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Résumé

L’apprentissage automatique (ML), y compris l’apprentissage profond et l’apprentissage par
renforcement, offre des outils puissants pour résoudre des problèmes complexes. Cette thèse
exploite le ML pour améliorer l’estimation d’état, l’identification de systèmes et l’optimisation
dans les systèmes non linéaires, où les méthodes traditionnelles échouent souvent. Les do-
maines clés incluent l’amélioration de la précision dans la capture de la dynamique complexe
des systèmes, l’extraction des caractéristiques du système directement à partir des données,
et la résolution des problèmes non convexes. Cette thèse démontre ces méthodes à travers
des applications dans la dynamique des avions et les réseaux de capteurs intelligents pour les
technologies IoT, mettant en évidence le potentiel du ML pour améliorer la performance, la
fiabilité et l’adaptabilité des systèmes de contrôle.

Mots-clés : Avion sans pilote - Givrage - LMI - Réseaux de Neurones - Identification Parci-
monieuse - IoT - Optimisation.

Abstract

Machine learning (ML), including deep learning and reinforcement learning, offers powerful
tools for addressing complex problems. This thesis leverages ML to enhance state estimation,
system identification, and optimization in non-linear systems, where traditional methods often
fall short. Key focus areas include improving accuracy in capturing complex system dynamics,
extracting system characteristics directly from data, and solving non-convex problems. The
thesis demonstrates these methods through applications in aircraft dynamics and smart sensor
networks for IoT technologies, highlighting the potential of ML to enhance the performance,
reliability, and adaptability of control systems.

Keywords : Unmanned Aerial Vehicle - Icing - LMI - Neural Networks - Sparse Identification
- IoT - Optimization.
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General Introduction

Learning methods such as machine learning, deep learning, reinforcement learning and meta-
heuristics algorithms have been the most exciting subject in the scientific community for a
while now, mainly due to it’s capability to learn from data, recognise complex patterns within
it and make accurate prediction. It’s popularity is justified, as it’s applicability spans across
many field and domains : natural language processing, image and speech recognition, and au-
tonomous systems. Such potential has attracted the interest of control systems specialists, as
learning methods offers a promising avenue for developing new and innovative solutions.

In the evolving landscape of control systems and engineering, the increasing complexity and non-
linearity of modern systems pose significant challenges. Traditional methods of state estimation,
optimization, and system identification often fall short when dealing with highly nonlinear
dynamics. This thesis addresses these challenges by leveraging the powerful capabilities of
machine learning(ML) to enhance the accuracy and efficiency of optimization tasks, system
identification and state estimation.

This thesis focuses on three core areas:

1. State Estimation: Accurate state estimation is crucial for monitoring and controlling
dynamic systems. Traditional methods, such as the Kalman filter and its variants, perform
well for linear systems but struggle with nonlinear systems. In this work, we propose an
LMI-based nonlinear observer to address this challenge and demonstrate its application
on aerial systems.

2. System Identification: Understanding the underlying dynamics of a system is essential
for effective modeling and control. Traditional system identification methods are primar-
ily suited for linear systems and rely heavily on precise mathematical modeling, which
can be challenging to apply to nonlinear systems. Advanced learning techniques, such
as recurrent neural networks and sparse learning methods, allow for the extraction of
system characteristics directly from data. These techniques lead to more accurate and
generalizable models, enhancing the ability to manage and control complex nonlinear
systems.

3. Metaheuristics for optimization: Optimization plays a vital role in control system
design and performance enhancement. However, nonlinear problems often lead to non-
convex optimization challenges, making them difficult to solve using conventional tech-
niques. Metaheuristic approaches, which are widely regarded as machine learning meth-
ods, such as genetic algorithms and the grey wolf optimizer, offer innovative solutions for
optimizing nonlinear problems by efficiently exploring large solution spaces and adapting
to changing environments.
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In our work, we will demonstrate these methods by applying them to real-world challenges.
The thesis is divided into two parts:

1. LMI Observers, Learning Based Identification: Application to Aircraft Dy-
namics: In this part, we will address two key problems. The first is observer design
and state estimation using Linear Matrix Inequalities approach, which will be applied to
aerial systems with a specific focus on the issue of icing accretion on aircraft. The second
problem is the system identification of nonlinear systems, also applied to the nonlinear
dynamics of aerial systems. For this task, we will be testing two different identification
methods (Continuous-Time Reccurent Neural Networks, Sparse Identification of Nonlin-
ear Dynamics).

2. Advances Optimization Of Smart Sensor Networks In Internet Of Things
Technologies: Our work involves implementing various metaheuristic algorithms, in-
cluding the Grey Wolf Optimizer, Whale Optimizer, and Puma Optimizer, to solve a p-
median-based modeling problem related to energy consumption in an Internet of Things
(IoT) application. This study includes a performance comparison of the mentioned algo-
rithms and demonstrates the efficiency of metaheuristics in this application.

Leveraging the strengths of machine learning tools in the fields of automation and control
systems represents a significant paradigm shift in addressing complex systems. We will end
each part of this thesis with conclusions that includes perspectives and possible future works.
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Part I

LMI Observers, Learning Based
Identification: Application to Aircraft

Dynamics



Introduction

Aircraft icing has been a topic of research for many years, and that is mainly due to the danger
it represents for the safety of aerial vehicles. In fact, National Transportation Safety Board
findings showed that between 2008 and 2021 [7], there were at least 52 aircraft accidents and 64
fatalities that were attributed to icing as a cause. Most famously, we can find the Air Algérie
Flight 5017 [8] in 2014, West Wind Aviation Flight 282 [9], the Myanmar Air Force Shaanxi
Y-8 accident [10], and the Bek Air Flight 2100 in 2019 [11].

Ice accumulates on every exposed frontal surface of an aircraft. This includes wing and tail
edges, propellers and spinners, engine intakes, landing gear, windshield, antennas, and other
miscellaneous areas. The accumulation of ice on the tail and wings of a fixed UAV can alter its
geometry and aerodynamic performance, thus changing the different forces and laws governing
its flight, causing reduced lift, increased drag, and a higher risk of stalling, which leads to loss
of control and eventually a plane crash.

Aircraft certified for flight in icing conditions are typically equipped with both de-icing systems,
which remove accumulated ice, and anti-icing systems, which prevent ice from forming. For
manned aircraft, the pilot is responsible for managing icing by monitoring the windscreen,
wings, and other visible parts of the aircraft for ice formation. Additionally, most aircraft are
not equipped with icing sensors. Various existing anti-icing and de-icing methods are employed
for such aircraft, including anti-icing liquids, pneumatic systems, and electric-thermal systems.

However, current challenges require navigation through cloudy and icy weather conditions, such
as those encountered during surveillance and reconnaissance operations. Due to their efficiency,
UAVs (Unmanned Aerial Vehicles) are often preferred over manned aircraft for these missions.
These unique requirements render traditional solutions unsuitable. UAVs typically operate
at lower altitudes and speeds, resulting in longer exposure to icing conditions. The sensors
needed for icing detection add extra weight and create aerodynamic constraints, and the lack
of direct human intervention complicates the situation further, especially in fully autonomous
operations.

With all of this, recent focus has been on finding new and reliable ways to detect ice formations
in order to be able to deal with it properly and in time. From a control point of view, finding
the variables affected by the icing and estimating the resulting changes is the main goal. Many
works have been published regarding this aspect, from smart icing systems [12], to neural
network-based solutions and model-based observers [13], which mainly focused on observing
the changes of drag [14], lift (or other kinds of forces), or even the changes in the temperature
gradient.

The main contribution of this part is the study of a new unprecedented variable, which is the
aircraft’s mass. Typically, in an unmanned aircraft, the mass is considered a constant, but in
reality, it varies based on different parameters, mainly the fuel consumption (in the case of a
fuel-powered aerial vehicles) and the ice’s additional mass, thus making it an indicator of the
icing accretion phenomena. Having this as a basis, we suggested a model for the change of
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mass and augmented an already existing state-space model of the Jetstream J31 [15]. We have
applied a similar approach to electrically-powered UAVs , precisely the AAI Aerosonde, where
the primary variation in mass is due to ice accumulation, as these UAVs do not consume fuel.

Our main purpose is to implement learning methods to the aircraft system, taking into account
two different aspects of control engineering: Observer Design and System Identification.
The structure of this part will be as follows :

- Chapter 1 Problem Formulation.

- Chapter 2 LMI based Nonlinear Observer: Application to the Icing Accretion Problem.

- Chapter 3 Learning Based Identification of Nonlinear systems: Application to Aircraft
dynamics.
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Literature Review

Works on ice detection have developed since the late 90’s to early 20’s. One of the first remark-
able contributions to the literature is the work of Briggs et al. [12], in which they proposed a
smart icing system (SIS) containing an ice protection system (IPS) and ice management sys-
tem (IMS) .From then different methods followed, such as Hinf based parameter identification
[16], ice severity diagnosis methods [17] and analysis of ice-affected variables. Fault tolerant
control (FTC) has been wildely investigated in the field, in addition to the use of sliding mode
observers, and more recently Super twisting algorithms (STA) were used by L.Chen and James
F.Whidborne [14] in order to observe changes in drag caused by icing accumulations.

Machine learning and deep learning methods have been introduced to this problem for a while
now, we can mention the work of Fikret Caliskan et al [18] in which a kalman filter was
developed to feed a NN that predicted parameters affected by icing, or Yiqun Dong [19] where
parameter identification was done using DNN’s and compared to standard Hinf , identification.

From the observation point of view, recent advances in linear observers include adaptive and ro-
bust versions of the Luenberger observer and Kalman filter. These enhancements aim to improve
performance under varying operating conditions and in the presence of unmodeled dynamics
and noise. Adaptive observers adjust the observer gain in real-time based on the observed
data, enhancing their applicability in systems with time-varying parameters. In nonlinear ob-
servers, significant progress has been made in developing robust and adaptive high-gain and
sliding mode observers. These include: Adaptive High-Gain Observers: These observers adjust
the gain dynamically to balance between fast convergence and noise sensitivity, and Integral
Sliding Mode Observers: Integrating sliding modes with integral action to reduce steady-state
estimation errors. Research also focuses on observer-based fault detection and isolation (FDI)
systems, where observers are used to monitor system health and detect anomalies.

In the other hand, Neural networks are being developed for the purpose of system identification,
observer design, and feedback control. Recurrent neural networks (RNN) have been utilised
for their efficiency with mimicking dynamical systems and for their robustness, and works
have shown their utility in approximating nonlinear system behaviour. In [20] [21] [22] RNN’s
have been trained for the purpose of identifying and observing nonlinear changes in a chemical
reaction, as well as using the trained model to implement an LMPC controller. The methods’s
computational implementation, limits and constraints have also been discussed in these papers.

Another powerful tool is the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm
[23][24].This algorithm allows for the reconstruction of the equations governing a dynamical
system directly from data. It is based on the premise that many physical systems can be
described by a few active terms from a larger set of potential functions. This approach leverages
the sparsity of the governing equations, enabling efficient and accurate model discovery even
in the presence of complex nonlinear interactions. SINDy has been successfully applied in
various fields, including fluid dynamics, biological systems and control theory, demonstrating
its effectiveness in uncovering the underlying structure of nonlinear dynamical systems.

19



Chapter 1

Problem Formulation

In this subsection, we will develop the equations for the two systems: the Jetstream J3 Aircraft
and the AAI Aerosonde. The first system is a fuel-powered UAV with a weight of 6073 kg, and
the second system is an electrically powered UAV with a weight of 13.5 kg. We will extend
these equations to include the additional equations of mass change. We will also highlight all
assumptions made to facilitate the work done in the following sections. Finally, we will conclude
the subsection by emphasizing the objectives and goals of this chapter.

1.1 System Description

1.1.1 Fuel Powered UAV (Jetstream J3)

When dealing with icing-related research problems, an interesting variable to consider is the
change in mass due to the accumulation of ice. In what follows, we describe the aircraft’s
mathematical model and all its variables.

We begin with drag. Drag is the aerodynamic force that opposes an aircraft’s motion through
the air. It is generated by the interaction of the aircraft’s surfaces with the air. It can be
influenced by many factors, including the shape of the aircraft, airspeed, and the accumulation
of ice on the aircraft’s surfaces.

The expression of drag is as follows:

Cd = CD0 + k.C2
L (1.1)

With CD0 being the known zero-lift coefficient, CL represents the lift coefficient and k is the
lift-independent drag coefficient factor obtained experimentally from flight tests [15].

Assumption 1:

For simplicity purposes, we consider the flight during steady flight only.

During a steady level flight, the aircraft lift is L = mg and thus CL is:
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CL = L

0.5ρ0.S.V 2
T

= m.g

0.5ρ0.S.V 2
T

(1.2)

Where the parameter ρ0 is the air density of International Standard Atmosphere (ISA) at sea
level, S denotes the wing area and VT represents true airspeed. Therefore:

Cd = CD0 + k.( m.g

0.5ρ0.S.V 2
T

)2 (1.3)

The change of drag of an aircraft is expressed as follows:

δCd = Cdact − Cdexp (1.4)

Where Cdact is the actual drag coefficient (drag influenced by icing accretion) and Cdexp rep-
resents the expected drag coefficient (drag in absence of icing).

In addition, to the change of drag, one of our main goals is to observe the effect of icing on the
aircraft’s mass, thus we make the following distinction between expected and actual drag:

Cdexp = CD0 + k.( mexp.g

0.5ρ0.S.V 2
T

)2 (1.5)

Cdact = CD0 + k.( mact.g

0.5ρ0.S.V 2
T

)2 (1.6)

Where Cdexp and mexp are the expected drag and mass, while Cdact and mact are the actual
drag and mass. For what follows we consider mact = m (Kg).

The crucial longitudinal nonlinear dynamic equation of the fixed wing aircraft during a steady
level flight is

V̇T = Fx.cosα + Fz.sinα

m
(1.7)

α̇ = −Fx.sinα + Fz.cosα

m
+ q (1.8)

Where Fx, Fz are the forces applied on the x and z axis respectively, while q is the pitch rate.

Substituting the body-axis aerodynamic forces into equations (1.7) and (1.8) yields to [14]:

V̇T = −ρ0.V
2

T .S

2m .Cdact + Ttol

m
.cosα + g.sin(α− θ) (1.9a)

α̇ = − Ttol

m.VT

.sinα + g

VT

.(cos(α− θ) − 1) + q (1.9b)

q̇ = 0 (1.9c)

Where Vt is the true airspeed (kts), α is the angle of attack (rad) and Ttol is the applied thrust
(N). (The rest of parameters are defined in Appendix A (6.6))
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Since the model represents the steady flight of an aircraft, the pitch angle remains constant.
Consequently, the pitch rate and its derivative are equal to zero, q = q̇ = 0.

The mathematical model of the steady flight of an aircraft, becomes as follows :

V̇T = −ρ0.V
2

T .S

2m .Cdact + Ttol

m
.cosα + g.sin(α− θ) (1.10a)

α̇ = − Ttol

m.VT

.sinα + g

VT

.(cos(α− θ) − 1) (1.10b)

Remark 1:

We acknowledge that the aircraft’s mass changes over time due to fuel consumption, resulting
in a decrease in mass, and due to icing accretion, resulting in an increase in mass.

We propose the following dynamics for the mass, representing the change in mass due to fuel
consumption, in absence of icing:

ṁ = a · VT · (m−mf ) (1.11)

- Here, a is a negative constant that varies with respect to speed values. Increasing VT

leads to greater fuel consumption, while decreasing VT results in less fuel consumption.

- The value of a can be obtained either from a LookUp Table or modeled using fuzzy logic
to ensure continuity, unlike the LookUp Table approach.

- In this application, a was fitted from available data using the convex optimization toolbox
in MATLAB.

Finally the final system is described using the following equations:

V̇T = −ρ0.V
2

T .S

2m .Cdact + Ttol

m
.cosα + g.sin(α− θ) (1.12a)

α̇ = − Ttol

m.VT

.sinα + g

VT

.(cos(α− θ) − 1) (1.12b)

ṁ = a · VT · (m−mf ) (1.12c)

Where mf is the final mass (the mass of the zero-fuel and iceless aircraft).

We can re-write the system in the following classical control format for simplicity:

ẋ1 = −a1x
2
1x3 + x3cos(x2)u+ a2sin(x2 − b) (1.13a)

ẋ2 = −x3

x1
sin(x2)u+ a2

x1
(cos(x2 − b) − 1) (1.13b)

ẋ3 = −a3x1(x3 − a4) (1.13c)

Where X=[VT , α,m]=[x1, x2, x3] and u = Ttol.
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1.1.2 Electrically Powered UAV (AAI Aerosonde)

Icing affects all sorts of aircrafts and planes, however those effects are much more noticeable
in smaller aerial vehicles, mainly due to their low speed which exposes them longer to icy
conditions, and in our particular case, it’s size makes the load added by the ice relatively
greater thus making the change of mass more impactful.

