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Résumé

Cette étude explore des techniques d’apprentissage automatique visant à améliorer le décodage
de turbo codes dans la communication sans fil. Les décodeurs turbo traditionnels rencontrent
des difficultés telles que la susceptibilité au bruit impulsif et des taux d’erreur élevés à des
rapports signal/bruit (SNR) élevés. Pour résoudre ces problèmes, l’étude examine des modèles
d’attention Séquence-à-Séquence et des architectures Transformer, en les adaptant au décodage
turbo pour potentiellement améliorer la précision et la robustesse dans diverses conditions de
bruit de canal. L’étude inclut des discussions fondamentales sur les turbo codes, des simulations
utilisant l’algorithme SOVA, des revues de réseaux neuronaux dans les applications de décodage
turbo, et introduit les modèles TurboAttention et TurboTransformer. Ces modèles montrent des
résultats prometteurs en termes de taux d’erreur binaire sur une large gamme de valeurs de
SNR, avec des performances encourageantes observées lors des tests d’inférence matérielle.

Mots-clés : Codes turbo, Décodage turbo, SNR, Apprentissage automatique, Modèles d’attention, Trans-
former, SOVA, Taux d’erreur (BER)

Abstract

This study investigates machine-learning techniques aimed at enhancing turbo decoding in wire-
less communication. Traditional turbo decoders often struggle with challenges such as suscepti-
bility to burst noise and high error rates at high Signal-to-Noise Ratios (SNRs). To tackle these
issues, the study explores Sequence-to-Sequence attention models and Transformer architectures,
adapting them for turbo decoding to potentially enhance accuracy and robustness across various
channel noise conditions. The research includes foundational discussions on convolutional and
turbo codes, simulations using the SOVA algorithm, reviews of neural networks in turbo decoding
applications, and introduces the effective models TurboAttention and TurboTransformer. These
models demonstrate promising results in terms of Bit Error Rate (BER) across a wide range of
SNR values, with encouraging performance observed in hardware inference tests.

Keywords: Turbo codes, Turbo decoding, SNR, Machine learning, Attention models, Transformer, SOVA, Bit
Error Rate (BER)
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General Introduction

Wireless communications necessitate ongoing development and enhancement to meet the de-
mands for secure and reliable information transmission. Channel coding algorithms play a
critical role in addressing the challenges posed by wireless communication channels, where mul-
tiple of sources of noise and artifacts can degrade the quality of transmitted signals and lose
of information. By introducing redundancy into the transmitted messages, these algorithms
significantly reduce the error rate at the receiver, thereby enhancing the overall integrity and
reliability of the communication system.

Convolutional codes are widely used in practical communication systems for real-time error
correction, converting entire data streams into single codewords. These codes rely on both
current and past input bits, with the Viterbi algorithm being the primary decoding strategy.
Advances in convolutional coding have led to turbo codes. Turbo codes, approach channel
capacity by concatenating two convolutional codes with a random interleaver, achieving perfor-
mance within 1 dB of channel capacity [1][2]. The random interleaver’s structure contributes
to efficient decoding while maintaining near-zero bit error rates.

Iterative turbo decoders often lack robustness and adaptability in certain channels, with burst
noise significantly impacting performance. Traditional methods to enhance adaptability fre-
quently fail under unexpected conditions [3] [4]. Turbo codes also exhibit an error floor at high
SNRs, making them less suitable for high-reliability applications such as secure communica-
tions [5] [6]. Various techniques have been proposed to reduce the error floor, but with limited
success. As a result, traditional turbo designs struggle to consistently achieve high reliability,
robustness, adaptability, and low error floors [7].

Machine learning techniques hold significant promise for turbo decoding applications due to
their diverse architectures and capabilities, which can address the limitations of conventional
turbo decoders. By leveraging provided data, machine learning models can learn and identify
patterns in erroneous data through iterative learning processes. This enables them to correct
errors in transmitted messages more effectively than traditional methods, achieving higher
accuracy across various configurations and communication channel conditions.
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The objective of this project is to explore and implement novel machine learning approaches for
turbo decoding, specifically focusing on sequence processing techniques used in Natural Lan-
guage Processing (NLP). We will investigate the application of sequence-to-sequence attention
models and transformer architectures to enhance turbo decoding performance. The goal is to
leverage the advanced capabilities of these models to address the limitations of conventional
turbo decoders, achieving higher accuracy and robustness in various communication channel
conditions.
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Outline

Chapter 1 focuses on laying down the theoretical groundwork of wireless communication. It
comprehensively covers the stages of the communication channel and provides detailed insights
into convolutional codes, turbo codes, and iterative algorithms used in turbo decoding. The
chapter also includes simulation results using the Soft Input Soft Output (SOVA) algorithm
for turbo decoding implemented in MATLAB.

Chapter 2 is divided into two parts. The first part explores the fundamentals of neural
networks, sequence models such as RNNs, LSTMs, and sequence-to-sequence models. The
second part reviews prior literature related to the use of machine learning architectures for
turbo decoding, highlighting seminal works from the 1990s that pioneered these approaches.

Chapter 3 introduces the TurboAttention model, the first proposed approach in this study.
This model applies a sequence-to-sequence attention mechanism originally developed for ma-
chine translation to the task of turbo decoding. Comparative evaluations against baseline mod-
els and iterative turbo decoders are conducted to assess their efficacy. In addition, hardware
implementation of these models to test in inference and explore their functioning on real-time

Chapter 4 presents the TurboTransformer model, which adopts the Transformer archi-
tecture known for its advanced attention mechanisms. Initially designed for high-performance
language translation tasks, this chapter explores its adaptation for turbo decoding applica-
tions, investigating its potential to enhance decoding accuracy and efficiency. Also, hardware
inference tests have been done for TurboTransformer .

The Conclusion summarizes the findings and contributions of the study, discussing implica-
tions for future research directions in the field of machine learning-assisted turbo decoding.
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Theoretical Foundations

Intoduction

In this chapter, our goal is to lay the groundwork for understanding the basics of channel
coding to delving into advanced coding methods. We will explore the intricacies of using
different decoding strategies to achieve reliable communication.

We begin by examining digital communication systems and understanding the pivotal role
of channel coding in ensuring reliable data transmission. Next, we will provide an overview
of two major types of error-correcting codes: block codes and convolutional codes. Building
on this foundation, we will delve into convolutional turbo codes, offering a comprehensive
understanding from both encoding and decoding perspectives. We will introduce a well-known
iterative method for decoding turbo codes, analyze its performance, and finally explore the
neural network architectures that can be employed to achieve similar decoding capabilities for
turbo codes.

1.1 Overview of channel coding

Channel coding is a fundamental technique used in digital communication systems to ensure
the integrity and reliability of data transmission. By introducing redundancy into the transmit-
ted information, channel coding allows the detection and correction of errors that may occur
due to noise or other impairments in the communication channel. Its critical role in digital
communication systems and the major types of error-correcting codes are highlighted in the
following subsections.

1.1.1 Digital communication systems

In order to understand the role of channel coding, we present the general structure of a digital
communication system, as shown in Figure 1.1.

Figure 1.1: General model of a digital communication system.
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The digital communication system model can be divided into three primary components: the
transmitter, which handles the preparation of the information-carrying signal; the channel,
which serves as the medium through which the signal is transmitted; and the receiver, which
is responsible for reconstructing the original information.

1.1.1.1 Source encoding and encryption

The transmitter’s role is to convert information from a source into a format that increases
resilience to noise during transmission through the channel. The information source provides
the messages to communicate, which are transformed into sequences of symbols, often binary.
To enhance transmission efficiency, the source encoder compresses the input source sequence by
minimizing redundancy. This enables the possibility of conveying larger amounts of information
with the same data rate. We define the data rate or bit rate rb, as the speed in bits-per-second
at which the source encoder generates bits. To make source transmission secure, the encryption
process converts source bits into a source stream that resembles meaningless random bits of
data.

1.1.1.2 Channel encoding

Channel impairments introduce errors in the received signal, prompting the inclusion of a chan-
nel encoder to add redundancy and minimize errors. The process of introducing some redundant
bits to a sequence of information bits in a controlled manner to detect and correct transmission
errors is known as channel coding or error control coding. The channel encoder assigns code-
words or code sequences to the information sequences, aiming to maximize their dissimilarity.
The main idea is to encode the source data in such a way as to introduce dependency among
the data, thus enabling the receiver to make a more accurate detection of the information to
reconstruct.

The redundancy introduced by channel encoding usually follows a controlled format. As the
channel encoder assigns to each information sequence of k bits a code sequence of n bits. This
characteristic of the channel encoder is called the code rate, denoted R and expressed as:

R = k

n
(1.1)

When considering the rate rb at which the data is fed to the channel encoder, the coded data
rate at the output of the channel encoder, denoted rc, is given by:

rc = rb

R
Hz (1.2)
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1.1.1.3 Modulation

The output of the channel encoder undergoes modulation before transmission over a channel.
Modulation entails the mapping of encoded digital sequences into analog waveforms. During
this process, carrier waves are combined with the encoded information, varying the amplitude,
phase, or frequency of the waveforms to encode the transmitted information. This mapping
can occur individually, where each bit is modulated separately, or through M-ary modulation,
which involves modulating multiple bits at a time. This type of modulation introduces the
notion of symbol rate, out of an M-ary modulator that maps a block of l bits coming from
the channel encoder at a rate rc into one of the M = 2l possible waveforms, is denoted rs and
defined as:

rs = rc

l
= rb

Rl
Hz (1.3)

1.1.1.4 Channel

The channel constitutes a critical component in digital communication systems, serving as the
medium through which signals are transmitted from the transmitter to the receiver. Chan-
nels introduce various impairments and characteristics that affect the fidelity and reliability
of transmitted signals. Understanding these channel characteristics is essential for designing
effective communication systems.

Channels can exhibit several limitations and properties, including:

- Thermal Noise: Random noise inherent in all electronic systems due to the thermal
agitation of electrons.

