame: We chose the QAV250 Frame for our application. It’s a lightweight and
durable frame designed for small quadcopters. Which makes it ideal for agile and stable flight.
THe specification of the frame can be found in 3.1 and its cost is 4,000 DA.

Specification Details
Model QAV250
Material Carbon Fiber
Wheelbase (mm) 250
Height (mm) 80
Weight (gm) 160
Arm Size (L x W) mm 114 x 25
Motor Mounting Hole Dia.
(mm)

3

Table 3.1: Specifications of the QAV250 Drone Frame

.

3.2.1.2 Propellers

Propellers, or props, are vital for an drone, generating the thrust needed for flight and maneu-
verability. Choosing the right propellers is crucial for optimal performance, as incorrect choices
can lead to noise, reduced flight time, or motor failure.

- Propeller Description Formats
Propeller sizes are given in inches (1 = 2.54cm), and are described in two formats:
◦ L x P x B

◦ LLPP x B
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Figure 3.2: The chosen QAV250 frame

Figure 3.3: Different propeller sizes

.
Where:
◦ L: Length

◦ P: Pitch

◦ B: Number of blades

- Factors Affecting Propeller Performance
◦ Length: The diameter of the disc created when the prop spins. Longer props

generate more thrust but require more power and do not necessarily mean faster
flight due to pitch importance.

◦ Pitch: Distance a prop travels per revolution, measured in inches. Higher pitch
means more thrust at high speeds but less at low speeds and more turbulence.

◦ Blades: Increasing blade count increases surface area and thrust, but decreases
efficiency and adds strain on the motor.

- Propeller Types
◦ Two-Blade: More efficient, less drag, better for long-range flying.
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◦ Three-Blade: Balanced between efficiency and power, popular for racing and
freestyle.

◦ Four-Blade/Hex-Blade: Used for specific scenarios like indoor tracks, but gen-
erally less efficient.

- Propeller Weight Lighter props perform better, requiring less motor torque, leading to
better responsiveness and compatibility with various motors.

Propeller 2 Blades 5045 : The 2 Blades 5045 CW CCW propellers are chosen for their
efficient thrust and stability. These propellers are compatible with the drone’s motors and
frame. The cost of four pairs of propellers is 1,840 DA.

3.2.1.3 Motors

Choosing the right motors for an drone is crucial for achieving the desired performance, these
are some of the criterias to look at when it comes to choosing a motor:

- Motor Specifications: The KV rating of a motor indicates its RPM per volt without
load. Higher KV motors spin faster but produce less torque, making them suitable for
lightweight setups, while lower KV motors generate more torque, ideal for carrying heavier
loads. We also have the Stator size, denoted as "XXYY" (e.g., 2205), where "XX" is the
stator diameter and "YY" is the stator height, also affects motor performance. Larger
stators generally provide more torque and power.

- Factors Affecting Motor Performance: Torque is a critical factor, with higher torque
motors capable of spinning larger props or more blades, thus providing more thrust.
Efficiency is also important, as efficient motors convert more electrical power into thrust,
improving flight time and performance.

Specification Details
Framework 12N14P
KV Rating 2280Kv
Length 26.7 mm
Diameter 23 mm
No. of Cells 2-3S
Max Thrust 460g
Shaft Diameter 2 mm
Propeller Size 5"- 6"
Weight 18 g

Table 3.2: Motor Specifications

EMAX MT1806 Brushless 2280KV Motor: We opted for the EMAX MT1806 Brushless
2280KV motors. These motors are compatible with the propellers and ESCs, providing optimal
thrust and control, more details are in 3.2.1.3.The cost of four motors is 11,200 DA. .
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Figure 3.4: EMAX MT1806 Brushless

3.2.1.4 Battery

Batteries are chosen based on the following criterias :

- Capacity: Higher capacity provides longer flight times.

- Voltage: Appropriate voltage to match the drone’s power requirements.

- Discharge Rate (C rating): Determines how quickly the battery can deliver current.
A higher discharge rate supports high-performance motors and electronics.

- Weight: Lightweight batteries improve flight efficiency and maneuverability.

- Form Factor: Compatibility with the drone’s frame and available space.

- Reliability: Proven performance and durability in various conditions.

We chose the Li-po Battery 4200mAh 3s 35C 11.1V for its high energy density and discharge
rate, which are critical for providing sustained power to the drone. This battery offers a good
balance between capacity, weight, and performance, ensuring longer flight times. The cost of
the battery is 12,200 DA.

3.2.1.5 Electronic Speed Controllers (ESC)

We chose four of the ESC 12A SimonK with a cost of 10,000 DA. This choice was based upon
the following criterias

- Current Rating: Must handle the maximum current draw of the motors without over-
heating. The ESC can sustain a continuous load of 11A, with current peaks up to 16A
for 1 second.

- Voltage Compatibility: Should match the voltage of the battery and motors.

- Firmware: SimonK firmware is preferred for its responsiveness and reliability in high-
performance applications.

- Size and Weight: Compact and lightweight ESCs contribute to the overall efficiency
and agility of the drone. Dimensions are 5cm x 5cm x 0.2cm.