With this in mind, we chose to work on an aerosonde UAV with a weight of 13.5 Kg’s. This
aircraft is represented by a size of 12 nonlinear state space model, starting with the equations
of position :

ṗn = u(cos(θ)sin(ψ)) + v(sin(ϕ)sin(θ)cos(ψ) − cos(ϕ)sin(ψ)) + w(cos(ϕ)sin(θ)cos(ψ) + sin(ϕ)sin(ψ))
(1.14a)

ṗe = u(cos(θ)cos(ψ)) + v(sin(ϕ)sin(θ)sin(ψ) + cos(ϕ)cos(ψ)) + w(cos(ϕ)sin(θ)sin(ψ) − sin(ϕ)cos(ψ))
(1.14b)

ṗd = u(−sin(θ)) + v(sin(ϕ)cos(θ)) + w(cos(ϕ)cos(θ)) (1.14c)

Followed by the equations of velocity :

u̇ = (r.v − q.w) + fx

mass
(1.15a)

v̇ = (p.w − r.u) + fy

mass
(1.15b)

ẇ = (q.u− p.v) + fz

mass
(1.15c)

Then the rotation dynamics :

ϕ̇ = p+ q(sin(ϕ)tan(θ) + r(cos(ϕ)tan(θ)) (1.16a)
θ̇ = q(cos(ϕ)) + r(−sin(ϕ)) (1.16b)

ψ̇ = q
sin(ϕ)
cos(θ) + r

cos(ϕ)
cos(θ) (1.16c)

And finally the rotation rates dynamics :

ṗ = (G1.p.q −G2.q.r) + (G3.ell +G4.n) (1.17a)

q̇ = (G5.p.r −G6(p2 − r2)) + m

Jy

(1.17b)

ṙ = (G7.p.r −G1.q.r) + (G4.ell +G8.n) (1.17c)

The state vector being X=[pn: North position (m), pe: East position (m), pd: Down posi-
tion (negative altitude) (m), u: velocity along body x-axis (m/s), v: velocity along body
y-axis (m/s), w: velocity along body z-axis (m/s), ϕ: roll angle (rad), θ: pitch angle
(rad), ψ: yaw angle (rad), p: roll rate (rad/s), q: pitch rate (rad/s), r: yaw rate (rad/s)],
and the control inputs u=[fx: force along the x-axis (drag-thrust) (N), fy: force along
the y-axis (side forces) (N), fz: force along the z-axis (weight-lift) (N), ell: roll moment
(N.m), m: pitch moment (N.m), n: yaw moment (N.m)]. (The rest of the parameters in
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Appendix B (6.6))

Change of mass:

Typically, the mass of an aircraft is considered a constant parameter for electrically powered
UAVs ( ˙mass = 0). However, for small UAVs affected by icing, the change of mass can be used
as an indicator of icing and its severity.

Assumption 2:

The mass is only affected by ice accretions, and no other external or internal factors.

In addition, it is important to note that icing can usually affect more than just the mass (drag,
aircraft geometry, aerodynamics ...etc), but in the scope of our research we only consider the
effect on mass change.

With everything set we can showcase the final augmented state vector and control vector as
follows:

X =



pn

pe

pd

u

v

w

θ

ϕ

ψ

p

q

r

mass



u =



fx

fy

fz

ell

m

n



Where the mass change dynamics, in the absence of icing are defined by :

˙mass = 0 (1.18)

Remark 2:

For the stabilisation of the system we linearize around a suitable operating point, check the
commandability of the resulting system, then compute the Linear Quadratic Regulator (LQR)
gain for a stabilising state feedback u = −Klqr∆X
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1.2 Objectives

We can divide our problem into two parts :

1. LMI based Nonlinear Observer Application to the Icing Accretion of Fuel
powered and Electrically powered UAV’s: The goal of this section is to design
nonlinear observers for the given system. In this context, icing will be treated as a
disturbance in the dynamic equations governing the mass.

2. Learning-Based Identification: Application to Aircraft Dynamics Modeling:
The objective is to design a specialized Recurrent Neural Network architecture capable
of approximating the behavior of the given dynamical system.
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Chapter 2

LMI based Nonlinear Observer:
Application to the Icing Accretion
Problem

State observers are crucial in control systems engineering for estimating the internal state of a
dynamic system based on its output measurements. These estimations are particularly impor-
tant when direct measurement of all state variables is impractical due to physical, technical, or
economic limitations. By offering real-time estimates of internal states, state observers facilitate
effective monitoring, control, and fault detection across diverse applications.

2.1 Observability of systems

Before discussing observers, it is essential to address a fundamental concept: system observabil-
ity. Observability measures how well a system’s internal states can be reconstructed using its
output measurements. This concept is crucial for fault analysis, system control, and observer
design.

2.1.1 Observability of linear systems

Consider the following linear system :

ẋ = Ax+Bu

y = Cx
(2.1)

Where :

- x is the state vector of size n.

- u is the command (input) vector of size m.

- y is the measured output vector of size q.

- A, B and C are the system matrices of respective sizes (n× n), (n×m) and (q × n).
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The observability of a linear system is analyzed using the observability matrix, which is defined
as follows:

Obs =



C

CA

CA2

.

CAn−1


(2.2)

Theorem
A linear system is completely observable if and only if rank(Obs)=n.

The idea is that if n columns of the observability matrix are linearly independent then each
and every single one of our state variables are viewable through a linear combination of the
output variables.

2.1.2 Observability of nonlinear systems

Consider the following non-linear system :

ẋ = f(x, u)
y = h(x)

(2.3)

Where f(.) ∈ Rn and h(.) ∈ Rq are two non-linear vector field functions.

We define the lie derivative of h with respect to f as follows:

Lfh(x) = ∂h

∂x
f(x) (2.4)

And the consecutive lie derivatives:

Lk
fh(x) = LfL

k−1
f h(x) = ∂

∂x
[Lk−1

f f(x)]f(x) (2.5)

We define the observability matrix as follows:

Mo = ∂

∂x



h(x)
Lfh(x)
L2

fh(x)
.

Ln−1
f h(x)


(2.6)

The system of equation 2.3 is locally weakly observable if and only if rank(Mo)=size(X)=n.
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2.2 Linear State Observers

2.2.1 Luenberger Observer

The Luenberger observer, introduced by David Luenberger in 1966, is designed for linear time-
invariant (LTI) systems. It reconstructs the state vector of a system by using the system’s
output and a model of the system dynamics. The Luenberger observer has the form:

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t) − Cx̂(t)) (2.7)

where:

- x̂(t) is the estimated state vector.

- A,B,C are the system matrices.

- L is the observer gain matrix, designed to ensure the stability of the error dynamics
e(t) = x(t) − x̂(t).

The observer gain L is chosen such that the eigenvalues of (A− LC) have negative real parts,
ensuring the estimation error converges to zero over time [25].

2.2.2 Continuous-Time Kalman Filter

The continuous-time Kalman filter, introduced by Rudolf E. Kálmán in 1960, is an optimal
recursive solution to the linear quadratic estimation problem, providing the best estimate of
the state by minimizing the mean of the squared error. It is particularly effective for systems
with noisy measurements and disturbances. The Kalman filter operates in two steps: prediction
and update.

The continuous-time Kalman filter equations are as follows:

Prediction

˙̂x(t) = Ax̂(t) +Bu(t) (2.8)

Ṗ (t) = AP (t) + P (t)AT +Q− P (t)CTR−1CP (t) (2.9)

Update

x̂(t) = x̂(t) +K(t)(y(t) − Cx̂(t)) (2.10)
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K(t) = P (t)CTR−1 (2.11)

Where:

- x̂(t) is the state estimate.

- P (t) is the error covariance matrix.

- Q and R are the process and measurement noise covariance matrices, respectively.

- K(t) is the Kalman gain.

The continuous-time Kalman filter optimally combines the model predictions with the mea-
surements to provide accurate state estimates even in the presence of noise [26].

2.3 Nonlinear State Observers

2.3.1 High-Gain Observer

The High-Gain Observer is designed for nonlinear systems with well-defined observable forms.
This observer amplifies the correction term to ensure rapid error convergence. Its structure can
be represented as:

˙̂x(t) = f(x̂(t), u(t)) +H(y(t) − h(x̂(t))) (2.12)

Where:

- f and h describe the nonlinear system dynamics and output equations.

- H is the high-gain matrix, typically chosen such that the error dynamics are dominated
by fast poles.

The high-gain approach ensures that the estimation error e(t) converges quickly, but it may
lead to robustness issues due to sensitivity to noise and model uncertainties [27].

2.3.2 Sliding Mode Observer

The Sliding Mode Observer (SMO) leverages the sliding mode control principle to estimate
the states of nonlinear systems robustly against uncertainties and disturbances. The SMO
introduces a discontinuous injection term that forces the estimation error to converge to zero.

The observer can be expressed as:

˙̂x(t) = f(x̂(t), u(t)) +G(y(t) − h(x̂(t))) + Φ(x̂(t), y(t)) (2.13)
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- G is the gain matrix.

- Φ is a discontinuous function designed to drive the error to a sliding surface, ensuring
robust convergence.

The key advantage of the SMO is its robustness to model uncertainties and external distur-
bances, making it suitable for applications requiring high precision under adverse conditions
[28, 29].

2.3.3 LMI Observer Design for Nonlinear Systems

Consider a nonlinear system described by the following state-space representation:

ẋ(t) = f(x(t), u(t)) (2.14)

Written in its explicit form:

ẋ1(t) = f1(x(t), u(t))
ẋ2(t) = f2(x(t), u(t))

...
ẋn−1(t) = fn−1(x(t), u(t))
ẋn(t) = fn(x(t), u(t)) (2.15)

Consider the following transformation:

ẋ1(t) = f1(x(t), u(t)) ± x2

ẋ2(t) = f2(x(t), u(t)) ± x3

...
ẋn−1(t) = fn−1(x(t), u(t)) ± xn

ẋn(t) = fn(x(t), u(t)) (2.16)

Let the following change of variable:

gi(x(t), u(t)) =
fi(x(t), u(t)) − xi+1, for i = 1, 2, . . . , n− 1
fn(x(t), u(t)), for i = n

The system can be re-written in the following form:

ẋ(t) = Ax(t) + g(x(t).u(t)) (2.17)
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A=



0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1
0 0 0 · · · 0



- x(t) ∈ Rn is the state vector,

- u(t) ∈ Rm is the input vector,

- A ∈ Rn×n is a known constant matrix taken in the canonical form,

- g(x(t), u(t)) ∈ Rn is a nonlinear function.

Assume that the function g(x, u) is Lipschitz continuous in x with Lipschitz constant γ > 0,
i.e.,

∥g(x1, u) − g(x2, u)∥ ≤ γ∥x1 − x2∥ ∀x1, x2 ∈ Rn,∀u ∈ Rm. (2.18)

We aim to design an observer to estimate the state x(t) based on the output y(t) = Cx(t),
where C ∈ Rp×n is the output matrix.

The observer is formulated as:

˙̂x(t) = Ax̂(t) + g(x̂(t), u(t)) + L(y(t) − Cx̂(t)), (2.19)

where:

- x̂(t) is the estimated state,

- L ∈ Rn×p is the observer gain matrix to be determined.

Define the estimation error as e(t) = x(t) − x̂(t). The error dynamics are given by:

ė(t) = (A− LC)e(t) + (g(x(t), u(t)) − g(x̂(t), u(t))). (2.20)

Using the Lipschitz condition, we assume g is a locally liptchiz function, we have:

∥g(x(t), u(t)) − g(x̂(t), u(t))∥ ≤ γ∥e(t)∥. (2.21)

To ensure the observer’s stability, we consider the Lyapunov function:

V (e(t)) = eTPe, (2.22)

Where P ∈ Rn×n is a symmetric positive definite matrix, i.e., P > 0.
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The time derivative of the Lyapunov function along the trajectories of the error dynamics is:

V̇ (t) = d

dt
(eTPe) = eTP ė+ ėTPe. (2.23)

Substituting the error dynamics, we get:

V̇ (t) = eTP [(A− LC)e+ (g(x, u) − g(x̂, u))] + [(A− LC)e+ (g(x, u) − g(x̂, u))]TPe
= eTP (A− LC)e+ eTP (g(x, u) − g(x̂, u)) + eT (A− LC)TPe+ (g(x, u) − g(x̂, u))TPe

= eT [P (A− LC) + (A− LC)TP ]e+ 2eTP (g(x, u) − g(x̂, u)). (2.24)

Using the Lipschitz condition, we have:

2eTP (g(x, u) − g(x̂, u)) ≤ 2γeTPe. (2.25)

Thus, the derivative of the Lyapunov function can be bounded by:

V̇ (t) ≤ eT [P (A− LC) + (A− LC)TP + 2γP ]e. (2.26)

To ensure that V̇ (t) < 0, we need:

P (A− LC) + (A− LC)TP + 2γP < 0. (2.27)

For exponential stability, let :

P (A− LC) + (A− LC)TP + 2γP < −λP. (2.28)

With λ > 0.

This inequality can be solved using LMI techniques such as YALMIP, LMI Toolbox and other
optimization techniques. We seek a symmetric positive definite matrix P and an observer gain
matrix L that satisfy the following LMI:

(A− LC)TP + P (A− LC) + 2γP < −λP. (2.29)

Using MATLAB or any LMI solver, solve for P and L.

This implies that:

V̇ (t) ≤ −λeTPe = −λV (t). (2.30)

Thus, exponential stability is achieved.

We will be utilizing this LMI-based observer for our two applications: icing detection in fuel-
powered UAVs and in electrically powered UAVs.
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2.4 Results and Discussion

2.4.1 Fuel Powered UAV (Jetstream J3)

Taking the dynamics equations in (2.32):

V̇T = −ρ0.V
2

T .S

2m .Cdact + Ttol

m
.cosα + g.sin(α− θ)

α̇ = − Ttol

m.VT

.sinα + g

VT

.(cos(α− θ) − 1)

ṁ = a · VT · (m−mf )

Since ice accretion is a slowly varying phenomenon, we modeled it as a constant disturbance
wice with ẇice = 0.

This leads to the following equation:

ṁ = a · VT · (m−mf ) + wice (2.31)

Where ωice is a disturbance representing the icing’s effect on the aircraft’s mass.

We selected a constant perturbation implying a linearly varying mass for our tests. This choice
is made based on the understanding that ice accretion is a slowly varying phenomenon. In real-
world conditions, ice accretion does not happen instantaneously but rather builds up gradually
over time. By modeling the mass change as a linear variation, we can effectively simulate this
gradual accumulation of ice. This approach allows us to evaluate the observer’s ability to track
and estimate mass changes due to ice accumulation over time.

The observer equations are as follows:

˙̂
VT = −ρ0.V̂

2
T .S

2m̂ .Ĉdact + Ttol

m̂
.cos(α̂) + g.sin(α̂− θ) + L1.(y − ŷ) (2.32a)

˙̂α = − Ttol

m̂.V̂T

.sin(α̂) + g

V̂T

.(cos(α̂− θ) − 1) + L2.(y − ŷ) (2.32b)

˙̂m = a · V̂T · (m̂−mf ) + ŵice + L3.(y − ŷ) (2.32c)
˙̂wice = L4.(y − ŷ) (2.32d)

The augmented state space variables are as follows:

X =


VT

α

m

wice



After implementing the given model in Matlab, the system’s observability has been studied,
we took as measurements the Airspeed VT and the angle of attack α. We employed the LMI
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Observer for Nonlinear Systems with a liptchiz constant γ ≈ 65, The LMI problem was solved
using MATLAB’s YALMIP toolbox. Simulations were conducted under various initial condi-
tions, yielding the following results for mass estimation:

The observer’s initial conditions are set to x̂0 = [70(kts); −π/100(rad)] and m̂0 = 6000Kg.

The Aircraft’s real dynamics are simulated under the following initial conditions:

Case 1: x0 = [100(kts);π/100(rad)] and m0 = 6071Kg.

Case 2: x0 = [80(kts);π/30(rad)] and m0 = 6100Kg.

Case 3: x0 = [120(kts); −π/15(rad)] and m0 = 6040Kg.

Case 4: x0 = [100(kts); 0(rad)] and m0 = 6000Kg.

Case 5: x0 = [115(kts);π/36(rad)] and m0 = 6015Kg.

Case 6: x0 = [110(kts); −π/25(rad)] and m0 = 6050Kg.

Figure 2.1: Mass icing estimation for fuel powered UAV, Case 1.

Figure 2.2: Mass icing estimation for fuel powered UAV, Case 2.
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Figure 2.3: Mass icing estimation for fuel powered UAV, Case 3.