- Finite Bandwidth: Limits the maximum rate at which signals can be transmitted through
the channel.

- Multipath Propagation: Common in wireless communications, where signals reach the
receiver via multiple paths, causing reflections and delays.

- Time Dispersion and Flat Fading: Causes frequency-selective attenuation and distortion
of signals over time.

Regarding the noise, its impact cannot be totally removed since we do not have complete knowl-
edge of the noise. However, in a simulation environment where the communication is studied
and the noise is defined and modeled, we quantify the reliability of information transmission by
the signal-to-noise ratio metric. The signal-to-noise ratio (SNR) is defined as the ratio of signal
power to noise power, often expressed in decibels. Another important parameter is the bit error
probability. Power efficiency is captured by the required bit energy to one-sided noise power
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spectral density ratio, Eb/No, to achieve a specified bit error probability [8]. The signal-to-noise
ratio (SNR), denoted by S/N , is related to Eb/No as:

S

N
= lR

Eb

No

(1.4)

Regarding the bandwidth, the channel bandwidth B limits the speed of signal variations. The
signal bandwidth is a measure of its speed. The signals that change quickly in time have a
large bandwidth. Bandwidth limitation of a system is quantified by the spectral efficiency [8],
denoted by η, defined as:

η = rb

B
= rslR

B
[bits/sec/Hz] (1.5)

where rs is the symbol rate. As the minimum required bandwidth for a modulated signal is rs,
the maximum spectral efficiency, denoted by ηmax, is given by:

ηmax = lR (1.6)

For a given channel, there is an upper limit on the data rate related to the signal-to-noise ratio
and the system bandwidth. Shannon introduced the concept of channel capacity, C, as the
maximum rate at which information can be transmitted over a noisy channel.

Shannon’s channel coding theorem guarantees the existence of codes that can achieve an ar-
bitrarily small probability of error if the data transmission rate rs is smaller than the channel
capacity. Conversely, for a data rate rb > C, it is not possible to design a code that can achieve
an arbitrarily small error probability. This fundamental result shows that noise sets a limit on
the transmission rate but not on the error probability as widely believed before. Though the
theorem does not indicate how to design specific codes to achieve the maximum possible data
rate at arbitrarily small error probabilities, it motivated the development of several error con-
trol techniques [8]. The capacity of a channel depends significantly on the type of channel and
its specific properties. Binary symmetric channels and additive white gaussian noise channels
are the two of the most used models.

1.1.1.4.1 Binary symmetric channel: (BSC) is a common communications channel model
used in coding theory and information theory. In this model, a transmitter wishes to send a bit
(a zero or a one), and the receiver will receive a bit. The bit will be flipped with a crossover
probability of p, and otherwise is received correctly.
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Figure 1.2: Binary symmetric channel model.

The noisy-channel coding theorem applies to BSC, saying that information can be transmitted
with arbitrarily low error at any rate up to the channel capacity C, given by:

CBSC = plog2(p) + (1− p)log2(1− p)[bits/sec] (1.7)

1.1.1.4.2 Additive white gaussian noise (AWGN) is a noise model used in information
theory to mimic the effect of random processes that occur in nature. It serves as a baseline model
for evaluating system performance in various scenarios. While useful for theoretical analysis,
it may not fully capture real-world channel characteristics. The model does not account for
more complex channel impairments such as fading or multipath propagation. In the AWGN
notation, the term additive implies that it is added to any noise that might be intrinsic to the
information system. White refers to the uniformity of the power spectral density across the
frequency band for the information system. Gaussian because it has a normal distribution in
the time domain with an average time domain value of zero, N (0, σ2).

The received signal y(t) in an AWGN channel can be described as:

y(t) = x(t) + n(t) (1.8)

where x(t) is the transmitted signal and n(t) is the additive white Gaussian noise.

The noisy-channel coding theorem applies to AWGN channels, saying that information can be
transmitted with arbitrarily low error at any rate up to the channel capacity C, given by:

CAW GN = Blog2(1 + S

N
)[bits/sec] (1.9)

1.1.1.5 Reception

In the receiver, the demodulator typically generates a binary or analog sequence at its output
as the best estimates of the transmitted codeword or the modulated sequence, respectively [8].
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Subsequently, the channel decoder utilizes the encoding scheme and channel characteristics to
estimate the original message transmitted over the channel. The decoder’s primary objective
is to minimize the effects of channel-induced noise [8].

Following the rules of source encoding and encryption, the input sequence transforms to re-
construct an estimate of the source output sequence, which is then delivered to the end user
[8].

1.1.2 Types of error correcting codes

The two most frequently used types of codes are block and convolutional codes. The main
difference between the two of them is the memory of the encoder. In block codes, each encoding
operation depends on the current input message and is independent of previous encodings. That
is, the encoder has no memory of history of past encodings. In contrast, for a convolutional
code, each encoder output sequence depends not only on the current input message but also
on a number of past message blocks.

1.1.3 Linear block codes

In block coding, the information sequence is segmented into message blocks of fixed length; each
message block, denoted by u, consists of k information bits. There are a total of 2k distinct
messages. The block encoder, according to its structure, transforms each input message u into
a binary n−tuple, denoted v with n > k. This binary n−tuple v is referred to as the codeword
of the message u.

The set of the 2k codewords is called a block code. The codewords in this block code must
be all distinct. Therefore, there must be a one-to-one correspondence between a message u
and its codeword v. Also a binary block code is linear if and only if the modulo-2 sum of two
codewords is another a codeword. The resulting block code of length n and 2k codewords is
called a linear (n, k) code, and forms a k−dimensional subspace of the vector space of all the
n−tuples.

1.1.4 Convolutional codes

Convolutional codes are widely used in applications like satellite communications, cellular mo-
bile, and digital video broadcasting. Its widespread adoption is attributed to its simple structure
and the existence of easily implementable maximum likelihood soft decision methods [8].

Elias [9] first introduced convolutional codes, while Fourney [10] worked on the foundation of
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the algebraic theory of convolutional codes.

1.1.4.1 Structure of convolutional encoder

The convolutional encoder processes the sequence of information continuously. The output of
the n-bit encoder at any given time depends on the k-bit information sequence and m previous
input blocks, i.e., a convolutional encoder possesses a memory order of m [11][12]. The (n,k,m)
convolutional code refers to the set of sequences generated by k-input, n-output encoder of
memory order m. If νi is the length of the ith shift register in a convolutional encoder with k
input sequences, i = 1,2,...,k then

m = max
1≤i≤k

νi (1.10)

And the overall constraint length ν of the encoder is defined as

ν =
∑

1≤i≤k

νi (1.11)

The code rate R for a convolutional code is defined as

R = k

n
(1.12)

The information sequence u is fed into the encoder one bit at a time.

u = (u0, u1, · · · , ul, · · · ) (1.13)

The encoder operates as a linear system, thus n output sequences of the encoder are generated,
denoted as

v(1) =
(
v

(1)
0 , v

(1)
1 , · · · , v

(1)
l , · · ·

)
v(2) =

(
v

(2)
0 , v

(2)
1 , · · · , v

(2)
l , · · ·

)
...

v(n) =
(
v

(n)
0 , v

(n)
1 , · · · , v

(n)
l , · · ·

)
(1.14)

These output sequences are interleaved to represent a single code sequence v = (v0, v1, · · · , vl, · · · ),
where vl = (v1

l , v2
l , · · · , vn

l )

The code consists of n generator sequences, each of them with length m+1, they are generated
by examining the resulting outputs after setting u = (1 0 0 ...), and they are denoted as
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g(1) =
(
g

(1)
0 , g

(1)
1 , · · · , g(1)

m

)
g(2) =

(
g

(2)
0 , g

(2)
1 , · · · , g(2)

m

)
...

g(n) =
(
g

(n)
0 , g

(n)
1 , · · · , g(n)

m

)
(1.15)

The output sequences v are the result of the convolution of the input sequence u and each
of them+1 generator sequences that specifies the code, i.e.

v(i) = u ∗ g(i), 1 ≤ i ≤ n (1.16)

and

v(i)
l = ulg

(i)
0 + ul−1g

(i)
1 + · · ·+ ul−mg(i)

m

=
m∑

i=0
ul−jg

(i)
j

(1.17)

Let’s consider the block diagram shown in Fig 1.3 of a binary rate R=1/2 nonsystematic
feedforward convolutional encoder, which consists k=1 shift register with m=2 delay elements
(Flip Flop), and n=2 modulo-2 adders, which generates a (2,1,2) convolutional code. The
following sequences specify this code [12]

g(1) = (101),

g(2) = (111)

Thus, for input ul, the outputs are given as

v
(1)
l = ul + ul−2

v
(2)
l = ul + ul−1 + ul−2

Figure 1.3: A rate R = 1/2 binary nonsystematic feedforward convolutional encoder with
memory order m = 2 [12].
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Let the information sequence u = (1011100). The output sequences are given by

v(1) = (1001011 · · · )

v(2) = (1100101 · · · )

The codeword can be written as

v = (11, 01, 00, 10, 01, 10, 11, · · · )

1.1.4.2 Convolutional encoder eepresentations

Convolutional encoders can be represented in various ways, and many properties can be derived
from these representations. These different perspectives on convolutional encoders provide
insights into their operation and efficiency.

1.1.4.2.1 Matrix representation
For any (n,k,m) convolutional encoder, the generator matrix is given by [12] [11]

G =



G0 G1 G2 · · · Gm

G0 G1 · · · Gm−1 Gm

G0 · · · Gm−2 Gm−1 Gm

. . .


(1.18)

Gl is a k×n sub-matrix

Gl =



g
(1)
1,l g

(2)
1,l · · · g

(n)
1,l

g
(1)
2,l g

(2)
2,l · · · g

(n)
2,l

... ... ...

g
(1)
k,l g

(2)
k,l · · · g

(n)
k,l


=
[
g

(1)
l g

(2)
l · · · g

(n)
l

]
, 0 ≤ l ≤ m (1.19)

Each group of rows k of the matrix G is identical to the previous group of rows but shifted n
places to the right. For an information sequence u, the codeword v is given by [12] [11]

v = uG (1.20)

Take the example of (2,1,2) convolutional encoder in Fig1.3 with g(1) = (101) and g(2) = (111),
the generator matrix is
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G =



11 01 11

11 01 11

11 01 11
. . . . . .


