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صخلم

ةيفيكتلامكحتلاتايجيتارتسادمتعي.ةيرحتاجردةعبرأبيزاوتمروانموهو،VELOCEتوبورىلعةساردلاهذهزكِّرتُ

تايجهنمجمدلالخنم.(PKMs)ةيزاوتملاةيكرحلاتاروانملالثمةيطخلاريغةمظنألايفنيقيلامدعةهجاومل

ةيذغتعميفيكتيجذومنيعجرمةيرسكمكحتم—ةنسحمةيرسكةيفيكتتامكحتمةحورطألاحرتقت،ةيرسكلامكحتلا

ةدايزوءادألانيسحتىلإكلذفدهي.ةيمامأةيذغتتاحلطصمعميفيكتL1ةيرسكمكحتمو،ةيلضافت-ةيبسانتةعجار

.ةناتملا

:ةيحاتفمتاملك

مكحتم،ةيرسكلارماوألابمكحتلا،VELOCEتوبور،PKMsيزاوتملايكيتامنيسلالوانملا،ةلوانملاتاتوبور

.جذومنلاىلعمئاقلامكحتلا،يفيكتلاL1مكحتم،ةيجذومنلاةيعجرملابيفيكت

Résumé

Cette étude aborde l’intégration des robots manipulateurs dans les environnements indus-
triels pour gérer des tâches répétitives et dangereuses, en se concentrant sur le robot VE-
LOCE, un manipulateur parallèle à quatre degrés de liberté. En intégrant des méthodolo-
gies de contrôle fractionnaire, la thèse propose des contrôleurs adaptatifs améliorés—un
contrôleur adaptatif de référence modélisé avec une rétroaction proportionnelle-dérivée et
un contrôleur adaptatif fractionnaire L1 avec des termes d’alimentation directe. L’objectif
est d’optimiser la performance et d’améliorer la robustesse.

Mots-clés :
Robots manipulateurs, Manipulateurs cinématiques parallèles (PKMs), robot VELOCE,
contrôle à ordre fractionnaire, contrôleur adaptatif à référence de modèle (MRAC), con-
trôleur adaptatif L1.

Abstract

This study focuses on the VELOCE robot, a 4-degree-of-freedom parallel manipulator.
By incorporating fractional order control methodologies, the thesis proposes enhanced
fractional adaptive controllers—a fractional Model Reference Adaptive Controller with
Proportional-Derivative feedback and a fractional L1 adaptive controller with feed-forward
terms. The aim is to optimize performance and improve robustness.

Keywords :
Manipulator robots, Parallel Kinematic Manipulators (PKMs), VELOCE robot, Frac-
tional order control, Model Reference Adaptive Controller (MRAC), L1 adaptive con-
troller.
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The emergence of manipulator robots in industry was driven by the need to handle
repetitive and arduous tasks, as well as to operate in environments hostile to humans, such
as high-pressure underwater settings, low-pressure space exploration, high-temperature
areas, and high-radiation zones. A robot is an automatic device capable of manipu-
lating objects or performing operations difficult for humans according to a fixed, modifi-
able, or adaptable program. Among these manipulators, Parallel Kinematic Manipulators
(PKMs) are general-purpose industrial robots that meet all these requirements with high
accuracy. PKMs are particularly suited for tasks requiring both heavy load carrying and
precise positioning due to their distinctive structure, which allows the distribution of the
load across multiple parts, enhancing the robot’s rigidity.

Figure 0.1: The VELOCE parallel kinematic manipulator, from [55]

In this work, we will consider the VELOCE robot, a 4-DOF parallel manipulator
mainly designed for pick-and-place applications (see Figure 0.1). The VELOCE system
comprises four kinematic chains enabling three independent translational degrees and one
rotational degree around the vertical axis [1].

Although classical controllers such as Proportional Integral Derivative (PID) con-
trollers and their variations, as well as Model Predictive Control (MPC), are widely used
in industrial manipulators (robot arms), depending on the tasks to be performed, they do
not always lead to optimized performance. This is because these types of controllers re-
quire precise knowledge of the complete model of the system, rendering them sensitive to
parametric uncertainties and unmodeled dynamics. This limitation is particularly evident
in highly nonlinear systems like PKMs, which are multi-articulated mechanical systems
with dynamics that can be poorly defined, with variable parameters and subject to ex-
ternal disturbances. Consequently, there is a growing interest among the manufacturers
and researchers in exploring alternative control strategies.

Adaptive control methods have emerged as promising control approaches for PKMs,
capable of real-time uncertainty compensation and enhancing closed-loop performance and
tracking accuracy [2]. Originating in aerospace applications in the 1950s, adaptive control
has evolved to address uncertainties in various complex systems, including robotics, by
adapting to dynamic environment changes and model inaccuracies [3].

Recently, fractional order control (FOC), meaning control of dynamic systems where
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the system to be controlled and/or the regulator are governed by fractional differential
equations, has peaked the interest of numerous researchers, mainly because of its ability
to provide more accurate descriptions of complex dynamical systems and the improve-
ments of robustness and delay margins. For instance in [4], an FO-PID controller was
implemented on an industrial robot, achieving high accuracy and precision, as well as
in [5], where FO control was applied to for frequency Regulation in Multi-Area Power
Systems.

The combination of both adaptive and fractional theory for systems like robot manip-
ulators has been proposed numerous times in multiple works, since the integration of FO
theory on adaptive controllers has proven to enhance system robustness, improve the accu-
racy of adaptation, and decrease sensitivity to high-frequency noise as stated in [6] and [7].

This thesis proposes two adaptive control approaches for the VELOCE manipulator: a
Model Reference Adaptive Controller with Proportional-Derivative (MRAC-PD) feedback
and an L1 adaptive controller with feed-forward terms. Both methods will be enhanced
by integrating fractional order adjustment laws into their adaptation mechanisms, aiming
to improve performance and robustness in terms of reduced error, elimination of time lag,
and decreased energy consumption.

This thesis will be structured according to the following outline:

In Chapter 1, parallel manipulators are introduced along with some key terminology
and basic concepts. The historical evolution of PKMs and their integration across diverse
applications are explored. Than a classification of PKMs will be provided, with empha-
sis on 4-degree-of-freedom (4-DOF) manipulators akin to the VELOCE robot studied in
this thesis. Additionally, a state of the art of the key control strategies proposed in the
literature for PKMs will be discussed and categorized into adaptive and non-adaptive
approaches.

Chapter 2 will focus on modeling the dynamics and kinematics of the VELOCE manip-
ulator. It will detail the derivation of model parameters based on the VELOCE prototype,
discuss trajectory generation, and propose a reference trajectory for subsequent simula-
tions. To validate the VELOCE robot model, a Proportional Derivative controller with a
feed-forward term (PD-FF) is implemented, and the simulation results are presented and
analyzed.

In Chapter 3, the theoretical framework and essential background on the two adap-
tive control methods proposed for controlling the VELOCE robot are provided. Beginning
with an overview of MRAC methods, including their historical context and fundamen-
tal concepts, the development of an MRAC control law featuring MIT-based adaptation
rules for second-order systems is detailed. This method will be utilized in Chapter 4 for
adaptive control of the VELOCE robot. Subsequently, the L1 adaptive control method
is introduced, outlining its architecture and explaining the design process of the control
law. This approach will be implemented in Chapter 6 for controlling the VELOCE robot.
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Chapter 4 introduces the basics of FO calculus theory, covering its origins, typical
applications, and approximation methods such as the Singularity method (Charef’s ap-
proximation). Numerical examples are provided to illustrate FO system characteristics
and the operational principles of the Singularity technique.

Chapter 5 introduces the Fractional Order Model Reference Adaptive Controller (MRAC)
with a Proportional-Derivative (PD) feedback for the VELOCE robot. It explains the ra-
tionale behind choosing this control scheme, outlines the control objectives, and details
the theoretical foundation of the control law with integrated FO adjustment rules. The
chapter also covers the simulation setup and presents results under both nominal condi-
tions and varying payload scenarios.

In Chapter 6, the Fractional Order L1 adaptive controller is designed with model-based
feedforward L1-FF for the VELOCE robot. It outlines the motivation behind opting for
this approach and states the control objectives, then presents the theoretical basis of the
control law with FO adaptation and FO filters, and details simulation setup and results
under both nominal conditions and varying payloads.

This thesis is concluded with an overview of the key results obtained through this
work. Some points for exploration and improvements in future research are also provided.
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1 Introduction

In this chapter, parallel manipulators are introduced along with essential terminology
and concepts to facilitate their study. We explore the historical evolution of parallel
kinematic manipulators (PKMs), highlighting key milestones in their integration into
diverse applications, from industrial manufacturing to medical and aerospace domains.

Many types of PKMs have been developed throughout history, aiming to exploit their
advantages in terms of high speed and accuracy capabilities, we provide a comprehensive
classification based on their architectural designs with a particular emphasis on 4-DOF
manipulators that share similarities with the VELOCE robot

Given the significant research focus on parallel manipulators, this chapter provides
a general overview of the most relevant control strategies proposed in the literature,
categorizing them into adaptive and non-adaptive approaches.

2 Basic concepts and terminology

2.1 Definition of PKMs

Parallel robots, also called parallel manipulators or parallel kinematic machines (PKM),
are defined in Leinonen [8] as:

”Robots that control the motion of their end-effectors by means of at least two kinematic
chains going from the end-effector towards the fixed base. ”

Also according to Merlet [9], a generalized PKM can be defined as such:
” A generalized parallel manipulator is a closed-loop kinematic chain mechanism whose

end-effector is linked to the base by several independent kinematic chains.”

Figure 1.1: Key Components of Parallel Kinematic Manipulators, from Angeles et al

Based on these definitions, the main components of PKMs can be described as follow:
The base (fixed part), which is the stationary component of the robot; the platform
(moving part), on which the end-effector is typically mounted; the end-tool which is
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responsible for performing the desired task; and the kinematic chains, also known as
the robot legs, which link the base to the platform.
This particular architecture of PKMs allows for the distribution of forces and loads across
multiple chains, thereby increasing their rigidity. Such characteristics can provide advan-
tages in terms of speed, accuracy, and payload capacity [10].

2.2 Advantages and disadvantages of PKMs

Parallel Kinematic Machines (PKMs) are renowned for their high accuracy and precision.
Firstly, the end-effector is connected to the base through multiple kinematic chains, each
bearing a fraction of the total load. This distribution allows for the use of less powerful
actuators, which enhances the payload-to-weight ratio and increases stiffness [9]. Addi-
tionally, the heavy actuators are typically installed on a single base platform, while the
moving arms are kept lightweight. This concentration of mass reduces the overall moment
of inertia, enabling faster movements. Furthermore, the closed-loop structure of PKMs
prevents error accumulation along the kinematic chains, ensuring consistent precision and
accuracy.

From an economic perspective, PKMs are advantageous due to their use of simple,
common components, which make them cost-effective to design and build. Furthermore,
the use of identical kinematic chains reduces maintenance costs and the need for exten-
sive spare parts storage [10]. This combination of performance and cost-efficiency makes
PKMs a valuable choice in various industrial applications.

On the other hand, PKMs have some imitations such as smaller accessible space for
the moving platform compared to the overall size of the machine [11]. Additionally, the
higher number of passive joints in PKMs, relatively to the active joints linked to the
driving actuators, increases the likelihood of collisions between the legs, especially in
PKMs with higher degrees of freedom, such as hexapods. Another disadvantage of PKMs
is the complexity of their singularity analysis [12]. At singular positions, PKMs completely
lose stiffness, becoming unstable and potentially sustaining damage. This singularity
issue restricts the range of movement for the robot’s orientation angles, typically to less
than ±30°. These limitations in workspace and movement range, along with the risk of
instability at singularities, present significant challenges for the effective use of PKMs in
certain applications.

2.3 Basic notions in robotics

In order to discuss the control and design of PKMs effectively, it is essential to establish
a clear understanding of the fundamental concepts and terminology associated with these
systems. This section defines the basic concepts related to the study of PKMs based on
[13].

• Degree of freedom: The degrees of freedom of a manipulator are defined as the
number of independent components of its twist i.e the independent movements the
end-effector can perform.
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• Kinematic chains: A kinematic chain is a series of rigid bodies (links) connected
by joints. In PKMs, each chain connects the fixed base to the moving platform,
forming a closed-loop structure. These chains, also called ”legs,” can be serial
or tree-structured and composed of various joint types like revolute, prismatic, or
spherical joints. The kinematic chains are critical in determining the motion capa-
bilities and structural integrity of the manipulator.

• Jacobian matrix: Jacobian relates the linear and angular velocity of the end-
effector to the vector of joint velocities. This is a time-varying, position dependent
linear transform. It has a number of columns equal to the number of degrees of
freedom in joint space, and a number of rows equal to the number of degrees of
freedom in Cartesian space.

• Singular configuration: Singularities are configurations where the PKM loses
stiffness and becomes unstable i.e the Jacobian matrix loses rank, leading to a
loss of one or more degrees of freedom. Moreover, locally, the robot mechanical
performance (stiffness, accuracy, etc.) are deteriorated. These configurations limit
the movement of the robot.

• Workspace: The workspace of a PKM refers to the volume or area within which the
end-effector can operate without entering a singularity configuration It is determined
by the lengths and geometric configurations of the kinematic chains the robot is
composed of.

• Joints: Joints are key components that connect the rigid links of a robotic arm,
enabling it to move in different directions. There are two types of joints: active
(actuated) and passive (non-actuated) joints. Depending on the movement they
allow, they are classified into: prismatic (translational motion along a single axis),
revolute (rotation around one axis) and universal (two independent rotations around
two axes) joints.

• Cartesian space: It is the three-dimensional reference where the orientation and
position of the end-effector are described.

• Joint space: It is the space where the robot’s movements are described in terms of
the joint angles and joint velocities. Its dimension depends on the DoF of the robot.
The joint space is typically used for control and analysis of the robot’s movements.

3 Historical background

Although the first parallel robot, designed by James E. Gwinnett in 1928 [14], was created
for the entertainment industry as a motion platform for a movie theater, the development
of PKMs is now often viewed as an alternative to serial manipulators. These systems ad-
dress the shortcomings of serial manipulators and meet the high-speed and high-accuracy
performance demands of industrial applications. In 1942, the next parallel manipulator
was developed by Willard L.V. Pollard and aimed at industrial use [15]. This design is
considered the first spatial industrial robot, intended for spray painting. It featured three
chains driven by rotary motors, connected to the tool head using universal joints, allowing
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for three degrees of freedom (3DoF). Unfortunately, receiving little interest from industry
manufacturers at that time, this design was never turned into a prototype.

Figure 1.2: Amusement device based on a
spherical PKM proposed by James E. Gwin-
nett, from [14]

Figure 1.3: The spray painting 5-DOF parallel
robot proposed in 1942 by Willard L.V. Pollard,
from [15]

In 1954, Dr. Eric Gough introduced the “Universal Tyre Testing Machine,” or simply
the “Universal Rig,” a mechanism with a closed-loop kinematic structure that allows the
positioning and orientation of a moving platform [16]. A prototype of this machine was
built for testing tire performance. Systems of this type are known under the acronym
MAST, which stands for Multi-Axis Simulation (or Shake) Table, and are still manu-
factured by numerous companies nowadays. They have been used across multiple fields,
including aerospace for aircraft and spacecraft simulation, surgical robots, rehabilitation
devices, and as stable platforms in mobile robots.

Figure 1.4: The original Gough platform in
1954, from Stewart et al

Figure 1.5: The first flight simulator based
on a hexapod structure as in the mid of 1960s,
from [16]

During the 1960s, the increase in the cost of pilot training, and the need to test new
equipment without flying encouraged D. Stewart to develop the ’Stewart platform’ or
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’hexapod,’ a 6-DOF robot designed for flight simulation [17].
The Stewart platform consists of a fixed base and a movable platform connected by

six extendable legs, each with universal joints at both ends. This configuration allows the
platform to move with six degrees of freedom: three translational and three rotational.
Another device of this type for flight simulation applications was built by Klaus Cappel
in the mid-sixties (Fig 1.5).

In the early 1980s, Reymond Clavel, a professor at the École Polytechnique Fédérale
de Lausanne (EPFL), introduced the Delta robot, which revolutionized the parallel ma-
nipulators industry and broadened their applications [18]. The Delta robot features a
stationary base connected to an end-effector platform by three lightweight arms with a
shape of parallelograms, these arms ensures the end-effector remains parallel to the base
at all times. This design enables high-speed and high-precision movements with minimal
inertia, making Delta robots particularly well-suited for tasks such as pick-and-place oper-
ations, assembly, packaging, and sorting in manufacturing and pharmaceutical industries.

In addition to these parallel robots, there has been a recent surge in the development
of parallel mechanisms that use rotary joints instead of prismatic joints. Some examples
include the ”Hexa” robot developed by Uchiyama in 1994, the Adept Quattro, a 4-DOF
parallel robot, and the ABB Flexpicker, another 4-DOF parallel robot developed by ABB.