Figure 2.4: Mass icing estimation for fuel powered UAV, Case 4.

Figure 2.5: Mass icing estimation for fuel powered UAV, Case 5.
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Figure 2.6: Mass icing estimation for fuel powered UAV, Case 6.

The estimated accumulated ice mass is determined as mice −mclean, where mclean represents the
expected mass of the aircraft in the absence of icing. The value of mclean is typically obtained
by simulating the aircraft’s dynamic model under icing-free conditions.

The estimated accumulated ice mass is shown in the figure below:

Figure 2.7: Estimated accumulated ice mass for fuel powered UAV.

2.4.2 Discussion

We tested the observer under six different initial conditions, and the results were promising. In
all cases, the observed mass followed the behavior of the real mass in a very short time.

We modeled mass change as a linear variation to simulate the gradual accumulation of ice,
reflecting the slowly varying nature of ice accretion. This approach helps evaluate the observer’s
ability to track and estimate mass changes due to ice over time.

The linear variation in mass due to constant perturbation serves as a simplified yet effective
model to test the observer’s performance. While actual ice accretion can involve more complex
dynamics depending on environmental factors such as temperature, humidity, and wind speed,
the linear model provides a controlled setting to validate our observer design.
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2.4.3 Electrically Powered UAV (AAI Aerosonde)

Referring to equations 1.14 through 1.18, We remind the reader that the dynamics of electrically
powered UAVs, in the absence of icing, are characterized by ˙mass = 0. This signifies that the
mass of the Aerosonde remains constant due to the absence of both fuel consumption and icing
accumulation.

Consequently, Any change in the mass will be considered as ice accretion, and since ice accretion
is a slowly varying phenomenon, we model the mass change dynamics in the presence of icing:

˙mass = ωice (2.33)

Where ωice is a disturbance representing the icing’s effect on the aircraft’s mass.

Remark 3:

Before designing the state observer, the system’s observability has been studied. Thus, we
make our final remark:

We admit that the position, velocity, rotation, and rotation rates are all measurable, given the
availability of numerous sensors (such as IMUs, GPS, etc.).

After implementing the given model of the Aerosonde aircraft, we stabilized the system around
the initial operating point xp0 = [0; 0; −50] (m) for positions, xv0 = [50; 0; 0] (m/s) for velocities,
xr0 = [0; 0; 0] (rad) for rotation angles, and xvr0 = [0; 0; 0] (rad/s) for rotation rates. We utilized
the LMI Observer for Nonlinear Systems, as described in Section 3.4. The LMI problem was
solved using MATLAB’s YALMIP toolbox to obtain the optimal solution. Simulations were
run under different initial conditions, and the following results were obtained for the mass
estimation:

The observer’s initial conditions are set to x̂0 = [50.1; 50.1; −0.1; 100.1; 5.1; 5.1; 5.1; 5.1; 5.1; 5.1;
5.1; 5.1] and m̂0 = 12.5Kg.

The UAV’s real dynamics are simulated under the following initial conditions:

Case 1: x0 = [0.1; 0.1; −50.1; 50.1; 0.1; 0.1; 0.1; 0.1; 0.1; 0.1; 0.1; 0.1] and m0 = 13.5.

Case 2: x0 = [1.1; 1.1; −40.1; 55.1; 0.6; 0.6; 0.3; 0.3; 0.3; −0.4; −0.4; −0.4] and m0 = 13.5.

Case 3: x0 = [0.3; 0.3; −48.1; 52.1; 0.3; 0.3; 0.3; 0.3; 0.3; 0.3; 0.3; 0.3] and m0 = 13.7.

Case 4: x0 = [0.6; 0.6; −45.1; 55.1; 0.6; 0.6; 0.6; 0.6; 0.6; 0.6; 0.6; 0.6] and m0 = 14.0.

Case 5: x0 = [1.1; 1.1; −40.1; 60.1; 1.1; 1.1; 1.1; 1.1; 1.1; 1.1; 1.1; 1.1] and m0 = 14.5.

Case 6: x0 = [−0.9; −0.9; −60.1; 60.1; 1.1; 1.1; 1.1; 1.1; 1.1; −0.9; −0.9; −0.9] and m0 = 14.5.
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Figure 2.8: Mass icing estimation for electrically powered UAV, Case 1.

Figure 2.9: Mass icing estimation for electrically powered UAV, Case 2.
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Figure 2.10: Mass icing estimation for electrically powered UAV, Case 3.

Figure 2.11: Mass icing estimation for electrically powered UAV, Case 4.
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Figure 2.12: Mass icing estimation for electrically powered UAV, Case 5.

Figure 2.13: Mass icing estimation for electrically powered UAV, Case 6.
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2.4.4 Discussion

We evaluated the observer under six different initial conditions, and the results were promising:
in each instance, the observed mass quickly aligned with the real mass. We simulated mass
change using a linear variation to represent the gradual accumulation of ice, reflecting the slow
nature of ice accretion. This approach assesses the observer’s ability to track and estimate mass
changes due to ice over time. Using a linear variation for mass change due to constant pertur-
bation provides a simplified yet effective model to test the observer’s performance. Although
actual ice accretion can involve more complex dynamics influenced by environmental factors
like temperature, humidity, and wind speed, the linear model offers a controlled environment
to validate our observer design.

2.4.5 Conclusions

Our contributions to the field of icing accretion detection were achieved through the develop-
ment and implementation of an LMI based nonlinear observer on fuel powered and electrically
powered UAVs. We synthesized our observer under six different initial conditions, and the re-
sults were promising. The observer demonstrated a strong ability to accurately track the real
system across all tested scenarios.

Looking ahead, there are several avenues for further enhancement. One promising direction
involves refining ice accretion models to incorporate nonlinear effects and diverse environmental
conditions. Additionally, conducting a comparative study among various observers could pro-
vide valuable insights into their effectiveness. Moreover, practical experimentation to validate
these findings would be interesting.

By pursuing these avenues, we aim to significantly enhance the effectiveness and applicability
of icing accretion detection systems across different UAV platforms.
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Chapter 3

Learning Based Identification of
Nonlinear systems: Application to
Aircraft Dynamics Modeling

System identification is one of the major practices in control engineering, the ability to gen-
erate accurate dynamical models from input/output or state measurements data has becomes
increasingly important with today’s research problems. In this chapter we will delve into learn-
ing based identification methods where we will define, explain and implement two learning
algorithms, namely the Recurrent Neural Network based method and the Sparse Identification
of Nonlinear Dynamics algorithm, which will be both applied to the Jetstream J31 aircraft
system.

3.1 RNN based identification

3.1.1 Class of systems

For what follows let’s consider the nonlinear systems of the class represented by the following
continuous-time state space representation:

ẋ = f(x) + g(x)u (3.1a)
y = h(x) (3.1b)

Where x =
(
x1 x2 ... xn

)T
∈ Rn is the state vector, u =

(
u1 u2 ... um

)T
∈ Rm is the

control input signal, and y =
(
y1 y2 ... yq

)T
∈ Rq is the output vector.The functions f(x),

g(x) and h(x) are nonlinear function matrices of respective sizes of (n × 1), (n × m) and (q ×
1).

3.1.2 Neural Networks

An artificial neural network (ANN) is composed of interconnected units or nodes, known as
artificial neurons, which mimic the neurons in a human brain. These nodes are linked by edges,
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Figure 3.1: Class of system

similar to synapses, which transmit signals between neurons. Each artificial neuron receives
inputs from connected neurons, processes them, and then sends an output to other neurons.
The signals are represented by real numbers, and each neuron’s output is determined by a
non-linear function of the weighted sum of its inputs, known as the activation function. The
weight of each connection adjusts during the learning process, determining the strength of the
transmitted signal.

Typically, neurons are organized into layers. Different layers apply different transformations
to their inputs. Signals propagate from the input layer through multiple intermediate layers,
known as hidden layers, and finally to the output layer. A network with at least two hidden
layers is usually referred to as a deep neural network.

These networks are used in machine learning and deep learning applications to predict future
outcomes, classify data, create clusters etc. They have the capability to learn from past data
and recognise patterns within it.

Figure 3.2: Neural Network Architecture [1]

3.1.3 Recurrent Neural Networks

Recurrent Neural Networks, or RNN for short, are a special type of neural networks that include
a feedback loop that feeds past hidden states to future ones (figure 3.3), hence the recurrence.
This type of neural networks is usually used for time-series prediction, such as weather or
financial predictions, but it also attracted the attention of dynamical systems identification and
observation specialists due to the possibility of the recurrent term representing the dynamical
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connection between past and future states.
A typical recurrent neural network has the following form :

νt = Winµt +Whfact(νt−1) (3.2a)
ot = Woutfact(vt) (3.2b)

Where νt is the hidden state vector at time-step t, µt is the manipulated input at time-step t and
ot is the network’s output at the same time-step. fact(.) is a non-linear activation function such
as tanh, sigmoid or ReLu, and the matrices Win, Wh and Wout are respectively the trainable
input weights, hidden weights and output weights.

Figure 3.3: Folded/Unfolded RNN Structure [2]

This classical representation is a discrete time representation, considerable work has been done
under it ([21][22][20]), however recent developments have led to a more direct approach using
continuous-time recurrent neural networks, which will be explained in the following subsection.

Remark 1 :
A certain issue can occur during the training of RNN’s caused by the gradient of the network
which, with time, will be multiplied by the term wn (with w one of the weights).If n becomes too
large, the gradient can either vanish (vanishing gradient problem for w<1) or explode (exploding
gradient problem for w>1).
To solve this issue many methods have been developed, the two main ones being the use of LSTM
networks instead of simple RNN’s that introduce a "forget factor" that cuts the influence of past
terms on the long term, or the use of back-propagation-through-time (BPTT) truncate, which
as the name suggests truncates the past states used to a certain level as to avoid the mentioned
issues.

3.1.4 Continuous-Time Recurrent Neural Networks

Continuous-Time Recurrent Neural Networks, or CTRNN for shorts, are the continuous time
variant of simple RNN’s. The form of a CTRNN slightly differs from it’s simple counterpart,
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it is as follows :

τ
dν

dt
= −ν +Winµ+Whfact(ν) (3.3a)

o = Woutfact(ν) (3.3b)

The parameters are practically the same except for the addition of the τ term:
ν =

(
ν1 ν2 ... νn

)T
∈ Rn is the hidden state vector, µ =

(
µ1 µ2 ... µm

)T
∈ Rm and

o =
(
o1 o2 ... oq

)T
∈ Rq is the network’s output. The trainable weights Win, Wh and Wout

are respectively of sizes (n × m), (n × n) and (q × n).

To have a better understanding of the added term’s influence let’s look at the numerical deriva-
tive of the equation 3.2 using Euler’s method :

dv = vt+1 − vt = dt

τ
(−ν +Winµ+Whfact(ν))

If we put dt
τ

= α we obtain :

vt+1 = (1 − α)ν + α(Winµ+Whfact(ν)) (3.4)

α represents the amount of contribution past states have on the next states, where the closer
α gets to 1, the less the contribution.

This method is a continuous-time representation because instead of optimizing an input to
output pair, we optimize the dynamics of the desired system. This method allows us to have
self recurrent models that can mimic dynamical systems behaviour.

When training a CTRNN on a nonlinear system the goal is to minimize F (x)−FRNN(x) where
F (x) and FRNN(x) are respectively the dynamic of the nonlinear system and RNN model. Thus
the following theorem:

Theorem : [20] Consider the nonlinear system of Equation 3.1 and the RNN model of Equation
3.3 with the same initial condition x(0) = x̂(0) = x0 ∈ ωp. For any ϵ>0 and T>0, there exists
an optimal weight matrix θ∗ such that the state x̂ of the RNN model of Equation 3.3 with
θ = θ∗ satisfies the following equation:

sup
t∈[0,T ]

|x(t) − x̂| < ϵ (3.5)

3.1.5 Training Procedure

Before detailing the training process for CTRNN’s we need to clarify the confusion around the
actual equivalence between the models of equations 3.1 and 3.3, so here is the modified CTRNN
used to predict nonlinear systems of the defined class (we assume x and u have the sizes defined
in subsection 1.5.1) :

τ
dν

dt
= −ν +Winµ+Whfact(ν) (3.6a)

x̂ = Woutfact(ν) (3.6b)
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With the hidden state vector ν ∈ Rñ and ñ is the hidden layer’s size. The manipulated vector
µ =

(
x1 x2 ... xn u1 u2 ... um

)T
∈ Rm+n is the manipulated input vector, and the

output is x̂ =
(
x̂1 x̂1 ... x̂n

)T
∈ Rn. Finally the weight matrices are therefore of respective

sizes (ñ × m+n), (ñ × ñ) and (n × ñ).

The remark is that the hidden states and model state are not necessarily the same variable.
The output of the neural network is trained to reproduce the states of the nonlinear system,
thus the hidden states do not necessarily have the same size as our real system.

Remark 2 :
The model as defined above requires knowledge of all states for training so we assume that all
states are measurable during this period.

For the training of our model 3 steps are required : Data Generation, Model Training,
Model Evaluation, with an additional implementation step.

3.1.5.1 Data Generation

CTRNN’s require large amount of data, these can be obtained from extensive open-loop sim-
ulation of the system under different control inputs and initial conditions. This requires two
conditions, the first one is that our control signal must be bounded umin < u < umax, and
the second one is that the system must be at least stable at the sense of Lyapunov, under the
applied control input.

Given that the region of closed-loop stability of the nonlinear system of equation 3.1 is Ωp, the
goal is to generate enough information about the system inside a sub-stable region Ωp′ that will
become the RNN’s characteristic region of prediction (figure 3.4). We do that by generating
random control inputs of period ∆t, written as : u(t) = uk for t ∈ [tk, tk + 1] , and using a
sampling period hc < ∆t for a finite simulation time.

After obtaining our data, we first organise it as a set of sequences, then into an input and target
variables. If for a single simulation we obtain k data points, our input will be these data points
from t=0 to t=k-1, while our target variable will take data from t=1 to t=k. The final form of
the data should have a size of (number of sequences, length of sequence, number of features),
with length of sequence equal k. and number of features equal m+n for the input variable and
equal n for the target variable. (figure 3.5)

Finally we divide our data into training, validation and testing sets.
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Figure 3.4: Discretisation of the state and input signals inside the region of stability

Figure 3.5: RNN Training Procedure

3.1.5.2 Model Training

Training our model consists in finding the optimal weights of equation 3.3 that approximates
the nonlinear system with minimal loss criteria. In order to achieve that, we must go through
a set of steps that are as follows :

- Data preparation/Normalisation : Using the data generated as it is can be trouble-
some, the scope of the different states may differ creating an imbalance in the model by
giving more importance to larger states, that is why normalisation of the data is advised.
One of the most Normalisation techniques, and the one that we will be using for our tests,
is the Z-score Normalisation (or Standardisation) method, it scales our numerical data to
a range of [0;1] as follows :

xnorm = x− µ

σ
(3.7)

Where x is the original feature value, µ is its mean value and σ its standard deviation.
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- Defining a loss function : The loss function computes a defined difference between the
predicted outputs and the actual data, this function will be the base of the optimization
process as well as an indicator of the training’s precision. The most commonly used loss
functions for numerical outputs are Mean-Squared-Error (MSE) : 1

n

∑n
i=1(xi − x̂i)2

and Mean-Absolute-Error (MAE) : 1
n

∑n
i=1 |xi − x̂i|.

- Choosing an optimization algorithm : Optimization algorithms aim to update the
networks parameters in order to minimize the loss function defined previously. Usual
optimization algorithms include Gradient Descent (GD) : one of the most basic algo-
rithms where the parameters are updated based on the loss function’s negative gradient.
Stochastic Gradient Descent (SGD) : a variant of the classical GD with more fre-
quent updates by varying parameters for each training sample (or part of it), leading
to faster convergence time. Adaptive Moment Estimation (Adam) : An advanced
optimization algorithm that computes adaptive learning rates for each parameter.

- Choosing an appropriate activation function : In our application, the choice of acti-
vation function plays a major role, as we are attempting to approximate a nonlinear model
with a NN that is mostly linear, the non-linearity behaviour comes from the activation
function. The use of one or many non-linear activation function requires trial and error,
and the most common activation functions are : Hyperbolic Tangent tanh = ex−e−x

ex+e−x ,
Sigmoid σ(x) = 1

1+e−x , Rectified Linear Unit ReLU = max(0, x).

- Implementing the code : Turning the mentioned theory into practical code is a tedious
task, however using the python torch library and its neural network module, we are able
to create custom neural networks structures. In our case we must define the initial
parameters, the input layers, the hidden layers, the output layer the activation function,
the forward pass, the recurrence and finally the back propagation.

- Hyper-parameter tuning : The final step is to tune the parameters of the model, this
can be done by trial and error, but a more efficient method would be to use a tuning
method such as grid search or random search.