(1.21)

For u = (1 0 1 1 1 0 0 · · · ), v= uG=(11,01,00,10,01,10,11,00,00, · · · )

1.1.4.2.2 Polynomial representation
In linear systems, time-domain operations such as convolution can be substituted by more

manageable transform-domain operations, specifically polynomial multiplication. Since a con-
volutional encoder is considered a linear system, each sequence in the encoding equations can
be substituted with an equivalent polynomial multiplication [12] [11]. Thus, in the polynomial
representation of the encoded binary sequence, the sequence is represented by the coefficients
of the polynomial, and the encoding equations become

v(i)(D) = u(D)g(i)(D), 1 ≤ i ≤ n (1.22)

v(D) = v(1)(Dn) + Dv(2)(Dn) + · · ·+ Dn−1v(n)(Dn) (1.23)

The encoding equations can also be written as :

v(D) = u (Dn) g(D) (1.24)

where
g(D) ≜ g(1) (Dn) + Dg(2) (Dn) + · · ·+ Dn−1g(n) (Dn) (1.25)

Consider the sample example of the convolutional code presented in 1.1.4.2.1 :
Time Domain

v = uG = (11, 01, 00, 10, 01, 10, 11, 00, 00, · · · )

Transform Domain

v(D) = u
(
D2
)

g(D) =
(
1 + D4 + D6 + D8

) (
1 + D + D3 + D4 + D5

)
= 1 + D + D3 + D6 + D9 + D10 + D12 + D13

1.1.4.2.3 State diagram
As a sequential circuit, a convolutional encoder can be represented by a state diagram.
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Where the encoder’s state corresponds to the contents of its shift registers. Consider an (n,1,m)
convolutional code at time instant l, then the state is defined by the m-tuple [12] [11]

Sl = (xl−1, xl−2, . . . , xl−m)

A (n,1,m) convolutional code comprises 2m possible states. At each time instant l, the output
of the convolutional code depends on the input and the current state.

vl = f(ul, Sl)

The convolutional encoder experiences a state transition whenever a new information bit is fed
into the encoder [12] [11].

Time unit Message bit State
l ul Sl = (xl−1, xl−2, . . . , xl−m)
l + 1 ul+1 Sl+1 = (xl, xl−1, . . . , xl−m+1)

A state transition is depicted by a directed edge linking two states, Sl and Sl+1. These transi-
tions are annotated with the information and coded bits associated with that specific transition
[12] [11].

Figure 1.4 below presents the state diagram of the convolutional encoder (2,1,2) shown in Figure
1.3.

Figure 1.4: State diagram of a rate R = 1/2 binary non-systematic feedforward convolutional
encoder with memory order m = 2 [12].
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1.1.4.2.4 Trellis diagram
The trellis diagram is constructed using the state diagram by tracing all conceivable in-

put/output sequences and the accompanying state transitions[8], thus it includes a time di-
mension.

Within each section of the trellis, states are depicted twice, once at time l and again at time
l+1. A branch connects the state Sl to the state Sl+1 if an input ul at time l leads the encoder
from state Sl to state Sl+1. By combining trellis sections across various time units, a trellis
diagram for a convolutional code is constructed. Each code word consists of the labels on the
trellis transitions, representing a particular path through the trellis.

Figure 1.5 below represents a trellis diagram of the convolutional encoder (2,1,2).

Figure 1.5: Trellis diagram of a rate R = 1/2 binary non-systematic feedforward convolutional
encoder with memory order m = 2 [12].

1.1.4.3 Classification of convolutional codes

Convolutional encoders, distinguished by their structural and encoding properties, can be clas-
sified into several categories based on key differentiating aspects.

1.1.4.3.1 Systematic encoder
A convolutional code of rate R = k/n, in which the k information sequences appear explic-

itly unchanged within the n code sequences is referred to as a systematic encoder, and the
corresponding generator matrix of this encoder is called a systematic generator matrix [12]. An
example of a systematic convolutional encoder is shown in Figure 1.7

36



Theoretical Foundations

1.1.4.3.2 Nonsystematic encoder
In a nonsystematic convolutional encoder, the k information sequence does not appear un-

changed within the n coded sequences [12]. An example of a nonsystematic convolutional
encoder is shown in Figure 1.6

1.1.4.3.3 Feedforward encoder
A feedforward encoder corresponds to a polynomial generator matrix that lacks any feedback

path. The output of such an encoder can be expressed as a linear combination of the current
input and a finite number of past inputs. It can also be termed as non-recursive encoder [12].

Figure 1.6 shows the diagram of the encoder of a rate R = 1, 2-state feedforward encoder with
generator matrix G(D) = [1 + D] is shown using a shift register implementation.

(a)
(b)

Figure 1.6: Rate R = 1, 2-state feedforward encoder, G(D) = [1 + D] [12].

1.1.4.3.4 Feedback encoder
A feedback encoder corresponds to a rational generator matrix featuring at least one non-

polynomial transfer function that includes a feedback path. The output of such an encoder can
be expressed as a linear combination of past inputs and past outputs, implying its dependence
on an infinite number of past inputs. This encoder can also be termed as recursive encoder
[12].

In Figure 1.7 the diagram of the encoder of a rate R = 1/2, 2-state feedback encoder with
generator matrix G(D) = [1 1

1+D
] is shown.
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(a) (b)

Figure 1.7: Rate R = 0.5, 2-state feedback encoder, G(D) = [1 1
1+D

] [12].

1.1.4.4 Equivalent encoder

Two convolutional encoders are considered equivalent if their generator matrices G(D) and
G′(D), are equivalent, meaning they encode the same code. If and only if there exists a
rational invertible matrix T (D) such that G′(D) = T (D)G(D), thus G(D) and G′(D) are
called equivalent [12].

Example: The generator matrices G(D) = [1 1
1+D

] and G(D) = [1 + D 1] are equivalent,
while T (D) = [ 1

1+D
]

1.1.4.5 Catastrophic encoder

A convolutional encoder is considered catastrophic if it encodes an information sequence con-
taining infinitely many non-zero symbols into a code sequence with only finitely many non-zero
symbols. This implies that a finite number of errors in the channel can cause infinitely many
errors in the received sequences[12].

Example:

Consider the convolutional encoder with the following generator matrix G(D) = [1+D 1+D2].
For an input sequence, u(D) = [ 1

1+D
] = 1 + D + D2 + · · · , the output sequence is [1 1 + D]

has only weight 3, despite the input sequence having an infinite weight.

1.1.5 Distance properties of convolutional codes

The distance is a parameter that defines the performance of the convolutional code. The
minimum free distance of a convolutional code is denoted as

dfree ≜ min
u,u′

d(v, v′) : u ̸= u′ (1.26)
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Such that v and v′ represent the code sequences corresponding to the information sequences u
and u′, respectively.

dfree is the minimum Hamming distance between any two distinct code sequences in the code.
Additionally, dfree can be understood as the minimum weight of a non-zero sequence in the
code.

dfree = min{w(v : u ̸= 0)} (1.27)

1.2 Convolutional turbo codes

1.2.1 Structural overview

A turbo coding system consists of three primary components: the constituent encoders, the
interleaver, and the iterative decoder. While none of these components is novel on its own,
the innovation introduced in [1] lies in combining them with a near-optimal decoding scheme,
which is crucial to the success of turbo codes.

The constituent encoder is responsible for generating redundant data from the input informa-
tion, enhancing the robustness of the transmission.

The interleaver, on the other hand, rearranges the order of the input bits to ensure that errors
occurring in bursts during transmission are spread out when decoded.

The iterative decoder is the final component of the turbo coding system. It applies a process
of repeated decoding and information exchange between multiple decoders to progressively
improve the estimate of the transmitted message.

The synergy of these three components, when combined with an efficient decoding strategy as
proposed in [1], leads to the remarkable performance of turbo codes, making them a powerful
tool in modern communication systems. In this section 1.2, we will discuss the turbo encoder
components in detail to provide a comprehensive understanding of their individual roles and
contributions to the overall system, the turbo decoder components will be discussed in section
1.3.

1.2.2 Constituent encoders

The constituent encoders of turbo codes are recursive systematic convolutional (RSC) encoders,
that are generally identical and come as two or more. The encoder structure is a parallel
concatenation because each constituent encoder works on the same input sequence, rather than
passing coded information from one encoder to another. The block diagram of a turbo encoder
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with two constituent convolutional encoders is shown, in Figure 1.8.

Figure 1.8: Block diagram of a turbo encoder with two constituent convolutional encoders.

The encoding process for two constituent encoders can be described as follows. The input
information bit sequences u feed the first encoder and, after having permuted by the interleaver,
the resulting bit sequences labeled u’ enter the second encoder. A codeword of a turbo code
is formed by the output bit sequences from the encoders, together with the information bit
sequence. The role of the interleavers is one of the key factors determining the outstanding
performance of turbo codes. Traditionally, interleavers are used to combat burst channel noise,
which degrades the performance of the coding system. Here, interleavers are deployed but for
a different reason, as will be further explained in the subsection 1.2.3. Next, we introduce the
notions of trellis termination for convolutional encoders and punctured turbo codes, which are
key properties that influence the performance and efficiency of the encoding scheme.

1.2.2.1 Trellis termination

Trellis termination is a technique used to drive the encoder to the all-zero state. This is required
when a new block of N information bits is passed to be encoded, in order to have the initial
state for the new block as the all-zero state.