- Thermal Management: Good heat dissipation to prevent overheating during prolonged
use.
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- Reliability: Proven durability and performance under various conditions.

Figure 3.5: 12A ESC SimonK

3.2.1.6 Power Distribution Board

The power distribution board (PDB) is a crucial component for managing and distributing
power within the drone. It provides voltage to the motors through the ESCs and supplies
power to the flight controller. This ensures that all components receive the necessary power to
function correctly, maintaining the overall efficiency and stability of the drone. The cost of the
power distribution board is 2,000 DA.

Figure 3.6: 12A ESC SimonK

3.2.1.7 Flight Controller

We chose a Pixhawk 2.4.8 PX4pix Flight Controller FULL Kit. We’ve talked about the flight
controller extensively in the second chapter so we won’t be repeating it here. The cost of the
flight controller is 64,000 DA.

3.2.1.8 Remote Control

A remote control (RC) system is essential for manually controlling your vehicle from a transmit-
ter. An RC system includes a ground-based remote control operated by the user to command
the vehicle. The remote control has physical controls for specifying the vehicle’s movement
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(e.g., speed, direction, throttle, yaw, pitch, roll) and activating autopilot flight modes (e.g.,
takeoff, landing, return to home, mission).

Figure 3.7: FlySky FS-I6X 2.4 GHz AFHDS 2A RC Transmitter with fs-iA6B

For telemetry-compatible RC systems, the remote can also receive and display information
from the vehicle (e.g., battery level, flight mode). The remote contains a radio module linked
to a compatible module on the drone, which is connected to the flight controller. The flight
controller interprets commands based on the current autopilot flight mode and vehicle status,
then drives the motors and actuators accordingly. The complete system consists of two parts:

- Transmitter (TX): The remote control used to command the drone.

- Receiver (RX): The part that receives commands from the transmitter via radio waves,
attached to the drone and connected to the flight controller.

We chose a FlySky FS-I6X 2.4 GHz AFHDS 2A RC Transmitter with fs-iA6B beacuse it was
an affordable and user-friendly option that provided precise control over the drone. The cost
of the RC transmitter is 32,000 DA.

3.2.1.9 Raspberry Pi 5 Model B

The Raspberry Pi 5 Model B is a powerful and versatile development kit, featuring an 8GB
RAM and an efficient cooling system. It provides robust processing capabilities for various
applications, including handling the complex computations required for visual slam. The cost
of the Raspberry Pi 5 Model B Development Kit is 45,000 DA. It’s equipped with the following
:

- Processor: Equipped with a powerful quad-core ARM Cortex-A76 CPU, ensuring fast
and efficient processing.

- Memory: 8GB of LPDDR4-3200 SDRAM, offering ample memory for multitasking and
running complex applications.

- Connectivity: Multiple connectivity options, including USB 3.0, Gigabit Ethernet, and
dual-band Wi-Fi.
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Figure 3.8: Raspberry Pi 5 Model B full kit

- Graphics: Improved GPU for handling video and graphical tasks.

- Expansion: GPIO pins for connecting various sensors and peripherals, making it highly
versatile for custom applications.

- Cooling: Comes with a fan cooler to maintain optimal temperatures during high-performance
tasks.

3.2.1.10 Camera

We worked with the AUKEY Webcam Full HD which costs about 3,900 DA. The criterias for
choosing a camera should be :

- Resolution: High-resolution cameras provide detailed images necessary for accurate
SLAM processing but badly affect the computational time.

- Frame Rate: A higher frame rate ensures smoother video, which helps in better tracking
and mapping.

- Field of View: A wider field of view allows the camera to capture more area, improving
the SLAM algorithm’s effectiveness.

- Compatibility: The camera must be compatible with the processing unit (e.g., Rasp-
berry Pi) and SLAM software.

- Latency: Low-latency cameras provide real-time data, essential for SLAM applications.

- Size and Weight: Compact and lightweight cameras are preferable to avoid adding
unnecessary weight to the drone.

- Durability: The camera should be durable and reliable under various environmental
conditions.
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Figure 3.9: AUKEY Webcam 1080p

3.2.1.11 Voltage Regulator

We chose the LM2596 Adjustable DC-DC Voltage regulator to provide 5 volts the raspberry pi
5. The cost of the voltage regulator is 700 DA.

Figure 3.10: LM2596 Adjustable DC-DC Voltage regulator

3.2.2 Total Cost

Component Quantity Cost (DA)
Li-po Battery 4200mAh 3s 35C 11.1V +
Connector

1 12,200

Raspberry Pi 5 Model B (8 GB) Fan cooler 1 45,000
Pixhawk 2.4.8 PX4pix Flight Controller
FULL Kit

1 64,000

FlySky FS-I6X 2.4 GHz AFHDS 2A RC
Transmitter with fs-iA6B

1 32,000

Propeller 3 Blades 5045 CW CCW (Pair) 4 1,840
LM2596 Adjustable DC-DC Voltage
Regulator

1 700

QAV250 Frame 1 4,000
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ESC 12A SimonK 4 10,000
EMAX MT1806 Brushless 2280KV Motor 4 11,200
12V Power Distribution Board 1 2,000
AUKEY Webcam 1080p Full HD 1 3,900
Total Cost 186,840

Table 3.3: Cost Breakdown of Drone Components

The total cost for all the components listed above is 184,940 DA.