Figure 1.6: IRB 360 FlexPicker (ABB tech-
nology)

Figure 1.7: Technical drawing of the original
Delta robot, from US patent No. 4,976,582

Currently, Japan and Europe are at the forefront of the parallel robot production
market, while China is the largest consumer of parallel robots. The majority of parallel
robots are produced by companies such as ABB, Fanuc, and Yaskawa [19].

4 Typical applications of PKMs

• Industrial Applications
Parallel robots have rapidly found widespread applications in various industrial do-
mains due to their high performance in precise positioning, accuracy, inherent rigid-
ity, and high load-to-mass ratio. Some prominent applications of parallel kinematic
machines (PKMs) in the industrial field are outlined below:
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– Machine Tools: A machine tool is a power-driven device, such as a lathe,
mill, or grinder, used for cutting, shaping, and altering rigid materials, pri-
marily metals. As the industry trends towards high-speed operations, parallel
manipulators are increasingly being integrated into these machines. There are
three primary types of PKM-based machine tools, categorized by their actua-
tion types including those with prismatic joints and variable leg lengths (as in
Fig 1.8), revolute joints and fixed leg lengths, and linear actuators with fixed
leg lengths [20].

Figure 1.8: Cosmo Center PM-600: PKM-
machine based tool by Okuma corp

Figure 1.9: Pick and place robot arm by HNC-
RDT

– Laser cutting: Laser cutting is a technology widely used in various indus-
tries to cut through materials using a high-powered laser beam. This process
requires high flexibility to perform complex patterns and high accelerations
around the edges. Consequently, PKM (Parallel Kinematic Machine) tools
are well-suited for such applications due to their precision and agility. Several
studies have aimed to improve these machines and address related issues [21],
[22].

– Pick and place: In the industrial context, the pick-and-place process refers
to the automation of tasks that involve picking up objects from one location
and placing them in another predetermined location [23]. Some of the most
popular parallel manipulators for pick-and-place applications include the Delta
robot, Par4, and Heli4. These robots are favored for their high-speed perfor-
mance, precision, and efficiency, making them ideal for tasks such as assembling
electronic components, packaging, and sorting (Fig 1.9).

• Medical Applications
Even though PKMs are commonly used in the industry field, there have been some
research efforts to integrate them in the medical field. One notable application is
the use of Delta-like robots for cardiopulmonary resuscitation (CPR) on patients
undergoing cardiac arrest [24]. PKMs are also employed in robot-assisted surgery
(RAS). One commonly known example is the PI M-850 Hexapod (Fig 1.10), a
6-DOF parallel-kinematics micro-positioning system, which is used to accurately
position an instrument tip with a specific orientation for spine surgery [25].
The application of PKMs in rehabilitation has also been explored. For example,
a spherical parallel manipulator with three degrees of freedom has been developed
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Figure 1.10: M-850 Hexapod: a PKM for
spine surgery by PI corp

Figure 1.11: 4B-SPM shoulder exoskeleton
prototype by Hunt et al

to replace the shoulder mechanism of a prosthetic human arm [26], enhancing the
functionality and mobility of the prosthetic (Fig 1.11).

• Space and Aerospace Applications
Parallel manipulators have been used in flight simulations since their inception,
driving significant advancements in the field. Most flight simulators are improved
versions of the Gough platform, and they are utilized in training centers provided
by companies like Airbus, FlightSafety International, CAE (Fig 1.13), and Boeing
Training.
Today, many companies are developing virtual reality motion simulators for various
applications beyond aircraft, including ships, trains, and truck driving. Space simu-
lators are also a significant application, used both as terrestrial devices to simulate
zero gravity and as onboard devices [27].
In satellite instrumentation, parallel structures are also employed. For example, a
hexapod mounted on the International Space Station (ISS) was developed by ADS
International for the European Space Agency (ESA). In the aerospace industry,
PKMs have proven to be highly efficient for tasks such as aircraft wing assembly.
They enable the production of high-performance, lightweight, and complex compo-
nents while reducing costs and environmental impact (as Exechon robot).

Figure 1.12: Hexapod PKM for satellite in-
strumentation by ADS International

Figure 1.13: CAE flight simulator based on
PKM by CAE Inc
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5 Classification of PKMs

Parallel manipulators can be classified according to their nature of motion in planar
(PPMs), spatial (SPMs) or Spherical parallel manipulators [10].

Figure 1.14: Classification of PKMs according to nature of their motion

• Planar parallel manipulator (PPM): They consist of two or more planar kine-
matic chains working together on a common rigid platform. Different types of
manipulators can be created depending on the nature of these chains. The motion
of all elements within a PPM occurs in the same plane or in parallel planes [28].
The Dextar is an example of a planar five-bar mechanism designed at ETS Montrèal
as shown in Fig 1.15.

Figure 1.15: Dextar robot: 5-links parallel manipulator developed by Gosselin et al

• Spatial parallel manipulator (SPM): The large majority of PKM have been
designed to allow mobility of their platforms in 3D space; i.e the end effector can
perform both translational and rotational motions. Many SPMs are designed with
fewer than 6-DOF to reduce complexity and cost while still meeting application
requirements [29]. Some examples include robots with three translational DOF
such as the Delta robot and the Tripteron developed by Gosselin (Fig 1.16), and
also robots with some DOF of rotation which are constrained with the DOF of
translation (Fig 1.17).

• Spherical parallel manipulator: Spherical manipulators are able to generate
movement of their end effector through controlled motion of the spherical joints.
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Figure 1.16: The Tripteron robot: spatial ma-
nipulator with 3 translational DOF developed
by C.M Gosselin et al

Figure 1.17: The Exechon robot: spatial ma-
nipulator with 3 exotic DOF by Exechon En-
terprises LLC company

These robots possess three rotational DOF, most of them allow the platform to
rotate around one given fixed point [30]. The most known is the Agile Eye developed
by Gosselin in 1996 (Fig 1.18). Another way to classify parallel manipulators is
based on the degrees of freedom (DOF) of their end-effector, such as 2DOF, 3DOF,
4DOF, and so on.

Figure 1.18: The Agile Eye: spherical parallel manipulator with 3DOF, developed by C.M Gosselin et
al

Since in this work, we will focus on the VELOCE robot, a 4DOF spatial parallel
manipulator with three translations and one rotation around a vertical axis, the major
families of 4DOF parallel manipulators will be presented to provide a comprehensive
understanding of their characteristics.

• The H4 manipulator:
The H4 manipulator is a fully parallel mechanism (Fig 1.19). The primary distinc-
tion between the H4 and most other parallel manipulators lies in the design of the
traveling plate. Typically, parallel manipulators consist of three main components:
a base, kinematic chains, and a rigid traveling plate. In contrast, the H4 features a
traveling plate that is a three-body system connected by two revolute joints. This
new design integrates joints into the traveling plate, allowing an increase in the
maximum range of rotational motion [31].
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Figure 1.19: The H4 manipulator Figure 1.20: The I4 manipulator

• The I4 manipulator:
This family of 4DOF parallel manipulators shares architectural and operational
advantages with the H4 family (Fig 1.20). However, it introduces an additional
feature: an articulated traveling plate equipped with a gear-based amplification
system [32]. This system allows for a larger and adjustable range of orientation for
the end-effector, enhancing its flexibility and precision.

• The Par4 manipulator:
Similar to previous parallel robots, the Par4 robot features an articulated traveling
plate that eliminates the need for a central telescopic leg. This design consists of
four main components: two primary parts connected by two rods through revolute
joints, as shown in Fig 1.21. A key modification in the Par4 robot is its moving
plate, which takes the form of a planar parallelogram. This structural modification
allows for symmetrical positioning of the actuators with the absence of singular
configurations [23].

Figure 1.21: The Par4 manipulator Figure 1.22: The Heli4 manipulator

• The Heli4 manipulator:
On the contrary of the other mentioned manipulators, which possess either an am-
plification system (H4, Par4) or a motion transformation system (as in I4), the
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distinct form of the articulated platform of Heli4 allows for directly producing the
the desired rotation amplitude [33]. The platform of the Heli4 robot consists of
three parts: an upper(1) and lower (2) platforms, a screw (3), which are connected
by a pivot joint (A) on one side and a helical joint (B) on the other side to the two
main parts of the platform as presented in Fig 1.22.

6 State of the art

Parallel Kinematic Manipulators (PKMs) offer numerous advantages, motivating researchers
to improve their performance aiming to meet specific application requirements. These
efforts span across various areas, including design and architecture optimization, devel-
opment of more accurate and moderately complex kinematic and dynamic models, ex-
ploration of motion planning techniques to avoid workspace singularities, and using more
advanced control schemes for PKMs.

Figure 1.23: Classification of proposed control strategies for PKMs in the literature

Designing an optimal controller for PKMs that achieves both high accuracy and high
speed simultaneously necessitates consideration of all aspects of the manipulator, includ-
ing its nonlinear dynamics and operating environment. This complexity makes the control
task for PKMs particularly challenging. Initially, PID controllers, known for their sim-
plicity and widespread use in industrial applications, were applied to PKMs. However,
these controllers exhibited limited performance, especially in high-speed tasks, and could
not adequately address the advanced challenges presented by PKMs. Consequently, more
sophisticated, nonlinear controllers were developed.
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Among the challenges faced by PKMs are coupled dynamics due to their closed-loop
kinematic structure, which requires precise synchronization between the actuators of each
robotic arm. Any failure or discrepancy in one actuator can propagate and destabilize
the entire system. Additionally, PKMs exhibit significant nonlinearities under high ac-
celeration conditions, leading to mechanical vibration issues [34]. Furthermore, internal
and external uncertainties, such as unmodeled phenomena, parametric variations due to
changing operating environments, sensor noise, and component wear, affect controller
performance.

Several classifications of control strategies for parallel manipulators exist in the lit-
erature, including kinematic versus dynamic controllers, model-based versus non-model-
based controllers, and centralized versus decentralized control strategies. For the purpose
of this work, we adopt the classification used in [35], which distinguishes between adaptive
and non-adaptive control for PKMs (Fig 1.14).

6.1 Non-Adaptive control methods

PKMs have attracted significant interest due to their advantages and suitability for high-
speed and precision applications, leading researchers to explore various control methods
from the literature. This has resulted in a diverse and rich body of research aimed at
improving PKMs performance. Consequently, a wide array of control schemes for parallel
manipulators has emerged, each with its own improvements and drawbacks.

The first control methods applied to PKMs were based on classical linear PID con-
trollers due to their practicality and extensive use in industry. Subsequent modifications
and improvements to PID-based methods aimed to address the nonlinear and complex
dynamics of PKMs. This led to the development of various nonlinear controllers, such as
Nonlinear PD (NPD) controllers [36].

Integrating knowledge about the dynamics of manipulators into control schemes re-
sulted in model-based controllers, including augmented PD (APD) [37], adaptive feed-
forward with PD (AFFPD) [38], fractional-order PID (FOPID) [39], and PD gravity
compensation controllers [40]. One significant drawback of these methods is their lack
of robustness. To overcome this, other model-based control methods not based on PID
controllers were proposed, such as Sliding Mode Control (SMC) [41], which offers fast
transient response and robustness against system disturbances and nonparametric uncer-
tainties, Adaptive Disturbance Rejection Control (ADRC) [42], which handles large model
uncertainty and unknown nonlinearities, and Computed Torque Control, which linearizes
the closed-loop equation in terms of tracking errors [43].

6.2 Adaptive control methods

Adaptive strategies have been developed to address the numerous uncertainties in the
controlled system and its environment that may degrade control performance. Adaptive
control schemes feature additional parameters estimation loop, based on the dynamics of
the system and the tracking errors, allowing real-time parameter updates to find ideal
values. These schemes provide precise tracking and maintain desired closed-loop perfor-
mance despite uncertainties and variations in the PKM’s dynamics and environment.

For instance, Model Reference Adaptive Control (MRAC) has been used to control
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a 6-DOF parallel manipulator based on the Stewart platform [44]. This control scheme
comprises a PD feedback controller combined with an adaptation mechanism to adjust
feedback gains. L1 control, proposed as an improvement over MRAC, resolves the coupling
problem between adaptation and the control loop, enabling high adaptation rates [45].
Additionally, adaptive control schemes based on the computed torque method, with an
adaptation loop to estimate system parameters in real-time, have been tested on PKMs
[46].

Recent advancements have focused on hybrid control schemes that blend the strengths
of nonlinear adaptive control with nonlinear robust techniques. For instance, the Direct
Compensation Law has been modified to incorporate nonlinear time-varying feedback-loop
gains instead of constant ones [47]. Furthermore, the addition of adaptive mechanisms for
parametric uncertainties has helped reduce high-frequency chattering in classical terminal
sliding mode control (TSM) [48]. Another example is the use of adaptive feedback gains
in a robust integral sign of the error (RISE) control scheme, which produces corrective
actions based on the values of the joint tracking errors [49].

There are also instances where adaptive controls were combined with advanced state
estimation techniques – such as Dual-space Control aiming at dampening mechanical vi-
brations at very high accelerations [50]– or using a linear–quadratic integral regulator
with a time-delay estimator with adaptive gains adjusted through artificial neural net-
works [51].

7 Conclusion

This chapter has provided a comprehensive overview of the diverse modern and typical
applications of Parallel Kinematic Machines (PKMs), highlighting their significant advan-
tages, particularly in terms of high stiffness and payload-to-weight ratios. We have traced
the evolution of PKMs from simplistic prototypes to more sophisticated architectures that
meet the contemporary demands for high-speed and high-accuracy performance.

The nonlinear nature of PKM dynamics, in addition to uncertainties arising from
unmodeled dynamics and parametric variations due to changing operating environments,
has necessitated the exploration and design of various control strategies. Some of these
strategies were discussed in this chapter and categorized into adaptive and non-adaptive
methods. This classification provides a clearer understanding of the position of the work
presented in this thesis within the broader research landscape on PKMs.

In the next chapter, we will describe the VELOCE robot, highlighting its features and
characteristics along with an analysis of its workspace and singularities. Following this,
we will provide the kinematic and dynamic models of this robot as developed in prior
works. Finally, numerical simulations of a PD with feed-forward term controller (PD-FF)
for the VELOCE robot are also included.
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1 Introduction

Developing an adequate model for complex systems is as important as developing the ade-
quate control scheme. However, finding a model that accurately captures the dynamics of
PKMs while maintaining simplicity is challenging in part due to their complex geometry
and closed-loop structure, as well as the challenge of identifying accurate values for the
model parameters [52].
Another key challenge with PKMs is the prevalence of singularities within their workspace,
which requires careful consideration when designing and generating trajectories.

This chapter will focus on modeling the dynamics and kinematics of the VELOCE
manipulator. It will include the provision of model parameters and a brief description
of the VELOCE prototype from which they were identified. Additionally, the trajectory
generation problem will be discussed, and a reference trajectory for the VELOCE robot
will be proposed for the simulations in the following chapters. Finally, to validate the
presented VELOCE robot model, a Proportional Derivative controller with a feed-forward
term (PD-FF) will be implemented, and the simulation results will be presented and
discussed.

2 Description of VELOCE manipulator

VELOCE is a non-redundant, fully actuated parallel manipulator with 4 DOF (3-Translations,
1-Rotation) i.e the number of its kinematic chains equals the number of its degrees of
freedom. It was developed at LIRMM (Laboratory of Informatics, Robotics and Micro-
electronics of Montpellier) inspired by the architecture of Heli4 manipulators. The goal
was to create a more compact and simpler design compared to H4 and I4 manipulators
[33].

Figure 2.1: Layout graph of VELOCE robot: (S) spherical, (R) revolute, (H) helical joints, from [23]

The VELOCE robot consists of four kinematic chains connected through actuators
to a fixed base. Each chain comprises a rear arm and a two-link forearm forming a
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parallelogram attached via spherical joints to both the rear arm and the traveling plate
(Fig 2.1). Its moving platform composed of two main parts – an upper part and lower
part – mounted on one screw (Fig 2.3). As such, we can infer that this moving platform
has three independent translational degrees along x, y, and z axes as well as one rotational
degree around the z-axis.

Figure 2.2: CAD view of Veloce manipulator,
from [55]

Figure 2.3: Moving platform of Veloce from
[53]

The VELOCE manipulator developed at LIRMM and whose model is used in this
study has the following characteristics: four direct-drive motors (TMB0140-100-3RBS
ETEL) with a maximum torque of 127 Nm and a top speed of 550 rpm. All actuators
are equipped with non-contact incremental optical encoders, each providing 5000 pulses
per revolution. The overall structure can accommodate a maximum payload of 10 kg,
achieve a peak velocity of 10 m/s, and reach a maximum acceleration of 200 m/s2. These
capabilities must be considered during the numerical simulations.