Given that the constituent encoders are recursive, it is not possible to terminate a trellis by
transmitting zero bits. We need to take into consideration the state of the constituent encoder
after N information bits to correctly terminate it. A solution is proposed in Figure 1.9. A
switch in each constituent encoder is in position "A" for the first N cycles, and then in position
"B" for an amount ν of additional cycles corresponding to the memory order of the constituent
encoder. This flush the register with zeros and drives the encoder to the all-zero state. This
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technique creates ν additional bits that are called tail bits.

Figure 1.9: Trellis termination illustrated on a RSC constituent encoder.

1.2.2.2 Punctured turbo codes

The overall turbo code rate R does not necessarily inherit from the code rate of its constituent
encoders. Various overall code rates can be obtained from the rate 1/3 turbo encoder shown
in Figure 1.8 by puncturing the coded bits. When puncturing is applied, some output bits of
the codeword are deleted according to a chosen pattern defined by a puncturing matrix P. For
instance, a rate 1/2 turbo code can be obtained by puncturing a rate 1/3 turbo code. The
commonly used puncturing matrix is given in Equation 1.28 and its results are shown in Figure
1.10. A value of 0 in a puncturing matrix implies that the corresponding bit is punctured, and
a value of 1 that the bit is kept.

P =


1 1

1 0

0 1

 (1.28)

Figure 1.10: Puncturing of a rate 1/3 turbo code using P matrix in 1.28.

The selection of the puncturing matrix often follows established practices that have proven
effective. We avoid puncturing systematic bits because they are more important than parity
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bits. Additionally, we prevent the puncturing of tail bits, as non-termination of the turbo code
can result in significant performance loss. And to maximize the balance in strength between
the multiple constituent encoders, we alternate the puncturing of the parity bits.

1.2.3 Interleaving

The interleaver in turbo coding is a device that scrambles the input information based on a
permutation of N elements with no repetitions. Interleaving involves dispersing the information
over time, in a way that error events associated with a small distance in one code lead to an
error event in the other code with a very large distance. Its use is profitable to reduce the effect
of long attenuations in transmissions affected by fading and also where perturbation can alter
consecutive symbols [13]. It has thus been pointed out that the design of the interleaver plays
a central role for turbo code design and different approaches to the design of the interleaver
have been proposed.

Regular permutation

The regular permutation or block permutation is the first approach developed to fulfill the
interleaving task. The method states that N information bits can be organized in a table
lookup of rows and columns. The process is done by writing the data in the memory table row
by row, and reading it column by column. Figure 1.11 shows a block permutation interleaver.

Figure 1.11: Block permutation interleaver [14].

Quadratic permutation

The use of quadratic permutation polynomials (QPP) as a class of deterministic interleavers,
fulfills the task using a simple arithmetic computation instead of a table lookup. Given an
information block of N > 2 elements, a polynomial

π(x) = (a0 + a1x + a2x
2) moduloN (1.29)
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where the coefficients a0, a1 and a2 represent a shift of the permutation elements are non-
negative integers, is said to be a quadratic permutation polynomial over ZN when π(x) permutes
{0, 1, 2, . . . , N − 1} [15].

As for the QPP interleavers in the Long-Term Evolution (LTE) standard, we only consider
polynomials with free term a0 = 0 [16]. In the search of best performing quadratic permutation
polynomial for various block lengths, conditions have been established in [16] over the choice
of quadratic coefficients. The proposed polynomials will be used further on in our interleaving
process to guarantee the maximum efficiency of turbo codes.

1.3 Iterative turbo decoding

The decoding of turbo codes takes its roots from the original Viterbi decoding algorithm, pro-
posed in 1967 [17]. The algorithm aims to decode convolutional codes based on the knowledge
of the structure of convolutional encoders and the synergy between the state evolution and the
produced parity bits. Many modified versions of the Viterbi algorithm have been introduced to
overcome its limitations in terms of performance. Turbo codes benefit from these algorithms
to decode the output of each of its constituent encoders in an iterative manner. We will first
introduce the Viterbi decoding algorithm for convolutional codes. Then, its integration in
the iterative decoding of turbo codes. Finally, the modified decoding algorithm, Soft-Output
Viterbi Algorithm (SOVA) and its implementation for performance analysis of turbo codes.

1.3.1 Viterbi decoding algorithm for convolutional code

A (n, 1, m) convolutional code can be represented using its trellis diagram. Typically, the initial
state of a convolutional code is the all-zero state. For time l ≤ m, as information bits are shifted
into the encoder, the number of states doubles with each shift. By time l = m, the number of
states reaches 2m. Since one information bit enters the encoder at each time step, two branches
leave each state in the trellis diagram. For l > m, there are also two branches merging into
each state. Encoding an information sequence is equivalent to tracing a path through the trellis
[12]. An illustration of the path tracing in a trellis is shown in Figure 1.12.
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Figure 1.12: Trellis diagram of (2, 1, 2) convolutional encoder with L=5 [12].

The encoder resets to an all-zero state after processing an L-bit information sequence, u =
(u0, u1, u2, . . . , uL−1). During the termination process, the number of states is reduced to half
repeatedly until all paths in the trellis diagram converge back to the all-zero state. For l ≤ m,
there is exactly one path of length l entering each node at time l. For l > m, there are exactly
2l−m paths of length l entering each node at time l. In total, there are 2l paths of length l.

On a Binary Symmetric Channel (BSC):

Let the information sequence of length L be

u = (u0, u1, . . . , ul, . . . , uL−1)

This sequence is encoded into a code sequence of length N ≜ (L + m)n

v = (v0, v1, . . . , vl, . . . , vL+m−1)

If the code sequence v is transmitted over the channel, the received sequence is

r = (r0, r1, . . . , rl, . . . , rL+m−1)
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where the l-th received block is

rl = (r(1)
l , r

(2)
l , . . . , r

(n)
l )

A maximum likelihood decoder identifies the path through the trellis that maximizes the con-
ditional probability of the received sequence given the code sequence:

P (r|v) =
L+m−1∏

l=0
P (rl|vl) (1.30)

The branch conditional probability is given by:

P (r|v) =
n∏

i=1
P (r(i)

l|v(i)
l) (1.31)

where the bit conditional probabilities P (r(i)
l |v

(i)
l ) are the channel transition probabilities.

Maximizing P (r|v) is equivalent to maximizing:

M(r|v) ≜ log P (r|v) (1.32)

This M(r|v) is called the path metric:

M(r|v) =
L+m−1∑

l=0
log P (rl|vl) =

L+m−1∑
l=0

M(rl|vl) (1.33)

where the branch metrics are:

M(rl|vl) =
n∑

i=1
log P (r(i)

l |v
(i)
l ) =

n∑
i=1

M(r(i)
l |v

(i)
l ) (1.34)

The partial path metric for the first j branches of a path v is given by:

M([r|v]j) =
j−1∑
l=0

M(rl|vl) (1.35)

For a BSC, the maximum likelihood decoder decodes the received sequence r into the code
sequence v that minimizes the Hamming distance d(r, v).
The Viterbi algorithm is a computationally efficient method for finding the path through the
trellis with the best metric.
The Viterbi decoder proceeds through the trellis level by level, searching for the path with the
optimal metric.
At each level, the decoder compares the metrics of all partial paths entering each state. It
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stores the partial path with the best metric (the survivor path) and eliminates all other partial
paths.
For m ≤ l ≤ L, there are a total of 2m survivor paths. The number of survivors decreases
during the termination process until, at time l = L + m, there is only one survivor path left.
This surviving path is the maximum likelihood path.

The Viterbi algorithm can be implemented as follows[14]:

Sk,t is the state in the trellis diagram that corresponds to state Sk at time t. Every state in the
trellis is assigned a value denoted V (Sk,t).

1. a. Initialize time t = 0.

b. Initialize V (S0,0) = 0 and all other V (Sk,t) = +∞.

2. a. Set time t = t + 1.

b. Compute the partial path metrics for all paths going to state Sk at time t. First,
find the t-th branch metric

M(rt|vt) =
n∑

j=1
M(r(j)

t |v
(j)
t ).

This is calculated from the Hamming distance

n∑
j=1
|r(j)

t − v
(j)
t |.

Second, compute the t-th partial path metric

M t(r|v) =
t∑

i=0
M(ri|vi).

This is calculated from
V (Sk,t−1) + M(rt|vt).

3. a. Set V (Sk,t) to the "best" partial path metric going to state Sk at time t. Conven-
tionally, the "best" partial path metric is the partial path metric with the smallest
value.

b. If there is a tie for the "best" partial path metric, then any one of the tied partial
path metrics may be chosen.

4. Store the "best" partial path metric and its associated survivor bit and state paths.

5. If t < L + m− 1, return to Step 2.
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1.3.2 Soft-Ouput Viterbi Algorithm (SOVA) for turbo codes

After introducing the Viterbi algorithm, we will delve into its modified version, the Soft-Output
Viterbi Algorithm (SOVA). We will also present the general scheme for a turbo decoder, em-
phasizing the benefits of using SOVA and its soft output values in the decoding process of turbo
codes. Finally, we will present a simulation environment for a communication system based
on turbo codes and turbo decoding using SOVA, analyze its performance, and discuss the key
considerations when configuring SOVA algorithm.

1.3.2.1 Principal of the decoder

The Viterbi algorithm is known for generating the maximum likelihood (ML) output sequence
for convolutional codes, providing optimal sequence estimation for single-stage convolutional
codes [14]. However, when applied to turbo codes, where a concatenated decoding approach
is needed, the algorithm fails due to multiple reasons. The first Viterbi decoder suffers from a
channel burst phenomenon and tends to commit a burst of errors. This output, when fed to
the second decoder, harms the efficiency of the concatenated decoding. Also, the hard decision
on the output data neglects the advantage of having soft decision data.