3.1.5.3 Model Evaluation

After training our model, it is important to analyse and measure its performancec, for this we
usually look at these main criteria:

- Evaluation metrics : These metrics give us a direct indicator of our model’s precision by
computing the difference between the predicted and true outputs. As mentioned earlier,
the main metrics used are MSE and MAE.

- Generalisation : When training a model the goal is not to memorise results, but to
learn patterns within the data, which is why we look at the models ability to generalise
on unseen data. In order to achieve this we use validation data, or cross-validation
methods so that when updating the loss function, the accuracy is measured on new data
that was not part of the training set.

- Underfitting/Overfitting : Underfitting is when the loss for both the training and
validation sets is high, showing that the model could not learn any pattern in the data and
indicating that major changes must be done to our parameters. Meanwhile, overfitting
is when the training loss is low, while the validation loss is high meaning that instead of
understanding the data, our model is memorising it, in which case the validation method
and the data structure should be modified.

48



3.1.6 Results

For this part we will be considering the first model of the Jetstream J31 of equation 1.13 over
the model of AAI Aerosonde, due to the computation power required to generate and learn the
patterns from the data.

We implemented the system in Simulink Matlab then run simulations for a fixed sampling period
of hc = 0.4s and simulation time of 500s. The solver used was the classical Euler method, and
the input signal being a uniform random signal of sampling/holding time ∆t = 10s. For each
simulation we vary the initial conditions as well as the random signal generator’s seed within
a predefined stability space Ωp′ : 50 < x1 < 150, π/100 < x2 < π/50, 1/6100 < x3 < 1/6000
with x3 in here being the inverse of mass. And finally we run the process for 1600 iterations
saving the data points each time resulting in over 2 million data points. Data was divided into
training, validation and testing sets (70%, 20%, 10%) respectively. And python was used for
implementation.

Below, The list of parameters and results of simulations are presented:

Parameter Value
hc 0.4s
∆t 10s
α 1
f(.) tanh

Optimizer Adam
Learning rate 0.1

Hidden layers size 3
Epochs 3000

Loss MAE

Table 3.1: RNN parameters

Training loss Validation loss Testing loss
3, 09.10−3 3, 08.10−3 3, 15.10−3

Table 3.2: RNN Identification results

Weight matrices Win,Wh and Wout were exported into Matlab to compare the identified model
obtained with the actual aircraft system. Tests were conducted under various initial conditions,
as outlined below:

Case 1: x0 = [100(kts);π/100(rad); 1/6071(Kg−1)]. (Figure 3.6)

Case 2: x0 = [150(kts);π/150(rad); 1/6100(Kg−1)]. (Figure 3.7)

Case 3: x0 = [50(kts);π/50(rad); 1/6000(Kg−1)]. (Figure 3.8)
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Figure 3.6: True and RNN predicted states (Case1)

Figure 3.7: True and RNN predicted states (Case2)
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Figure 3.8: True and RNN predicted states (Case3)

3.1.7 Discussion

The results of the Continuous-Time Recurrent Neural Network (CTRNN) model were highly
promising. The model achieved a very low loss value, particularly on the testing set, demonstrat-
ing its strong generalization capability by performing well with new, unseen data. Additionally,
the identified model was tested under three different initial conditions, yielding similarly positive
outcomes. These results indicate that the trained CTRNN effectively replicates the system’s
behavior, validating its robustness and reliability.

3.2 Sparse Identification of Nonlinear Dynamics (SINDy)

SINDy is a data-driven nonlinear system identification method that leverages the principle of
sparsity. This principle suggests that dynamical model equations can be reconstructed using
only a few candidate features. The method aims to extract the exact dynamical equations from
time-series data using regression-based techniques.

3.2.1 Mathematical Overview

Consider the system of form :
ẋ(t) = f(x, u) (3.8)

Where x(t) ∈ Rn is the state vector, and f(.) is a nonlinear function of the states. x(t) and its
derivative ẋ(t) are sampled equi-distantly in time with t = t1, t2, ..., tm, and are arranged into
the following matrices :
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x(t) =



xT (t1)
xT (t2)

...
xT (tm)

 =



x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

... ... . . . ...
x1(tm) x2(tm) . . . xn(tm)

 (3.9)

ẋ(t) =



ẋT (t1)
ẋT (t2)

...
ẋT (tm)

 =



ẋ1(t1) ẋ2(t1) . . . ẋn(t1)
ẋ1(t2) ẋ2(t2) . . . ẋn(t2)

... ... . . . ...
ẋ1(tm) ẋ2(tm) . . . ẋn(tm)

 (3.10)

A set of functions Θ(x) called the feature library that contains the nonlinear candidate functions
(polynomials, sinusoidals, fractions. etc) was then defined:

Θ(x) =
[
f0(x) f1(x) f2(x) . . .

]
(3.11)

Each function fi(x) represents a candidate function, and the liberty of choosing these functions
varies from application to application, and it may be chosen based on physical properties of
the system.

Knowing that only few of these candidates are actually present in the right-hand size of equation
3.8, we can define the sparse weight vectors (coefficients) Ξ = [ξ1, ξ2, ..., ξn] such that :

ẋ = Θ(x)Ξ (3.12)

With Ξ containing mostly zeros except for the actual terms present in the real system as
highlighted in the figure 3.9. In this figure, both the red and blue columns in the left most
vector represent single states through time, while in the right most vector the red and blue
dots represent the non-zero parameters in our matrix, which defines the nonlinear candidates
chosen to represent our states (red for the first state and blue for the second).

Figure 3.9: SINDy Algorithm mathematical overview [3]

In the SINDy algorithm, the control input u is treated as a candidate variable similar to the
states. However, unlike the states, its derivative is not calculated.
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This becomes an optimization problem of finding the optimal weights Ξ that best embed ẋ.
For this, sparsity promoting L1 regularisation is used with least squares errors to find out the
parameters:

ξk = argmin
ξ′

k

||ẋk − Θ(x)ξ′
k||2 + λ||ξ′

k||1 (3.13)

3.2.2 Main Challenges

The main challenges encountered with this method can be divided into two separate points :

1. Choice of coordinates : Choosing the correct set of variables to measure that represent
the system can be difficult, as omitting important variables may lead to incomplete mod-
els, while adding irrelevant variables can make it unnecessarily complicated. Typically,
an idea of the systems most representative variables must already be acquired by the user
by having an understanding of the application itself and its context.

2. Choice of candidates : Another crucial choice to make, is the set of candidates to use.
The SINDy method assumes dynamics can be represented as a sparse linear combination
of functions (x, x2, cos(x), sin(x), ex, etc). To overcome this problem, prior knowledge
of the system can be used to determine which functions to use, if such information is
unavailable we can use general functions such as the polynomial and sinusoidal functions,
however extracting the exact dynamics this way cannot be slightly difficult.

3.2.3 Results

The SINDy Algorithm was implemented using python, to identify the J31 Jetstram system 1.13
using the same generated data from the previous CTRNN Algorithm.

After trying many combinations of the candidates, and using a grid search to optimize the pa-
rameters of the model, we obtained the following set of hyper-paramters: The chosen algorithm

Parameter Value
Optimization algorithm STLSQ

Threshold 10−3

Maximum iterations 20
Normalisation True
Learning rate 0.05

Table 3.3: SINDy parameters

Sequential Threshold Least Squares (STLSQ) iteratively performs least-squares regression and
then thresholds the small coefficients to zero, which promote sparsity in the identified model.
The trained model achieved an accuracy of 0.99, we then plotted the actual and predicted states
for various initial conditions as shown below:

Case 1: x0 = [116; π/73; 1/6083]. (Figure 3.10)

Case 2: x0 = [66;π/50; 1/6028]. (Figure 3.11)

Case 3: x0 = [99;π/97; 1/6066]. (Figure 3.12)
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Figure 3.10: Real and estimated SINDy states (Case 1)

Figure 3.11: Real and estimated SINDy states (Case 2)

Figure 3.12: Real and estimated SINDy states (Case 3)
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3.2.4 Discussion

The results of the Sparse Identification of Nonlinear Dynamics (SINDy) model were highly
promising. The model accurately reconstructed the functions and coefficients of the real sys-
tem. Additionally, the identified model was tested under three different initial conditions,
yielding similarly positive outcomes. These results indicate that the SINDy algorithm effec-
tively replicates the system’s behavior, validating its high performance.

The dynamical model was reconstructed, and some additional terms with negligible coefficients
were present. Due to their negligible coefficients, these terms have very minimal impact on the
dynamics. This explains why the states of the identified model perfectly matched those of the
real system. With more computational power, these negligible terms can be easily thresholded
and removed for a more refined model.

It’s important to note that in practice, it’s essential to pre-treat the data to accurately calculate
derivatives. Filters like the Kalman filter and low-pass filters are commonly used to clean and
denoise the signals.

3.3 Comparative study

In this chapter, we implemented two learning-based identification methods: the Continuous-
Time Recurrent Neural Network (CTRNN) algorithm and the Sparse Identification of Nonlinear
Dynamics (SINDy) algorithm. Both methods performed well, though notable differences exist
between them.

Firstly, the primary distinction is that CTRNN approximates nonlinear systems without prior
knowledge of the physical properties of the system, making the procedure broadly applica-
ble. However, SINDy aims to find the exact dynamical representation of a system, which
make it complicated in identifying suitable candidate functions, which is difficult without prior
knowledge of the system’s characteristics. Secondly, it is important to note that the CTRNN
algorithm requires defining a region of stability or interest. This ensures a bounded small er-
ror of identification within that region. On the contrary, the SINDy algorithm attempts to
reconstruct the exact model directly, the same functions of f(x, u) and its same coefficients,
suggesting a greater generalization ability.

Another point worth mentioning is that both methods require extensive amounts of data. This
is reasonable given the complexity of identifying nonlinear differential equations and because
the methods are fully data-driven and learning-based.

RNN SINDy
Prior Knowledge No Need Hard in absence of prior knowledge

Objective Approximating model Finding exact model
Limits Region of stability No limits

Table 3.4: Summary of the comparaison between RNN and SINDy based identification
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3.4 Conclusion

In this chapter, we defined and analyzed two learning-based identification algorithms: the
Continuous-Time Recurrent Neural Network (CTRNN) algorithm and the Sparse Identification
of Nonlinear Dynamics (SINDy) algorithm. We tested both methods and conducted a detailed
comparison of their characteristics. Although these methods are still under development, the
results are promising and provide valuable insights for future research.

One point worth mentioning is that the identified models can be used in observer design by
incorporating correction terms, such as a linear combination or sliding manifolds of measured
errors. This approach is particularly beneficial when mathematical first principles models are
not available.

Looking ahead, the primary objective is to reduce the amount of data required for training these
algorithms. This reduction will facilitate their application in real-world scenarios without the
need for extensive resources. Additionally, less data will alleviate the heavy computational de-
mands currently associated with these methods. Another focus will be on updating or merging
the existing algorithms to enhance generalization capabilities and eliminate region-specific lim-
itations. Furthermore, developing new frameworks will be investigated to improve and shorten
the training time of these learning methods.

Pursuing these directions will significantly enhance the reliability and effectiveness of learning-
based identification algorithms, making them more practical for widespread use.
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Part II

Advanced Optimization Of Smart
Sensor Networks In Internet Of Things

Technologies



Introduction

In Context

The Internet of Things (IoT) is a recent technology that facilitates the interconnection of various
types of physical objects with each other and with the internet. This rapidly advancing and
remarkable technology has become an integral part of our everyday lives. Indeed, all electronic
devices we use are either already intelligent or are on the verge of becoming so. IoT finds
extensive applications and plays pivotal roles in numerous domains, including healthcare, urban
planning, agriculture, environmental monitoring, energy management, retail, home automation,
and education.

The current Internet of Things operates primarily through sensors, actuators, and other con-
nected objects placed within infrastructures or physical objects. These objects collect, transmit,
and receive specific data, which is then wirelessly uploaded to IoT platforms. The data is then
analyzed and enriched to address user queries and/or enhance the efficiency of devices within
the network.

The number of objects connected to IoT networks continues to grow exponentially. Currently,
we have millions of connected objects generating a vast amount of data, leading to numerous
challenges related to energy conservation, scalability, data security, and quality assurance.

One of the major challenges of IoT is energy conservation. Indeed, sensor nodes are small
components that remain active for a limited duration due to the capacity of their energy sources,
primarily batteries. In most applications, recharging or replacing the battery is problematic,
if not impossible. Consequently, when the sensor node’s battery is depleted, it is eventually
removed from the network, causing a disruption in its services. The simultaneous disintegration
of sensor nodes leads to a degradation in network performance and, over time, renders the
network obsolete.

Given the characteristics and limitations of sensor nodes, it is crucial to optimize the utilization
of their energy resources to enable data collection and transmission without compromising the
overall performance of the network. Numerous research efforts have been conducted in the
context of energy conservation with the aim of extending the lifespan of IoT networks. However,
few of the proposed techniques are applicable to large-scale networks, and even fewer address
the objectives when the base station is located outside the network.
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Research Problem

Currently, the number of objects connected to IoT networks amounts to millions, with pro-
jections indicating that this figure will reach billions in the years to come. Hence, it’s crucial
to optimize the energy efficiency of IoT networks to facilitate data collection and transmission
without compromising the overall network performance.

The central query explored in this study is: How might operational research methodolo-
gies and the latest advancements in information processing technology be employed
to optimize energy consumption within IoT networks?

In her article titled "Reducing Wireless Sensor Networks Energy Consumption Using P-Median
Modelling and Optimization"[30] Mahmoudi Yousra proposed, for the first time, a comprehen-
sive p-median-based mathematical model for the clustering problem in wireless sensor networks
and IoT. The model defines a set of decision variables to express the objective of minimizing
energy consumption as a mathematical function, considering factors such as node residual en-
ergy and other constraints. The proposed clustering will establish a routing strategy that
simultaneously addresses multiple objectives.

- Energy efficiency by dynamically selecting cluster heads and assigning member nodes to
cluster heads to minimize the distance between member nodes and the base station.

- Data security by employing single-hop transmissions between member nodes and the
cluster head, and between the cluster head and the base station.

- Network scalability as clustering facilitates seamless integration of new sensor nodes.

Objectives

In this study, our objective is to address the proposed p-median problem using metaheuris-
tic algorithms. We employ for this three relatively new and previously untilized optimization
algorithms. such as Grey Wolf Optimizer (2014)[4], Whale Optimizer (2016)[5], and Puma Op-
timizer Algorithms (2024)[6] for tackling this exact p-median problem for energy optimization.

Our optimization problem is a 2n non-convex exponentially increasing problem, in which tra-
ditional algorithms may take from months to years to solve the problem, unlike metaheuristics
which can provide good results in only few minutes.

Our study focused on non-mobile sensor nodes and a base station with well-known geographical
positions. Sensor positions were arranged in both 2D and 3D frameworks. We adopted the
same assumptions as Mahmoudi Yousra in her work [30].

- In terms of energy capacities, the base station is powered by a continuous and unlimited
energy source, while sensor nodes have restricted, non-expandable, and non-exchangeable
energy resources.

- Regarding energy consumption, a sensor node utilizes energy for three main tasks: sensing,
processing, and communication.