3 Previous works on VELOCE

Multiple control strategies have been designed and implemented on the VELOCE manip-
ulator, including linear and non-linear control, robust control, as well as adaptive control
both model-based and non-model based. In [53], an L1 adaptive control scheme was
experimentally implemented on the VELOCE robot, demonstrating improved tracking
performance compared to a PD controller, due to the compensation of nonlinearities in
the manipulator’s dynamic model.

Building on this work, subsequent research incorporated an additional dynamics-based
term into the L1 control scheme, computed based on the desired robot trajectory. This
modification reduced the impact of uncertainties on the closed-loop system [53]. The
same principle of integrating a feedforward term based on the system’s dynamics was
tested with a PD controller in [38], which also involved identifying actuator and friction
dynamics parameters using Least Square Estimation.

Further advancements combined an adaptive feedforward term, capable of adjusting
its parameters in real-time to variations in the manipulator’s dynamics, with a terminal
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sliding mode controller [48]. This approach leveraged the linear-in-the-parameters prop-
erty of the inverse dynamics of the manipulator.

An additional improvement was achieved in [54] by introducing a time-varying adap-
tation gainto the previous control scheme. This adjustment aimed to overcome the limi-
tations of a constant adaptation gain and enhance parameter estimation. The benefits of
the adaptive feedforward approach were also demonstrated in a comparative analysis be-
tween non-model-based controllers, as PD, PID, (Nonlinear PD) NPD, and model-based
controllers, as (Augmented PD) APD, (Adaptive feed0forward )AFFPD [1]. Addition-
ally, in [55] a fast model predictive controller (NMPC) was proposed with the objective
of reducing computation time and enabling high processing speeds.

4 Kinematic Model of VELOCE

The study of parallel robot kinematics involves a comprehensive analysis of the movement
and positioning of the end-effector relative to its base. This analysis is fundamental for
achieving precise control over the robot’s motion and planning its trajectory within a
specified workspace. In this section, we present both the forward and inverse kinematics
models of the VELOCE robot.

4.1 Inverse Kinematics

The inverse kinematics problem consists of determining the required joint angles for
achieving a desired end-effector pose (Fig 2.4).

Figure 2.4: Inverse Kinematics Scheme

Since the VELOCE robot has 4 identical mechanical chains, the kinematic model can
be derived for one chain (as illustrated in Fig 2.5 ) and then extended to the others.

The Cartesian coordinates of the moving platform of the manipulator can be expressed
with respect to the fixed-base frame in a four-dimensional vector X =

[
x y z s

]T , with
x, y and z being the translational coordinates and s the rotational amplitude, defined as:

s =
p

π
α (2.1)

where p is the pitch of the helical joint of the traveling plate and α the rotation angle
around the z-axis.
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The vector X effectively represents the position and orientation of the end-effector.
In the joint space, the angular position of each actuator is represented by an element of
a four-dimensional vector q =

[
q1 q2 q3 q4

]T .

Figure 2.5: VELOCE robot kinematic chain

The angular position of the i-th actuator with respect to the fixed frame is given by:

βi = (i− 1)
π

2
(2.2)

To develop the inverse kinematic model the coordinates of the points Ai, Bi and Ci

shown in Fig 2.5 are given as follow:

Ai = R
[
cos(βi) sin(βi) 0

]T (2.3)

Bi/O = Ai + L
[
cos(βi)cos(qi) cos(βi)sin(qi) sin(qi)

]T (2.4)

Ci =
[
x+ r cos(βi) y + r sin(βi) z + h+ pi

π
α
]T (2.5)

with pi defined as follow:

pi =

{
0 i = 1, 3

p i = 2, 4

According to [56], finding the inverse kinematics equations of the VELOCE robot
involves solving for the intersection of a circle with Ai as its center and L as its radius
and a sphere with its center at Ci and l, the length of the forearms, as its radius. This will
allow for finding the coordinates of the points Bi from which the values of the actuators
joints can be computed using the following equation:

qi = atan2 (zBi
, xBi

) (2.6)

A detailed explanation of the development of the Inverse Kinematic model of the VELOCE
robot is provided in Appendix 1.
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4.2 Forward Kinematics

The forward kinematic model (FKM) allows us to determine the position and orientation
of the end-effector given a specific set of actuated joint values. It usually involves solving
a system of nonlinear equations that relate the joint variables to the end-effector pose.

Figure 2.6: Forward Kinematics Scheme for VELOCE Robot

Several methods have been suggested for calculating the FKM of the VELOCE robot,
most of which are based on the geometric properties of the system. The method applied
here is straightforward to understand and implement in numerical simulations.

Finding the Forward Kinematic model of the VELOCE robot comes to solving the
following system of nonlinear equations:

(x+ r − xB1)
2 + (y − yB1)

2 + (z + h− zB1)
2 = l21

(x− xB2)
2 + (y + r − yB2)

2 +
(
z + h+ p

π
α− zB2

)2
= l22

(x− r − xB3)
2 + (y − yB3)

2 + (z + h− zB3)
2 = l23

(x− xB4)
2 + (y − r − yB4)

2 +
(
z + h+ p

π
α− zB4

)2
= l24

(2.7)

where li ∀i = 1, · · · , 4 are the lengths of the forearms.

The unknowns in this system are the coordinates of the end-effector since the coor-
dinates of the points Ai, Bi, and Ci can be directly calculated from the joint angles. By
solving the system (2.7), which can be interpreted as the intersection of four spheres, we
obtain the coordinates of the end-effector x, y, z, and α.

5 Differential Kinematics of VELOCE

Finding the Jacobian matrix, which represents the relationship between the Cartesian
velocity vector Ẋ and the joint velocity vector q̇, is referred to as the differential kinematics
of the manipulator:

Ẋ = Jq̇ = J−1
x Jq q̇ (2.8)

with Jx and Jq calculated using Equations (2.9) and (2.10), respectively:

Jx = [Jx1 Jx2 Jx3 Jx4 ]
T (2.9)
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where Jxi
=
[
BiC

>
i (zCi

− zBi
)pi
π

]T ∀i = 1, · · · , 4

Jq = diag
{
t>1 B1C1, t

>
2 B2C2, t

>
3 B3C3, t

>
4 B4C4

}
(2.10)

Based on Equation (2.8) we can obtain an expression that relates Ẍ, the Cartesian
accelerations, to q̇ and q̈, the joint velocities and accelerations of the actuators, respec-
tively:

Ẍ = Jq̈ + J̇ q̇ (2.11)

6 Dynamic Model of VELOCE

Due to the VELOCE manipulator’s many similarities with the Delta robot, similar as-
sumptions are used to develop a simplified dynamics model [57].

• Assumption 1: Dry and viscous frictions in passive and active joints are ig-
nored because the joints are specifically engineered to minimize friction effects. This
neglects any potential impact from these forms of friction.

• Assumption 2: The rotational inertia of the forearms is ignored, and their weight
is divided into two equal parts. One part is included in the arm’s mass, while the
other part is accounted for with the moving platform. This assumption is supported
by the relatively small weight of the forearms compared to other body components.

The dynamic model can be obtained by analyzing the dynamics in the joint space and
the traveling-plate space (Cartesian space) separately, then summing up the two equations
of motion [58]. When considering the moving platform, there are two types of forces that
affect it: the gravitational forces Gp ∈ R4 and the inertial forces Fp ∈ R4. These forces
can be expressed as:

Gp = −Mp

[
0 0 g 0

]T (2.12)

Fp = MpẌ (2.13)

where Mp ∈ R4×4 is the mass matrix of the moving platform, including the half-
masses of the forearms, g = 9.81 m/s2 is the acceleration due to gravity, and Ẍ ∈ R4 is
the platform acceleration vector.

The contributions of Gp and Fp to each actuator can be computed using the Jacobian
matrix J(q,X) ∈ R4×4 as follows:

ΓGp = −JTMp

[
0 0 g 0

]T (2.14)

Γp = JTMpẌ (2.15)
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On the joints side, the dynamics of the actuators are influenced by the torques pro-
duced by the movement of the rear-arms in addition to the half-masses of the forearms.
The torque contribution resulting from the gravitational forces of the rear-arms is given
by Equation (2.16):

ΓGa = −MlGag
[
cos(q1) cos(q2) cos(q3) cos(q4)

]T (2.16)

where MlGa = mrarg + mfal. Here, mra represents the rear-arms mass and mfa the
forearms mass. Additionally, the inertial forces caused by the acceleration of the rear-arms
are expressed in Equation (2.17):

Γarm = Iaq̈ (2.17)

where Ia ∈ R4×4 is a diagonal inertia matrix accounting for the inertia of the rear-
arms and the half-masses of the forearms. By applying the virtual work principle, which
states that the sum of non-inertial forces is equal to that of the inertial ones, and after
rearranging the terms, we get Equation (2.18):

Γp + ΓGp + Γarm + ΓGa = Γ (2.18)

Using the differential kinematic relationship given in Equation (2.11), the dynamics
of the manipulator can be expressed as follows:

(Ia + JTMpJ)q̈ + (JTMpJ̇)q̇ − (JTGp + ΓGa) + Γd = Γ (2.19)

where Γd is an input disturbance term that accounts for uncertainties caused by non-
modeled dynamics in addition to external disturbances. Equation (2.19) can be written
in a standard form that is suitable for joint-space control as it is formulated in terms of
the actuated joints’ coordinates:

M(q)q̈ + C(q, q̇)q̇ +G(q) + Γd = Γ (2.20)

with:
M(q) = Ia + JTMpJ being the total mass matrix.
C(q, q̇) = JTMpJ̇ being the Coriolis and centrifugal forces matrix.
G(q) = −

(
JTGp + ΓGa

)
represents the gravitational force vector.

7 Parameters of the VELOCE robot model

The numerical values of the parameters for the VELOCE model used throughout this work
were taken from [53]. These values were obtained through an identification process of the
VELOCE prototype at the LIRMM laboratory, described in Section 2.2. The parameters
include physical dimensions, inertia, and weights of the robot’s parts, as presented in
Table 2.1. A schematic drawing of this VELOCE prototype in the Cartesian configuration
X0 =

[
0 0 −0.6 0.010

]T is shown in Fig 2.7.

39



Chapter 2. Modeling of VELOCE manipulator 40

Table 2.1: The main dynamic parameters of the VELOCE parallel robot

Parameter Description Value

l Fore-arm length 530 mm
L Rear-arm length 200 mm
mar Rear-arm mass 0.541 Kg
mfa Fore-arm mass 0.080 Kg
Ia Rear-arm inertia 5.27× 10−3 Kg ·m2

mtp Traveling plate mass 0.280 Kg
ms Main screw mass 0.142 Kg
Is Main screw inertia 7.6× 10−5 Kg ·m2

R Frame radius 135 mm
r Traveling plate radius 48 mm
h Lower traveling plate length 78 mm
p Helical joint pitch 60 mm · rad−1

Figure 2.7: Schematic drawing of the VELOCE Robot

The total mass matrix Mp is calculated using the following expression:

Mp = diag
[
Mtot Mtot Mtot

Itot
p

]
(2.21)

with Mtot = mtp +ms + 4
mfa

2
and Itot = Is.
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8 Workspace and singularities

8.1 Singularities

A singular configuration in PKMs is a point in the workspace at which the end-effector
may lose one or more degrees of freedom, these singularities occurs when the Jacobian
matrix becomes poorly conditioned and may not be invertible, leading to infinite joint
rates while the end-effector remains stationary [59].

According to [9], for parallel manipulators one can distinguish among three different
types of singularities: serial singularities, Parallel singularity and Combined singularities
. To determine the first two types of singularities it is sufficient to check the determinants
of the Jacobian matrices as defined in Equation (2.22).

Jxẋ = Jqq̇ (2.22)

Where Jq and Jx are the joint and Cartesian Jacobian matrices respectively.

For the last type of singularities, according to [33], by validating that the relationship
expressed in Equation (2.23) holds across the entire operational space, we can ensure that
no ”internal singularity” will occur.

(((d1 × l1)× (d2 × l2))× ((d3 × l3)× (d4 × l4)))
T ez 6= 0 (2.23)

where:
di are vectors that links the two opposite parts of the travelling platform.
li are the vectors joining both extremities of the forearm.

However, for the scope of this thesis, which focuses more on control rather than path
planning, the reference trajectories will be chosen to lie within the workspace of the
VELOCE manipulator and avoid singularities without the need to use Equation (2.23).
A detailed explanation of the trajectory generation process will be provided in Section 9.

8.2 Workspace

The workspace of the VELOCE robot is a crucial aspect that directly impacts its per-
formance and capabilities. The VELOCE robot is designed to operate within a defined
workspace that is determined by the physical constraints of its mechanical structure. This
workspace typically consists of a three-dimensional volume where the robot can maneuver
its end-effector. The dimensions and shape of this workspace are influenced by factors
such as the length of the robot’s arms, the configuration of its joints, and any physical
obstacles in its environment.
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Figure 2.8: Workspace of VELOCE Robot, from [23]

9 Trajectory generation

The problem of path planning in robotics involves defining a sequence of points or a
geometric curve. Finding a path that describes the displacement of the end-effector from
an initial configuration Mi to a final configuration Mf can be approached in different ways.
For some classes, the trajectory is better generated in the joint space, while for others, it
is more suitable in the operational space (end-effector configuration). Each approach has
its advantages and disadvantages, which are detailed in [52].

According to [10], using the point-to-point technique, the motion profiles of a parallel
manipulator can be described by the following expressions:

xd(t) = xd(ti) + (xd(tf )− xd(ti))r(t)

ẋd(t) = ẋd(ti) + (ẋd(tf )− ẋd(ti))ṙ(t)

ẍd(t) = ẍd(ti) + (ẍd(tf )− ẍd(ti))r̈(t)

(2.24)

By choosing 5th order polynomials to calculate the path between each consecutive
points, the expressions to calculate r(t) is given as follow:

r(t) = 10

(
t− ti
T

)3

− 6

(
t− ti
T

)4

+ 15

(
t− ti
T

)5

(2.25)

where ti is the starting time and T is the period between each point-to-point movement.
The trajectory needs to be designed away from singularities and always remain within

the reachable workspace of the VELOCE robot. An example of a desired trajectory for
the end-effector is illustrated in Fig 2.9. The points of the sequence of movements are
given in Appendix 6.
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Figure 2.9: 3D view of the desired trajectory for the VELOCE robot

As shown, the trajectory comprises three parts: translational movements in the XY-
plane, translation along the Z-plane, and rotations around the vertical axis. Subsequently,
the IK model of the VELOCE manipulator will be used to compute the desired trajectory
in the joint space.

10 PD-FF controller for VELOCE robot

Before presenting the design of the proposed control schemes for this work, we implement
a simple Proportional Derivative (PD) controller with an additional feed-forward term
based on the robot’s model. The objective is to understand the nonlinear behavior of the
VELOCE robot and the nature of its dynamics.

Furthermore, this implementation aims to showcase the limitations of the PD con-
troller, even with a feed-forward term that compensates for most od the uncertainties and
non-linearities, in comparison to robust or adaptive control methods. As stated in [38],
achieving high performance with simple control methods requires precise and complex
models of the manipulator’s dynamics, which include modeling additional phenomena
such as joint friction and actuator dynamics.

For a more in-depth comparison between various PD controllers applied to the VE-
LOCE robot, [1] presents the advantages and disadvantages of each control scheme.
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10.1 Control law

The control law is given by:

Γ(t) = ΓPD(t) + ΓFF (t) (2.26)

with ΓPD the PD control term and ΓFF the feed-forward control term which are defined
in Equations ( 2.27) and (2.28) respectively:

ΓPD = Kp e+Kd ė (2.27)

ΓFF = M(qd) q̈d + C(q̇d, qd) q̇d +G(qd) (2.28)

with
[
qd q̇d q̈d

]
is the desired actuator joints vector obtained using IK model. The

tracking error is defined as e = qd − q and Kp,Kd ∈ R4×4 are positive definite matrices
representing the proportional and derivative gains respectively.

Figure 2.10: Diagram of PD-FF controller scheme

10.2 Simulation results

The proposed PD-FF control scheme will be validated through simulation of a trajectory
tracking problem for the VELOCE robot. The reference trajectory presented in Section 9,
which consists of a sequence of 22 points connected by 5th order polynomial with a period
T = 0.5 s, will be used for these simulations. The values of the controller’s parameters
were inspired from [38] and are summarised in Table 2.2.

Table 2.2: Parameters of PD-FF controller

Parameters Value

Kp diag(600, 600, 600, 600)
Kd diag(4, 4, 4, 4)
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Figure 2.11: Evolution of Cartesian coordinates of the end-effector

Figure 2.12: End-effector’s Tracking Error
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Figure 2.13: Evolution of the Control Inputs

10.3 Discussions and observations

The plots are focused on the interval
[
2 6

]
s to clearly illustrate the system’s signal

variations. We observe that the Cartesian tracking performance of the PD-FF controller
is good, as we can see from Fig 2.11, the desired trajectory is followed by the manipulator
with no apparent deviations. This is reflected by the acceptable ranges of the Cartesian
tracking errors depicted in Fig 2.12. The control input torques for the actuators are
illustrated in Fig 2.13, we can see that they are in the allowable ranges of the manipulator’s
actuators (maximum torque of 127 N.m) with the maximum value reached during the
transition phase being 11 N.m.