These issues can be mitigated, and the overall performance of the concatenated decoder sig-
nificantly enhanced, by enabling the Viterbi decoders to generate reliability (soft-output) val-
ues[1]. These reliability values serve as a-priori information for subsequent Viterbi decoders,
improving decoding accuracy. This enhanced version of the Viterbi decoder is known as the
soft-output Viterbi algorithm (SOVA) decoder. We note that SOVA is a simplified version of
the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm. While both algorithms are used for decoding
convolutional codes, SOVA simplifies the process by generating soft outputs from the Viterbi
Algorithm. In contrast, the BCJR algorithm provides exact a posteriori probabilities for each
bit, which requires a more complex forward-backward procedure. SOVA, therefore, offers a
balance between performance and computational complexity, making it a practical choice for
many applications. Figure 1.13 illustrates a concatenated SOVA decoder, where y represents
the received channel values, u represents the hard decision output values, and L represents the
associated reliability values.
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Figure 1.13: A concatenated SOVA decoder [14].

The soft value or reliability produced by a SOVA component decoder is calculated from the
trellis diagram, as show in the example figure 1.14. The solid line indicates the survivor path
and the dashed line indicates the competing (concurrent) path at time t for state 1. The paths
shown in the figure are relative to the time t and the same logic is applied to other nodes for
other time steps. The label S1,t represents state 1 and time t. The labels 0,1 shown on each
path indicate the estimated binary decision for the paths. The survivor path for this node is
assigned an accumulated metric Vs(S1,t) and the competing path for this node is assigned an
accumulated metric Vc(S1,t). The fundamental information for assigning a reliability value L(t)
to node S1,t’s survivor path is the absolute difference between the two accumulated metrics,
L(t)= | Vs(S1,t) - Vc(S1,t)| [1]. The greater this difference, the more reliable is the survivor path.
For this reliability calculation, it is assumed that the survivor accumulated metric is always
“better” than the competing accumulated metric. Furthermore, the reliability values only need
to be calculated for the ML survivor path, which corresponds to the survivor path at the last
time step at the node of state 0 of a terminated trellis. [14]

Figure 1.14: Example of survivor and competing paths for reliability estimation at time t [14].
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To improve the reliability values of the survivor path, a traceback operation to update the
reliability values has been suggested [1]. This updating procedure is integrated into the Viterbi
algorithm as follows :

For node Sk,t in the trellis diagram (corresponding to state k at time t),

1. Store L(t) = | Vs(Sk,t) - Vc(Sk,t)|. This is also denoted as ∆ in other papers. If there is
more than one competing path, then multiple reliability values must be calculated and
the smallest reliability value is then set to L(t).

2. Initialize the reliability value of Sk,t to +∞ (most reliable).

3. Compare the survivor and competing paths at Sk,t and store the memorization levels
(MEMs) where the estimated binary decisions of the two paths differ.

4. Update the reliability values at these MEMs with the following procedure:

a. Find the lowest MEM>0, denoted as MEMlow, whose reliability value has not been
updated.

b. Update MEMlow’s reliability value L(t-MEMlow) by assigning the lowest reliability
value between MEM = 0 and MEM = MEMlow.

1.3.2.2 Overview of the component decoder

The SOVA component decoder estimates the information sequence using one of the two encoded
streams produced by the turbo code encoder, information and parity bits. Figure 1.15 shows
the inputs and outputs of the SOVA component decoder [14].

Figure 1.15: SOVA component decoder [14].

The SOVA component decoder operates similarly to the Viterbi decoder, except the ML se-
quence is found by using a modified metric. This modified metric, which incorporates the
a-priori value, is given in Equation 1.36.

M
(m)
t = M

(m)
t−1 +

N∑
j=1

x
(m)
t,j Lcyt,j + u

(m)
t L(ut) (1.36)
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Where m represents the index of the node state, t the time step, x
(m)
t,j and u

(m)
t the trellis

transition bits and systematic bit, yt,j received bits at time t, Lc the channel reliability, and
L(ut) the soft information value at time t from the previous component decoder. [14]

For systematic codes, this metric can be modified as shown in Equation

M
(m)
t = M

(m)
t−1 + u

(m)
t Lcyt,1 +

N∑
j=2

x
(m)
t,j Lcyt,j + u

(m)
t L(ut) (1.37)

As seen from 1.36 and 1.37, the SOVA metric incorporates values from the past metric, the
channel reliability, and the source reliability (a-priori value). [14]

The soft output Viterbi algorithm (along with its reliability updating procedure) can be imple-
mented as follows:

1. a. Initialize time t = 0.

b. Initialize Mm
0 only for the zero state in the trellis diagram and all other states to

−∞.

2. a. Set time t = t + 1.

b. Compute the metric M
(m)
t = M

(m)
t−1 + u

(m)
t Lcyt,1 +∑N

j=2 x
(m)
t,j Lcyt,j + u

(m)
t L(ut)

for each state in the trellis diagram, where m denotes the allowable binary trellis
branch/transition to a state (m= 1, 2).

Mm
t is the accumulated metric for time t on branch m.

um
t is the systematic bit for time t on branch m.

xm
t,j is the j-th bit of N bits for time t on branch m (2≤j≤N).

ym
t,j is the received value from the channel corresponding to xm

t,j.

Lc = 4 Eb

N0
is the channel reliability value.

L(ut) is the a-priori reliability value for time t. This value is from the preceding
decoder. If there is no preceding decoder, then this value is set to zero.

3. Find maxm M
(m)
t for each state. For simplicity, let M

(1)
t denote the survivor path metric

and M
(2)
t denote the competing path metric.

4. Store M
(1)
t and its associated survivor bit and state paths.

5. Compute ∆0
t = 1

2 |M
(1)
t −M

(2)
t |.

6. Compare the survivor and competing paths at each state for time t and store the MEMs
where the estimated binary decisions of the two paths differ.

7. Update ∆MEM
t ≈ mink=0,...,MEM

{
∆k

t

}
for all MEMs from smallest to largest MEM.
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8. Go back to Step (2) until the end of the received sequence.

9. Output the estimated bit sequence u′ and its associated “soft” or L-value sequence L(u′) =
u′ • ∆, where • operator defines element by element multiplication operation and ∆ is
the final updated reliability sequence. L(u′) is then processed (to be discussed later) and
passed on as the a-priori sequence L(u) for the succeeding decoder.

1.3.2.3 SOVA iterative turbo decoder

The iterative turbo code decoder is composed of two concatenated SOVA component decoders.
Figure 1.16 shows the turbo code decoder structure.

Figure 1.16: SOVA iterative turbo code decoder [14].

The turbo code decoder processes the received channel bits on a frame basis. As shown in
Figure 1.16, the received channel bits are demultiplexed into the systematic stream y1 and two
parity check streams y2 and y3 from component encoders 1 and 2 respectively. These bits are
weighted by the channel reliability value and loaded onto the circular shift registers. [14] The
registers shown in the figure are used as buffers to store sequences until they are needed. The
switches are placed in the open position to prevent the bits from the next frame from being
processed until the present frame has been processed. The SOVA component decoder produces
the “soft” or L-value L(u−t′) for the estimated bit u′

t (for time t). The “soft” or L-valueL(u−t′)
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can be decomposed into three distinct terms,

L(u′
t) = L(ut) + Lcyt,1 + Le(u′

t) (1.38)

L(ut) is the a-priori value and is produced by the preceding SOVA component decoder. Lcyt,1

is the weighted received systematic channel value. Le(u′
t) is the extrinsic value produced by the

present SOVA component decoder. The information that is passed between SOVA component
decoders is the extrinsic value

Le(u′
t) = L(u′

t)− L(ut)− Lcyt,1 (1.39)

The a-priori value L(ut) is subtracted out from the “soft” or L-value L(u′
t) to prevent passing

information back to the decoder from which it was produced. Also, the weighted received
systematic channel value Lcyt,1 is subtracted out to remove “common” information in the SOVA
component decoders. [14]

Figure 1.16 shows that the turbo code decoder is a closed-loop serial concatenation of SOVA
component decoders. In this closed-loop decoding scheme, each of the SOVA component de-
coders estimates the information sequence using a different weighted parity check stream.
The turbo code decoder further implements iterative decoding to provide more dependable
reliability/a-priori estimations from the two different weighted parity check streams, hoping to
achieve better decoding performance. [14]

The iterative turbo code decoding algorithm for the n-th iteration is as follows:

1. The SOVA1 decoder inputs sequences 4 Eb

N0
y1 (systematic), 4 Eb

N0
y2 (parity check), and

Le2(u′) and outputs sequence L1(u′). For the first iteration, sequence Le2(u′) = 0 because
there is no initial a-priori value (no extrinsic values from SOVA2).

2. The extrinsic information from SOVA1 is obtained by Le1(u′) = L1(u′) − Le2(u′) − Lcy1

where Lc = 4 Eb

N0
.

3. The sequences 4 Eb

N0
y1 and Le1(u′) are interleaved and denoted as I{4 Eb

N0
y1} and I{Le1(u′)}.

4. The SOVA2 decoder inputs sequences I{4 Eb

N0
y1} (systematic), I{4 Eb

N0
y3} (parity check

that was already interleaved by the turbo code encoder), and I{Le1(u′)} (a-priori infor-
mation) and outputs sequences I{L2(u′)} and I{u′}.

5. The extrinsic information from SOVA2 is obtained by I{Le2(u′)} = I{L2(u′)}−I{Le1(u′)}−
I{Lcy1}.
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6. The sequences I{Le2(u′)} and I{u′} are deinterleaved and denoted as Le2(u′) and u′.
Le2(u′) is fed back to SOVA1 as a-priori information for the next iteration, and u′ is the
estimated bits output for the n-th iteration.

1.3.2.4 Algorithm implementation

In the scope of analyzing the performance of the decoding using the Soft-Output Viterbi algo-
rithm, we established a MatLab environment to simulate a turbo code based communication
system.

1.3.2.4.1 Configuration of the turbo code
The turbo code selected for this study follows a commonly used configuration, called the

757 turbo code. The “757” notation indicates the configuration of the constituent recursive
systematic encoders of memory order ν = 2. It comes from the octal representation (5)8 =
(101)2 of the feedforward polynomial [1+D2], and the octal representation (7)8 = (111)2 of the
feedback polynomial [1 + D1 + D2]. The 757 turbo code uses two of these constituent encoders,
and each encoder is terminated using the technique described previously in 1.2.2.1. The overall
code rate is 1/3, as no puncturing of the output was applied. The interleaver uses quadratic
permutation polynomials, of which the coefficients were extracted from the research done in
[15]. The Figure 1.17 shows a detailed diagram of the 757 turbo encoder used.