- In our study, we only consider the energy required for communication since it constitutes
the largest portion of energy consumed by a sensor node.
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Structure of This Part

This part begins with Chapter Four, delving into the state of the art. Chapter Five follows,
presenting definitions of the Internet of Things and its architectures and characteristics, along
with an introduction to Genetic Algorithms, Grey Wolf Optimization Algorithm, Whale Opti-
mization Algorithm, and Puma Optimization Algorithm. Moving forward to Chapter Six, we
introduce the first mathematical model of energy optimization using the p-median problem,
along with the second mathematical model, both proposed by Yousra Mahmoudi. We also
present our main optimization results using metaheuristic algorithms for both mobile and non-
mobile sensors in both 2D and 3D frameworks. Finally, this part concludes in the last chapter,
followed by proposed avenues for future work. The list of references is provided at the end.
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Chapter 4

State of The Art

In [31], a brief historical overview of the IoT’s evolution and a comprehensive survey of opti-
mization challenges in IoT networks have been provided. Techniques of IoT energy efficiency
optimization can be classified as follows:

Radio Optimization Techniques

These techniques influence signal quality, impacting coverage and robustness by dynamically se-
lecting channels and programming cooperative reception/transmission. A novel context-aware
approach utilizing a Q-learning algorithm has been published [32], determining the wireless
connection type, selecting the data processing unit, and determining the data quantity to be
scanned to meet energy consumption, cost, response time, and security objectives. A dis-
tributed learning approach to operational control in long-range technology has been outlined.
This approach adapts device communication parameters to the environment to minimize en-
ergy consumption and data collision over shared channels [33]. An algorithm employing the L
system to draw a Hilbert curve has been developed for adaptively and dynamically optimiz-
ing a central IoT network with expanded Wi-Fi transmission range. This includes parameter
sharing to enhance the energy efficiency of a smart home [34]. Research has investigated the
feasibility of applying IoT technology to supervise and enhance the efficiency of energy and
spectrum usage in broadcasting networks, particularly utilizing the ultra-high frequency band
[35]. This involved a brand new network design with an IoT retroactive circuit and a 2-step
long-range/NB-IoT-based algorithm that chooses the best base station set among several pos-
sibilities to minimize infrastructure and then optimizes power consumption by linking users to
the operational base stations through the best routing pattern that minimizes both data loss
and the effective isotropic radiated power. Power consumption by a broadcaster in Havana was
thus reduced by 15–16.3% compared to current digital terrestrial multimedia broadcast net-
works while spectrum usage efficiency was increased by 32–35% and the availability of TVWS
channel was increased by 34% in 90% of instances. A small cell allocation plan ensuring the
mutual objectives of optimizing energy efficiency and maximizing data rate has been introduced
for an IoT application in a smart city [36]. The proposed scheme is obtained based on the for-
mulation of the problem as an integer programming multiobjective optimization problem wich
has been resolved by a new algorithm based on the fusion of the branch-and-bound algorithm
and the non-dominated sorting genetic metaheuristic (NSGAII) [37].
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4.1 Data Reduction Techniques

These methods tackle latency by reducing data transmission and employing aggregation tech-
niques to enhance service quality. Resource allocation in cloud computing is executed through
the whale optimization heuristic, drawing inspiration from the collective hunting behavior of
humpback whales [38]. Novel examples of environmentally friendly Narrowband Internet of
Things (NBIoT) technologies include an energy-efficient approach for optimizing water usage
in irrigation and an Energy-Efficient Adaptive Health Monitoring System (E2AHMS) that dy-
namically distributes transmission power needed for patient monitoring [39]. Additionally,
Huang and al in [40] offer a toolbox for modeling and simulating various resource management
methods in IoT, edge computing, and fog computing networks.

4.2 Sleep and Wake Techniques

The problem of scheduling and controling productive activity periods in IoT has been addressed
using Max-plus dioid algebra with tuning systems that adjust and schedule activity and sleep
periods to avoid useless wake-up calls and provide data as required by the application. A timed
event graph was employed to model the network, where each vertex signifies a node state,
edges denote connections between states, and the weight on each edge indicates transition
times between states. This system enables the optimization of energy consumption, extends
the lifetime of IoT devices, minimizes unnecessary data generation, storage, and transmission,
and ensures data quality preservation [41].

4.3 Energy Efficient Routing

Energy-efficient routing significantly impacts IoT scalability and robustness, achieved either
through network clustering with appropriate cluster-head selection or by employing efficient
data transmission protocols. To address this, the fitness-averaged rider optimization algorithm
was introduced for multi-objective cluster-head selection, considering factors like candidate node
suitability, remaining energy, and energy balance level [42]. Comparative analysis with state-
of-the-art models such as artificial bee colony, genetic algorithm, particle swarm optimization,
gravitational search, moth flame optimization, and others confirmed the superior efficiency of
this strategy [43][44][45][46][47][48][49].

Moreover, the development of the multi-objective fractional gravitational search algorithm
aimed at providing an energy-efficient transmission protocol in IoT networks [50]. This al-
gorithm, integrating fractional theory and gravitational search, iteratively determines cluster-
heads based on multiple objectives like distance, energy, delay, and link lifetime. Another
approach proposed by Rashedi, Nezamabadi-Pour & Saryazdi [51] introduced a multi-objective
metaheuristic for designing energy-efficient routing protocols in IoT networks, named the multi-
objective fractional gravitational search. Additionally, Chu, Horng & Chang [52] presented a
data transmission balance model for WSN networks utilizing an enhanced version of the ant
colony algorithm to optimize multi-hop communication, reducing energy consumption and en-
hancing network reliability compared to traditional methods. Abbad and al [53] proposed a
weighted Markov chain-based clustering protocol to decrease intra-cluster energy consumption,
efficiently managing redundant data transmission in high-density sensor regions and selecting
sensors for interrogation in low-density areas, thereby extending sensor lifetime. Furthermore,
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Mahmoudi, Zioui & Belbachir [54] introduced a novel quantum-inspired clustering metaheuristic
to optimize energy consumption in IoT wireless networks. This approach encodes cluster-head
selection solutions using qubits and explores the solution space using firefly motion and PSO
motion, leading to significant energy savings and computational speedups leveraging quantum
computing principles.

4.4 The Problem of Service Composition

The service composition challenge arises frequently in IoT networks when a device alone cannot
fulfill a complex user request, necessitating the creation of a composite service. Multi-objective
metaheuristic search algorithms, notably the non-dominated sorting genetic algorithm, have
been extensively explored to address this issue, consistently providing optimal solutions to the
service composition problem [37]. Furthermore, a bi-objective shortest path selection scheme
has been employed for IoT service composition, aiming to maximize quality of service (in terms
of runtime, cost, and network latency) while minimizing energy consumption. This scheme
utilizes a pulse algorithm with four built-in pruning procedures tailored for this purpose (Mir-
jalili, 2015). Innovatively, a multi-objective genetic optimization algorithm has been proposed
to tackle the resource provision and application placement problem in IoT fog computing.
This approach considers conflicting criteria such as energy consumption, execution time, and
economic cost, aiming to approximate the Pareto front of optimized application-component
placements on available fog devices [5]. Comparative evaluations with state-of-the-art methods
[55] have demonstrated its effectiveness in terms of communication data size, component CPU
workload, quality, and algorithm scalability.

4.5 In Related Research

A highly efficient multi-objective optimization algorithm based on the chaotic ant swarm was
developed by Gupta and al [55]. This algorithm redefines the concepts of "Neighbors" and
"Neighbor Selecting" rules, incorporating an archive-based approach to enable rapid convergence
to the true Pareto front with a well-distributed set of solutions. When applied to various well-
known multi-objective optimization problems, the chaotic ant swarm algorithm outperformed
state-of-the-art peer algorithms like particle swarm optimization and the non-dominated sorting
genetic algorithm. It demonstrated superiority in terms of generational distance, spacing, and
error ratio.

It’s crucial to note that within the framework of optimizing energy consumption in IoT-enabled
networks utilizing clustering architecture, the majority of these methods were tailored for
smaller networks where base stations are situated within the area covered by nodes. However,
their performance tends to degrade significantly when applied to networks with peripheral base
stations.
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Chapter 5

Tools and Materials

Optimization involves choosing the best values for certain parameters in a system to fulfill
all design requirements while minimizing costs. This challenge is common across all scientific
fields and necessitates the creation of innovative algorithms to handle progressively complex
problems. Conventional optimization algorithms have limitations such as focusing on single
solutions, converging to local optima, and struggling with unknown search spaces. Over the last
few decades, many researchers have developed metaheuristics—algorithms specifically designed
to overcome these limitations and address unresolved optimization challenges.

Optimization involves identifying decision variables that yield the best possible outcomes for
one or more fitness functions. Prior to the advent of heuristic optimization, analytical methods
were the main approach to tackling optimization problems. These methods, especially in the
context of first and linear combinations, focused on collecting data related to individual or
constraint-penalized fitness function variables, as well as primary information about the fitness
function and constraint violations. This made it easier to find the exact optimal solution for
linear or convex non-linear optimization problems. However, this approach struggled with
more complex optimization problems, often leading to issues such as local optima trapping or
premature convergence in stochastic or unknown search spaces.

Metaheuristics represent a prominent category of algorithms specifically created to tackle com-
plex optimization problems. They draw on concepts from evolutionary algorithms (EA), swarm
intelligence (SI), physics-based methods (PH), and human-based methods (HU). The simplic-
ity of mathematical models in SI is a key factor contributing to its popularity among all these
classes. Metaheuristics have become highly popular in the field of optimization and in vari-
ous other disciplines. Stochastic optimization algorithms, which are part of this category, are
widely used across numerous scientific fields and industries.

As the popularity of metaheuristic algorithms for solving diverse problems continues to rise,
various types of metaheuristic algorithms have emerged, each with its own characteristics and
approaches to optimization. These algorithms draw inspiration from a range of natural phe-
nomena, including animal and human behavior, principles of physics, and concepts of evolution.
Depending on their sources of inspiration, different algorithms have been devised. By mathe-
matically modeling natural behaviors, these algorithms have spurred the development of new
methodologies and techniques in optimization. The literature has seen the proposal of numer-
ous optimization approaches, each influenced by unique inspirations. The sources of inspiration
for metaheuristic algorithms can be broadly classified into several categories based on natural
sources.
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The main sources of inspiration for metaheuristic algorithms stem from the realm of animal
life and behavior. These algorithms, influenced by the collective behaviors observed in social
insects and animals, have significantly advanced the field of metaheuristic algorithms. For
instance, the Golden Eagle Optimizer (GEO) [56] is a notable approach inspired by nature,
mimicking the hunting intelligence of golden eagles by adjusting its speed during various spiral
trajectory phases. Another innovative method is the Whale Optimization Algorithm (WOA)
[5], developed based on the social behavior of humpback whales during bubble-net hunting.
Similarly, the SailFish Optimizer (SFO) [57], drawing inspiration from the hunting activity
of sailfish groups, employs two populations: one for improving search accuracy and another
for diversifying search areas. Furthermore, the optimization technique inspired by Coaties’
behavior [58] models exploration and exploitation stages, demonstrating superior performance
across various objective functions compared to 11 other algorithms. Additionally, the Ant Lion
Optimizer (ALO) [59] mirrors the hunting process of antlions through five key prey-hunting
steps. The Pathfinder Algorithm (PFA) [60] tackles optimization challenges by emulating the
collective dynamics of animal groups and simulating swarm leadership hierarchies to locate
optimal resources or prey.

In our research, we aimed to employ modern and efficient algorithms, leading us to select
the Grey Wolf Optimization Algorithm[4], initially introduced by Mirjalili et al. in 2014.
Additionally, we opted for the Whale Optimization Algorithm[5], first proposed by Mirjalili
and Andrew Lewis in 2016. Lastly, we incorporated the Puma Optimization Algorithm[6],
which was recently introduced by Benyamin Abdollahzadeh and Nima Khodadadi in 2024.

5.1 Grey Wolf Optimization

For this Algorithm, the inspiration of the proposed method is first discussed. Then, the math-
ematical model is provided.

5.1.1 Inspiration

The grey wolf, a member of the Canidae family, is regarded as an apex predator, placing it at
the top of the food chain. Grey wolves typically live in packs, with an average group size of
5-12. Notably, these packs have a strict social hierarchy, as illustrated in Fig. 1. The leaders, a
male and a female known as alphas, are primarily responsible for making key decisions such as
hunting, sleeping locations, and wake-up times, which are then followed by the pack. Despite
this, some democratic behavior has been observed, where an alpha may follow the lead of other
pack members. During gatherings, the pack acknowledges the alpha by lowering their tails.
The alpha wolf, also referred to as the dominant wolf, has its directives obeyed by the entire
pack and is the only one allowed to mate. Interestingly, the alpha is not always the strongest
member but excels in managing the pack, highlighting that organization and discipline are more
critical to a pack’s success than sheer strength.

The second level in the grey wolf hierarchy is occupied by the beta wolves. These subordinate
wolves assist the alpha in decision-making and various pack activities. A beta wolf, which can
be either male or female, is typically the most suitable candidate to become an alpha if one
of the current alphas dies or becomes too old. While the beta must respect the alpha, it also
has authority over the lower-ranking wolves. Acting as an advisor to the alpha, the beta also
disciplines the pack, reinforces the alpha’s commands, and provides feedback to the alpha.
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The lowest-ranking grey wolf is the omega, which serves as the scapegoat of the pack. Omega
wolves must submit to all the dominant wolves and are the last to eat. Although the omega
might seem unimportant, its presence is crucial for maintaining pack harmony. Without an
omega, the pack often experiences internal conflicts and issues, as the omega helps vent the other
wolves’ aggression and frustration, thus supporting the dominance structure. Additionally,
omegas sometimes take on the role of babysitters within the pack.

Wolves that are neither alphas, betas, nor omegas are referred to as subordinates, or deltas in
some references. These wolves must submit to the alphas and betas but have dominance over
the omega. This group includes scouts, sentinels, elders, hunters, and caretakers. Scouts watch
the territory boundaries and alert the pack to any danger. Sentinels ensure the pack’s safety.
Elders are experienced wolves who were once alphas or betas. Hunters assist the alphas and
betas in hunting prey and providing food for the pack. Caretakers look after the weak, ill, and
injured wolves within the pack.

Figure 5.1: Hierarchy of grey wolf[4].

In addition to the social hierarchy, group hunting is another fascinating social behavior of grey
wolves. The main phases of grey wolf hunting are as follows:

- Tracking, chasing, and approaching the prey.

- Pursuing, encircling, and harassing the prey until it stops moving.

- Attacking the prey.

In this algorithm, the hunting technique and the social hierarchy of grey wolves are mathemat-
ically modeled to design the Grey Wolf Optimizer (GWO) and perform optimization.

5.1.2 Mathematical Model

5.1.2.1 Social hierarchy

To mathematically model the social hierarchy of wolves when designing the Grey Wolf Optimizer
(GWO), the authors considered the fittest solution as the alpha (α). Consequently, the second
and third best solutions are named beta (β) and delta (δ), respectively. The rest of the candidate
solutions are assumed to be omega (ω). In the GWO algorithm, the hunting (optimization)
process is guided by α, β, and δ, with the ω wolves following these three leaders.
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5.1.2.2 Encircling prey

As mentioned above, grey wolves encircle their prey during the hunt. To mathematically model
this encircling behavior, the following equations are proposed: [4]

D⃗ = |C⃗ · X⃗p(t) − X⃗(t)| (5.1)

X⃗(t+ 1) = X⃗p(t) − A⃗ · D⃗ (5.2)

Where: X⃗p(t) is the position vector of the prey, X⃗(t) is the position vector of a grey wolf, A⃗
and C⃗ are coefficient vectors, t denotes the current iteration.

These equations help simulate the grey wolves’ encircling mechanism in the optimization pro-
cess.

The vectors A⃗ and C⃗ are calculated as follows: [4]

A⃗ = 2a⃗ · r⃗1 − a⃗ (5.3)

C⃗ = 2 · r⃗2 (5.4)
Where: a⃗ is a vector that linearly decreases from 2 to 0 over the course of iterations, r⃗1 and r⃗2
are random vectors in the range [0, 1].

These calculations allow the GWO algorithm to simulate the adaptive and exploratory behavior
of grey wolves during the optimization process.

To observe the impact of Equations (5.1) and (5.2), a two-dimensional position vector and some
potential neighbors are depicted in Fig. 2(a). As illustrated, a grey wolf located at (X, Y) can
update its position based on the prey’s position (X*, Y*). By adjusting the values of the A⃗
and C⃗ vectors, the wolf can move to various positions around the best agent from its current
position. Fig. 2(b) shows the potential updated positions of a grey wolf in 3D space. The
random vectors r1 and r2 enable the wolves to reach any position within the range depicted in
Fig. 2. Thus, a grey wolf can randomly update its position within the vicinity of the prey using
Equations (5.1) and (5.2). This concept can be extended to an n-dimensional search space,
where the grey wolves navigate within hyper-cubes (or hyper-spheres) around the best solution
found so far.

5.1.2.3 Hunting

Grey wolves possess the ability to detect the location of prey and encircle them, with the hunt
typically being led by the alpha. Occasionally, the beta and delta wolves also participate in the
hunt. However, in an abstract search space, the location of the optimum (prey) is unknown. To
mathematically simulate the hunting behavior of grey wolves, we assume that the alpha (best
candidate solution), beta, and delta have better knowledge about the potential location of the
prey. Consequently, we save the top three best solutions obtained so far and require the other
search agents (including the omegas) to update their positions based on the positions of these
top search agents. The following formulas are proposed for this purpose: [4]
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Figure 5.2: 2D and 3D position vectors and their possible next locations[4].

D⃗α = |C⃗1 · X⃗α − X⃗| (5.5)

D⃗β = |C⃗2 · X⃗β − X⃗| (5.6)

D⃗δ = |C⃗3 · X⃗δ − X⃗| (5.7)

X⃗1 = X⃗α − A⃗1 · D⃗α (5.8)

X⃗2 = X⃗β − A⃗2 · D⃗β (5.9)

X⃗3 = X⃗δ − A⃗3 · D⃗δ (5.10)

X⃗(t+ 1) = X⃗1 + X⃗2 + X⃗3

3 (5.11)

Where X⃗α, X⃗β, and X⃗δ are the positions of the alpha, beta, and delta wolves, respectively. C⃗1,
C⃗2, and C⃗3 are random coefficient vectors. A⃗1, A⃗2, and A⃗3 are calculated using the vector a⃗
and random vectors r⃗1, r⃗2, as defined earlier.