3.3 Control Implementation

3.3.1 Parameter Identification

To implement the control and observation algorithms on the quadrotor, we need to know the
different parameters that govern its dynamics.

The parameters we need to identify are:

- The mass of the quadrotor

- The Arm lengths lx and ly

- The moment of inertia of the quadrotor

- The lift and drag coefficients

3.3.1.1 Mass

Using a digital scale, we weighed the quadrotor and obtained the following result:

m = 506g (3.1)
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3.3.1.2 Lengths lx and ly

Figure 3.11: Quadrotor lx and ly

Using a ruler, we measured the two lengths lx and ly and obtained the following measurements:

lx = 20.1cm (3.2)

ly = 15.6cm (3.3)

3.3.1.3 Moment of Inertia

The moment of inertia of a solid describes the dynamic behavior of a body in rotation around
a defined axis. It plays the same role in rotational dynamics as mass does in translational
dynamics. The moment of inertia depends on the distribution of the solid’s mass relative to a
rotation axis. For a solid that undergoes rotational motion in space, the moment of inertia can
be described by a symmetric matrix of dimensions 3x3.

J =


JXX JXY JXZ

JY X JY Y JY Z

JZX JZY JZZ

 (3.4)

For the same solid, different rotation axes can have different moments of inertia, and an infinite
number can be found.

Generally, the inertia matrix is calculated using mathematical methods based on its expression,
but for solids with complex geometric shapes, it is preferable to use software that calculates it
directly or to proceed with an identification process. In our case, due to the lack of material
we decide to work with Computer-Aided Design (CAD), we chose a software that can simulate
our frame in a 3D environment with its carbon fiber construction. A good software choice is
SolidWorks

3.3.1.4 Solidworks

SolidWorks is a robust CAD software that allows for 3D modeling and simulation. Developed
by Dassault Systèmes, it is widely used in engineering and design fields for creating precise,
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detailed models of mechanical parts and assemblies. SolidWorks offers comprehensive tools for
designing, simulating, and documenting various types of products, making it an excellent choice
for projects requiring detailed 3D representations and analysis. In our case, SolidWorks offers

(a) Design a motorcycle using Solid-
Works

(b) Design a complex piece using Solid-
Works

Figure 3.12: Examples of projects using SolidWorks

various types of shapes and geometries. However, the challenging part was the complex shape
of our drone. We had to design each part individually to finally assemble the final version.

(a) Top Plate of the body
Frame (b) Camera support 1

The next step is to add the carbon fiber material to our drone and observe the resulting moment
of inertia as shown in figure.

(a) original Frame (b) Frame made with fiber carbon

Figure 3.15: Applying the fiber carbon to the frame

116



(a) Bottom plate of the Frame (b) camera support2

Figure 3.14: Different Views and Components of the Drone Frame

And then, by selecting the material properties in SolidWorks, we obtained the following results
3.5.

Property Value
Density 1880.0000 kilograms per cubic meter
Mass 0.2179 kilograms

Volume 0.0001 cubic meters
Surface area 0.0688 square meters

Center of mass (meters)
X 0.0001
Y 0.0057
Z 0.0177

Table 3.4: Basic properties of the frame
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Property Value
Principal axes of inertia and
principal moments of inertia: (kilograms * square meters)
Taken at the center of mass

Ix (1.0000, -0.0025, 0.0001) Px = 0.0007
Iy (0.0025, 1.0000, -0.0050) Py = 0.0008
Iz (-0.0001, 0.0050, 1.0000) Pz = 0.0014

Moments of inertia: (kilograms * square meters)
Ixx 0.0008
Ixy 0.0000
Ixz 0.0000
Iyx 0.0000
Iyy 0.0008
Iyz 0.0000
Izx 0.0000
Izy 0.0000
Izz 0.0014

Table 3.5: Inertia properties of the frame

and then we get the final matrix of moments of inertia:

J =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 =


0.0008 0.0000 0.0000
0.0000 0.0008 0.0000
0.0000 0.0000 0.0014

 (3.5)

3.3.1.5 Thrust Identification Method

To identify the thrust factor, a method involving the measurement of the force produced by
the rotors was utilized. This process requires setting up the quadrotor in a way that allows for
the precise measurement of the thrust force. The steps involved in this method are as follows:

1. The quadrotor is placed on a balance that has been tared, meaning that the balance reads
zero when there is no weight on it.

2. The motors are run at the same speed, and for each speed setting, the value displayed by
the balance (which represents the thrust force) and the pulse width modulation (PWM)
signal in microseconds (µs) used to control the motors are recorded.

3. This procedure is repeated for various motor speeds to gather a comprehensive dataset.

4. The results obtained are summarized in a table and a figure, which show the relationship
between the thrust force and the PWM signal. The thrust force (T ) is modeled as a
first-order polynomial function of the PWM signal (u):

T = a · u+ b (3.6)
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where a and b are coefficients determined through the identification process.