Figure 1.17: Diagram of the 757 turbo encoder used in simulation.
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1.3.2.4.2 Configuration of the simulation environment
The flow of the communication system simulation is as follows. Random information bits are

generated. The sequence of generated bits is divided and encoded using the previous encoder
into blocks of various lengths.

Once the information is encoded into the coded sequence v, we modulate the data using a
modulation of order M = 2. The modulation technique used is the Binary Phase Shift Keying
(BPSK). We directly applied the constellation transformation, mapping bits 0 to -1 and bits
1 to 1. This approach was chosen instead of incorporating carrier waves and other details, as
they are unnecessary for analyzing error performance.

The transmission of the modulated data is simulated using the integrated MatLab awgn function
to mimic an Additive White Gaussian Noise (AWGN) channel. This type of channel is not best
for modeling terrestrial path transmission, since it lacks notions of multipath, terrain blocking
and interference but its complexity is sufficient enough for our analysis of decoding performance
over noisy channels.

The received sequence, or the noisy sequence, is demodulated using a hard BPSK demodulation
and passed to the turbo decoder. The architecture of the turbo decoder was previously described
in 1.3.2.3.

After demultiplexing of the received sequences, the iterative decoding between SOVA blocks
begins. The code implementation of the Soft-Output Viterbi Algorithm is provided as the
MATLAB function given below.

The MATLAB code of SOVA is provided in the appendix.

1.3.2.5 Simulation results

The goal of the simulation is to determine the performance of the soft-output Viterbi algorithm
under different configurations and channel conditions. The studied configurations cover the
parameters of block length value K, number of decoding iterations N , and normalization of the
extrinsic information with scaling factor k and threshold th. To thoroughly assess the impact
of different SOVA configurations on decoding performance, we performed simulations with all
possible combinations over an extended range of values. This exhaustive approach allowed us
to systematically analyze and understand the significance and impact of each parameter on the
overall decoding performance. To quantify the performance, we rely on two metrics that are
essential in channel coding. Thus, the Bit Error Rate (BER) and Block Error Rate (BLER)
metrics are introduced.
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1.3.2.5.1 Bit Error Rate (BER) is a measure of the number of bit errors that occur in
a transmission system over a given period of time. It is defined as the ratio of the number of
erroneous bits received to the total number of bits sent. BER is an important parameter in
digital communications, as it indicates the quality of the transmission and the performance of
the error correcting code. Mathematically, it is expressed as:

BER = Number of bit errors
Total number of transmitted bits (1.40)

1.3.2.5.2 Block Error Rate (BLER) is a measure of the number of erroneous blocks in
a transmission system over a given period of time. A block is considered erroneous if any bit
within the block is incorrect. BLER is defined as the ratio of the number of erroneous blocks
received to the total number of blocks sent. This metric is particularly useful for understanding
the performance of error correction codes that operate on blocks of data. Mathematically, it is
expressed as:

BLER = Number of erroneous blocks
Total number of transmitted blocks (1.41)

1.3.2.5.3 Effect of the block length
The block length parameter, though not directly related to SOVA, is a fundamental variable

to consider. In a turbo code, the block length determines the size of the interleaver. It is well
established in the literature that larger interleavers generally provide a better performance, a
point further confirmed by our study. We utilized permutation of type QPP with coefficients
from [15] wherever possible.

For the simulation, a bit stream of 216 bits is generated and divided into blocks of different
lengths. It is crucial to perform this comparison by evaluating the same total number of
generated bits, rather than an equal number of blocks.

The BER performance comparison based on the information block length, with a number of
decoding iterations fixed at N = 6 and the best performing normalization scheme, is presented
in Figure 1.18.
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Figure 1.18: Comparison of SOVA BER performance for different block lengths.

As shown in 1.18, larger block lengths (K = 512, K = 1024, K = 2048) offer significantly better
performance (lower BER) at higher Eb/N0 values compared to smaller block lengths (K = 64,
K = 100, K = 258). This suggests that increasing the block length improves the performance of
SOVA, especially in higher SNR. This finding reinforces the earlier point regarding the positive
relationship between interleaver size and turbo code performance.

1.3.2.5.4 Effect of the number of decoding iterations
The number of decoding iterations is a crucial parameter in determining SOVA’s complexity

and execution time. The BER performance comparison based on the number of decoding
iterations, with block length fixed at K = 100 and the best performing normalization scheme
is presented in Figure 1.19.
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Figure 1.19: Comparison of SOVA BER performance for different numbers of decoding itera-
tions.

As shown in Figure 1.19, increasing the number of iterations (N = 6, N = 4) leads to a noticeable
improvement in performance (lower BER) compared to fewer iterations (N = 2, N = 1). This
improvement comes at the cost of increased computational complexity and execution time.
Therefore, while more iterations can enhance the decoding accuracy of SOVA, it is essential to
balance this with the available computational resources and the desired latency requirements
of the system.

We must also point out that while conducting this comparison, each number of decoding iter-
ations was matched with its best-performing extrinsic information normalization. The scaling
and thresholding of the soft information, which is exchanged between decoders 2×N times, natu-
rally requires different configurations for each iteration count. This ensures that the comparison
accurately reflects the optimal performance achievable with varying numbers of iterations.

1.3.2.5.5 Effect of the extrinsic information normalization
The process of normalization adjusts the extrinsic information values to an optimal range,

ensuring that they accurately reflect the reliability of the decoding. This adjustment is crucial,
as improper normalization can lead to either an underestimated or overestimated reliability.
Two primary parameters in soft information normalization are scaling and thresholding. Scaling
modifies the amplitude of the soft information, while thresholding defines the limits beyond
which values are clipped to prevent extreme fluctuations.

The BER performance comparison based on the extrinsic information scaled thresholding, with
block length fixed at K = 100 and a number of iterations of N = 6 is presented in Figure 1.20.
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(a) scaling

(b) thresholding

Figure 1.20: Comparison of SOVA BER performance for different extrinsic information nor-
malization schemes.

As shown in 1.20, The scale (s = 0.75) offers the best performance (lowest BER) across all
Eb/N0 values, while the smallest scale (s = 0.25) shows the worst performance. Performance
differences across thresholds are less pronounced compared to the other parameters, but gen-
erally, lower thresholds (|th| = 10, |th| = 20, |th| = 40) slightly outperform higher thresholds
(|th| = 80, |th| = 100). We also address that threshold values are highly correlated to the
scaling value. A larger scaling factor requires a lower clipping point to prevent the explosion
of soft information values, whereas a smaller scaling factor benefits from a higher threshold to
ensure values converge gradually within an optimal range, particularly over a larger number of
decoding iterations.

1.3.2.5.6 Considerations for upcoming work
In the upcoming work, we fix the block length to the value of K = 100. This value was

chosen because of its common use in LTE standard and in research on channel coding. The
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corresponding quadratic permutation polynomials is π(x) = (34x + 63x2)mod(100 − 2). We
note that the interleaving is not applied on the tail bits, meaning that the last ν = 2 tail bits
are not interleaved.

The BER of the selected configuration is reviewed in Figure 1.21. The shown performance
represents the key point of comparison in Chapters X and Y, as it represents the SOVA al-
gorithm with the best-averaged performance over a selected signal-to-noise ratio range. The
stated SOVA configuration parameters are listed below.

- Number of decoding iterations of N = 6.

- Soft information scaling with a factor s = 0.75.

- Soft information threshold at |th| = 40.

Figure 1.21: SOVA BER performance for the selected configuration.
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Conclusion

A general overview of the theory related to channel coding has been explained in detail, with
an explanation of convolutional codes, turbo codes, and iterative turbo decoder SOVA, plus
MATLAB simulation results to examine the different parameters that influence the performance
of the turbo decoder.

In the next chapter, we get more into the details related to the subject, when we introduce
neural networks and state-of-the-art works on turbo decoding using machine learning techniques
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Introduction

Communication standards generally specify a fixed encoder as a capacity-approaching code,
while permitting stakeholders to create their own decoders [4], making the development of highly
reliable, robust, and adaptive decoding algorithms crucial for both industry and academia.
Among various standard codes, turbo codes are extensively used in modern communication
systems. The standard Turbo decoder utilizes the iterative BCJR and SOVA algorithms along
with an interleaving decoding process [18]. Historically, turbo codes were the first channel
coding scheme to achieve capacity-approaching performance under AWGN channels [1].

Since the 1990s, communication engineering specialists have shown significant interest in using
deep learning methods to decode convolutional and turbo codes, exploring various neural net-
work architectures (e.g., FFNN, RNN, LSTM) to evaluate their performance in terms of error
rate, time complexity, and hardware complexity compared to iterative turbo decoders.

In this chapter, in the first part, we explain the different types of deep neural networks and
their different architectures and applications, which gives an overview and helps to introduce
the second part. In the second part, we examine various methods and architectures detailed in
research papers and articles focusing on deep learning techniques for decoding convolutional and
turbo codes. Each section of this chapter discusses a different type of deep learning architecture,
analyzing its specific contributions and performance.

2.1 Neural networks

In this section, we introduce fundamental concepts of neural networks, with a specific focus on
architectures that exhibit strong potential for application in channel decoding. Various neural
network architectures will be discussed in sufficient detail. This foundational understanding
will pave the way for the subsequent chapter, where neural network models will be proposed
for the decoding of turbo codes.

2.1.1 Feed Forward Neural Networks (FFNN)

A feedforward network is a multilayer network where units are connected without cycles; each
layer’s outputs are passed to the next higher layer without feedback [19].