The model-based term improves the tracking performance compared to using a PD
controller alone and effectively reduces the control effort required from the PD controller,
leading to smoother and more stable control actions. However, this approach has limi-
tations when there are parametric variations in the system’s model, as the feed-forward
term is based on nominal dynamics and cannot compensate for parametric uncertainties.

Another issue is the unmodeled dynamics, which become more pronounced in critical
operating conditions, such in the case of high speed, accelerations, and heavy payloads.
This control scheme may not fully eliminate their effects. Additionally, one of the main
drawbacks of classical controllers like PD controller is the requirement to redesign pa-
rameters when modifying the initial reference trajectory. This redesign process can be
time-consuming and may not be practical for applications requiring frequent trajectory
changes.
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11 Conclusion

Through this chapter, we have presented both kinematics and dynamics models of the
VELOCE robot. The inverse and direct kinematic models, which were designed based
on the geometry of the manipulator, will be used to derive the desired trajectory from
Cartesian to joint space and to determine the end-effector’s coordinates based on the
measurement of the actuator joints. After introducing some simplifying assumptions, the
dynamic model of the VELOCE robot was presented in a form suitable for joint space
control.

Regarding trajectory generation, 5th order polynomials were proposed for generating
a sequence of displacements of the end-effector, designed to be singularity-free. Finally,
the simulations of the VELOCE model with a PD-FF controller provided insight into
the dynamics of the system, highlighting the coupling between the actuator joints and
the nonlinearities in the robots dynamics. Because of the limitations of this approach
exploring better strategies to handle uncertainties and disturbances, such as adaptive and
robust control became a necessity.

In the next chapter, the theoretical framework for two adaptive control schemes pro-
posed for the VELOCE robot will be presented, namely: Model Reference Control with a
PD feedback (MRAC-PD) and L1 adaptive controller with a feed-forward term (L1-FF).
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1 Introduction

According to Astrom and Wittenmark [60], ”an adaptive controller is a controller with
adjustable parameters and a mechanism for adjusting the parameters”. Adaptive control
is a well-researched topic in control theory that spans several decades and which has
proven efficient in dealing with systems with uncertainty. Robot manipulators, partic-
ularly PKMs, are nonlinear systems with significant uncertainties, in addition, they are
often used in environments with constantly changing characteristics. Consequently, nu-
merous adaptive control strategies have been proposed and tested for these systems. A
comprehensive overview of adaptive control schemes for robot manipulators can be found
in [61].

In this chapter, the theoretical framework and necessary background on two adaptive
control methods proposed for controlling the VELOCE robot are provided. After a gen-
eral introduction to MRAC methods, including a brief history and basic concepts, the
development of an MRAC control law with MIT-based adaptation rule for second-order
systems is presented in detail, to be used later in Chapter 4 for VELOCE robot control.
Following this, L1 adaptive control method is introduced, with a detailed layout of its
architecture and an explanation of the design process of the control law which will be
implemented in Chapter 6 for the VELOCE robot.

2 Model Reference Adaptive Control (MRAC)

In this section, we will present the fundamental concepts related to MRAC. Additionally,
we will detail the design steps of an MRAC controller using the MIT-based adaptation
rule for a second-order system.

2.1 Background on MRAC

2.1.1 Brief history of MRAC

The first emergence of adaptive control resulted from efforts to enhance the performance
of autopilots in the aerospace industry during the 1950s [60]. With advancements in
aircraft technology, the existing classic, constant-gain, linear feedback controllers proved
inadequate for achieving desired performance across large flight envelopes. This inade-
quacy led to the development of the first Model Reference Adaptive Control (MRAC)
designs by Whitaker [62]. However, a significant drawback for implementing these types
of controllers was the absence of a theoretical framework to prove their stability. Conse-
quently, the research community shifted its focus from adaptation problems to stability
issues.

In the 1960s, Parks introduced the first MRAC adaptation law based on Lyapunov
stability theory [63], and at the same time, the MIT research team developed and tested
the MIT rule for parameters fitting. These advancements were made possible due to
significant progress in stability theories such as Lyapunov theory, hyper-stability, and
passivity theory, as well as advances in the field of system identification. Between the
1970s and 1990s, intensive research work to improve and understand the MRAC scheme
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produced a relatively complete theory supported by a large body of literature.([64], [65],
[60], [66]).

From the 1990s to the present, more advanced controllers have been developed that
combine adaptive controllers with nonlinear control methods such as fuzzy control, neural
networks, and sliding mode control. These developments have significantly improved the
robustness of adaptive control systems in a variety of complex and changing environments.

2.1.2 Model Reference Adaptive Systems (MRAS)

Originally, the model-reference adaptive system (MRAS) was introduced to address per-
formance requirements defined by a reference model, which generates an expected response
based on a given command signal.

These systems comprises two primary loops: an internal loop and an external loop.
The internal loop consists of the plant and controller arranged in a closed-loop feedback
structure, while the external loop adjusts the controller’s parameters to find their optimal
values thus minimizing the error between the desired model and the actual plant system.

In implementing MRAS, it is assumed that the plants have known structures but
unknown parameters. This means that for linear systems, the number of zeros and poles
of the plant must be known, the equivalent for nonlinear systems is the structure of the
dynamic equations

The main components of an MRAS are explained below based on [67], [68]:

• Reference model
A reference model is utilized to specify the ideal response of the plant when receiving
external command signals in terms of performance metrics, such as rise time and
overshoot, in addition to robustness specifications such as phase and gain stability
margins.
Additionally, the selection of this reference model must take into account the as-
sumptions about the plant’s structure and its dynamics, including the plant’s order
and the presence of unstable zeros for non-minimum phase systems.
Typically, a reference model are chosen as LTI systems aiming to bring the dynamic
behaviour of a complex system to that of a simple and stable one.

• Controller
The controller is dependent on the system’s signals — such as tracking error, output,
and reference signals— and some adjustable parameters.
In most cases, the control law is linear in terms of the adaptation parameters to
ensure stability and tracking convergence. Typically, the design of these mechanisms
involves a trade-off between performance and robustness.
The designed controller is supposed to accomplish ideal performance in the absence
of uncertainty, which is referred to as nominal controller. However, when parameter
variations or external disturbances occur, the adaptation mechanism adjusts the
controller parameters to maintain the desired performance.

• Adaptation mechanism
Adaptation mechanisms are designed to adjust control parameters in real-time, en-
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suring the system output follows the desired reference model despite external dis-
turbances and parameter variations.
These mechanisms aim to maintain system stability and convergence of the esti-
mated parameters to their ideal values through various mathematical approaches
(shown in Fig 3.1) , such as Lyapunov theory, the MIT rule, and passivity theory
as detailed in [69].
While different approaches may offer unique advantages, their outcomes are often
equivalent in terms of performance and stability. In this work, we will use the MIT
rule-based method to develop and implement the adjustment mechanism.

Figure 3.1: Typical adaptation mechanisms used for MRAC schemes

The MRAC schemes can be implemented using either direct or indirect approaches:

2.1.3 Direct MRAC

In the direct MRAC approach, the controller parameters are adjusted based on an adjust-
ment laws that directly update the control gains to minimize the tracking error, ensuring
that the system output converges to the desired trajectory.

Figure 3.2: Direct MRAC structure

2.1.4 Indirect MRAC

This approach involves estimation of the system’s parameters using an adaptive estimator
based on identification techniques such as Recursive Least Squares and requires a linear
parametrization of the dynamic model of the plant. The estimated parameters are then
used to recompute the control gains, assuming the parameter estimate is the true value.

51



Chapter 3. Adaptive Control for PKMs 52

Figure 3.3: Indirect MRAC structure

2.2 MRAC with MIT-rule based adaptation

As previously mentioned, the VELOCE dynamic model are described using time vary-
ing, nonlinear differential equations as in Equation (2.20). However, for the purpose of
designing the MRAC controller, we assume the manipulator’s model to be a second-order
system with unknown parameters. It can be expressed in the following form:

ÿ = −a1ẏ − a2y + u (3.1)

with y being the system’s output signal, u is the command signal and a1 and a2 are the
unknown plant parameters.

We choose the reference model to be matched by the closed loop plant as:

ÿm = −am1 ẏm − am2 y + uc (3.2)

where ym represents the reference model output and uc is the reference signal.

2.2.1 Adaptive control law

A general linear adaptive controller can have the following expression according to [60]:

Ru(t) = Tuc(t)− Sy(t) (3.3)

T , R and S are polynomials which degrees are determined such that the controller is both
causal and has the minimum possible degree. According to [70], a valid control law for a
second order plant to follow a second order reference model can be expressed as follow:

u(t) = uc(t)− θ1ẏ(t)− θ2y(t) (3.4)

with θ1 and θ2 are the adjustable parameters of the adaptive controller.

2.2.2 Adaptation mechanism

The MIT rule, developed by researchers at the Massachusetts Institute of Technology
(MIT) in the 1960s, was initially used to design the autopilot system for aircraft. It
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ensures that the estimated parameters of the controller are adjusted to minimize a specific
loss function, often a quadratic function of the tracking error e = y − ym as expressed
below:

J(θ) =
1

2
e2 (3.5)

The gradient descent method is used to derive the update rules for the estimated
parameters, guaranteeing the minimization of the criteria in Equation (3.5). We end up
with an adaptive law that is dependent on the partial derivative of the objective function
with respect to the estimated parameters:

θ̇ = −γ∇J(θ) = −γe∇e(θ) (3.6)

By replacing Equation (3.4) into (3.1), the tracking error becomes:

e = −a1ẏ − a2y − θ1ẏ − θ2y + am1 ẏm + am2 y (3.7)

By using Equation (3.7) and (3.6), we derive the following adaptive laws:

dθ1
dt

= −γ1e
∂y

∂θ1
(3.8)

dθ2
dt

= −γ2e
∂y

∂θ2
(3.9)

Here, ∂y
∂θ1

and ∂y
∂θ2

are called the sensitivity functions, γ1 ∈ R+ and γ2 ∈ R+ are the
adaptation gains.

Using Equations (3.4) and (3.1), we obtain:

∂ÿ

∂θ1
= −a1

∂ẏ

∂θ1
− a2

∂y

∂θ1
− ẏ − θ1

∂ẏ

∂θ1
− θ2

∂y

∂θ1
(3.10)

∂ÿ

∂θ2
= −a1

∂ẏ

∂θ2
− a2

∂y

∂θ2
− y − θ1

∂ẏ

∂θ2
− θ2

∂y

∂θ2
(3.11)

By assuming that the rate of change for the adaptive parameters is slow; i.e the
changes of ÿ and ẏ with respect to θ1 and θ2 are small, we can interchange the order
of differentiation. Then applying the Laplace transform to Equations (3.10) and (3.11)
result in the following expressions:

∂y

∂θ1
=

1

s2 + (θ1 − a1)s+ (θ2 − a2)
ẏ (3.12)

∂y

∂θ2
=

1

s2 + (θ1 − a1)s+ (θ2 − a2)
y (3.13)

The MIT rule approximates these sensitivity derivatives with their online estimates
since a1 and a2 are unknown. However, global closed-loop stability and convergence of the
tracking error to zero are not always provable when using approximations of the sensitivity
functions. Nonetheless, simulations have shown that the MIT rule and other approxima-
tion techniques perform well with small adaptive gain and low-amplitude reference input
signals [70].
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The estimates of a1 and a2 are derived based on the following matching conditions:

â1 = am1 + θ1 (3.14)

â2 = am2 + θ2 (3.15)

Substituting Equations (3.14) and (3.15) in (3.12) and (3.13), the approximated sensitivity
functions are obtained:

∂y

∂θ1
= − 1

s2 + am1 s+ am2
ẏ (3.16)

∂y

∂θ2
= − 1

s2 + am1 s+ am2
y (3.17)

Finally, the update rules of the adaptive parameters of the controller are given as
follow:

dθ1
dt

= γ1
1

s2 + am1 s+ am2
eẏ (3.18)

dθ2
dt

= γ2
1

s2 + am1 s+ am2
ey (3.19)

Since the response of the plant and stability of the MRAC system with the MIT-
rule based adaptation depends upon the adaptation gain γ, the choice of this parameter
becomes extremely important. In addition, according to [60] the value of γ depends on
the amplitudes of the system’s signals (such as the reference command uc and the plant’s
output signal y ). In order to mitigate this issue, it is preferable to use the normalized
version of the MIT-rule.

The adjustment rules given in Equation (3.18) and (3.19) are modified to become:

dθ1
dt

= γ1
φ1

ε+ φ2
1

e (3.20)

dθ2
dt

= γ2
φ2

ε+ φ2
2

e (3.21)

with:

φ1 =
1

s2 + am1 s+ am2
ẏ (3.22)

φ2 =
1

s2 + am1 s+ am2
y (3.23)

ε is a positive number, which is introduced to remove the issue of possible division by zero
if φ1 or φ2 have small values.

3 L1 adaptive control

3.1 Background on L1 adaptive control

In the late 1980s, several improvements to the stability and robustness of MRAC systems
were introduced in various papers. Notable examples include the σ-modification [71]
and the ε -modification [72] which emerged after thorough analysis of instability causes
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in adaptive methods available at that time. These methods aim to address transient
response issues and ensure boundedness of adaptive parameters by proposing limitations
on the adaptation loop gain i.e limiting the bandwidth of the controller.

However, high adaptation rates are necessary in adaptive controllers to respond to
changes in initial conditions, reference inputs, and uncertainties for satisfactory perfor-
mance. Nevertheless, these methods left some issues unintended such as undesirable fre-
quency characteristics and necessity for persistent parameter excitation for convergence
leading to poor transient behavior [73].

As a result, the L1 adaptive control method was developed by Hovakimyan and Cao
[74], it ensures decoupling between the adaptation and control loop hence allowing the
selection of high adaptation gains, limited only by hardware constraints, without loss of
robustness . It was first proposed for flight control as an alternative to gain schedul-
ing guaranteeing uniform performance both in transient and steady-state operation thus
eliminating the need for gain scheduling of the adaptation rates [75].

An other important feature is that this approach allows prediction of closed-loop sys-
tem response a priori; i.e., ensuring that signals bounds are satisfied through controller
design feature which makes L1 adaptive control suitable for numerous safety-critical ap-
plications. Theoretical proofs of guaranteed robustness bounds, stability margins, and
tracking performance in transient and steady-state responses for the L1 adaptive control
are well-established.

3.2 L1 adaptive control architecture

Like most adaptive controller the design process consists of determining an adaptive con-
trol law with adjustable parameters through an adaptation mechanism, along to these
elements, this control scheme contains a state predictor for estimating the parameters
of the control law and a low-pass filter that limits the control bandwidth for decoupling
the control and adaptation loops allowing thereby for fast adaptation with guaranteed
robustness (as shown in Fig 3.4). For the development of the L1 adaptive controller, we
consider single-input single-output linear time-invariant systems described by the follow-
ing state-space equations:

ẋ(t) = Ax(t) + bu(t), x(0) = x0

y(t) = c>x(t)
(3.24)

where x(t) ∈ Rn is the states vector of the system, u(t) ∈ R is the control input,
b, c ∈ Rn are the input and output vectors respectively (which are known), y(t) ∈ R is
the output of the system.
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Figure 3.4: L1 adaptive control architecture

Since the L1 adaptive controller was inspired from the MRAC approach, they have
similar control objectives. In the case of L1 control, he primary goal is to determine an
appropriate control law u(t) that ensures the system’s output y(t) tracks a specified ref-
erence signal uc(t) with desired performance specifications and guaranteed boundedness
of all system signals. The design of the control u(t) is based on the following assumption:

Assumption 3.2 With the system state matrix A ∈ Rn×n considered unknown, we
assume the existence of a Hurwitz matrix Am ∈ Rn×n and a vector θ ∈ Rn of perfect
parameters, with the pair (Am, b) controllable and the difference between Am and A can
be expressed as Am − A = bθT . In addition, it is assumed that the parameter vector θ

belongs to a given compact set Θ.
This assumption allows us to rewrite the system in 3.24 as follows:

ẋ(t) = Amx(t) + b
(
u(t)− θ>x(t)

)
, x(0) = x0

y(t) = c>x(t)
(3.25)

3.2.1 Adaptive control law

In the case where the nominal dynamics of the system are known, the ideal controller
would be:

uideal (t) = η(t) + kguc(t) (3.26)

where η(t) = θTx(t) and kg = 1/
(
cTA−1

m b
)

is the inverse of the dc gain of the system (3.25),
which gives unit dc gain of the closed-loop system ensuring zero steady-state error.