Due to material limitations, we used data from a previous final project [?], which had already
conducted similar work on our quadrotor. This allowed us to leverage their results and proceed
with our work confidently. The table below summarizes the coefficients obtained from the
first-order approximation of the thrust relation with the PWM signal.

Coefficient Value
a 0.0017
b -0.9335

Table 3.6: Coefficients of the thrust approximation

3.3.1.6 Drag Moment Identification Method

To identify the drag moment factor, a method involving the measurement of the torque gen-
erated by the rotors was utilized. This process requires setting up the motor in a way that
allows for the precise measurement of the drag moment. The steps involved in this method are
as follows:

1. The motor is mounted vertically on an axis that allows it to rotate about a fixed point.
This setup can be seen in Figure 3.16.

2. A balance is placed vertically and tared, meaning that the balance reads zero when there
is no weight on it.

3. The motor is run in the clockwise direction, causing the axis to rotate in the opposite
direction. The torque generated by the motor is then applied as a force on the balance.

4. The value displayed by the balance and the PWM signal in microseconds (µs) used to
control the motor are recorded.

5. This procedure is repeated for various motor speeds to gather a comprehensive dataset.

6. The results obtained are summarized in a table and a figure, which show the relationship
between the drag moment and the PWM signal. The drag moment (τ) is modeled as a
first-order polynomial function of the PWM signal (u):

τ = c · u+ d (3.7)

where c and d are coefficients determined through the identification process.
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Figure 3.16: Setup used for drag moment identification

As previously mentioned, we will use the results from the previous final project [?], which per-
formed the same work on our quadrotor. Their results are reliable. The table below summarizes
the coefficients obtained from the first-order approximation of the drag moment relation with
the PWM signal.

Coefficient Value
c 1.2362e-8
d 3.0737e-5

Table 3.7: Coefficients of the drag moment approximation

3.3.2 Extended Kalman Filter (EKF)

The Extended Kalman Filter (EKF) is essential in modern control systems, particularly in
robotics and unmanned vehicles, due to its ability to provide accurate state estimates from
noisy sensor measurements. This accuracy is crucial for stability and performance, enabling
precise control and navigation.

In essence, the EKF helps to:

- Fuse Sensor Data: Combine multiple sensor inputs to provide a comprehensive state
estimate.

- Filter Noise: Mitigate the effects of sensor noise and errors.

- Predict Future States: Estimate the vehicle’s future state based on current data and
system dynamics.
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3.3.2.1 EKF’s principle

The EKF processes sensor measurements using an extended version of the Kalman Filter algo-
rithm, which is designed for nonlinear systems. Here are the key components and steps in the
EKF process:

1. State Vector: The EKF maintains a state vector that includes variables like position,
velocity, orientation (quaternions), and biases.

2. Prediction Step: Using the system’s dynamics model, the EKF predicts the next state
and the associated uncertainty.

3. Update Step: The EKF updates its state estimates using new sensor measurements,
taking into account their uncertainties.

4. Covariance Matrix: This matrix represents the uncertainties in the state estimates and
is updated in each step to reflect the latest data.

The EKF runs on a delayed ’fusion time horizon’ to accommodate different sensor delays relative
to the IMU (Inertial Measurement Unit). Data from each sensor is buffered and used at the
appropriate time, with delay compensation controlled by specific parameters.

A complementary filter propagates the states forward from the ’fusion time horizon’ to the
current time using buffered IMU data. The time constants for this filter are controlled by
specific parameters to minimize errors.

3.3.2.2 Sensor Measurements Utilized by the EKF

The EKF can operate in different modes depending on the available sensor data:

- IMU: Provides three-axis body-fixed inertial measurements.

- Magnetometer: Offers three-axis magnetic field data or external vision system pose
data.

- Height Data: Sources include GPS, barometric pressure sensors, range finders, or ex-
ternal vision systems.

- GPS: Supplies position and velocity measurements.

- Optical Flow: Provides velocity estimates from optical flow sensors.

- External Vision Systems: Offers position, velocity, or orientation measurements.

3.3.3 Simulation Results

Here are some simulation results that demonstrate the EKF’s performance in estimating various
states:

These plots show the estimated state versus the setpoint and actual measurements. The EKF
effectively filters noise and provides accurate state estimates, which is critical for maintaining
stability and precise control of the vehicle. The consistency between the estimated states
and the setpoints demonstrates the EKF’s capability to handle the dynamic conditions of the
system.
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Figure 3.17: Roll Angular Rate

Figure 3.18: Pitch Angle

Figure 3.19: Roll Angle
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Figure 3.20: Yaw Angular Rate

3.3.4 Software-in-the-Loop (SITL) for Simulation of the Control Al-
gorithm

Software-in-the-Loop (SITL) in PX4 is a simulation technique used to test flight control soft-
ware without the need for physical hardware. It runs the full PX4 flight stack in a simulated
environment, allowing for comprehensive testing and debugging before deploying to real hard-
ware.

3.3.4.1 Benefits of SITL

- Cost-effective: No need for physical components which reduces costs.