Feedforward networks consist of three types of nodes: input units, hidden units, and output
units. Figure 2.1 shows a typical structure. The input layer x is a vector of scalar values. The
core of the network is the hidden layer h, comprising hidden units hi. Each hidden unit hi

takes a weighted sum of its inputs and applies a non-linearity [19].
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In a fully-connected architecture, each unit in one layer connects to all units in the previous
layer. Thus, each hidden unit sums over all input units. The parameters for the entire hidden
layer are represented by a weight matrix W and a bias vector b. The weight matrix W has
elements Wji representing the weight from the i-th input unit xi to the j-th hidden unit hj.
This allows efficient hidden layer computations using simple matrix operations: multiplying
the weight matrix by the input vector x, adding the bias vector b, and applying the activation
function g. For instance, using the sigmoid function σ, the hidden layer output is given by:

h = σ(Wx + b) (2.1)

Figure 2.1: A simple 2-layer feedforward network, with one hidden layer, one output layer, and
one input layer [19].

Here, σ is applied element-wise. Let n0 be the number of inputs, n1 the number of hidden
units, and n2 the number of output nodes. The input vector x is a column vector of dimension
[n0, 1]. The hidden layer vector h and bias vector b are columns vectors of dimension [n1, 1] .
The weight matrix W with dimension [n1, n0] [19].

The hidden layer output h represents the input in a new form. The output layer computes the
final output, often for classification tasks. For binary tasks, a single output node represents the
probability of positive versus negative sentiment. For multinomial classification, each output
node represents the probability of a specific class, with all output values summing to one [19].

The output layer has a weight matrix U (without a bias vector for simplicity) of a dimension
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[n2, n1] . The intermediate output z is:

z = Uh (2.2)

The output vector y is a probability distribution obtained by normalizing z using the softmax
function:

softmax(zi) = exp(zi)∑d
j=1 exp(zj)

for 1 ≤ i ≤ d (2.3)

A neural network classifier with one hidden layer computes h as a representation of the input
and then uses multinomial logistic regression on h. Unlike traditional feature engineering, the
network itself induces the feature representations [19].

The final equations for a feedforward network with a single hidden layer are:

h = σ(Wx + b) (2.4)

z = Uh (2.5)

y = softmax(z) (2.6)

The activation functions sigmoid and tanh are give as follows respectively :

σ(x) = 1
1 + e−x

(2.7)

tanh(x) = ex − e−x

ex + e−x
(2.8)

2.1.2 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) revolutionized the use of neural networks for sequential
data. Early RNN models, like the Elman and Jordan networks introduced in 1990 [20], extended
feedforward neural networks by processing sequences one step at a time using internal feedback
loops. Unlike feedforward networks, RNNs can produce outputs at each step and rely on inputs
and outputs from previous steps, utilizing an internal memory state, or hidden state, connected
by a delay function. This allows RNNs to exploit temporal dependencies, making them effective
for discrete data [21].

RNNs consist of an input vector xt, a hidden state ht, and an output vector yt. The hidden
state at step t, ht, is a function of the current input xt and the previous hidden state ht−1 :

ht = fh(xt, ht−1) (2.9)
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The output yt at step t is a function of the hidden state:

yt = fy(ht) (2.10)

. This process, illustrated in Figures 2.2 and 2.3, unrolls the network over time.

Figure 2.2: Schematic of a recurrent network, with an input, output, and a delay function ht

[21].

Figure 2.3: Schematic overview of the recurrent network, unfolded [21].

A standard RNN computes a sequence of classifications (y1, · · · , yT ) from a sequence of inputs
(x1, · · · , xT ) using:

ht = ϕh(Whxt + Uhht − 1 + bh) (2.11)

yt = ϕy(Wyht + by) (2.12)

where ϕh and ϕy are activation functions, and W ,U , and b are model parameters. Common
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activation functions include the hyperbolic tangent (tanh) for ϕh and the identity function for
ϕy. To produce a discrete probability distribution over classes, a softmax function is applied
to the output, and cross-entropy loss is used to compute the error between the predicted and
target classes [21].

yt = softmax(yt) (2.13)

RNNs are trained using stochastic gradient descent (SGD) and backpropagation through time
(BPTT), which unrolls the network and updates weights iteratively. This method, however,
makes RNNs challenging to train for long sequences due to computational complexity and
issues like vanishing and exploding gradients, which are further discussed in the context of
Long Short-Term Memory (LSTM) networks [21].

2.1.2.1 Stacked RNNs

Usually, the inputs of RNNs are sequences of embedded tokens1 (vectors), and the outputs are
vectors used for predicting words, sequence labels, or turbo decoding. However, we can also
use the entire sequence of outputs from one RNN as the input sequence to another RNN [22].

Stacked RNNs, consist of multiple layers, where the output of one layer becomes the input
for the next. These stacked RNNs generally outperform single-layer networks. Their success
likely stems from their ability to create representations at different levels of abstraction across
layers. The initial layers of stacked RNNs form useful abstractions for subsequent layers. These
abstractions would be difficult to achieve with a single RNN [22].

The optimal number of stacked layers varies by application and training set, but increasing the
number of layers also increases training costs significantly [22].

2.1.2.2 Bidirectional RNNs

RNNs traditionally use left-to-right context to make predictions at time t. However, the entire
input sequence is available in many applications, allowing us to utilize context from both sides.
One method is to use two separate RNNs: one processing the sequence left-to-right and another
right-to-left, then concatenating their outputs [22].

In a left-to-right RNN, the hidden state at time t (hf
t ) captures all information from the start

1In Sequence models like RNNs, embedded tokens are dense vector representations of words or characters.
They enable the RNN to understand and process sequences more effectively. By converting tokens into low-
dimensional continuous vectors, the RNN can leverage rich semantic information, improving performance in
tasks like language modeling and decoding sequences.
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up to t:
hf

t = RNNforward(x1, ..., xt) (2.14)

To leverage right-side context, a right-to-left RNN processes the sequence in reverse, with the
hidden state at t (hb

t) capturing information from t to the end:

hb
t = RNNbackward(xt, ..., xn) (2.15)

A bidirectional RNN combines these two RNNs, processing inputs forward and backward. The
hidden states from both directions are concatenated to form a comprehensive representation:

ht = [hf
t ; hb

t ] = hf
t ⊕ hb

t (2.16)

This concatenation captures information from both the left and right contexts of an input at
each point in time, as illustrated in Figure 2.4. Other methods like element-wise addition or
multiplication can also combine these contexts [22].

Figure 2.4: Schematic of a bidirectional RNN layer [21].

2.1.3 Long Short Term Memory (LSTM)

While plain RNNs can theoretically model any temporal relationships within sequences given
sufficient hidden units, in practice, they struggle to train effectively when long-term depen-
dencies are present. This difficulty is mainly due to the vanishing gradient problem, where
gradients either vanish or explode as they flow through the network. This issue arises because
the dimensionality of the neural network is proportional to both the number of neurons and the
number of steps. As a result, RNNs tend to have a limited memory range, effectively making
them short-term [21].

To address these stability issues and improve the modeling of long-term dependencies, gating

67



Neural Networks for Turbo Decoding

mechanisms have been proposed. These mechanisms guide gradient flow and protect the internal
state by controlling when and how values are updated and produced. The Long Short-Term
Memory (LSTM) network is a well-known example of a gated RNN. It replaces a standard
RNN cell with one that includes specific connections to better manage gradient flow [21].

LSTM introduces a cell state ct with three gates: a forget gate, an input gate, and an output
gate. These gates control the information added to and removed from the cell state:

1. Forget gate: Determines which information is kept or discarded by applying point-wise
multiplication of the cell state values with a zero or one. The forget gate ft is calculated as:

ft = σ(Wfht−1 + Wfxt + bf ) (2.17)

2. Input gate: Decides what information is added to the cell state based on a candidate value
c̃t and a calculated input value it, both derived from the last hidden state ht−1 and the current
input xt:

c̃t = tanh(Wc̃ht−1 + Wc̃xt + bc̃) (2.18)

it = σ(Wiht−1 + Wixt + bi) (2.19)

ct = ft · ct−1 + it · c̃t (2.20)

3. Output gate: Determines the output at each step based on the cell state, input, and hidden
state at time t:

ot = σ(Whht−1 + Whxt + bo) (2.21)

ht = ot · tanh(ct) (2.22)

Figure 2.5 depicts the schematic of an LSTM cell.

Figure 2.5: Schematic of an LSTM cell with a forget gate, add gate and output gate illustrated
from left to right [21].
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LSTMs significantly enhance the temporal modeling capabilities of RNNs by efficiently gating
information. This improvement has made LSTMs the preferred choice for many applications
in language processing and other domains.

Another type of gating mechanism is the Gated Recurrent Unit (GRU), which is a simplified
version of the LSTM. GRUs have only two gates and are less computationally complex but
also less powerful. However, this work focuses on RNNs with LSTM cells due to their superior
performance and robustness.

2.1.4 Training neural networks

Neural networks, with their deep architectures and large weight matrices, have millions of pa-
rameters initialized randomly before training. Training involves using batches of examples from
the training set, where the network predicts outputs ŷ for each example. In supervised learning,
known correct labels y help evaluate prediction accuracy through a cost or loss function L. The
gradient of this cost function guides the adjustment of parameters: decrease for positive gradi-
ents and increase for negative ones. This process is repeated for each batch until a predefined
number of iterations is reached or parameter values converge. Performance is also monitored
using a development set or validation set, distinct from the training set, to prevent overfitting
and ensure the model generalizes well. Overfitting occurs if the model memorizes the training
set labels instead of learning to generalize on unseen data [23].

2.1.4.1 Loss function

To train a Recurrent Neural Network (RNN) as a language model, we use a self-supervision
algorithm. This involves using a set of sequences as training data and asking the model to
predict the next element in the sequence at each time step t. The model is considered self-
supervised because it doesn’t require additional labeled data; the sequence itself provides the
necessary supervision. The training objective is to minimize the error in predicting the true
next token using cross-entropy as the loss function, which measures the difference between the
predicted probability distribution and the correct distribution [22].