Substituting Equation (3.26) in the system (3.25) gives the following desired reference
system:

ẋm(t) = Amxm(t) + b kg uc(t), x(0) = x0

ym(t) = cTxm(t)
(3.27)

However, this control law is problematic because the uncertainties in the system state
matrix A are unknown and need to be estimated online. An adaptation mechanism is
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required to ensure the convergence of the estimation errors to zero. Thus, the control law
becomes:

u(t) = η̂(t) + kguc(t) (3.28)

with η̂(t) = θ̂Tx(t).

The L1 adaptive scheme introduces an additional element compared to conventional
adaptive controllers: a low-pass filter that separates the estimation and control band-
widths. The final adaptive control law, in its Laplace form, is given by:

u(s) = C(s) (η̂(s) + kguc(s)) (3.29)

where C(s) is a bounded-input bounded-output strictly proper transfer function with
C(0) = 1.

To ensure the stability of the control system, the following L1-norm condition, as
demonstrated in [76] must be satisfied:

‖G(s)‖L1L < 1 (3.30)

where:
G(s) = H(s)(1− C(s)), H(s) = (sI− Am)

−1 b, L = max
θ∈Θ

‖θ‖1

and ‖G(s)‖L1 the L1 norm of the system G(s) ( a definition of L1 norm is given in
Appendix 2). This condition needs to be considered when selecting the reference model
specifications and during the design of the low-pass filter.

3.2.2 State predictor

The disturbance estimation method for L1 adaptive control architecture uses a different
methodology, instead of using the parametric estimation error in the adaptation laws, a
state predictor is included in its structure and the prediction error is used for updating the
adaptive control law. The following state predictor of the system in (3.25) is considered:

˙̂x(t) = Amx̂(t) + b(u(t)− θ̂x(t)), x̂(0) = x0

ŷ(t) = cT x̂(t)
(3.31)

The dynamics of the prediction error, defined as x̃(t) = x̂(t)− x(t) , can be obtained
by subtracting the system dynamics from those of the predictor as follows:

˙̃x(t) = Amx̃(t)− bθ̃(t)x(t) (3.32)

From [76], the upper bound for the prediction error at any time is given by (the proof
is provided in Appendix 3):

‖x̃‖L∞ ≤

√
θmax

λmin(P )γ
, θmax = 4max

θ∈Θ
‖θ‖2 (3.33)

with λmin(P ) the minimum eigenvalue of P and γ the adaptation gain. It follows that
by increasing the adaptation gain γ the tracking error can be made smaller.
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3.2.3 Adaptation laws

A projection-based adaptation law is used to compute the uncertainties estimate θ̂(t) as
expressed:

˙̂
θ(t) = γ Proj(θ̂(t), x(t)x̃(t)Pb), θ̂(0) = θ0 (3.34)

where γ ∈ R+is the adaptation gain and P = P T > 0 the solution for the algebraic
Lyapunov equation AT

mP + PAm = −Q, for an arbitrary choice of Q = QT > 0.

The projection operator (as defined in Appendix 4) is used to avoid the problem of
parameters drift by making sure that the values of estimates remain within the compact
set Θ.

4 Conclusion

This chapter established the theoretical foundation for implementing the proposed adap-
tive control methods on the VELOCE manipulator since adaptive control has proven
essential for addressing the nonlinearities and uncertainties inherent in robotic systems.
After providing historical context on MRAC approach, the key MRAC components were
discussed, including the reference model, controller, and adaptation mechanism. The
chapter then presented the adaptive control law and the associated adaptation mech-
anism based on a normalized version of the MIT rule, which helps avoid dependence
between the adaptation gain value and the system’s signal levels.

Additionally, the L1 adaptive control method was introduced as a technique enabling
the application of adaptive control in safety-critical environments. This method’s archi-
tecture, featuring a state predictor and low-pass filter, facilitates fast adaptation while
maintaining guaranteed performance and robustness. The chapter offered a comprehen-
sive overview of both adaptive control strategies, laying the groundwork for their imple-
mentation in subsequent chapters.

In the next chapter, we will present the fundamentals of Fractional Order Calculus
and discuss its application to control theory. Additionally, a numerical approximation
technique in the time domain for fractional order systems will be introduced. This will be
accompanied by simulations that demonstrate the method’s implementation and provide
insights into the characteristics of fractional systems.
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1 Introduction

In recent years, fractional calculus has been used in control theory and industrial automa-
tion and proved to bring significant improvements to control quality through increased
precision in performance and energy consumption efficiency [77].

This chapter aims to present the fundamentals of fractional order (FO) calculus the-
ory. Initially, it provides background on the origins and typical applications of fractional
calculus. Approximation methods for FO systems are discussed then the Singularity
method, also known as Charef’s approximation [78], is presented. The chapter concludes
with numerical applications using this method, highlighting the features of FO systems
and illustrating the working principles of the Singularity technique.

2 Background of fractional order calculus

Fractional order calculus, a branch of mathematics that studies derivatives and inte-
grals of arbitrary orders (whether real or complex), extends the concept of integer-order
derivatives and integrals to non-integer orders [79]. The field’s development dates back
300 years, with its theoretical foundation largely established in the nineteenth century.
Initially, fractional order calculus was a niche subject primarily discussed among math-
ematicians. Early theoretical contributions were made by Euler and Lagrange in the
eighteenth century, with systematic studies emerging in the early to mid-nineteenth cen-
tury by scholars such as Liouville, Riemann, and Holmgren [80].

This lack of early attention can be attributed to several factors [81], including the
absence of a standardized mathematical framework, the difficulty in providing simple
geometric interpretations, and the complexity of solving fractional calculus problems.
Additionally, integer-order calculus was often sufficient for simpler problems. However,
fractional order calculus has proven essential for providing more accurate descriptions of
complex dynamical systems. Consequently, it has found successful applications across
various fields such as anomalous diffusion, control theory, signal and image processing,
mechanics, dynamic systems, biology, and environmental science [82].

It has been particularly valuable in control engineering applications since fractional
dynamics are best compensated with fractional controllers, [83]discusses applications re-
lated to fluid level control in multi-tank systems, magnetic levitation system control, and
the control of ion-polymer metal composite actuators.

Interest in applying fractional calculus in system theory and feedback control has led to
the development of several Fractional Order Controllers (FOC). The French research group
CRONE, led by Oustaloup, created tools for identifying and controlling fractional dynamic
systems [84] including the Oustaloup approximation method. Podlubny introduced the
fractional-order PID (FOPID) controlle [85] which, with its additional ”tuning knobs,”
allows precise adjustments that conventional integer-order systems cannot achieve. Other
notable controllers include the Tilted Proportional and Integral (TID) Controller and
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Fractional Lead-Lag Controller [86].
Several personal computer software packages have been developed to facilitate frac-

tional system identification and controller design tasks. Notable MATLAB toolboxes
include the CRONE toolbox, Ninteger toolbox, FOTF toolbox, as well as the Fractional
Order Modelling and Control toolbox (FOMCON).

3 Fractional order operator

Fractional calculus extends the concepts of integration and differentiation to non-integer
order using the fundamental diff-integral operator aD

α
t given by:

aD
α
t =


dα

dtα
: R(α) > 0

1 : R(α) = 0∫ t

a
(dτ)−α : R(α) < 0

(4.1)

where a and t indicate the limits of the operation and α represents the fractional order.
Numerous definitions of the fractional operator have been proposed in the literature

[82] , each developed based on distinct principles and within varying mathematical frame-
works. However, their common objective remains consistent: to facilitate the incorpora-
tion of the differintegral operator in modeling or resolving real-world problems. The most
frequently used definitions are Riemann-Louiville, Grünwald-Letnikov and Caputo. Since
the Caputo definition is particularly popular in engineering applications, its definition is
presented below.

Definition 3 (Caputo Definition)
As stated in [85], this definition allows initial conditions such as y(0), y′(0), not like
fractional condition such as y0.5(0). It is defined as follow:

aD
α
t =

1

Γ(n− α)

∫ t

a

fn(τ)

(t− τ)α−n+1
dτ

where, n is an integer which satisfies the condition n− 1 < α < n, α is a real number and
a and t are the limit of integration.

3.1 Properties of fractional order operators

The main properties of fractional derivatives and integrals are as follows:

1. If f(t) is an analytic function of t, then its fractional-order derivative Dαf(t) is an
analytic function of both t and α.

2. For α = n, where n is an integer, the operation Dαf(t) yields the same result as
classical integer-order differentiation n.

3. For α = 0, the operation Dαf(t) is the identity operator: D0f(t) = f(t).

4. Fractional-order differentiation and integration are linear operations:

Dαaf(t) +Dαbg(t) = aDαf(t) + bDαg(t)
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5. The additive law (property of the semi-group)

DαDβf(t) = DβDαf(t) = Dα+βf(t)

is valid under certain constraints on the function f(t).

6. The Laplace integral transform in an essential tool in dynamic system and con-
trol engineering. A function F (s) of the complex variable s is called the Laplace
transform of the original function f(t) and defined as

F (s) = L [f(t)] =

∫ ∞

0

e−stf(t)dt

The original function f(t) can be recovered from the Laplace transform F (s) by
applying the reverse Laplace transform defined as

f(t) = L −1[F (s)] =
1

j2π

∫ c+j∞

c−j∞
estF (s)ds,

where c is greater than the real part of all the poles of function F (s).

4 Approximation of fractional order systems

A crucial step in implementing a fractional order transfer function (as defined in 4.1) dig-
itally is the numerical evaluation or discretization of the fractional-order differentiator in
the Laplace domain sr. There are two general discretization methods: direct and indirect.

Indirect methods, as described in [87], involve two steps. Firstly, frequency domain
fitting is performed in the continuous-time domain, followed by discretizing the fitted
s-transfer function. On the other hand, direct methods rely on approximating fractional
transfer functions using either integer or digital transfer functions - an approach more
practical and cost-effective due to ease of implementation with integer transfer functions.
A comprehensive review of various approximation methods and techniques for continuous
and discrete fractional-order models was conducted in [88]. In this work, we will adopt
the singularity function approximation technique developed by Charef in [78].

4.1 Approximation using Singularity function (Charef’s Method)

Charef’s approach aims to approximate the fractional order Laplace operator (defined
in 4.1) using rational functions of first order. These functions can be visualized as cas-
caded branches (Fig ), with multiple pole-zero pairs, allowing for an approximation of the
fractional-order function across a specified frequency range [78].

Definition 4.1 Assuming zero initial conditions, the Laplace transform is defined as
follows:

L [Dαf(t)] = sαF (s). (4.2)

62



Chapter 4. Fractional Order Calculus 63

Figure 4.1: Bode diagram of fractional order system and its approximation using Charef’s method

4.2 Fractional order integrator

The transfer function of the fractional integration operator is presented below:

HI(s) =
1

sβ
(4.3)

where β is a positive number ranging from 0 to 1. For a given frequency interval
[ωl, ωh] this operator can be approximated by a first order fractional system as follow:

HI(s) =
KI(

1 + s
ωc

)β (4.4)

We need to choose the frequency interval [ωl, ωh] such that ω > ωc, HI(s) can be
written as:

HI(s) =
KI(
s
ωc

)β =
KIω

β
c

sβ
=

1

sβ

The expression of KI is given by 1

ωβ
c

where ωc is the cut-off frequency and can be cal-

culated as ωc =
√

10
y
10 − 1 with y representing the maximal error between the fractional

order slope and the integer order one.

HI(s) =
KI(

1 + s
ωc

)β = KI

∏N−1
i=0

(
1 + s

zi

)
∏N

i=0

(
1 + s

pi

) (4.5)

The pairs of poles and zeros (pi, zi) of the rational transfer functions presented in
Equation (4.5) are then calculated after selecting the approximation error y (in dB ) and
the approximation bandwidth ωmax - it should be 100 times greater than ωh .

pi = (ab)ip0, pour i = 0, 1, . . . , N

zi = (ab)iap0, pour i = 0, 1, . . . , N − 1
(4.6)
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where a and b are the position ratios between pi and the next zi , their expressions
are given below:

a = 10
y

10(1−β) , b = 10
y

10β (4.7)

with
p0 = ωc

√
b, z0 = ap0 (4.8)

The total number of singularities is determined based on the limit frequency of the
approximation bandwidth is equal to N + 1:

N = ceil

1 +
ln
(

ωmax
p0

)
ln(ab)

 (4.9)

4.3 Fractional order systems

A fractional-order continuous-time dynamic system can be expressed by a fractional dif-
ferential equation of the following form [82]:

anD
αny(t) + an−1D

αn−1y(t) + · · ·+ a0D
α0y(t) =

bmD
βmu(t) + bm−1D

βm−1u(t) + · · ·+ b0D
β0u(t),

where (ai, bj) ∈ R2 and (αi, βj) ∈ R2
+.

Applying the Laplace transform with zero initial conditions, the transfer function
obtained is as follows:

G(s) =
Y (s)

U(s)
=

bms
βm + bm−1s

βm−1 + · · ·+ b0s
β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
.

4.3.1 First order systems

For a fractional first order system with the following transfer function:

G(s) =
1(

1 + s
pt

)β (4.10)

with 1/pt being the time constant of the system and β the fractional order coefficient
(between 0 and 1).

The approximation using the Singularity method of G(s) is presented below:

G(s) =
1(

1 + s
pt

)β =

∏N−1
i=0

(
1 + s

zi

)
∏N

i=0

(
1 + s

pi

) (4.11)

The poles and zeros are calculated using Equation (4.6) , (4.8) and (4.7) by replacing ωc

with pt. The number of singularities needed is obtained using Equation (4.9).
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4.3.2 Second order systems

For second order systems having transfer functions in this form:

G(s) =
1(

s2

ω2
n
+ 2ξ s

ωn
+ 1
)β (4.12)

where ωn is the resonance frequency, ξ the damping coefficient and β the fractional
order coefficient (between 0 and 1). We distinguish two cases:

• Case 1: 0 < β < 0.5

We can rewrite Equation (4.12) as follow:

G(s) =

(
s
ωn

+ 1
)(

s
ωn+1

)η(
s2

ω2
n
+ 2α s

ωn
+ 1
) (4.13)

with α = ξβ and η = 1 − 2β. We can approximate Equation (4.13) using the
following expression:

G(s) ≈

(
s
ωn

+ 1
)

(
s2

ω2
n
+ 2α s

ωn
+ 1
)∏N−1

i=1

(
1 + s

zi

)
∏N

i=1

(
1 + s

pi

) (4.14)

The poles and zeros are calculated from the following expressions:

pi = (ab)i−1az1 i = 1, 2, 3, . . . , N

zi = (ab)i−1z1 i = 2, 3, . . . , N − 1
(4.15)

with:
b = 10

y
10η , a = 10

y
10(1−η)

z1 = ωn

√
b, η =

log(a)
log(ab)

(4.16)

The number of poles and zeros can be calculated as in the previous case using Equa-
tion (4.9).

• Case 2: 0.5 < β < 1

The approximation of the transfer function in Equation (4.12) is given as follow:

Ge(s) =

(
s
ωn

+ 1
)

(
s2

ω2
n
+ 2α s

ωn
+ 1
)(

s
ωn+1

)η (4.17)

with α = ξβ and η = 2β − 1.
Here the poles and zeros are obtained from the previous Equation (4.15) and (4.16)
by replacing z1 by p1.
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4.4 Numerical applications

To illustrate the working principle of the method described above, we will present numeri-
cal examples through simulation code in MATLAB for different values of β, the fractional
order coefficient and y the approximation error in dB. The parameters’ values used are
shown in Table 4.1.

System Transfer function y (dB) ωmax (rad)
First order

system
G(s) = 1

(1+ s
100

)β
1 105

Second order
system

G(s) = 1

( s2

104
+2 0.9

100
s+1)β

1 106

Integrator G(s) = 1
sβ

1 106

Table 4.1: Simulation parameters for fractional first, second order systems and fractional integrator

Figure 4.2: Bode diagrams for different values of
maximum approximation frequency ωmax

Figure 4.3: Bode diagrams for different values of
maximum approximation error y

The results shown in Fig 4.4 indicate that the fractional-order characteristics, including
a fractional slope of −20β, dB/dec and a constant phase, are only approximated within
the specified frequency range (limited by ωmax).

Additionally, it is noteworthy that increasing the value of ωmax leads to a higher-order
approximating transfer function, which in turn increases the computational complexity.
Furthermore, from 4.3 we remark that the approximation of fractional-order systems is
more accurate when the approximation error y is smaller.
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(a): 1st order system

(b): 2nd order system

(c): Fractional integrator

Figure 4.4: Bode diagrams for different values of fractional order coefficient β

67



Chapter 4. Fractional Order Calculus 68

5 Conclusion

In this chapter, we have covered the fundamental aspects of fractional order (FO) calculus
and highlighted its abundant applications in control theory thanks to an important body
of research that provided a comprehensive framework for FO control applications.

A critical aspect in applying FO calculus in control and automation is the development
of accurate numerical approximation methods. We presented the Singularity method, an
approximation technique in the frequency domain, and detailing the steps for approxi-
mating fractional systems of first and second order as well as fractional integrators.