- Safe Testing Environment: Allows for testing edge cases and failure modes without
risk to physical hardware.

- Development Speed: Faster iterations as software changes can be tested immediately.

3.3.4.2 How SITL Works

SITL simulates the PX4 firmware on a host computer, typically using tools like jMAVSim or
Gazebo for the simulated environment. The simulation runs in real-time, interacting with the
same software that would run on the actual drone hardware.

3.3.4.3 Implementation of Custom Controller

In our project, we generate the C++ code from Simulink that uses the PID controller and then
use QGroundControl to implement our custom controller. Next, we use Gazebo to simulate
the environment.
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3.3.4.4 QGroundControl

QGroundControl is an intuitive and powerful ground control station (GCS) application for
flight control systems. It provides full flight control and mission planning functionality for
autonomous vehicles. Key features include:

- Cross-platform support: Available on Windows, macOS, Linux, iOS, and Android.

- Mission Planning: Easy-to-use mission planning tools for complex waypoint and survey
missions.

- Real-time Data Monitoring: Displays real-time telemetry data from the vehicle, in-
cluding GPS position, battery status, and sensor readings.

- Firmware Management: Facilitates firmware upload and configuration for supported
flight controllers.

QGroundControl is essential for configuring, monitoring, and controlling unmanned vehicles
during development and testing.

3.3.4.5 Gazebo

Gazebo is a powerful robotics simulator that offers the ability to accurately and efficiently
simulate populations of robots in complex indoor and outdoor environments. It provides the
following features:

- High-fidelity Physics: Simulates the dynamics of robots and environments with high
accuracy, including rigid body physics, contact, and sensor data.

- Sensor Simulation: Includes support for a variety of sensors, such as cameras, LiDAR,
IMUs, and GPS.

- Extensible and Flexible: Integrates with various robotics frameworks, including ROS
(Robot Operating System).

- 3D Visualization: Offers 3D visualization tools for designing and debugging complex
robotic systems.

Using Gazebo, developers can test and refine their robotic algorithms in a controlled, virtual
environment before deploying them to real hardware, thus reducing risk and accelerating de-
velopment.

3.3.4.6 Simulation

In this part, we will simulate the C++ code in Gazebo to evaluate the performance.

- First of all, we launch the C++ firmware code, then we choose a model of quadrotor to
try the command, in our case we chose a quadrotor 5 inch. 3.21

124



Figure 3.21: Quadrotor in Gazebo

- Then we open QGroundControl and the quadrotor will be automatically connected to
it.3.22

Figure 3.22: QGroundControl connected to the quadrotor

- We will define a path that our drone needs to follow, for example in Figure 3.23:

Figure 3.23: Path that we want our drone to follow

- Evaluating the results:
In the map, the drone perfectly follows the path 3.24.
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(a) (b)

(c) (d)

Figure 3.24: The Quadrotor following the given path

3.3.5 Implementation in real quadrotor

To implement the quadrotor, first, we need to connect the flight controller to the computer
using a USB cable. In QGroundControl, we install the custom firmware (the C++ code gen-
erated from Simulink) onto the Pixhawk. After completing the necessary calibrations, we can
start the real-world simulation.

Figure 3.25: Quadrotor in flight
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3.3.5.1 Results

We need to consider that we are using a remote controller, which means we provide the flight
controller with setpoints for roll, pitch, and yaw. The flight controller, using our PID regulator,
will attempt to track these commands. Here are the results of our flight:

Figure 3.26: Yaw Angle

Figure 3.27: Motor Outputs
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(a) Pitch Angle

(b) Roll Angle

Figure 3.28: Flight Performance Results: Pitch Angle, and Roll Angle

The results of our flight can be analyzed as follows:

- Yaw Angle (Figure 3.26): The yaw estimated angle closely follows the yaw setpoint, indicating
that the yaw control loop is functioning well. The slight deviations are expected and within
acceptable limits for manual control.

- Motor Outputs (Figure 3.27): The motor outputs show the individual thrust commands sent
to each motor. The variability in motor outputs reflects the dynamic adjustments made by the
PID controller to maintain stability and follow the given setpoints.

- Pitch Angle (Figure 3.28a): The pitch estimated angle tracks the pitch setpoint with some
oscillations. These oscillations may indicate the need for further tuning of the PID parameters
to improve stability.

- Roll Angle (Figure 3.28b): Similar to the pitch angle, the roll estimated angle follows the roll
setpoint with noticeable oscillations. This suggests that while the controller is able to track the
setpoint, there is room for optimization in the roll control loop.

Overall, the quadrotor demonstrates a good level of control, with the estimated angles closely
following the setpoints. The motor outputs indicate that the PID controller is actively adjusting
the thrust to maintain stability.
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3.4 SLAM Implementation

Before delving into the actual implementation, we’re going to present briefly the frameworks
and softwares that we used.

3.4.1 Robot Operating System

Robot Operating System, abbreviated as ROS, is an open-source operating system designed
for the development, programming, and simulation of robots. It facilitates these tasks through
a collection of libraries, applications, and graphical tools. Additionally, ROS enables seamless
communication among multiple robots. It offers essential functionalities such as hardware
abstraction, device drivers, message passing, package management, and more, contributing to
a comprehensive and efficient environment for robotic system development.