These formulas guide the other wolves to move towards the alpha, beta, and delta, effectively
simulating the hunting and encircling behavior in the optimization process.

Fig. 3 illustrates how a search agent updates its position relative to the alpha, beta, and delta
in a 2D search space. As shown, the final position of the agent will be at a random point within
a circle defined by the positions of the alpha, beta, and delta. Essentially, the alpha, beta,
and delta estimate the prey’s location, and the other wolves update their positions randomly
around this estimated position.

5.1.2.4 Attacking prey (Exploitation)

As previously mentioned, grey wolves complete the hunt by attacking the prey when it stops
moving. To mathematically model this approach, we decrease the value of a⃗. Consequently,
the fluctuation range of A⃗ also decreases with a⃗. Specifically, A⃗ is a random value within the
interval [-2a, 2a], where a decreases from 2 to 0 over the course of iterations. When the random
values of A⃗ are within [-1, 1], the next position of a search agent can be anywhere between its
current position and the prey’s position.
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Figure 5.3: Position updating in GWO[4].
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Fig. 4(a) illustrates that when |A⃗| < 1, the wolves are compelled to attack towards the prey.
With the operators introduced thus far, the GWO algorithm allows its search agents to update
their positions based on the alpha, beta, and delta, and to attack the prey. However, the GWO
algorithm may still face stagnation in local solutions with these operators alone. While the
proposed encircling mechanism provides some exploration, additional operators are necessary
to enhance the exploration capabilities of the GWO.

Figure 5.4: Position updating in GWO[4].

5.1.2.5 Search for prey (Exploration)

Grey wolves primarily search based on the positions of the alpha, beta, and delta. They
diverge from each other to locate prey and converge to attack it. To mathematically model
this divergence, the authors proposed to use A⃗ with random values greater than 1 or less than
-1, which compels the search agents to move away from the prey. This approach emphasizes
exploration and enables the GWO algorithm to perform a global search. Fig. 4(b) demonstrates
that when |A⃗| > 1, the grey wolves are forced to diverge from the prey, increasing the chances
of finding a more optimal solution.

Another component of the GWO algorithm that enhances exploration is the C⃗ vector. As
seen in Eq. (5.15), the C⃗ vector includes random values within the interval [0, 2]. This
vector introduces random weights to the prey, thereby stochastically emphasizing (C⃗ > 1) or
deemphasizing (C⃗ < 1) the influence of the prey in determining the distance in Eq. (5.12). This
assists the GWO algorithm in exhibiting more random behavior throughout the optimization
process, favoring exploration and helping to avoid local optima. Notably, unlike A⃗, the C⃗ vector
is not linearly decreased. We intentionally maintain C⃗ to provide random values at all times
to emphasize exploration, not only in the initial iterations but also in the final ones. This
component is particularly useful for overcoming local optima stagnation, especially during the
later stages of the optimization process.

The C⃗ vector can also be considered analogous to obstacles that wolves encounter while ap-
proaching prey in nature. Typically, obstacles in nature impede wolves from quickly and easily
reaching their prey. This is precisely the role of the C⃗ vector. Depending on a wolf’s position,
the C⃗ vector can randomly assign a weight to the prey, making it either harder and farther to
reach or easier and closer to reach for the wolves.
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To sum up, the search process in the GWO algorithm begins by creating a random population
of grey wolves (candidate solutions). Throughout the iterations, the alpha, beta, and delta
wolves estimate the likely position of the prey, and each candidate solution updates its distance
from the prey accordingly. The parameter a⃗ decreases from 2 to 0, emphasizing exploration
initially and exploitation later on. Candidate solutions diverge from the prey when |A⃗| > 1 and
converge towards the prey when |A⃗| < 1. The GWO algorithm concludes when a predefined
end criterion is met.

5.1.2.6 Remark of the authors

«There are possibilities to integrate mutation and other evolutionary operators
to mimic the whole life cycle of grey wolves, However, we have kept the GWO
algorithm as simple as possible with the fewest operators to be adjusted.»

So we, decided in this work, to add selection, mutation, crossover and other evolutionary
operators to enhance and produce better results.

5.2 Whale Optimization Algorithm

Same as with the grey wolf Algorithm, the inspiration of the proposed method is first discussed.
Then, the mathematical model is provided.

5.2.1 Inspiration

Whales are fancy creatures, recognized as the largest mammals on Earth. A fully grown
whale can reach lengths of up to 30 meters and weigh as much as 180 tons. Among the
seven primary species of these majestic mammals are the killer whale, Minke whale, Sei whale,
humpback whale, right whale, finback whale, and blue whale. Predominantly seen as predators,
whales have a unique trait: they never fully sleep, as they must regularly surface to breathe.
Remarkably, only half of their brain rests at a time. What’s fascinating about whales is their
widely acknowledged intelligence and emotional depth.

Whales possess specialized cells within certain regions of their brains, akin to those found in
humans, known as spindle cells. These cells play a crucial role in judgment, emotions, and
social behaviors, setting humans apart from other creatures. Whales have double the number
of these cells compared to adult humans, contributing significantly to their intelligence. Studies
have demonstrated that whales can engage in complex cognitive processes, learning, judgment,
communication, and even emotional responses, albeit at a lower level than humans. Notably,
certain whale species, particularly killer whales, have been observed developing distinct dialects.

Another intriguing aspect of whale behavior is their social structure. While they can be solitary,
they are often observed in groups, with some species, like killer whales, forming lifelong family
units. Among the largest baleen whales is the humpback whale (Megaptera novaeangliae),
nearly the size of a school bus when fully grown. These whales primarily feed on krill and small
fish.

What makes humpback whales particularly fascinating is their unique hunting technique known
as bubble-net feeding. This foraging behavior involves creating a circular or ’9’-shaped pattern
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of bubbles to corral prey close to the surface. Prior to 2011, this behavior was primarily studied
through surface observations.

Figure 5.5: Bubble-net feeding behavior of humpback whales[5].

In the upward-spiral maneuver, humpback whales dive around 12 meters down, create a spiral
of bubbles around the prey, and then ascend towards the surface. The double-loop maneuver
consists of three stages: coral loop, lobtail, and capture loop. It is worth mentioning here that
bubble-net feeding is a unique behavior that can only be observed in humpback whales. This
behavior is shown in Fig. 5.

In this Algorithm, the spiral bubble-net feeding maneuver is mathematically modeled in order
to perform optimization.

5.2.2 Mathematical Model

5.2.2.1 Encircling prey

Humpback whales can recognize the location of prey and encircle them. Since the position of
the optimal design in the search space is not known a priori, the WOA algorithm assumes that
the current best candidate solution is the target prey or is close to the optimum. After the best
search agent is defined, the other search agents will hence try to update their positions towards
the best search agent. This behavior is represented by the following equations: [5]

D⃗ = |C⃗ · X⃗∗ − X⃗(t)| (5.12)

X⃗(t+ 1) = X⃗∗ − A⃗ · D⃗ (5.13)

Where: X⃗∗ is the position vector of the best solution obtained so far, X⃗(t) is the position
vector, A⃗ and C⃗ are coefficient vectors, t denotes the current iteration, | | is the absolute value,
and · is an element-by-element multiplication. It is worth mentioning here that X⃗∗ should be
updated in each iteration if there is a better solution.

These equations help simulate the humpback whales’ encircling mechanism in the optimization
process.
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The vectors A⃗ and C⃗ are calculated as follows: [5]

A⃗ = 2a⃗ · r⃗1 − a⃗ (5.14)

C⃗ = 2 · r⃗2 (5.15)
Where: a⃗ is a vector that linearly decreases from 2 to 0 over the course of iterations (in both
exploration and exploitation phases), r⃗1 and r⃗2 are random vectors in the range [0, 1].

These calculations allow the WOA algorithm to simulate the adaptive and exploratory behavior
of humpback whales during the optimization process.

Figure. 6(a) provides insight into the principle described by Eq. (5.13) within a 2D context.
The coordinates (X,Y) of a search agent can be adjusted relative to the position of the current
optimal solution (X∗,Y ∗). Manipulating the A⃗ and C⃗ vectors enables exploration of various
locations surrounding the top-performing agent. Extending this concept to 3D space, Figure.
6(b) visualizes potential adjustments in the agent’s position. Introducing the random vector r⃗
facilitates navigation across the search space, encompassing regions between the depicted key-
points. Hence, Eq. (5.13) empowers each search agent to refine its position near the current
best solution, and simulates encircling prey for optimization.

Figure 5.6: 2D and 3D position vectors and their possible next locations.[5]

The concept can be extrapolated to a search space comprising n dimensions, where the search
agents navigate within hyper-cubes centered around the most optimal solution achieved thus
far. In alignment with the earlier discussion, humpback whales employ a similar tactic when
hunting prey through the bubble-net strategy. This strategy can be expressed mathematically
as follows:

5.2.2.2 Bubble-net attacking method (Exploitation)

To mathematically represent the bubble-net behavior of humpback whales, two distinct ap-
proaches have been devised as outlined below:

1. Shrinking encircling mechanism:
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This behavior is accomplished by reducing the magnitude of a⃗ in Equation (5.14). It’s important
to note that this reduction also narrows the range of fluctuation for A⃗, effectively limiting it
within a smaller interval. Specifically, A⃗ is constrained to random values within the range
[a, a], with the value of a diminishing gradually from 2 to 0 throughout the iterations. By
assigning random values to A⃗ within the interval [1, 1], the updated position of a search agent
can then be determined anywhere between its original position and the position of the current
top-performing agent.

2. Spiral updating position:

As depicted in Figure 7, this method begins by computing the distance between the whale
positioned at (X,Y) and the prey situated at (X∗,Y ∗). Subsequently, a spiral equation is
formulated to emulate the helix-like motion observed in humpback whales. This equation
is crafted based on the relative positions of the whale and the prey, thereby capturing the
characteristic spiral movement exhibited during hunting. [5]

X⃗(t+ 1) = D⃗′ · ebl · cos(2πl) + X⃗∗(t) (5.16)

Where D⃗′ = |X⃗∗ − X⃗| and indicates the distance of the ith whale to the prey (best solution
obtained so far), b is a constant for defining the shape of the logarithmic spiral, l is a random
number in [1,1], and . is an element-by-element multiplication.

Figure 5.7: Spiral updating position[5].

Note that humpback whales swim around the prey within a shrinking circle while simultaneously
following a spiral-shaped path. To model this behavior, we assume a 50% probability for
choosing either the shrinking encircling mechanism or the spiral model to update the position
of the whales during optimization. The mathematical model is as follows: [5]

X⃗(t+ 1) =
X⃗∗(t) − A⃗ · D⃗, if p < 0.5
D⃗ · ebl · cos(2πl) + X⃗∗(t) if p ≥ 0.5
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Where p is a random number in [0,1].

In addition to the bubble-net method, the humpback whales search for prey randomly. The
mathematical model of the search is as follows.

5.2.2.3 Search for prey (Exploration Phase)

The same approach, based on the variation of the A⃗ vector, can be used for prey search (explo-
ration). Humpback whales search randomly in relation to each other’s positions. Consequently,
we use A⃗ with random values greater than 1 or less than -1 to encourage the search agent to
move far from a reference whale. Unlike the exploitation phase, the exploration phase updates
the position of a search agent based on a randomly selected search agent instead of the best
one found so far. This mechanism, combined with the
|A⃗| > 1, emphasizes exploration and enables the WOA algorithm to conduct a global search.
The mathematical model is as follows: [5]

D⃗ = |C⃗ · X⃗rand − X⃗(t)| (7)

X⃗(t+ 1) = X⃗rand − A⃗ · D⃗ (8)

Where X⃗rand represents a random position vector (a random whale) chosen from the current
population.

To sum up, the WOA algorithm starts with a set of random solutions. At each iteration,
search agents update their positions based on either a randomly chosen search agent or the
best solution found so far. The parameter a is decreased from 2 to 0 to balance exploration and
exploitation. When |A⃗| > 1, a random search agent is chosen, whereas when |A⃗| < 1, the best
solution is selected for updating the positions of the search agents. Depending on the value
of p, the WOA algorithm can switch between spiral and circular movements. The algorithm
terminates when a predefined termination criterion is met.

5.2.2.4 Remark of the authors

«Although mutation and other evolutionary operations might have been included
in the WOA formulation to fully reproduce the behavior of humpback whales, we
decided to minimize the amount of heuristics and the number of internal parame-
ters, thus implementing a very basic version of the WOA algorithm.»

So we, decided in this work, to add selection, mutation, crossover and other evolutionary
operators to enhance and produce better results.

5.3 Puma Optimizer

Same as with the grey wolf Algorithm, and the whale optimization Algorithm, the inspiration
of the proposed method is first discussed. Then, the mathematical model is provided.
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5.3.1 Inspiration

The puma, also known as the cougar or mountain lion, is a large cat species from the small
cat subfamily, native to the American continent. Its habitat ranges from the Andes Mountains
in South America to the Yukon in Canada. After the jaguar, the mountain lion is the largest
feline in the Americas. Pumas are highly adaptable and can live in various habitats, feeding on
a diverse array of prey. Though primarily nocturnal, they can sometimes be seen during the
day.

As an ambush predator, the puma primarily preys on ungulates, including deer, but also con-
sumes smaller animals like rodents and insects and occasionally targets domestic livestock. It
favors dense scrub and rocky areas for ambushing but also inhabits open plains. Like other cats,
pumas are territorial, with vast territories and low population densities. They often compete
with other predators such as jaguars, wolves, American black bears, and American alligators
in certain areas.

The arrival of Europeans in America led to extensive hunting and the development of human
settlements, endangering mountain lions in many regions. For example, the eastern puma
subspecies became extinct in eastern North America, except for a small population in Florida.
However, in recent years, the puma’s range has expanded from west to east, even reappearing
in Connecticut on the Atlantic coast.

Pumas are slender and agile, ranking as the fourth-largest feline overall. Adult pumas stand
60 to 90 cm tall at the shoulder. Male pumas measure about 2.4 meters from nose to tail,
while females are about 1.5 meters long, with the overall length ranging from 1.50 to 2 meters.
Their tails alone measure between 63 and 95 cm. Male pumas weigh between 55 and 100 kg,
averaging 64 kg, while females weigh between 29 and 64 kg, averaging around 55 kg. Pumas
are generally smaller in tropical regions and larger in polar regions, with the largest recorded
puma, weighing 105.2 kg, hunted in 1901. While pumas can vary in size, they are typically
smaller and less muscular than jaguars. Unlike big cats, pumas cannot roar due to the lack of
a specialized larynx and laminar bone.

Pumas are capable of sprinting in pursuit of prey, but they typically ambush. They stalk
through bushes and trees, using powerful leaps to catch their prey, which they suffocate with
their fangs. Pumas drag their prey to a preferred spot, cover it with bushes, and return to
feed over several days. Solitary by nature, pumas usually only form groups of mothers and
cubs, with mature individuals rarely interacting. However, within a dominant male’s territory,
cougars may share prey and form small communities.

Research indicates that the smallest territory for a puma is about 25 square kilometers (9.7
square miles), while the largest can reach up to 1,300 square kilometers (500 square miles) for
males. Male territories include overlapping female territories, and males continually mark their
boundaries. The size of a puma’s territory depends on factors such as population density, veg-
etation, and prey availability. Large male territories range from 150 to 1,000 square kilometers
(58 to 386 square miles), with female territories being roughly half that size.

5.3.2 Mathematical Model

Most meta-heuristic optimizers perform optimization by generating a random solution and then
modifying exploration factors using mechanisms specific to each algorithm. The PO optimizer
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algorithm introduces a novel and intentional mechanism for shifting between exploration and
exploitation phases. Additionally, the PO algorithm employs two distinct mechanisms for
optimization operations in both the exploitation and exploration phases.

In the PO algorithm, the best solution is metaphorically considered the male puma, while the
entire optimization space represents the puma’s territory. Other solutions (Xi) are regarded
as female pumas. Each iteration of the algorithm involves all solutions entering either the
exploitation or exploration phase through the phase change mechanism, with the selection of
these phases being both purposeful and intelligent.

Figure 5.8: PO optimization procedure[6].

In each stage of exploration, various optimization methods have been employed. In every stage,
two distinct mechanisms, inspired by the natural behavior of pumas, have been utilized.