Numerical simulations were provided to demonstrate the effects of various parameters
on the accuracy of the approximation, enhancing our understanding of the method’s
practical implications. The insights and techniques discussed in this chapter will be
utilized in subsequent chapters to develop fractional adaptive controllers for the VELOCE
robot.
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1 Introduction

In this chapter, we design a Fractional Order Model Reference Adaptive Controller (MRAC)
with a Proportional-Derivative (PD) component for the VELOCE robot. We begin by
outlining the motivation for selecting this specific control scheme, and a clear statement of
the control objectives. Next, we present the theoretical foundation of the control law and
explain the integration of Fractional Order (FO) adjustment rules into this control scheme.
Once the control design is established, we describe the simulation setup and present the
results under both nominal conditions and in the presence of payload variations.

2 Motivation and objectives

The dynamics of robotic manipulators are often modeled by second-order differential
equations. As a result, numerous studies have focused on developing and implementing
classical linear controllers, such as PD controllers, due to their simplicity and easy im-
plementation especially in industrial settings [40], [36]. However, especially in the case of
PKMs, the nonlinearities and couplings between joint motions become more pronounced
in applications requiring high speeds and accelerations, causing the PD controller to be
insufficient in achieving the required performance and accuracy, as discussed in Section
2.10. Therefore, other alternatives have been considered, such as adaptive control, more
precisely the Model Reference Adaptive Control (MRAC) scheme.

The capability of MRAC approach to improve the performance of robot manipulators
was demonstrated in multiple works, for instance, in [44] an an adaptive control scheme
based on MRAC consisting of a joint space PD controller with adjustable gains was pro-
posed to control a 6-DOF parallel manipulator based on the Stewart platform prototype
used to emulate space operations. Moreover, [89] provided an analysis of MRAC appli-
cation in robotic manipulators, particularly focusing on adaptation based on Lyapunov
stability implemented in operational. In another study by [90] MRAC was employed to
control a 4-DOF robot manipulator, outperforming traditional controllers such as PID
and model-independent controllers based on time-delay estimation techniques. Further-
more, [91] explored the integration of MRAC with Active Inference Control (AIC) to
achieve high performance even in the presence of large unmodeled dynamics for a 7-DOF
robot arm.

Instead of using classical and adaptive controllers separately, a more appealing ap-
proach is to combine the simplicity and ease of implementation of the PD controller with
an adaptive element based on MRAC theory to compensate for the uncertainties and non-
linearities in the manipulator’s dynamics. The objective in this section is to develop an
MRAC control scheme for the VELOCE robot comprising two main parts: a PD feedback
component with constant gains alongside an adaptive control law with adjustable param-
eters updated through MIT-based adaptation mechanism. This approach was tested for
marginally stable second order processes with dead time [92], [93] and has proven to be
efficient in reducing overshooting, enhancing tracking performance, and improving ro-
bustness to payload variations. The parameters of the PD controller, in addition to the
adaptation gains, will be calculated using the PSO algorithm aiming to attain optimal
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performance.

3 Design of MRAC-PD controller for VELOCE robot

The controller is designed in the joint space, with the actuators’ torques representing the
command signal of the system. The joint coupling is not explicitly considered because it
is treated as part of the nonlinearities that the adaptive component of the controller is
designed to address. As a result, the robot system is modeled as four independent linear
time-varying systems. The control law, expressed in terms of the actuators’ torques,
consists of two main components (Fig 5.1):

Γ = ΓPD + ΓAD (5.1)

with ΓPD representing the PD feedback control signal and ΓAD representing the adaptive
controller output.
The reference model is a second-order system as expressed in Equation( 5.2 ):

q̈m = −am1 q̇m − am2 qm + bmqc (5.2)

Figure 5.1: Structure of the (MRAC-PD) control system

Based on Equation (3.3), we derive the following adaptive control law:

ΓAD = qc − θ1q̇ − θ2q (5.3)

The PD controller is based on the error between the system and the reference model, as
shown below:

ΓPD = Kp(qm − q) +Kd(q̇m − q̇) (5.4)

with Kp and Kd are the proportional and derivative gains, respectively. Given that the
error is defined as e = q − qm, the final control law becomes as follows:

Γ = qc − θ1q̇ − θ2q −Kpe−Kdė (5.5)

The adjustment rules of the adaptive controller are given in Equation ( 3.18) and (3.19).

71



Chapter 5. MRAC-PD controller for VELOCE manipulator 72

4 Fractional order MRAC with PD controller

There have been significant contributions regarding fractional order adaptive controllers
in recent years. Many approaches have been proposed for the integration of fractional
calculus into MRAC schemes. Some methods involve using fractional order reference
models to improve the set of candidates to be used as a model and allow for more flexibility
when it comes to setting control specifications, as implemented in [94], [95]. This control
scheme was referred to as FOMRAC.

An alternative approach to addressing the fractional adaptation problem has been
modifying the adaptation mechanism to include fractional order adjustment rules. For
example, using fractional integration for MIT-rule-based adaptation [96] showcased better
speed of convergence and stability compared with integer adjustment, along with high
noise rejection capabilities, as reported in [97], [98].

The adaptation laws derived previously in Equation (3.18) and (3.19) can be modified
to include fractional order calculus as follow:

dαθ1
dαt

= γ1
φ1

ε+ φ2
1

e =⇒ θ1 = D−α

(
γ1

φ1

ε+ φ2
1

e

)
(5.6)

dαθ2
dαt

= γ2
φ2

ε+ φ2
2

e = D−α

(
γ2

φ2

ε+ φ2
2

e

)
(5.7)

with D−α the fractional diff-integral operator introduced in Equation (4.1). The tem-
poral evaluation of θ1 and θ2 will involve fractional integration which will be implemented
using the Singularity method presented previously.

5 Simulation setup

The controller’s parameters for this scheme were determined using the PSO algorithm
(complete description found in Appendix 5). The optimisation algorithm was given as
variables the parameters of the PD controller Kp and Kd , in addition to the adaptation
gains of the MRAC controller γ1 and γ2. Distinct adaptation gains were utilized for θ1
and θ2 in the control law, to account for different dynamics of position and velocity. The
parameters used for the PSO algorithm are presented in Table 5.1.

Table 5.1: Parameters of PSO algorithm

Parameters Description Value

C1 Cognitive learning factor 1.6
C2 Social learning factor 1.4
ω Inertia coefficient 0.8
N Swarm size 12
n Number of iterations 80

The cost function used for PSO has a term to account for the tracking error as well
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as the energy of the control signals as expressed below:

J =

∫ T

0

α1|e(t)|+ α2|Γ(t)| dt (5.8)

with α1 = 1 and α2 = 0.02.

Additionally, we selected the reference model to have a fast rising time (0.0076 s) with
minimum overshoot (4.32 %). It has the following form:

Gm(s) =
ω2
0

s2 + 2δω0s+ ω2
0

The controller’s parameters obtained using the PSO algorithm, in addition to the
parameters of the reference model are presented in Table 6.1

Table 5.2: MRAC with PD controller parameters

Parameters Value

Kp 490
Kd 16
γ1 12× 103

γ2 8× 103

ω0 282.84
δ 0.70

6 Simulation results

Using the parameters given above, we run simulations using Simulink to to assess the
performance of the proposed controller under nominal conditions without disturbances, as
well as considering the case of parametric variations. The simulation results are presented
and discussed in the following sections.

6.1 Case 1: Nominal conditions

Under nominal conditions, the manipulator’s model is assumed to be perfectly known,
with no external disturbances or parametric variations occurring. However, in this sce-
nario, the controller still need to compensate for internal disturbances related to the
nonlinear dynamics and coupling between the joints are still present.
Both IO and FO adaptation laws are considered, their simulation results presented and
at the end discussed and compared.

6.1.1 Case 1.1: Integer order adaptation law

To assess the controller’s ability to track different references (like the ones in Fig 2.9), we
first evaluated its performance for a single point-to-point displacement.
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Trajectory 1: Single point-to-point motion

Figure 5.2: Case 1.1- Evolution of the end-effector’s coordinates for trajectory 1

Figure 5.3: Case 1.1 - Evolution of x coordinate for different references
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Figure 5.4: Case1.1 - Evolution of the adaptive control input torques ΓAD(t) for trajectory 1

Trajectory 2: Sequence of point-to-point motion

Figure 5.5: Case 1.1 - Evolution of Cartesian coordinates for trajectory 2

The trajectory proposed here is similar to the example represented in Fig 2.9,con-
sisting of a sequence of points with a time interval of T = 0.5 s for each displacement.
This trajectory more closely resembles a real-world scenario of pick and place task. The
sequence of points used to generate it are given in Appendix 6.

75



Chapter 5. MRAC-PD controller for VELOCE manipulator 76

Figure 5.6: Case 1.1 - Evolution of the actuators’ joints for trajectory 2

Figure 5.7: Case 1.1 - Evolution of Cartesian tracking errors for trajectory 2
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6.1.2 Case 1.2: Fractional order adaptation law

The fractional coefficient is set for β = 0.8.

Figure 5.8: Case 1.2 - Evolution of end-effector’s coordinate error
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Figure 5.9: Case 1.2- Evolution of the control input torques Γ(t)
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The performance in the previous IO and FO cases can be quantified using the perfor-
mance metrics as defined in Appendix 7. The indices for the joints are evaluated in deg

and for the Cartesian coordinates in mm.

Table 5.3: Performance indices for MRAC-PD controller for nominal conditions

Case IAEc IAEJ ITAEc ITAEJ RMSEc RMSEJ IUE

IO case 5.9 1.5126 22 6.0734 0.3984 0.0974 26.2650
FO case 4.7 1.2204 17.2 4.9217 0.3150 0.0802 26.2580

6.2 Results discussion

The results of applying the MRAC-PD controller to the VELOCE robot can be summa-
rized and discussed through the following key observations points:

• The MRAC-PD controller demonstrated acceptable tracking performance across all
tested cases. The simulation graphs reveal that there were no significant deviations
from the reference trajectories, indicating precise tracking. This is further supported
by the reduced range of tracking errors, measured in millimeters, compared to the
manipulator’s range of motion, which is in the order of 100 millimeters.

• The dynamics of the adaptive term of the controller is seen in Fig 5.4 showing
the evolution of the adaptive input torques.The convergence rate of the adaptive
input is approximately 1 second, which is slower than the convergence rate of the
tracking error. This can be attributed to the PD controller’s ability to initially
reduce the error to smaller values, allowing the adaptive controller to compensate
for the remaining nonlinearities and achieve greater positional accuracy.

• The controller successfully managed to maintain stability and tracking performance
for different reference points as illustrated in Fig 5.3, which indicates the robustness
of the MRAC-PD controller in handling different operational scenarios.

• The introduction of FO integrator in the adjustment rules has proven to bring
improvements in performance by reducing the peaks of the position errors (as shown
in Fig 5.8). This enhancement is reflected in the performance indices, with a 20%
reduction in both RMSEc and IAEc indices.

• The FO adaptive controller achieved superior tracking results without increasing
the energy of the control signals. Both IO and FO cases maintained control signal
energies within acceptable ranges, not exceeding 127N.m.

6.3 Case 2: Payload variations

This case is studied because PKMs are frequently used in applications where they trans-
port payloads from one place to an other, leading to disturbances in the form of parametric
variations (i.e., changes in the inertia and mass of the manipulator). Here a mass of 2 Kg
is added to the moving platform of the robot with a period of 2s.
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6.3.1 Case 2.1: Integer order adaptation law

Trajectory 1: Single point-to-point motion

Figure 5.10: Case 2.1 - Evolution of the end-effector’s coordinates
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Figure 5.11: Case 2.1 - Evolution of the adaptive control input torques ΓAD(t)

Trajectory 2: Sequence of point-to-point motion

79



Chapter 5. MRAC-PD controller for VELOCE manipulator 80

Figure 5.12: Case 2.1 - Evolution of Cartesian tracking errors for trajectory 2

6.3.2 Case 2.2: Fractional order adaptation law

Figure 5.13: Case 2.2 - Evolution of Cartesian tracking error trajectory 1

In this case we retained the same fractional order coefficient as in Case 1.2.
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Figure 5.14: Case 2.2 - Evolution of Cartesian tracking error trajectory 2

In Table 5.4, the performance indices evaluated for both joint and Cartesian tracking
errors are computed in mm and deg respectively.

Table 5.4: Performance indices for MRAC-PD controller in the presence of payload variations

Case IAEc IAEJ ITAEc ITAEJ RMSEc RMSEJ IUE

IO case 9.2 1.9882 42.3 8.5543 0.9854 0.2177 99.7900
FO case 8.8 1.8621 40.0 8.0959 0.7194 0.1604 99.7829

6.4 Results discussion

We have assessed the robustness capabilities of the MRAC-PD controller through this
case study. The key observations are discussed below:

• The effect of a time-varying payload on the moving platform is evident in the end-
effector’s coordinates shown in Fig 5.10. Although there is a noticeable deviation
from the reference point, the percentage of the overshoot is very small, which indi-
cates the efficiency of the controller despite the added payload..

• The MRAC-PD controller can achieve faster disturbance attenuation and smaller
overshoot by increasing the adaptation rates. However, this may introduce oscil-
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lations and potentially lead to system instability. Therefore, a trade-off must be
made between achieving high performance and maintaining system stability.

• We see from the results that An alternative method to reduce the impact of dis-
turbances is by integrating FO adjustment rules. Performance indices indicate an
improvement in tracking error with a drop of 2% in IAEc, which is less than in the
nominal case. However, the RMSEc indicates a reduction in the mean value of the
Cartesian errors of 27%.

• The integration of FO adjustment rules affects the attenuation rate, as seen in Fig
5.13 as the controller takes more time to compensate for parametric variations.
However, tuning the fractional coefficient provides greater flexibility in the control
design, allowing for the specification of more tailored control requirements.

7 Conclusion

In this chapter, we designed and evaluated an MRAC-PD controller for the VELOCE
robot which demonstrated robust tracking performance with minimal deviations from
reference trajectories, even with time-varying payloads. Significant improvements were
achieved by incorporating Fractional Order (FO) integration into the adaptation mecha-
nisms. This integration resulted in enhanced tracking performance, increased robustness
to disturbances, and greater flexibility in meeting control specifications.

If the tracking performance of this controller is compared the PD-FF controller pre-
sented in Chapter 2, we observed that the PD-FF controller achieved lower tracking
errors. However, the MRAC-PD controller’s strength lies in its minimal requirement for
prior knowledge about the controlled system and its inherent adaptive structure. This
makes it particularly well-suited for applications involving PKMs in dynamic and con-
stantly changing operating environments.

The MRAC-PD controller is ideal for applications where extreme precision and ac-
curacy are not critical, due to its simplicity in development and reasonable hardware
computational requirements. However, for safety-critical applications where higher preci-
sion is necessary, more sophisticated control strategies may be required to ensure optimal
performance and reliability.

In the next chapter, an L1 adaptive controller with a model based feed-forward term
will be designed for the VELOCE robot, with simulation results presented and discussed.
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1 Introduction

This chapter aims to design a Fractional Order L1 adaptive controller with a feedforward
component based on the reference trajectory. The rationale for selecting this specific con-
trol approach and the control objectives are first outlined. Subsequently, the theoretical
basis of the control law is presented, along with the integration of Fractional Order adap-
tation rules into the control scheme. Once the control design is finalized, the simulation
setup and results are described, considering both nominal conditions and the presence of
payload variations.

2 Motivation and objectives

Robot manipulators are commonly used in safety-critical applications such as medical
surgery and flight control. These applications require control systems that can quan-
tify transient and steady-state performance while ensuring accurate tracking of reference
trajectories by canceling internal and external disturbances.

The L1 adaptive approach meets most of these requirements, especially the robustness
guarantee under fast adaptation rates to meet performance specifications. It has been
tested for various robot manipulators to design controllers with marginal stability in the
presence of time delays [99]. Additionally, it has been used for safe motion planning
for autonomous robots [100], as well as increasing the robustness of a pre-trained agent
with reinforcement learning (RL) techniques to achieve active compensation of dynamic
variations [101].

Moreover, adding a model-based term with the L1 adaptive controller can compensate
for modeled non-linear dynamics, further improving tracking performance. As obtaining
an accurate dynamic model has become relatively easier recently, taking advantage of
this knowledge can lead to improved tracking performance and lower adaptation rates,
allowing less overshoot in the control signal and reduced sensitivity to time delays [102],
[45].

The objective of this section is to design a L1 adaptive controller for the VELOCE
robot to satisfy control specifications related to transient and steady-state performance.
The choice of the filter structure will determine the trade-off between performance and
robustness. Additionally, integrating model-based control with the adaptive controller
will enable compensation for modeled nonlinearities. This control scheme leverages the
robustness of the L1 controller and improves accuracy, even in high-speed applications,
thanks to the model-based feedforward term. Furthermore, a fractional-order filter will be
employed in this control scheme to achieve better bandwidth selectivity, and a fractional
adaptation law will be implemented to reduce improve performance and enhance stability
margins.
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3 Design of L1-FF adaptive controller for VELOCE
robot

In the following section, we will build from the theory presented in Chapter 3 and present
an extension of L1 adaptive control to PKMs that was developed in [53], in addition a
model-based term will be added to the control law.