In addition, ROS is the most used operating system for robot programming, offering several
tools facilitating robotics development, such as:

- Integration with other operating systems of particular robots.

- Human-machine interface and communication between machines.

- Test and simulation-based system.

- Implementation of multiple programming languages like C++ and Python.

- Open-source framework with the availability of extensive packages online.

3.4.1.1 ROS architecture

ROS architecture relies on a distributed communication system, enabling various nodes to
interact through topics. These topics serve as communication channels for the exchange of
messages between nodes.

Figure 3.29: ROS Master Communication

Nodes are executable processes designed to perform specific tasks, such as perception, planning,
or control. They communicate by publishing or subscribing to messages via topics and can be
implemented in various programming languages like Python or C++. Additionally, you can
employ the following commands for managing nodes:
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$ rosrun # Launch a ROS node from a package
$ rosnode # List active ROS nodes

3.4.1.2 The components of a ROS package

In the world of ROS (Robot Operating System), a package stands as the fundamental building
block of ROS. Within each package, one can house an array of elements, including libraries,
datasets, configuration files, and more.

The package.xml file, referred to as a manifest, plays a crucial role by offering a comprehen-
sive description of the package. This file encompasses essential details such as dependencies,
metadata (version, maintainer, license), and more.

Beyond individual packages, ROS introduces the concept of stacks—a compilation of packages
that collectively form a library. A stack manifest, similar to a package manifest, encapsulates
the pertinent information related to a stack.

A package manifests itself as a directory containing a package.xml file. Conversely, a stack
materializes as a folder housing a stack.xml file. This clear organizational structure facilitates
efficient navigation and management of ROS code.

3.4.1.3 ROS workspace

A ROS workspace is a directory where ROS packages are built, modified, and organized. The
workspace allows for the separation of various projects and their dependencies, making it easier
to manage and develop complex robotic systems. Creating and setting up a ROS workspace
involves a few straightforward steps:

1. Create a directory for the workspace and a subdirectory for source files:
$ mkdir -p ~/workspace_name/src
$ cd ~/workspace_name/

2. Initialize the workspace using ‘catkin make‘, a command that configures the workspace
and sets up necessary build files:

$ catkin_make

3. Source the workspace’s setup file to configure the environment. This command needs to
be run every time a new terminal session is started to ensure the workspace environment
is correctly set up:

$ source devel/setup.bash

The first command creates a directory structure with ‘src‘ as the source directory where all your
packages will reside. The second command runs ‘catkin make‘, which is a build tool for catkin-
based workspaces that sets up the necessary build environment. Finally, sourcing the setup file
ensures that the ROS environment variables are properly configured for the workspace, making
all packages within the workspace available to ROS.

A typical ROS workspace might look like this:
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workspace name/
build
devel
src
logs

- The ‘src‘ directory contains the source code for ROS packages. - The ‘build‘ directory holds
intermediate files produced during the build process. - The ‘devel‘ directory contains the
development environment setup files. - The ‘logs‘ directory keeps logs generated during builds.

3.4.1.4 ROS packages

To perform this operation in the terminal, we follow these steps:

$ cd ws_name
$ cd src
$ catkin_create_pkg pkg_name rospy roscpp std_msgs # dependencies
$ cd ws_name
$ catkin_make

For a package to qualify as a catkin package and thus be usable by ROS, it must adhere to
specific criteria:

- A package.xml file compliant with catkin, providing meta-information about the package,
must be created.

- A CMakeLists.txt file that invokes catkin, must be created as well.

- Each package must reside in its directory; there cannot be more than one package in each
folder.

3.4.1.5 GUI Tools

Apart from command-line utilities, ROS offers graphical user interface (GUI) tools to assist in
development and visualization.

- RViz
stands as a 3D visualization tool within the ROS framework, enabling users to visualize
sensor data, robot models, and additional information in a 3D environment. It furnishes
an interactive interface facilitating the observation and interaction with the robot’s per-
ception and planning capabilities.

- RQT
is a graphical user interface framework for ROS, organized around plugins. It offers
a set of robust tools and visualization plugins designed for diverse purposes, including
system monitoring, debugging, data visualization, and parameter configuration. RQT
is adaptable, allowing customization and extension using additional plugins to cater to
specific development and analysis requirements.

- Gazebo
stands as a formidable robot simulation environment seamlessly integrated with ROS.
It empowers developers to design and simulate intricate robotic systems within a virtual
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Figure 3.30: 3D Data Visualization using RViz [11]

Figure 3.31: RQT tool [12]

space. Gazebo features a graphical user interface (GUI) that facilitates users in visualizing
and interacting with simulated robots and their corresponding environments.

3.4.2 Docker

Docker is an open-source containerization platform by which you can pack your application and
all its dependencies into a standardized unit called a container. Containers are light in weight
which makes them portable and they are isolated from the underlying infrastructure and from
each other. You can run the docker image as a docker container in any machine where docker
is installed without depending on the operating system.