Following this, the mathematical formulations and expressions are provided to explain the
optimization processes carried out by the Puma Optimizer:

5.3.2.1 Puma Intelligence (phase change mechanism)

Pumas are highly intelligent animals with excellent memories. When hunting, they often re-
visit locations where they have had previous success, relying on their past experiences. These
hunting trips may take them to areas where they have previously hunted and hidden prey or to
new places they have not yet explored. In this algorithm, the exploitation phase corresponds
to pumas returning to previously promising locations, while the exploration phase involves
traveling to new areas. The transition between these phases draws inspiration from the intel-
ligence and memory of pumas. A novel and sophisticated mechanism, considered an advanced
hyper-heuristic algorithm, has been fully explained below.

The phase change mechanism in the PO algorithm is a type of heuristic selection algorithm that
uses two components: diversity and intensification, to perform reward and penalty operations
for scoring. This phase change section is inspired by the intelligence of pumas and has two
approaches. The first approach applies to pumas with limited experience and energy, who
simultaneously explore unfamiliar territory and ambush in promising areas. This scenario is
discussed in the context of first-generation pumas, who lack sufficient experience.
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1. Unexperienced phase:

In its early life, a puma lacks experience and often engages in exploration due to unfamiliarity
with its environment and uncertainty about the locations of prey within its territory. Simul-
taneously, it searches for prey in promising areas. In the Puma algorithm, during the first
three iterations, both exploration and exploitation operations are conducted simultaneously
until the initialization phase is complete. In this initial phase, as both exploitation and explo-
ration phases are selected in each iteration, only two functions (f1 and f2) are used, which are
calculated using Eqs. (5.17-5.20). [6]

f1Explore = PF1 ·
(
Seq1CostExplore

Seq1T ime

)
(5.17)

f1Exploit = PF1 ·
(
Seq1CostExploit

Seq1T ime

)
(5.18)

f2Explore = PF2 ·
(
Seq1CostExplore + Seq2CostExplore + Seq3CostExplore

Seq1T ime + Seq2T ime + Seq3T ime

)
(5.19)

f2Exploit = PF2 ·
(
Seq1CostExploit + Seq2CostExploit + Seq3CostExploit

Seq1T ime + Seq2T ime + Seq3T ime

)
(5.20)

The values of SeqCost, associated with the exploitation and exploration phases, are determined
using Eqs. (5.17-5.20). SeqT ime, another variable, is assigned a constant value of 1. PF1 and
PF2 are fixed parameters that must be set prior to the optimization process. These parameters
are used to prioritize the f1 and f2 functions, respectively. [6]

Seq1
CostExplore =

∣∣∣CostInitial
Best − Cost1Explore

∣∣∣ (5.21)

Seq2
CostExplore =

∣∣∣Cost2Explore − Cost1Explore

∣∣∣ (5.22)

Seq3
CostExplore =

∣∣∣Cost3Explore − Cost2Explore

∣∣∣ (5.23)

Seq1
CostExploit =

∣∣∣CostInitial
Best − Cost1Exploit

∣∣∣ (5.24)

Seq2
CostExploit =

∣∣∣Cost2Exploit − Cost1Exploit

∣∣∣ (5.25)

Seq3
CostExploit =

∣∣∣Cost3Exploit − Cost2Exploit

∣∣∣ (5.26)

In Eqs. (5.21) and (5.24), CostInitial
Best represents the cost of the optimal solution produced during

the initialization phase. Additionally, six variables, namely Cost1Explore, Cost2Explore, Cost3Explore,
Cost1Exploit, Cost2Exploit, and Cost3Exploit, represent the cost of the best solution obtained from
each of the exploration and exploitation phases across repetitions 1, 2, and 3. After computing
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the functions f1 and f2 at the end of the third iteration, only one phase—either exploration or
exploitation—will be selected from this point onward. This selection is based on the positive
experiences of other Pumas, and the decision between the two phases is made using the values
obtained from Eqs. (5.27) and (5.28). [6]

ScoreExplore = (PF1 · f1Explore) + (PF2 · f2Explore) (5.27)
ScoreExploit = (PF1 · f1Exploit) + (PF2 · f2Exploit) (5.28)

After calculating ScoreExplore and ScoreExploit using Eqs. (5.27) and (5.28) to determine which
phase to enter, the algorithm proceeds as follows: if ScoreExploit ≥ ScoreExplore, it enters the
exploitation phase; otherwise, it enters the exploration phase. A critical point is that by the end
of the third iteration, each phase independently produces solutions, resulting in more solutions
than the total population. To address this, the total cost of the solutions produced in both
phases is calculated at the end of the third iteration. Only the best solutions, equal to the total
population size, are selected to replace the current solutions.

2. Experienced phase:

After three generations, the Pumas have gained sufficient experience to decide whether to
change phases. In subsequent iterations, they select only one phase for the optimization op-
eration. Three different functions, f1, f2, and f3, are used for scoring in this phase. The first
function, f1, emphasizes the escalation component and gives priority to the phase (either ex-
ploration or exploitation) that has performed better. This function places more emphasis on
the exploration phase and is calculated using Eqs. (5.29) and (5.3.2.1). [6]

f exploit
1t = PF1 ·

∣∣∣∣∣Cost
exploit
old − Costexploit

new

T exploit
t

∣∣∣∣∣ (5.29)

f explore
1t = PF1 ·

∣∣∣∣∣Cost
explore
old − Costexplore

new

T explore
t

∣∣∣∣∣ (5.30)

In Eqs. (5.29) and (), f exploit
1t and f explore

1t represent the value of the first function based on
the exploitation phase or the exploration phase, where t denotes the current iteration number.
Costexploit

old and Costexplore
old are the costs of the best solution before improvement in the current

phase. Conversely, Costexploit
new and Costexplore

new are the costs of the best solution obtained after
improving the current selection. T explore

t and T exploit
t are the numbers of iterations that were

unselected from the previous selection to the current selection. PF1 is a user-adjustable pa-
rameter that must be set to a value between 0 and 1 before the optimization operation. This
parameter determines the importance of the first function, with its priority increasing as the
function’s value increases and decreasing as its priority decreases.

The second function emphasizes the resonance component and gives priority to the phase that
performs better than the other. Good performances are checked and measured sequentially,
allowing this function to aid in the selection of the exploitation phase. The second function is
calculated using Eqs. (5.31) and (5.32). [6]
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f exploit
2t = PF2·

∣∣∣∣∣∣
(
Costexploit

Old,1 − Costexploit
New,1

)
+
(
Costexploit

Old,2 − Costexploit
New,2

)
+
(
Costexploit

Old,3 − Costexploit
New,3

)
T exploit

t,1 + T exploit
t,2 + T exploit

t,3

∣∣∣∣∣∣
(5.31)

f explor
2t = PF2·

∣∣∣∣∣∣
(
Costexplor

Old,1 − Costexplor
New,1

)
+
(
Costexplor

Old,2 − Costexplor
New,2

)
+
(
Costexplor

Old,3 − Costexplor
New,3

)
T explor

t,1 + T explor
t,2 + T explor

t,3

∣∣∣∣∣∣
(5.32)

In Eqs. (5.31) and (5.32), f exploit
2t and f explore

2t represent the second function related to the
exploitation and exploration phases, respectively, with t indicating the current iteration number.
Costexplore

Old,1 and Costexploit
Old,1 are the costs of the best solution before improvement in the current

selection for the exploration and exploitation phases. Costexplore
Old,2 and Costexploit

Old,2 are the costs
of the best solution before improvement in the previous selection. Costexplore

Old,3 and Costexploit
Old,3

are the costs of the best solution before improvement in the two selections prior. For costs
after improvement: Costexplore

New,1 and Costexploit
New,1 are the costs of the best solution obtained after

improvement in the current selection. Costexplore
New,2 and Costexploit

New,2 are the costs of the best solution
obtained after improvement in the previous selection. Costexplore

New,3 and Costexploit
New,3 are the costs

of the best solution obtained after improvement in the two selections prior.

For the number of unselected iterations: T explore
t,1 and T exploit

t,1 represent the numbers of unselected
iterations from the previous selection to the current selection for exploration and exploitation.
T explore

t,2 and T exploit
t,2 represent the numbers of unselected iterations from two selections prior to

the previous selection. T explore
t,3 and T exploit

t,3 represent the numbers of unselected iterations from
three selections prior to two selections prior.

PF2 is a parameter that must be set to a value between 0 and 1 before the optimization
operation, determining the extent to which the second function is emphasized. It is prioritized
as the value of this function increases and decreases as its priority decreases.

The third function in the selection mechanism emphasizes the diversity component. This func-
tion ensures that the phase not frequently selected in many repetitions still has a chance to be
chosen, preventing the algorithm from collapsing into a local optimum trap. This function is
represented in Eqs. (5.33) and (5.34). [6]

f exploit
3t =

0 ifselected,

f exploit
3t + PF3 otherwise.

(5.33)

f explore
3t =

0 ifselected,

f explore
3t + PF3 otherwise.

(5.34)

In Eqs. (5.33) and (5.34), f exploit
3t and f explore

3t represent the third function related to the exploita-
tion and exploration stages, respectively, t denotes the current iteration number. According to
Eq. (5.19), the value of the third function for each phase—exploitation and exploration-will
increase by the parameter PF3 in each iteration if the phase is not selected; otherwise, it will
be set to zero. PF3 is a user-adjustable parameter that must be set to a value between 0 and 1
before the optimization operation. The closer the PF3 parameter is to 1, the higher the chance

80



that a phase with a low score will be selected, and the chance of selection decreases as the
value of PF3 decreases. Using Eqs. (5.35) and (5.36), the cost of the phase change function is
calculated.
[6]

F exploit
t = (αexploit

t .(f1exploit
t

)) + (αexploit
t .(f2exploit

t
)) + (δexploit

t .(lc.f3exploit
t

)) (5.35)

F explore
t = (αexplore

t .(f1explore
t

)) + (αexplore
t .(f2explore

t
)) + (δexplore

t .(lc.f3explore
t

)) (5.36)

lc = {{|Costold − CostNew|}exploitation, {|Costold − CostNew|}exploration}, 0 /∈ lc (5.37)

αexplore,exploit
t =

if F exploit > F explore, αexploit = 0.99, αexplore = αexplore − ⌈0.01, 0.01⌋
otherwise, αexplore = 0.99, αexploit = αexploit − ⌈0.01, 0.01⌋

(5.38)
δexploit

t = 1 − αtexploit (5.39)

δexplore
t = 1 − αtexplore (5.40)

Using Eqs. (5.35) and (5.36), the final cost of each exploitation and exploration phase is
calculated. Parameters a and d for both the exploration and exploitation phases are variable
during the search operation based on the results obtained from each phase. If diversity is
prioritized, the diversity component is emphasized; otherwise, its priority is reduced. When
the value of parameter a is close to 1, the resonance component is prioritized.

According to Eq. (5.38), if the cost of the exploration phase function is larger than that of
the exploitation phase, the value of parameter a for the exploitation function will be penalized
linearly by a value of 0.01. Conversely, the value of parameter a for the exploitation phase will
be allowed to reach a maximum value close to one. If the exploitation phase function costs
more than the exploration phase, the procedure will be reversed.

The term lc refers to a set of calculation cost differences derived from the improvements achieved
in the exploitation and exploration phases, encompassing a range of non-zero values.

5.3.2.2 Exploration

Pumas often travel extensive distances within their territory to locate and hunt for food. This
search may involve revisiting areas where they previously had successful hunts or exploring
new parts of their territory where they haven’t hunted before. In our exploration approach,
we draw inspiration from these puma behaviors. During this phase, pumas perform a random
search within their territory to find food, or they may approach other pumas to utilize their
prey. Thus, the puma either randomly leaps into the search space or forages in the space
between pumas. Initially, the entire population is arranged in ascending order, and then the
puma enhances its solutions during the exploration phase using Eq. (5.40). [6]

If rand1 > 0.5, Zi,G = RDim ∗ (Ub− Lb) + Lb (5.41)
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Otherwise, Zi,G = Xa,G +G.(Xa,G −Xb,G) +G.(((Xa,G −Xb,G) − (Xc,G −Xd,G))
+ ((Xc,G −Xd,G) − (Xe,G −Xf,G)))

(5.42)

In Eq. (5.41), Ub and Lb represent the upper and lower bounds of the problem, respectively.
RDim consists of randomly generated numbers between 0 and 1, matching the dimensions of
the problem. Additionally, rand1 is a randomly generated number between 0 and 1. Solutions
XG

a , X
G
b , X

G
c , X

G
d , X

G
e , and XG

f are randomly selected from the entire population. G is deter-
mined using Eq. (5.42), where rand2 is another randomly generated number from a uniform
distribution between 0 and 1. Based on Eq. (5.41), one of two equations is chosen to generate
a new solution depending on the current condition. This new solution is then used to improve
the current solution. [6]

Xnew =
Zi,G, if j = jrand or rand3 ≤ U

Xa,G, otherwise
(5.43)

NC = 1 − U (5.44)

p = NC

Npop
(5.45)

if CostXNew < CostXi, U = U + p (5.46)

In Eq. (5.43), ZG
i is a solution generated using Eq. (5.41). jrand is a randomly generated integer

within the range of the problem’s dimensions, and rand3 is a randomly produced number from
a uniform distribution between 0 and 1. NC is calculated using Eq. (5.44). U is a parameter
set before the optimization process begins, with a value between 0 and 1. During each iteration,
according to the condition in Eq. (5.46), the number of dimensions replaced by new solutions
increases, following the guidelines in Eqs. (5.44–5.46). In Eq. (5.45), Npop represents the total
number of pumas.

The solution improvement process adheres to the condition in Eq. (5.46), updating only the
solution dimensions that meet this condition. This method helps avoid local optima, ensuring
the solutions maintain good diversity. Additionally, during the exploration stage, the search
agents are sorted in ascending order based on their costs at the start of each iteration, with
high-quality solutions prioritized. According to Eqs. (5.44–5.46), initially, quality solutions
undergo minimal changes due to the small value of the U parameter. However, as this parameter
increases, higher-cost solutions undergo more significant changes. This approach aims to explore
less optimal areas of the problem space to discover better optimal points.

A critical point is that if the generated solutions are not better than the current ones, Eq. (5.46)
will not be applied, as there is no need for redundant exploration if improvement is achieved.
High-quality solutions undergo minimal changes, primarily to avoid local optima. Finally, the
newly generated solutions replace the current ones using Eq. (5.47). [6]

Xa,G = Xnew, if Xi,new < Xa,G (5.47)

According to Eq. (5.47), the newly generated solution replaces the current solution if it has a
better cost than the current solution.
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5.3.2.3 Exploitation

In the exploitation stage, the PO algorithm employs two different operators to enhance the
solutions, drawing on two distinct behaviors of pumas: ambushing and sprinting. In nature,
pumas often ambush their prey from hiding spots such as bushes, trees, or rocks. Occasionally,
they also chase their prey. These behaviors are simulated in the algorithm, with ambushing
represented by one operator and sprinting by another, the latter being modeled using Eq.
(5.48). [6]

Xnew =


if rand4 ≥ 0.5, Xnew =

mean(Soltotal)
Npop

.Xr
1 −(−1)β×Xi

1+α.rand5

otherwise, if rand6 ≥ L,Xnew = Pumamale + (2.randγ).exp(randn1).Xr
2 −Xi

otherwise, Xnew = (2 × rand8) × F1.R.X(i)+F 2.(1−R).P umamale

(2.rand9−1+randn2) − Pumamale

(5.48)

Equation (5.48) illustrates the two strategies utilized in the PO algorithm: running and am-
bushing. In the first mode, during the exploitation phase, these strategies are used to simulate
pumas’ behavior of fast running and ambushing prey. If rand5, a randomly generated number
from a uniform distribution between 0 and 1, is greater than 0.5, the fast-running strategy is
executed, simulating pumas’ rapid pursuit of prey. Otherwise, the ambush strategy is chosen,
which involves two different operations. The first operation simulates pumas making short
jumps towards other pumas’ hunts, while the second operation simulates long jumps towards
the best puma’s hunt.

In Eq. (5.48), the mean function represents the average, Soltotal denotes the sum of all solutions,
and Npop is the total population involved in the optimization procedure. Xr1 is a randomly
selected solution from the entire population, and b is a binary variable (0 or 1) generated
randomly. Xi represents the current solution in the current iteration, and a and L are static
parameters that need to be tuned before the optimization process. Additionally, Pumamale

is the best solution in the population, and rand4, rand5, rand6, rand7, rand8, and rand9
are random numbers generated between 0 and 1. The exp function represents the exponential
function. randn1 and randn2 are randomly generated numbers from a normal distribution with
the same dimensions as the problem, and Xr2 is another randomly selected solution, chosen
based on Eq. (5.49). [6]

round(1 + (Npop− 1).rand10) (5.49)

In Eq. (5.49), each element of X is rounded to the nearest integer. rand10 is a randomly
generated number between 0 and 1, and Npop represents the total number of pumas in the
population.