3.1 Control law

The dynamics of PKMs can be described by Equation (6.1) as explained in Section 2.6,
where q ∈ R4 is the vector of joint angles:

M(q)q̈ + C(q, q̇)q̇ +G(q) + ΓD(t) = ΓT (t) (6.1)

The the tracking error used here is a combination of position and velocity errors in
the joint space as expressed in Equation ( 6.2):

r(t) = (q̇ − q̇d) + Λ(q − qd) (6.2)

with Λ ∈ R4×4 a symmetric positive-definite weighting matrix for the position tracking
error.

Figure 6.1: L1 adaptive control scheme with model-based feed-forward compensation

The control law is composed of three distinct terms as follow:

Γ(t) = Γm(t) + Γad(t) + ΓFF (6.3)

with Γm(t) = Amr(t) , a linear state-feedback control and Am denotes a Hurwitz matrix
which is introduced to shape the transient dynamics of the tracking error r(t),
ΓFF = M(qd)q̈d +C(qd, q̇d)q̇d +G(qd) is the feed-forward term computed from the desired
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trajectory and is Γad the adaptive part of the controller.
Leveraging knowledge about the manipulator’s dynamics will result in improved tracking
performance. Consequently, the adaptive control component will have a lower magnitude
since the estimate ˆη(t, ζ(t)) will only need to account for unstructured uncertainties such
as joint friction, actuator dynamics, and external disturbances. This approach helps avoid
high-frequency and high-gain control efforts.

To design ΓAD(t) , we first start by substituting the control law Equation (6.3) into
the dynamics of the parallel manipulator Equation (6.1) and solving for q̈ to derive the
derivative of the tracking error r(t):

ṙ(t) = Amr(t) + ΓAD(t)− η(t, ζ(t)), r(0) = r0 (6.4)

where η(t, ζ(t)) is a nonlinear function that gathers all the non-linearities of the system
including uncertainties and external disturbances and is given by the following expression:

η(t, ζ(t)) = M−1(q)
(
M̃(q)q̈d + Ñ(q, q̇)

)
+
(
I−M−1(q)

)
(Amr + ΓAD)

− Λr(t) + Λ2 (q − qd)

(6.5)

where M̃(q) , M(q) − M̂ (qd) , Ñ(q, q̇) , N(q, q̇) − N̂ (qd, q̇d) and I ∈ R4×4 denotes
the identity matrix.

Some assumptions are imposed about the properties of η(t, ζ(t)) to give it a more
general structure than its expression given in Equation (6.5):

Assumption 3.1 (Uniform boundedness of η(t, 0) )
There exist B > 0 such that ∀t ≥ 0, ‖η(t, 0)‖ ≤ B.

Assumption 3.1 (Semi-global uniform boundedness of partial derivatives of
η(t, ζ(t)) )
The unknown nonlinear function η(t, ζ(t)) is continuous with respect to its arguments,
and for arbitrary δ > 0, there exist dηt(δ) and dηx(δ) such that∥∥∥∥∂η(t, ζ)∂t

∥∥∥∥
∞

≤ dηt(δ),

∥∥∥∥∂η(t, ζ)∂ζ

∥∥∥∥
∞

≤ dηζ(δ)

Assumption 3.1
For t ≥ 0, ‖rτ‖L∞

≤ ρ and ‖ṙτ‖L∞
≤ dr, for some positive constants ρ and dr.

According to [76], it follows from the assumptions 3.1, 3.1 and 3.1 that the unknown
nonlinear function η(t, ζ(t)) can be expressed for ∀t ∈ [0, τ ] as follows:

η(t, ζ(t)) = θ(t) ‖rτ‖L∞
+ σ(t) (6.6)

where θ(t), σ(t) ∈ R4 are continuous unknown functions, with their first derivatives
uniformly bounded on [0, τ ], ‖‖L∞

represent the L∞-norm and rτ (t) is the truncation of
r(t) defined as follow:

rτ (t) =

{
r(t), 0 ≤ t ≤ τ

0, t > τ
(6.7)
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The estimate of the non-linear function η̂(t, ζ(t)) is computed in real-time. The dy-
namics of the predicted tracking error r̂(t) in terms of the estimated parameters are
described by the following expression:

˙̂r(t) = Amr̂(t) + Γad(t)−
(
θ̂(t) ‖rt‖L∞

+ σ̂(t)
)
−Kr̃(t), r̂(0) = r0 (6.8)

where the prediction error is defined as r̃(t)= r̂(t)− r(t) , θ̂(t) and σ̂(t) are estimates of
θ(t) and σ(t), respectively. The matrix K contains loop-shaping parameters to charac-
terise the dynamics of the estimation error and reject high frequency noise.

The dynamics of the prediction error are obtained by substituting Equation (6.4) from
Equation (6.8) as follow:

˙̃r(t) = Aor̃(t)−
(
θ̃(t) ‖rt‖L∞

+ σ̃(t)
)

(6.9)

The matrix Ao = (Am −K) is chosen to guaranty convergence of the prediction error to
zero, θ̃ and σ̃ are the errors between the estimate and real values of θ and σ respectively.

Finally, the adaptive element is chosen to ensure the desired closed-loop dynamics of
the prediction error r(t) with an addition of low-pass filter:

Γad(s) = C(s)η̂(s) (6.10)

The estimates of θ̂ and σ̂ are calculated by the following projection-based adaptation
laws:

˙̂
θ(t) = γ Proj

(
θ̂(t), P r̃(t) ‖rt‖L∞

)
, θ̂(0) = θ̂0

˙̂σ(t) = γ Proj(σ̂(t), P r̃(t)), σ̂(0) = σ̂0

(6.11)

where γ ∈ R+is the adaptive gain, P = P T > 0 is the solution to the algebraic Lya-
punov equation AT

mP+ PAm = −Q for some arbitrary matrix Q = QT > 0.

3.2 Filter design

The adaptive control term is passed through a low-pass filter, as expressed in Equa-
tion (6.10) that limits the bandwidth of the controller enabling the decoupling of the
adaptation and control loops. This filter’s structure is carefully designed to ensure opti-
mal performance while accounting for hardware constraints and stability specifications in
terms of the L1 gain requirement as defined in Equation (3.30).

The low-pass filter serves multiple roles. It helps prevent high frequencies in the control
signals, which can cause wear and deterioration (mechanical vibrations and oscillations),
while also shaping the nominal response of the closed-loop system. Increasing the band-
width of the low-pass filter has been observed to render performance bounds (the norm
‖G(s)‖L1 ) arbitrarily small [76].
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However, low-pass filters with high bandwidths require high adaptation rates, poten-
tially leading to high-gain feedback and resulting in closed-loop systems with overly small
robustness margins that are susceptible to measurement noise. Conversely, properly de-
signed higher order filters have been proven to achieve similar performance bounds with
smaller bandwidth compared to first-order filters [103].

4 Fractional order L1 adaptive controller

Papers and works available focusing on fractional order adaptive control have mostly
centered around integrating fractional order calculus for MRAC schemes. Considering
the benefits achieved by using fractional order with MRAC, it is intriguing to explore its
potential application in the L1 adaptive control method to see if similar improvements
can be obtained. There are two approaches to consider: either using a fractional order
low-pass filter as demonstrated in [104], or applying fractional order adjustment rules
within the adaptation mechanism, akin to what was done with MRAC.

4.1 Fractional order adaptation laws

Just like in Section 5.4, the adaptation rules will be modified to incorporate a fractional
order integration. The new adjustment rules of the estimates of θ̂ and σ̂ will become:

θ̂(t) = D−α
(
γ Proj(θ̂(t), P r̃(t) ‖rt‖L∞

)
)

(6.12)

σ̂(t) = D−α (γ Proj(σ̂(t), P r̃(t))) (6.13)

with α representing the fractional order coefficient. The Singularity method is used for
the implementation of the fractional adaptation rules.

4.2 Fractional order filter

Fractional-order filters offer several advantages by allowing for better selectivity in tuning
bandwidths. They are commonly used in applications with extremely complex systems,
offering solutions to significant problems such as reducing high control values, filtering
noises effectively, and minimizing time lag [104]. A first order FO filter can be defined as
follow:

C(s) =
1

(1 + s
ωc
)α

(6.14)

with ωc being the cut-off frequency and α (between 0 and 1) the fractional orders.

5 Simulation setup

In this section, we detail the selected parameters for the controller, designed to achieve
the control objectives of accurate trajectory tracking and robustness against disturbances.
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The filter and model reference are selected according to the L1-norm condition stated
in Equation (3.30), but before this we need to find a maximum bound for the control
input gain b.

We can rearrange Equation(2.20) of the manipulator’s dynamics in the following way:

q̈(t) = M(q)−1Γ(t)−M(q)−1C(q, q̇)q̇ −M(q)−1G(q) (6.15)

Thus determining the maximum value of b comes to finding the ||M(q)−1||∞ norm at the
limit of the reachable workspace where it reaches its highest values. The ||M(q)−1||∞ is
plotted in Fig 6.2 , we conclude that a possible bound is b = 160.

Figure 6.2: Maximum value for control input gain

If we check the L1-norm condition for the controller’s parameters given in Table 6.1,
we obtain:

G(s) =
160

s+ 320

(
1− 1

0.02s+ 1

)
=

3.2s

0.02s2 + 7.4s+ 320
(6.16)

As a result we obtain ‖G(s)‖L1L = 0.70263 < 1.

Table 6.1: L1-FF controller parameters

Parameters Value

Λ diag(40, 40, 40, 40)
Am diag(-8, -8, -8, -8)
γ 106

Q diag(1 ,1, 1, 1)
K 103×diag(3, 3, 3, 3)
θmax 30
σmax 30
C(s) 50

s+50
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6 Simulation results

To validate the L1-FF controller developed here we proceed into implementing the control
law on Simulink and run a series of simulations. These simulations are conducted under
both nominal conditions and in the presence of external disturbances, such as payload
variations. The objective is to assess both the performance and robustness. Additionally,
we analyze the implications of using FO adaptation rules and the effects of employing
fractional-order filters.

6.1 Case 1: Nominal condition

The referenced trajectory used for the simulations in this case is given in Section 3.29.
Since the L1 adaptive controller was designed to be used in fast applications, the time
period between each displacement is set to T = 0.2 s. The law-pass filter is taken as an
IO first system (α = 1).

6.1.1 Case 1.1: Integer order adaptation law

Figure 6.3: Case 1.1 - Evolution of end-effector coordinates
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Figure 6.4: Case 1.1 - Evolution of the end-effector coordinates tracking errors

Figure 6.5: Case 1.1 - Evolution of the control inputs torques Γ(t)
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Figure 6.6: Case 1.1 - Evolution of the adaptive control input torques ΓAD(t)

6.1.2 Case 1.2: Fractional order adaptation law

For the sake of this simulation, the fractional coefficient is chosen as β = 0.75.

Figure 6.7: Case 1.2 - Evolution of Cartesian tracking errors

92



Chapter 6. L1 adaptive controller with model-based feed-forward for
VELOCE manipulator 93

6.1.3 Case 1.3: Fractional order filter

The cut-off frequency of the FO filter is reduced to ωc = 37 rad.s−1, and the fractional
order is set to β = 0.55.

Figure 6.8: Case 1.3 - Comparison between FO (ωc = 37 rad ) and IO (ωc = 50 rad ) filters

Figure 6.9: Case 1.3 - Evolution of Cartesian tracking errors
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Table 6.2: Performance indices for L1-FF controller for nominal conditions

Case IAEc IAEJ ITAEc ITAEJ RMSEc RMSEJ IUE

IO adaptation 1.6 0.3023 1.0492 0.2693 0.2487 0.1203 28.3998
FO adaptation 0.7269 0.2370 0.8547 0.1822 0.2084 0.1159 28.3738
FO filter 0.9706 0.2868 1.016 0.2475 0.2380 0.1191 28.3918

6.2 Results discussion

From the simulation results for the three cases presented above, some relevant observations
are made and discussed here:

• The tracking objective both in joint and Cartesian space (Fig 6.3) is achieved
with great accuracy by the L1-FF controller, even with relatively fast displace-
ment timest. This can be attributed to the decoupled architecture of the L1 control
which allows for fast adaptation, in addition to the feedforward term that cancels
most of the non-linearities, thereby reducing the effort required by the adaptive part
of the controller

• The control input torques were always within the allowed range (maximum value
127 N.m), in addition the effect of the low-pass filter can be observed on the adaptive
torques input presented in Fig 6.6, as there are no sharp or aggressive oscillations,
even during fast adaptation.

• The fractional adaptation law dampens the overshoot of the system’s tracking error
and improve the accuracy and precision. This is reflected in an improvement of 50%
in the accumulation of tracking error IAEc as well as a decrease in the mean of the
Cartesian error by 16% (RMSEc ).

• When choosing the FO filter, we decreased its cutting frequency compared to the IO
filter in order to preserve the system’s ability to filter noise outside its bandwidth,
since the slope of FO filters attenuating rate is less than their IO counterpart. From
Fig 6.9, we observe that FO filter managed to achieve slightly better performance
even with smaller bandwidth. In addition, FO filters improve the margin stability
of the system because of their particular feature of having constant phase.

6.3 Case 2: Payload variation case

An important aspect in the control of uncertain systems that are subject to external
changes leading to parametric variations is to have high rejection capabilities of distur-
bances. To test the robustness of L1-FF to payload variations, a time varying payload
was introduced that has a mass of 2 Kg and changes every 2.8 seconds. A different refer-
ence trajectory is used here to highlight disturbance rejection during transient phase and
steady state.
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6.3.1 Case 2.1: Integer order adaptation law

Figure 6.10: Case 2.1 - Evolution of end-effector coordinates

Figure 6.11: Case 2.1 - Evolution of the end-effector coordinates tracking errors
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Figure 6.12: Case 2.1 - Evolution of the adaptive control input torques ΓAD(t)

Figure 6.13: Case 2.1 - Evolution of the control inputs torques Γ(t)
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6.3.2 Case 2.2: Fractional order adaptation law

The same fractional coefficient as used in Case 1.2 is kept here.

Figure 6.14: Case 2.3 - Evolution of Cartesian tracking errors

Figure 6.15: Case 2.2 - Disturbance effect on x coordinate for different values of β

6.3.3 Case 2.3: Fractional order filter

The same FO filter used in Case 1.3 was kept for these simulations.
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Figure 6.16: Case 2.2 - Evolution of Cartesian tracking errors

Table 6.3: Performance indices for L1-FF controller in the presence of payload variations

Case IAEc IAEJ ITAEc ITAEJ RMSEc RMSEJ IUE

IO adaptation 2.5293 0.6260 3.5930 0.8100 0.4938 0.1505 34.6105
FO adaptation 1.9247 0.4944 2.8212 0.6341 0.3759 0.1336 34.5996
FO filter 2.3454 0.5876 3.3170 0.7489 0.4610 0.1456 34.6049

6.4 Results discussion

From the simulation of the payload variation scenario for both IO and FO cases, we can
discuss the following observations:

• The effect of the disturbance on the system’s performance is very limited. As can
be seen from Fig. 6.11, the reference tracking errors deviate from zero by less than
0.3 mm when the robot is in steady state with a 2 kg payload. For the parts where
the manipulator is in motion, the maximum values of the errors are slightly higher
compared to the nominal case.
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• The system’s signals remained bounded under parametric variation, as the con-
troller provides bounds for the system signals determined by the L1 norm. These
bounds can be made arbitrarily smaller by increasing the bandwidth of the filter;
however, this may result in high-gain feedback, leading to closed-loop systems with
overly small robustness margins and increased susceptibility to measurement noise.

• The FO adaptive mechanisms are more effective in attenuating the disturbance ef-
fect, achieving faster responses with smaller deviation amplitudes. Compared to the
IO case, the Cartesian tracking errors are reduced by approximately 20% according
to the indices in Table 6.3. Notably, higher values of the FO coefficient β result in
greater deviation but faster convergence to the reference trajectory. This indicates
that incorporating FO into the adaptive scheme allows for more flexible fine-tuning
of the controller to meet diverse control requirements.

• The FO filter provides the same accuracy and precision, as shown in Fig 6.16, ef-
fectively rejecting disturbances even with a smaller bandwidth. A restricted band-
width is advantageous because controllers with high bandwidths require more pow-
erful hardware with high computational capability and are more sensitive to high-
frequency noise and vibrations.

7 Conclusion

In this chapter, we designed and evaluated an FO-L1 adaptive controller with a model-
based feedforward component for the VELOCE manipulator. Our simulations demon-
strated that the L1-FF controller achieved precise tracking in both joint and Cartesian
spaces, even with fast displacement times. The decoupled architecture of the L1 control
and the feedforward term effectively canceled most of the nonlinearities, thereby reducing
the adaptive controller’s effort.