3.4.2.1 Docker Advantages

Docker gained its popularity due to its impact on the software development and deployment.
The following are some of the main reasons for Docker becoming popular:

1. Portability: Docker facilitates the developers in packaging their applications with all
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Figure 3.32: Simulation using Gazebo [12]

Figure 3.33: Docker logo [13]

dependencies into a single lightweight container. It ensures consistent performance across
different computing environments.

2. Reproducibility: By encapsulating the applications with their dependencies within a
container, it ensures software setups remain consistent across development, testing, and
production environments.

3. Efficiency: Docker’s container-based architecture optimizes resource utilization. It al-
lows developers to run multiple isolated applications on a single host system.

4. Scalability: Docker’s scalability features facilitate easier handling of applications during
workload increments.

3.4.2.2 Dockerfile

The Dockerfile uses DSL (Domain Specific Language) and contains instructions for generating a
Docker image. A Dockerfile defines the processes to quickly produce an image. While creating
your application, you should create a Dockerfile in order since the Docker daemon runs all the
instructions from top to bottom.

(The Docker daemon, often referred to simply as "Docker," is a background service that manages
Docker containers on a system.)

- It is a text document that contains necessary commands which, on execution, help as-
semble a Docker image.
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- A Docker image is created using a Dockerfile.

Figure 3.34: Dockerfile usage [14]

3.4.2.3 Docker Image

A Docker image is a file comprised of multiple layers used to execute code in a Docker con-
tainer. They are a set of instructions used to create Docker containers. A Docker image is
an executable package of software that includes everything needed to run an application. This
image defines how a container should instantiate, determining which software components will
run and how. A Docker container is a virtual environment that bundles application code with
all the dependencies required to run the application. The application runs quickly and reliably
from one computing environment to another.

3.4.2.4 Docker Container

A Docker container is a runtime instance of an image. It allows developers to package applica-
tions with all parts needed, such as libraries and other dependencies. Docker containers are the
runtime instances of Docker images. Containers contain everything required for an application,
so the application can be run in an isolated way.

3.4.2.5 Docker Architecture

Docker uses a client-server architecture. The Docker client communicates with the Docker
daemon, which helps in building, running, and distributing the Docker containers. The Docker
client and daemon can run on the same system or connect over a network. Docker uses REST
API over a UNIX socket or a network for client-daemon communication. To learn more about
Docker’s architecture, refer to the official documentation.

3.4.2.6 Docker Commands

By introducing essential Docker commands, Docker has become a powerful tool in streamlining
the container management process. It ensures seamless development and deployment workflows.
Some commonly used Docker commands are:

- Docker Run: Used for launching containers from images, specifying runtime options
and commands.
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Figure 3.35: Docker Architecture [14]

- Docker Pull: Fetches container images from the container registry like Docker Hub to
the local machine.

- Docker ps: Displays the running containers along with important information like con-
tainer ID, image used, and status.

- Docker Stop: Halts the running containers, gracefully shutting down the processes
within them.

- Docker Start: Restarts the stopped containers, resuming their operations from the
previous state.

- Docker Login: Logs into the Docker registry, enabling access to private repositories.

3.4.2.7 Difference Between Docker Containers and Virtual Machines

The following are the differences between Docker containers and Virtual Machines:

Table 3.8: Comparison between Virtual Machines and Containers

Virtual Machines Containers
1. Needs a hypervisor and a full OS inside Talks to the host kernel
2. Bigger footprint (RAM and storage space) Smaller footprint (no RAM and differential storage)
3. VMs consume storage space for each instance ∼1.2GB Consumes very little space ∼2.5MB
4. Heavier Lightweight
5. Virtual Machines startup time is in the order of minutes Startup time is in the order of seconds
6. Deployment is tough Easy deployment with minimal requirements for running the application
7. Slower Faster
8. Security issues of running OS Security issues limited to applications
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Figure 3.36: Containers vs VMs [13]

3.5 Experiments

Figure 3.37: The drone fleet created during this thesis

In this section we conducted 2 experiments , each one with the aim of showcasing a different
aspect of the algorithm.

3.5.1 Straight corridor Experiment

We conducted an experiment in a corridor to test the performance in a constrained environment.
The narrow and linear nature of the corridor provides a challenging scenario for visual SLAM
algorithms due to repetitive patterns and limited features.
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(a) The corridor chosen for ex-
periment (b) The corridor map

Figure 3.38: The corridor experiment setup and results

The results showed that ORB-SLAM was able to maintain accurate localization and map-
ping despite the challenging conditions. The algorithm successfully identified and tracked key
features along the corridor, demonstrating robustness in feature-poor environments.

3.5.2 Corridor with rotation

The environment for this experiment consists of two corridors connected perpendicularly to
each other. This setup introduces additional complexity for the algorithm due to the significant
rotations.

(a) Half of the corridor junction (b) Second half of the junction
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(a) Estimated map and trajectory
(b) Estimated map and trajectory with the
camera keyframes

Figure 3.40: Results of the Open Room Experiment

We can see that the algorithm faced challenges in accurately detecting rotations using only a
monocular camera. The junction required significant rotational adjustments, which the algo-
rithm struggled with due to the limited field of view and lack of depth information inherent to
monocular vision. This led to occasional inaccuracies in the trajectory estimation and mapping
process. This is a big limitation of using monocular cameras in environments requiring precise
rotation detection.