Finally, R, F1, and F2 are calculated using Eqs. (5.50), (5.51), and (5.52), respectively.

R = 2.rand11 − 1 (5.50)

F1 = randn3.exp(2 − Iter.( 2
MaxIter

)) (5.51)
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In Eq. (5.51), randn2 is a randomly generated number with the same dimensions as the
problem, following a normal distribution. Iter represents the current iteration number, and
MaxIter denotes the total number of iterations for the optimization process. The exp function
signifies the exponential function. [6]

F2 = w × (v)2.cos((2 × rand12).w) (5.52)
w = randn4 (5.53)
v = randn5 (5.54)

In Eqs. (5.52–5.54), randn4 and randn5 are both randomly generated numbers with the same
dimensions as the problem, following a normal distribution. The cos function represents the
cosine function, and rand12 is a randomly generated number between 0 and 1. Finally, at the
end of this phase, newly produced solutions are replaced if they have a lower cost than the
current solution.

Figure 5.9: PO optimization procedure[6].

5.3.2.4 Remark of the authors

«Even though the PO algorithm can be challenging to implement, it generally
maintains low computational complexity, which varies depending on the phase
being executed. Each stage has its own computational complexity. Overall, the
computational complexity is O((2T+1)·N ·D). During the exploration phase, sorting
is required, which has a worst-case computational complexity of O(N2). Therefore,
the overall computational complexity is O((2T + 1) · N2 · N · D), where T is the
maximum number of iterations, D is the dimension of the problem, and N is the
total population size.»
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Chapter 6

Problem Formulation

Clustering in IoT networks is a widely adopted topology for optimization, as it enables better
energy consumption distribution and can support a large number of sensor nodes. When data
routing is direct, sensors located farther away deplete their energy more quickly. In multi-
hop routing, intermediate nodes must handle additional transmissions by relaying messages
from other nodes, which drains their power supplies. Clustering addresses these issues by
organizing data collection into clusters, thereby reducing the distance between sensor nodes
and the base station, minimizing interference, and enhancing the quality of radio links. This
approach decreases the number of retransmissions and lowers energy consumption. Moreover,
by frequently rotating the cluster heads, the battery life of sensor nodes can be prolonged and
balanced more evenly across all nodes.

6.1 Energy Consumption Assessment

The energy consumption of sensor nodes can be measured using a radio model that depends
on the distance between the transmitting and receiving nodes. The value of this distance
determines whether the free space model or the multi-path model is used.

The energy consumed by a sensor node when sending a message of length L over a distance d
can be formulated as follows 6.1 [54] :

ET X(L, d) =
Eelec · L+ EAD · L+ ϵfs · L · d2 if d ≤ d0

Eelec · L+ EAD · L+ ϵamp · L · d4 if d > d0
(6.1)

Where Eelec is the energy consumed per bit sent or received, EAD is the energy consumed for
data aggregation, ϵfs and ϵamp represent the energy consumption of free space propagation and
multipath propagation, respectively d0 =

√
ϵfs

ϵamp
is the distance threshold between the sending

node and the receiving node.

The energy consumed by a node receiving a message of length L bits is calculated by:

ERX(L) = Eelec · L (6.2)
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Given that the energy cost of communication between two sensor nodes depends on the distance
between them, minimizing the energy consumption of an IoT network involves minimizing the
total distance between the nodes and the cluster heads, as well as between the cluster heads
and the base station.

6.2 Mathematical Model

The p-median problem is a special localization problem of combinatorial optimization. Given
a graph G = (V,E) consisting of a set V of n vertices connected by the edges in set E, with
dij representing the distance between two vertices i and j in V , the p-median problem involves
selecting p vertices from V to serve as "medians". The remaining n − p vertices in V will be
"clients" assigned to the medians. The objective is to minimize the total distance between the
medians and the clients.

In the clustering problem, an IoT network can be represented as a graph G defined by the
set V of sensor nodes and the set E comprising all possible connections between the sensor
nodes in V as well as all connections between the sensor nodes and the base station. Therefore,
finding a clustering that minimizes energy consumption in an IoT network equates to solving
the p-median problem on graph G. The selected medians correspond to the cluster heads, while
the assignment of clients to medians represents the formation of clusters, i.e., determining the
member nodes of each cluster.

Such a clustering results in a routing scheme that minimizes energy consumption, reduces
interference, and improves the quality of radio links by minimizing the total distance traversed
by all packets. It also helps to minimize data loss by enabling one-hop transmission of data
packets between nodes and cluster heads, as well as between cluster heads and the base station
(without intermediate nodes).

Without loss of generality, we consider a network that contains a single base station with
unlimited power supply. The sensor nodes and the base station are stationary, and their
geographical positions are well known. Additionally, when a sensor node transmits data, the
data packet cannot be fragmented and must be transmitted in its entirety. Consequently, the
following decision variables are defined [54]:

yj =
1 If node j is selected cluster head,

0 If not.
(6.3)

xi,j =
1 If node i is associated with cluster head j,

0 If not.
(6.4)

It is clear that a node i can only be associated with a node that has already been selected as a
cluster head, hence:

xi,j ≤ yj (6.5)

Additionally, each node i must be associated with a single cluster head. Thus:
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n∑
j=1

xi,j = 1 (6.6)

On the other hand, each cluster head j must have sufficient energy to receive and transmit its
own data as well as the data from all the nodes associated with it. Therefore [54]:

n∑
i=1

xi,j (ERX(Li) + ET X(Li, dj)) ≤ yj (Ej − ET X(Lj, dj)) (6.7)

Where Ej is the available energy in node j, and dj is the distance between node j and the base
station.

Finally, the number of cluster heads to be selected must be equal to p.

n∑
j=1

yj = p (6.8)

The objective is to minimize the energy consumed between nodes and the energy consumed
between head of clusters and the base station, it can therefore be formulated as follows [54]:

Min
n∑

i=1

n∑
j=1

(ET X(dij, L) + ERX(L) + ET X(dj, L)) · xi,j +
n∑

j=1
ET X(dj, L) · yj (6.9)

With dij being the distance between nodes i and j, and dj being the distance between head of
cluster j and the base station.

6.3 Resolution

Several exact methods have been proposed to find optimal solutions, primarily using branch-
and-bound, branch-and-cut, and branch-and-price algorithms. Since the p-median problem is
NP-hard on a general network, the aforementioned methods cannot solve the p-median problem
within a reasonable time for large networks and/or when p is arbitrary. Consequently, several
heuristic and metaheuristic methods have been developed to generate high-quality solutions,
which are slightly below optimal, in significantly less computation time compared to exact
methods.

In this work, we perform a comprehensive comparison between the branch-and-bound algo-
rithm, which provides the exact solution, and various metaheuristic approaches. Specifically,
we examine the performance of the hybrid versions of the Grey Wolf Optimizer and Whale
Optimizer, as well as the Puma Optimizer. Our study focuses on several key aspects, including
the computational time required to reach a solution and the quality of the solutions gener-
ated. By analyzing these factors, we aim to determine the effectiveness and efficiency of these
metaheuristic methods in comparison to the exact branch-and-bound algorithm, particularly
in terms of their ability to provide high-quality solutions within a reasonable timeframe.
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6.4 Simulations and Results

We conducted performance tests on wireless IoT networks consisting of a base station and 100
sensor nodes distributed randomly over an area of 10,000 m2. Each sensor node has an initial
energy of 2J. The base station can be located either at the center of the network or outside the
network area. The simulation parameters are summarized in the following table.

Parameter Value (unit)
Area 10,000 (m2) 2D / 400.000 (m3) 3D
Network size 100
Base station position (50, 120) 2D / (50,120,40) 3D
Data packet size (L) 500 (bits)
Initial energy (E0) 2 (J)
Energy consumed in electronics (Eelec) 50 (nJ/bit)
Free space amplifier energy dissipation (Efs) 10 (pJ/bit/m2)
Multi-path amplifier energy dissipation (Eamp) 0.0013 (pJ/bit/m4)
Energy consumed for data aggregation (EDA) 5 (nJ/bit)
Distance threshold (d0) 87 (m)

Table 6.1: Parameters and values used in the model.

In the first series of tests, we consider a variant where the number p of cluster heads has been
fixed at 5, as in most previous works. In the second series of tests, we consider another variant
where the number p is treated as an integer decision variable, and its value is to be determined
during the problem resolution. For both series of tests, we used distributions of sensors in
two-dimensional (2D) and three-dimensional (3D) spaces to evaluate the performance of the
algorithms under different spatial configurations.

6.4.1 Comparison of Results

The tables below summarize the performance of the different algorithms in terms of simulation
time, energy optimization, and the number of clusters found.

After extensive testing, we selected 1,000 search agents and 500 iterations for the algorithms.
This configuration balances optimization time and practical applicability for Internet of Things
(IoT) networks. It’s important to mention that each algorithm was tested 3 times in each case,
since the metaheuristic algorithms are of stochastic nature, and chose the one which performed
better in each case.
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GWO WOA PO
Time(s) 80.2634 78.4127 258.5863

Fix number of clusters Energy(mJ) 5.4816 5.4816 5.4690
Number of clusters 5 5 5

Time(s) 83.3149 79.0144 218.6492
Variable number of clusters Energy(mJ) 5.4133 5.4166 5.3803

Number of clusters 10 11 12

Table 6.2: Table of results for 2D data

GWO WOA PO
Time(s) 83.0889 83.8679 233.2434

Fix number of clusters Energy(mJ) 5.7829 5.7829 5.7829
Number of clusters 5 5 5

Time(s) 83.6148 81.9620 254.2327
Variable number of clusters Energy(mJ) 5.5715 5.5778 5.5859

Number of clusters 14 13 14

Table 6.3: Table of results for 3D data

Below are figures from the simulations of 2D and 3D configurations using the various meta-
heuristic optimization algorithms discussed earlier. These simulations were conducted for both
fixed and variable numbers of clusters. In the figures, red dots represent cluster heads, black
dots represent other sensors, and blue points represent the base. Blue dashed lines indicate the
communication links between the base and the cluster heads.
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Figure 6.1: GWO, Fixed Clusters number
(2D).

Figure 6.2: WOA, Fixed Clusters number
(2D).

Figure 6.3: PO, Fixed Clusters number
(2D).

Figure 6.4: (2D) Fixed Clusters number.
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Figure 6.5: GWO, Variable Clusters num-
ber (2D).

Figure 6.6: WOA, Variable Clusters num-
ber (2D).

Figure 6.7: PO, Variable Clusters number
(2D).

Figure 6.8: (2D) Variable Clusters number.
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Figure 6.9: GWO, Fixed Clusters number
(3D).

Figure 6.10: WOA, Fixed Clusters number
(3D).

Figure 6.11: PO, Fixed Clusters number
(3D).

Figure 6.12: (3D) Fixed Clusters number.
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Figure 6.13: GWO, Variable Clusters num-
ber (3D).

Figure 6.14: WOA, Variable Clusters num-
ber (3D).

Figure 6.15: PO, Variable Clusters number
(3D).

Figure 6.16: (3D) Variable Clusters number.

93



6.5 Discussion

From the previous tables and histograms, it is evident that the clustering approach effectively
minimizes energy consumption. In 2D framework simulations, energy consumption improved
by approximately 24.5%, and in 3D framework simulations, it improved by approximately 32%.
Distinguishing between algorithms was challenging because energy optimization results were
very close. Regarding execution time, the GWO and WOA algorithms produced similar results,
whereas the PO algorithm exhibited significantly longer execution times due to its complexity.

The additional dimension did not in any way increase complexity, as the implementation re-
mained largely unchanged except for adjustments in distance calculation formulas. Similarly,
the positioning of the base relative to sensor areas do not complicate the problem, as the
method used to solve the research problem remained consistent. In addition, Both 2D and
3D frameworks show that selecting varying numbers of clusters optimizes energy consumption
better, attributed to the additional degree of freedom in the problem.

Another important point to mention is the application of metaheuristics for optimization tasks,
particularly in clustering, are highly effective because they can quickly produce solutions that
are close to optimal, even when faced with complex problems where the search space grows
exponentially, such as our 2n problem. Unlike traditional methods that search for exact so-
lutions, which can take days, months, or even years to converge, metaheuristics offer efficient
algorithms that significantly reduce computation time. This efficiency makes them particularly
suitable for addressing our challenging optimization needs.

6.6 Conclusion

In conclusion, the evaluated clustering approaches have shown considerable advantages in re-
ducing energy consumption in both 2D and 3D frameworks. Their effectiveness in reducing
computational time underscores their suitability for addressing challenging optimization needs
in various problem domains.

Future work involves an exploration of up to 10 to 20 different optimization algorithms to
thoroughly compare their performance against the current results. This comparative analysis
will provide deeper insights into the strengths and weaknesses of each algorithm, enabling better
informed decision-making in algorithm selection for specific applications. Furthermore, It would
be interesting to deploy this clustering algorithms in real-world scenarios. This approach will
offer a practical validation of the algorithms’ effectiveness, showcasing how they perform under
varying conditions such as different data distributions, network topologies, and operational
constraints. By doing so, it aims to bridge the gap between theoretical performance metrics
and practical utility in diverse application contexts.

In addition to performance evaluation, another critical aspect of future research involves con-
ducting robustness analysis. This analysis will assess how clustering algorithms withstand
challenges posed by noisy or incomplete information about sensor placements, akin to real-
world scenarios where data may be corrupted or sensors may fail unexpectedly. Understanding
the algorithms’ robustness will be pivotal in enhancing their reliability and applicability in
dynamic and unpredictable environments. By pursuing these avenues of research, the aim
is to advance the field’s understanding of clustering algorithms’ capabilities and limitations,
ultimately contributing to more resilient and efficient solutions for real-world sensor network
deployments.
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General Conclusion

Artificial Intelligence (AI) has become an increasingly vital tool in control engineering, offering
sophisticated techniques for modeling, estimation, and optimization of complex systems. In
this thesis, we explored several AI-driven approaches to enhance the control and estimation of
nonlinear processes in aircraft and IoT sensor networks.

Firstly, we modeled mass variations in both fuel and electrically powered aircrafts. We then
designed an observer to estimate icing accumulations. This observer was rigorously tested un-
der different initial conditions and demonstrated a robust capability to accurately track mass
changes due to ice accretion, providing a reliable method for real-time monitoring and safety
assurance in aviation.

Secondly, we investigated two learning-based identification and modeling techniques for non-
linear systems: Recurrent Neural Network (RNN) based identification and the Sparse Identifi-
cation of Nonlinear Dynamics (SINDy) algorithm. Both approaches were applied to an aircraft
system, showing promising results in accurately modeling the system’s dynamics. The compar-
ative analysis highlighted the strengths and potential applications of each method, providing
valuable insights into their suitability for different types of nonlinear system identification tasks.

Lastly, we compared the performance of three optimization algorithms applied to a sensor net-
work in an IoT research problem. The study was conducted in both 2D and 3D planes, with
variable and fixed numbers of clusters. The results demonstrated the efficiency of introducing
a variable number of clusters, adding a degree of freedom that significantly enhanced the op-
timization process. This finding underscores the importance of adaptable clustering strategies
in optimizing sensor networks for various IoT applications.

Future work will focus on the real-time implementation of these methods to further validate
their practical applicability. Additionally, efforts will be made to reduce the amount of data
required for training, making the models more efficient and scalable. An investigation into a
broader range of learning algorithms will also be pursued to identify the most effective ap-
proaches for different control and estimation tasks.

In summary, this thesis demonstrates the powerful capabilities of AI in advancing the field of
control engineering, offering innovative solutions for complex modeling, estimation, and op-
timization challenges. The promising results pave the way for future research and practical
applications, ultimately contributing to the development of smarter, more efficient control sys-
tems.
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Appendices

Appendix A

Symbol Parameter Value
CD0 Zero-lift coefficient 0.0375

k Lift-independant drag coefficient 0.0588
ρ0 Air density 1.225Kg/m2

mf Final mass (zero load) 4980Kg

Table A1 : Table of parameters (J31 Jetstream)

Appendix B

Coefficient Expression
G JxJz − J2

xz

G1 (Jxz(Jx − Jy + Jz))/G
G2 (Jz(Jz − Jy) + J2

xz)/G
G3 (Jz)/G
G4 (Jxz)/G
G5 (Jz − Jx)/Jy

G6 (Jxz)/Jy

G7 (Jxz)/Jy

G8 (Jx)/G

Table B1 : Table of coefficients (Aerosonde)
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Symbol Parameter Value
M initial mass 13.5Kg
Jx moment of inertia around roll-axis 0.824Kgm2

Jy moment of inertia around pitch-axis 1.135Kg.m2

Jz moment of inertia around yaw-axis 1.759Kg.m2

Jxz product of inertia in the xz-plane 0.12Kg.m2

Table B2 : Table of parameters (Aerosonde)
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