Under payload variations, the L1-FF controller maintained system performance, ex-
hibiting minimal deviations from the reference tracking errors. The FO adaptive mecha-
nisms proved more effective in disturbance attenuation, offering faster and more precise
convergence to reference trajectories. Overall, the L1-FF controller demonstrated ro-
bustness and flexibility, making it suitable for dynamic environments and varied control
requirements.
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Conclusion and future works

8 General conclusion

In this study, our focus was on developing advanced control methodologies, specifically
Fractional Order (FO) adaptive controllers to enhance the performance and robustness of
non-linear, time-varying systems, specifically Parallel Kinematic Manipulators (PKMs).
The VELOCE robot was selected for applying and testing these controllers. The pri-
mary goal of this research was to explore the potential benefits of FO adaptive control
for PKMs, aiming to reduce tracking errors, rapidly adapt to external disturbances, and
offer greater flexibility in meeting customized control requirements.

When comparing these controllers against traditional approaches like PD-FF control,
it was obvious their superior ability to achieve precise tracking with reduced error under
varying conditions, including time-varying payloads and dynamic operational environ-
ments.

The MRAC-PD controller, while simpler and requiring minimal prior system knowl-
edge, exhibited robust performance and adaptability suitable for applications where ex-
treme precision is not critical but adaptability to changing conditions is essential. It
leveraged Fractional Order integration to enhance its adaptation capabilities, leading to
improved disturbance rejection and faster convergence to desired trajectories. This adapt-
ability makes it particularly well-suited for PKMs operating in dynamic and unpredictable
environments.

In contrast, the FO L1 adaptive controller with model-based feedforward showed su-
perior performance in terms of precise tracking in both joint and Cartesian spaces, em-
phasizing its effectiveness in mitigating nonlinearities and disturbances. By decoupling
control and compensation for system uncertainties, the L1-FF controller demonstrated
robustness and flexibility, maintaining high performance even under significant payload
variations and rapid displacement scenarios. These attributes highlight its potential for
applications demanding high precision and reliability, such as those found in aerospace
and medical robotics.

Overall, the integration of Fractional Order calculus into adaptive control strategies
for PKMs has not only addressed inherent challenges like nonlinearities and uncertainties
but also significantly enhanced operational efficiency and reliability. The findings from
this study underscore the significant impact of FO adaptive controllers in advancing the
capabilities of PKMs across diverse industrial sectors.
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9 Future works

As the field of adaptive control for Parallel Kinematic Manipulators (PKMs) continues
to advance, there are several promising avenues for future research and development that
can build upon the findings and contributions of this thesis. The following areas are w
further exploration:

• While simulations provide valuable insights, validating the developed controllers on
real PKM prototypes is essential. Real-world implementations can verify the effec-
tiveness of controllers under actual operating conditions, accounting for dynamics
and uncertainties not fully captured in simulations.

• Enhancing the performance of L1 adaptive controllers remains an open question.
Exploring and evaluating various optimization techniques from the literature can
optimize control parameters to achieve improved tracking accuracy and disturbance
rejection capabilities.

• Developing accurate models that capture the complex dynamics of PKMs is critical
for robust control design. Data-driven modeling techniques, leveraging artificial
intelligence (AI), can improve model accuracy by learning from real-world data,
enabling more precise analysis and evaluation of control schemes.

• The theoretical underpinnings of stability for fractional order adaptive controllers
require further exploration. Research efforts should focus on deriving conditions that
guarantee stability and bounded response, addressing the complexities introduced
by fractional calculus in control theory.

• Addressing challenges related to feedforward terms based on nominal system dy-
namics is crucial. Implementing adaptive feedforward strategies can mitigate un-
certainties in model identification, improving disturbance rejection capabilities. In-
tegration of fractional order integration can further enhance adaptive feedforward
approaches.

• Investigating the application of Fractional Order (FO) filters can optimize closed-
loop responses of PKMs. By balancing robustness and performance, FO filters offer
potential improvements in control design, facilitating better trade-offs in dynamic
environments.
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1 Inverse Kinematic model of VELOCE robot

To develop the inverse kinematic model the following frames will be used, the fixed-base
frame O− xyz and the four frames attached to each actuator Ai − uiviz , with the points
Ai representing the actuated joints locations whose coordinates in the fixed-base frame
are given by Equation ( 1):

Ai = R
[
cos(βi) sin(βi) 0

]T (1)

with R representing the radius of the fixed platform of the robot.
The vectors ui and vi composing the Ai − uiviz frame are expressed as follow:

ui =
[
cos(βi) sin(βi) 0

]T (2)

vi =
[
−sin(βi) cos(βi) 0

]T (3)

Figure 0.17: Top view of VELOCE robot with corresponding frames

The points Bi are attached to the passive joints linking the rear-arms and the forearms
of the manipulator (Fig 0.18), to derive their expressions in the base frame, we define the
rotation matrix between the base frame and the actuators frames:

RAi
O =

cos(βi) −sin(βi) 0

sin(βi) cos(βi) 0

0 0 1

 (4)
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Figure 0.18: Side view of VELOCE robot

From Fig 0.18 we can derive the coordinates of the points Bi in the Ai − uiviz frame:

Bi =
[
R + Lcos(qi) 0 Lsin(qi)

]T (5)

where L is the length of the rear-arms.

Using the rotation matrix RA
O obtained above, we get the coordinates of points Bi in

the O − xyz frame:

Bi/O = RAi
O Bi/Ai

=

cos(βi) −sin(βi) 0

sin(βi) cos(βi) 0

0 0 1

R + L cos(qi)

0

Lsin(qi)

 (6)

Bi/O = Ai + L
[
cos(βi)cos(qi) cos(βi)sin(qi) sin(qi)

]T (7)

Finally, we geometrically derive the coordinates of points Ci which locates the joints
between a given forearm and either the lower or upper part of the traveling-plate using
Fig 0.18:

Ci = E + r ui + (h+
pi
π
α) ez (8)

with E =
[
x y z

]T the position of the end-effector in the base-frame and h is the
distance between the lower part of the moving platform and the end-effector.
We end up with the final coordinates of the points Ci:

Ci =
[
x+ r cos(βi) y + r sin(βi) z + h+ pi

π
α
]T (9)

with pi defined as follow:

pi =

{
0 i = 1, 3

p i = 2, 4
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According to [56], finding the inverse kinematics equations of the VELOCE robot in-
volves solving for the intersection of a circle and a sphere, which represents the coordinates
of the passive joints Bi in the actuators’ frame. In other words, this requires considering
the geometric constraints of the closed-loop system composed of the kinematic chains and
the traveling plate. For the i-th kinematic chain, we can write the geometric constraint
related to the constant length of the forearm as follows:

||BiCi||2 − l2 = 0 ∀i = 1, · · · , 4 (10)

This constraint results in an equation of a sphere with its center at Ci and l, the length
of the forearms, as its radius:

(xBi
− xCi

)2 + y2Ci
+ (zBi

− zCi
)2 = l2 (11)

From the motion of one rear arm, we can obtain the equation of a circle with Ai as
its center and L as its radius:

x2
Bi

+ z2Bi
= L2 (12)

To solve for the intersection of the sphere and the circle, we subtract Equation (12)
from Equation (11) to obtain the following expression:

2xCi
xBi

+ 2zCi
zBi

= l2 − L2 + x2
Ci

+ y2Ci
+ z2Ci

(13)

Solving Equation (13) for zBi
, we find:

zBi
=

Si − 2xCi
xBi

2zCi

(14)

with Si , l2 − L2 + x2
Ci

+ y2Ci
+ z2Ci

. Substituting Equation (14) into Equation (12)
yields:

4
(
z2Ci

+ x2
Ci

)
x2
Bi

− 4SixCi
xBi

+
(
S2
i − 4z2Ci

L2
)
= 0 (15)

Solving for xBi
gives:

xBi
=

SixCi
±
√

(SixCi
)2 −

(
z2Ci

+ x2
Ci

) (
S2
i − 4z2Ci

L2
)

2
(
z2Ci

+ x2
Ci

) (16)

From Fig 2.5, it is evident that the actuated joint angles can be derived geometrically
from the coordinates of the points Bi. Once these coordinates are determined, we can
calculate qi as follows:

qi = atan2 (zBi
, xBi

) (17)

The function atan2 is preferred in order to avoid divisions by zero and to obtain more
precise values.
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2 L1-norm of a system

he L1-norm of a system sets the relation between the peak values of the system’s input
and output. The L1-norm is also called the peak-to-peak gain of a system.

Let G(s) be a proper and exponentially stable system. Assume zero initial conditions.
Then, for the bounded input u(t), its output y(t) can be written as

y(t) = g(t) ∗ u(t) =
∫ t

0

g(t− τ)u(τ)dτ,

where ” ∗ ” denotes the convolution operator, and g(t) is the impulse response of G(s).
Letting

‖y‖L∞ , sup
t≥0

|y(t)|,

we obtain the bound:

|y(t)| =
∣∣∣∣∫ t

0

g(τ)u(t− τ)dτ

∣∣∣∣
≤
∫ t

0

|g(τ)‖u(t− τ)|dτ

≤
∫ ∞

0

|g(τ)|dτ‖u‖L∞ .

The L1-norm of G(s) is defined as:

‖G(s)‖L1 ,
∫ ∞

0

|g(τ)|dτ (18)

3 L1 adaptive controller: stability proof of prediction
error

To prove the boundedness of the prediction error, the following Lyapunov function is
considered:

V (x̃(t), θ̃(t)) = x̃>(t)Px̃(t) +
1

γ
θ̃>(t)θ̃(t)

Lemma 3 :
The prediction error in of the sate predictor is uniformly bounded:

‖x̃‖L∞ ≤

√
θmax

λmin(P )γ
, θmax , 4max

θ∈Θ
‖θ‖2,

where γ is the adaptation rate and λmin(P ) is the minimum eigenvalue of P .
Proof:
Using properties of the projection operator, we can upper bound the derivative of the
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Lyapunov function along the trajectories of the system as

V̇ (t) = ˙̃x>(t)Px̃(t) + x̃>(t)P ˙̃x(t) +
1

γ

(
˙̃θ>(t)θ̃(t) + θ̃>(t) ˙̃θ(t)

)
= x̃>(t)

(
A>

mP + PAm

)
x̃(t) + 2x̃>(t)Pbθ̃>(t)x(t) +

2

γ
θ̃>(t)

˙̂
θ(t)

= −x̃>(t)Qx̃(t) + 2x̃>(t)Pbθ̃>(t)x(t) + 2θ̃>(t)Proj
(
θ̂(t),−x(t)x̃>(t)Pb

)
= −x̃>(t)Qx̃(t) + 2θ̃>(t)

(
x(t)x̃>(t)Pb+ Proj

(
θ̂(t),−x(t)x̃>(t)Pb

))
≤ −x̃>(t)Qx̃(t)

which implies that x̃(t) and θ̃(t) are uniformly bounded. Next, since x̃(0) = 0, it follows
that

λmin(P )‖x̃(t)‖2 ≤ V (t) ≤ V (0) =
θ̃>(0)θ̃(0)

γ
.

The projection operator ensures that θ̂(t) ∈ Θ, and therefore

θ̃>(0)θ̃(0)

γ
≤ 4maxθ∈Θ ‖θ‖2

γ
,

which leads to the following upper bound:

‖x̃(t)‖2 ≤ θmax

λmin(P )γ

Since ‖ · ‖∞ ≤ ‖ · ‖, and this bound is uniform, the bound above yields

‖x̃τ‖L∞
≤

√
θmax

λmin(P )γ

4 Projection operator

A convex compact set with a smooth boundary given by

Ωc = {θ ∈ Rn | f(θ) ≤ c} , 0 ≤ c ≤ 1,

where f : Rn → R is the following smooth convex function:

f(θ) =
θTθ − θ2max
εθθ2max

(19)

where θmax is the norm bound imposed on the vector θ and 0 < εθ < 1 stands for the
projection tolerance bound of our choice. For any given y ∈ Rn, the projection operator
is defined as

Proj(θ, y) =


y, if f(θ) < 0

y, if f(θ) ≥ 0,∇fTy ≤ 0

y − g(f, y), if f(θ) ≥ 0,∇fTy > 0,

where ∇f(θ) is the gradient vector of f(·) evaluated at θ and

g(f, y) = ∇f∇fTy
‖∇f‖2

f(θ)

This operator only modifies y when θ takes values outside the allowed range.
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5 Background on Particle Swarm Optimisation (PSO)
algorithm

Swarm Intelligence (SI) techniques are inspired by the simple behaviors and self-organizing
interactions of agents in nature, where the components of an initially disordered system
interact locally to produce coordination or global order. Examples include phenomena
such as fish schooling, honey bee activity, bacterial growth, animal herding, bird flocking,
and ant colony foraging. Common SI algorithms include Ant Colony Optimization and
Particle Swarm Optimization (PSO) [105].
PSO, a swarm-based stochastic algorithm, was originally proposed by Kennedy and Eber-
hart [106]. In this algorithm, each potential solution is represented as a particle with a
certain position and velocity, moving through the problem space similarly to a flock of
birds. One of the main advantages of PSO is having few tuning parameters. However,
even though PSO can find the best solution through the interaction of particles, it con-
verges relatively slowly towards the global optimum in high-dimensional search spaces
[107] and thus it sometimes fail to find the optimal solution.

5.1 Particles neighborhood

In a basic swarm, consisting of N particles in a D- dimensional search space, each particle
i represents a candidate solution to the problem and is referred to by the vector xi con-
taining its own position and velocity which indicates its moving direction. Each particle
successively adjusts its position xi toward the global optimum based on two factors: the
best position visited by itself (pbesti) and the best position visited by the entire swarm
(gbest).

A neighborhood must be defined, following different principles, for each particle that
denotes and limits the social influence between the particles. The PSO algorithm pre-
sented in [105] and used in this work is based on the gbest method, which considers the
neighborhood as encompassing the entire population of particles.

5.2 Fitness score

Every member of the population is allocated a fitness score, which is determined based
on its performance and assessed against a defined objective function. This fitness score is
utilized to rank the candidate solutions and to direct the particles’ movement towards the
optimal global position gbest. The fitness score can be calculated using various methods,
such as the Euclidean norm, F-measure, or SVM fitness score.

5.3 Update laws

At each iteration the value associated to every particle, including the velocity and position
are updated along the best position found so far. The update is performed in a parallel
manner i.e; all particles are updated simultaneously. A pseudo code of the steps describe
below is presented in Fig 0.19.
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Velocity update: The velocity determines the rate and direction of change for every
particle and in which direction it will be moving, its update rule is expressed in Equ 20.

vi(t) = ωvi(t− 1) + ρ1C1(pbesti − xi) + ρ2C2(gbest − xi(t− 1)) (20)

where:
ω represents the inertia coefficient.
ρ1 and ρ2 are two random numbers ranging from 0 to 1.
C1 is the cognitive learning factor that represents the attraction that a particle has toward
its own success.
C2 is the social learning factor that represents the attraction that a particle has toward
the success of its neighbors.

Position update: The next step is to update the position of the particles based on
the new calculated velocity.

xi(t) = xi(t− 1) + vi(t) (21)

Best local solution update: The final step involves comparing the solutions found
so far for each particle based on their fitness scores and then updating the best local
solution. Additionally, the global position of the entire swarm is updated.

Figure 0.19: Pseud-code of the PSO algorithm

6 Trajectory generation

The reference trajectory has 22 points linked by 5th order polynomials, and a given T

time period between each displacement.
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Point x[mm] y[mm] z[mm] s[mm]

X0 0 0 0 0
X1 150 150 -650 -20
X2 -150 150 -650 -20
X3 -150 -150 -650 -20
X4 150 -150 -650 -20
X5 150 150 -650 -20
X6 -150 150 -650 -20
X7 -150 -150 -650 -20
X8 150 -150 -650 -20
X9 150 150 -650 -20
X10 -150 -150 -650 -20
X11 -150 -150 -650 -20
X12 150 -150 -650 -20
X13 0 0 -650 0
X14 0 0 -600 0
X15 0 0 -700 0
X16 0 0 -600 0
X17 0 0 -700 0
X18 0 0 -650 0
X19 0 0 -650 20
X20 0 0 -650 -20
X21 0 0 -650 20

Table 0.4: Sequence of points for the reference trajectory

7 Performance evaluation metrics

To analyze and compare the control schemes proposed for the VELOCE robot in this
work, we will use the following performance indices defined as follow:

- Integral Absolute error:

IAE =

∫ t2

t1

|e(t)|dt (22)

- Integral of Time-weighted Absolute Error:

ITAE =

∫ t2

t1

t|e(t)| dt (23)

- Root Mean Squared Error:

RMSE =

(
1

N

4∑
i=1

e2i

) 1
2

(24)

- Integral of Absolute Torques:

IAU =

∫ t2

t1

|Γ(t)|dt (25)
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