3.6 Conclusion

This chapter provides a comprehensive overview of the practical implementation of a quadrotor
UAV, covering both hardware selection and software integration. By carefully selecting compo-
nents based on performance criteria and cost analysis, we ensure an optimal balance between
functionality and budget.

The implementation of the control system, including parameter identification and EKF, demon-
strates the importance of accurate modeling and sensor fusion for achieving stable flight. The
use of SITL simulations facilitates thorough testing and validation of control algorithms, en-
suring their effectiveness in real-world scenarios.

The SLAM implementation, utilizing ROS and Docker, showcases the power of modern frame-
works and tools in developing advanced robotic systems. The experiments conducted highlight
the capabilities and limitations of the SLAM algorithm, providing insights for future improve-
ments.

Overall, this chapter lays a solid foundation for building and implementing a high-performance
quadrotor UAV, offering valuable guidance for researchers and developers in the field of au-
tonomous aerial systems.
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General Conclusion

This thesis has explored the multifaceted aspects of developing and optimizing a quadrotor
UAV, with a particular focus on control systems and SLAM algorithms. Through three com-
prehensive chapters, we have detailed our approach, findings, and the challenges encountered.
In the first chapter, we delved into the characteristics of the Pixhawk 2.4.8 flight controller,
examining its operating system and flight stack architecture. We developed a mathematical
model for the quadrotor and identified the necessary parameters for the state-space represen-
tation. We then designed three types of controllers using different methods: the LQR method,
pole placement, and the PID method, ensuring a stable and optimal flight performance.

The second chapter introduced and discussed the implementation of Visual SLAM for UAVs
using the ORB-SLAM algorithm. We covered the theoretical foundations of Visual SLAM,
detailed the workings of the ORB-SLAM algorithm, and demonstrated its practical imple-
mentation and testing using the EuRoC MAV Dataset. Our results showed that while the
ORB-SLAM algorithm performs well in controlled environments, it faces challenges in more
dynamic and complex scenarios, indicating areas for further improvement.

In the third chapter, we conducted the component selection and cost analysis, identified the
parameters of our robot, and tested both SLAM and the controller in real-life scenarios. These
tests yielded excellent results, confirming the effectiveness of our approaches.

Looking forward, there are several avenues for improving and extending the capabilities of our
quadrotor UAV system. For the control algorithms, one significant enhancement would be to
improve them with the goal of achieving full autonomy. This includes implementing advanced
obstacle avoidance techniques, allowing the drone to perform complete missions on its own
without human intervention.

Regarding the SLAM system, integrating IMU measurements from the drone and implementing
inertial visual SLAM would help correct the rotation problems encountered with the current
monocular setup. Furthermore, employing RGB-D and stereo cameras could provide richer
data, enhancing the algorithm’s accuracy and robustness in various environments.

On the hardware side, switching to a larger structure could improve stability and provide
better protection for the electronic components. Additionally, using a smaller battery and
camera would reduce the overall weight, potentially increasing flight time and maneuverability.

Finally, advancing towards implementing multi-agent systems would represent the next sig-
nificant milestone. By enabling multiple drones to work collaboratively, we can explore more
complex and large-scale missions, pushing the boundaries of what is achievable with autonomous
UAV systems.

In conclusion, while our current system has demonstrated substantial capabilities, these pro-
posed improvements and extensions could significantly enhance the performance, reliability,
and autonomy of our quadrotor UAV, paving the way for more advanced applications.
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Appendix

Table 3.9: Tuning PID Controllers using Ziegler-Nichols Method

Command Description Figures

Roll Oscillation for Kcr =
55, Tuned gain K = 25

Continued on next page
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Table 3.9 – Continued from previous page
Command Description Figures

Pitch Oscillation for Kcr =
60, Tuned gain K = 27

Continued on next page
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Table 3.9 – Continued from previous page
Command Description Figures

Thrust Oscillation for Kcr = 8,
Tuned gain K = 4

Continued on next page
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Table 3.9 – Continued from previous page
Command Description Figures

Vx Oscillation for Kcr =
6.7, Tuned gain K =
3.35

Continued on next page
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Table 3.9 – Continued from previous page
Command Description Figures

Vy Oscillation for
Kcr = 6.5858, Tuned
gain K = 3.2929

Continued on next page
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Table 3.9 – Continued from previous page
Command Description Figures

Vz Oscillation for Kcr =
4.5, Tuned gain K =
2.25

Continued on next page
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Table 3.9 – Continued from previous page
Command Description Figures

Torque Yaw Oscillation for Kcr =
0.01, Tuned gain K =
0.005

Continued on next page
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Table 3.9 – Continued from previous page
Command Description Figures

Torque Pitch Oscillation for Kcr =
0.054, Tuned gain K =
0.027

Continued on next page
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Table 3.9 – Continued from previous page
Command Description Figures

Torque Roll Oscillation for Kcr =
0.06, Tuned gain K =
0.03
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