The cross-entropy loss is defined as:

LCE = −
∑
w∈V

yt[w] log ŷt[w] (2.23)

For turbo decoding, where the goal is to predict the next bit in a sequence, the correct dis-
tribution yt comes from the known value of the next bit. The loss function used is binary
cross-entropy (BCE), treating the problem as a sequence of binary classification tasks where
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each bit is classified as 0 or 1. The BCE loss, suited for this type of application, is determined
by the probability the model assigns to the correct next-bit value. The binary cross entropy is
defined as :

LBCE = − 1
N

N∑
t=1

[yt log(pt) + (1− yt) log(1− pt)] (2.24)

where:

- N is the number of observations.

- yi is the actual binary label (0 or 1) of the i-th observation.

- pi is the predicted probability of the i-th observation being in class 1.

The network weights are adjusted to minimize the average BCE loss over the training sequence
via gradient descent.

2.1.4.2 Optimization

To optimize neural networks efficiently, several key factors are crucial: initializing parameters
correctly, ensuring all functions are differentiable, and implementing effective weight updates.

Initialization At the start of training, model parameters must be initialized. Common meth-
ods include:

- Random Isotropic Gaussian Initialization: Uses a normal distribution with mean 0
and low standard deviation (e.g., 0.01).

- Xavier Initialization: it uses a uniform distribution with boundaries ±
√

6
nj+nj+1

, where
nj and nj+1 are the number of neurons in the current and previous layers. This keeps
gradient variance stable, aiding training.

It’s important not to initialize all weights to the same value to ensure asymmetry, allowing
neurons to learn different functions [23].

Backpropagation Backpropagation computes gradients needed for parameter updates. For
multiple neuron layers, gradients are calculated using the chain rule. In recurrent neural net-
works (RNNs), gradients are computed through backpropagation through time (BPTT), which
processes gradients backward from the last time step to the first. Frameworks like Theano can
automate this computation [23].
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Weight Update Parameter updates are based on the computed gradients. The update size
impacts the training speed and the quality of the local optimum found. Too small updates lead
to slow convergence, while too large updates risk overshooting the optimum [23].

Several optimization techniques manage update sizes:

- Stochastic Gradient Descent (SGD): Updates parameters using the formula

∆wt = −α · ∂E

∂wt

, (2.25)

where α is the learning rate. The pseudo-code for SGD is shown in Algorithm 1.

- Momentum: Enhances SGD by considering past gradients to adjust the current update,
using

∆wt = β ·∆wt−1 − α · ∂E

∂wt

, (2.26)

where β is the decay rate. The pseudo-code for momentum is shown in Algorithm 2.

- Adaptive Moment Estimation (Adam): Combines momentum with an exponentially
decaying average of past squared gradients. This technique adjusts the learning rate
dynamically but has potential convergence issues. The pseudo-co de for Adam is shown
in Algorithm 3. Adam optimizer is currently often used, we used it to optimize the
proposed model in Chapter 3.

By effectively initializing parameters, using backpropagation to calculate gradients, and em-
ploying robust weight update methods, neural networks can be optimized efficiently, achieving
fast and reliable convergence.

Algorithm 1 Pseudo-code of SGD.
Require: α: learning rate
Require: θ0: parameter set
Require: f(θ): network function

1: t← 0
2: while θt not converged do
3: t← t + 1
4: gt ← ∇θft(θt−1)
5: θt ← θt−1 − α · gt

6: end while
7: return θt
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Algorithm 2 Pseudo-code of momentum.
Require: α: learning rate
Require: β ∈ [0, 1]: decay rate
Require: θ0: parameter set
Require: f(θ): network function

w0 ← 0
2: t← 0

while θt not converged do
4: t← t + 1

gt ← ∇θft(θt−1)
6: ∆wt ← β ·∆wt−1 − α · gt

θt ← θt−1 + ∆wt

8: end while
return θt

Algorithm 3 Pseudo-code of Adam.
Require: α: learning rate
Require: β1, β2 ∈ [0, 1): decay rate
Require: θ0: parameter set
Require: f(θ): network function

m0 ← 0
v0 ← 0

3: t← 0
while θt not converged do

t← t + 1
6: gt ← ∇θft(θt−1)

mt ← β1 ·mt−1 + (1− β1) · gt

vt ← β2 · vt−1 + (1− β2) · g2
t

9: m̂t ← mt/(1− βt
1)

v̂t ← vt/(1− βt
2)

θt ← θt−1 − α · m̂t/(
√

v̂t + ϵ)
12: end while

return θt

2.1.5 Sequence to Sequence models

We present this type of model and then introduce the notion of attention and how it can be
adapted for use in sequence-to-sequence models.

2.1.5.1 Sequence to Sequence Model

One limitation of single recurrent neural networks (RNNs) such as LSTMs is their difficulty in
mapping input sequences to output sequences of different lengths without post-processing. Pre-
viously, there was no general end-to-end method for sequence-to-sequence classification tasks,
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such as segment classification with k ̸= T and temporal classification, without making strong
assumptions about the data, like the monotonicity of alignment [21].

The development of a general end-to-end approach for sequence-to-sequence mapping began
with the introduction of the sequence-to-sequence (seq2seq) model [24] in 2014. Although any
model capable of learning to map one sequence to another can be termed a sequence-to-sequence
model, the term specifically refers to a model that adopts an encoder-decoder architecture [21].

In the seq2seq model, the encoder and decoder are composed of separate RNNs, typically
LSTMs. The encoder processes the input sequence to the end, producing a final hidden state
hT , which the decoder then uses as its initial state to predict the target sequence [21].

During inference, the decoder’s prediction at time step t, ŷt, is fed as input to the next time
step, such that:

xt = ŷt−1. (2.27)

Thus, seq2seq models can be autoregressive, meaning the output at each step yt depends
on previous outputs yt−1, yt−2, yt−3, and so on. This dependence models the relationships in
sequential data, assuming that consecutive data points are not independently and identically
distributed (i.i.d.) [21].

To predict the target sequence, a ’start of sequence’ (SOS) symbol is provided to the first step
of the decoder or zero-initialized input, and outputs are generated conditionally until the end of
the sequence. This allows the generation of output sequences of arbitrary length. The hidden
state of the decoder at time step t is denoted as h′

t [21].

Using this model, the probability of a source/target pair (x, y), P (y|x), can be approximated
as follows:

P (y|x) = P (yk, . . . , y1|xT , . . . , x1) =
k∏

t=1
P (yt|yt−1, . . . , y1, x). (2.28)

Therefore, at each time step, we can choose the token that maximizes the joint likelihood:

arg max
yt∈y

P (yt|yt−1, . . . , y1, x). (2.29)

During training, rather than using the decoder’s prediction as input for the next time step,
the ground truth target sequence is provided step by step, starting with the SOS symbol. For
each step t > 1, the input to the decoder, xt, represents the true target of the preceding step,
yt−1. This method, known as teacher forcing [25], trains the model conditionally on the correct
previous value.
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Figure 2.6 illustrates an autoregressive sequence-to-sequence model that employs an encoder-
decoder architecture. In this model, the decoder receives the encoder’s hidden states and its
own output ŷt from the previous time step as input for each subsequent step, except at the initial
step where it is provided with a start-of-sequence (SOS) symbol, or it can be a zero-initialized
input.

Figure 2.6: Schematic of an autoregressive sequence to sequence model [21].

The flexible structure of the seq2seq model makes it effective for a variety of sequence-to-
sequence tasks, notably machine translation, video description, and others. Seq2seq models
also apply to time series predictions, such as stock market and weather forecasting.

Scheduled sampling While using the decoder’s own predictions (ŷt−1) instead of the ground
truth (yt−1) during training can lead to unstable training, teacher forcing mitigates this by
always providing the correct previous value from the target sequence. However, this can result
in the decoder being poorly trained to handle its own mistakes during inference, leading to
exposure bias where errors are amplified over time.

Scheduled sampling [26] addresses this by gradually shifting from using the ground truth to
using the model’s own predictions during training. At each step t, the probability of choosing
the true previous value yt−1, denoted as ϵt, changes according to a predefined schedule. This
approach exposes the model to its own predictions progressively, aiming to minimize the per-
formance gap between training and inference without adding significant overhead to training
times.

Beam search Greedy decoding, which selects the most likely output at each time step,
can lead to error accumulation in autoregressive sequence-to-sequence models. Beam search
mitigates this by maintaining a set of candidate sequences (the beam) and updating them
iteratively based on the predicted probabilities, thereby maximizing the joint likelihood of the
sequence.

Beam search increases the likelihood of finding a reasonable result by exploring a wider search
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space than greedy decoding. A typical beam size of 5-10 is most effective for well-trained
decoders. However, it should be viewed as an optimization technique that minimizes decoding
errors in a well-trained model, rather than a method to correct a poorly trained one.

2.1.5.2 Sequence to Sequence attention model

One of the limitations of plain sequence-to-sequence models is that the entire input sequence
is compressed into a single vector—the last hidden state of the encoder—which is then passed
to the decoder. This creates a challenge for the encoder, as it must compress the entire input
sequence into one vector using gradients flowing through the network. The decoder’s LSTM
relies entirely on this single hidden state to access the memory of the encoder’s LSTM, de-
spite different information being relevant at different time-steps[27]. While, theoretically, with
enough neurons and time, relationships of arbitrary complexity could be trained using a stan-
dard seq2seq model, in practice, this compression restricts the flexibility and strength of the
decoder’s memory, making it difficult to train on longer sequences. Repeating the encoder’s last
hidden state at each decoder time step might offer slight improvement, but the overall memory
and temporal dependency transmission remain weak [21].

To address this, an attention mechanism [27, 28] was introduced, allowing the decoder’s LSTM
flexible access to the encoder’s memory. This concept is analogous to human attention: when
focusing on a specific part of an image or a set of words, we extract detailed information from
that focal point while the surrounding area remains slightly out of focus. Similarly, an attention
mechanism directs the model to different parts of the input at different times during decoding.
At each decoding step, the mechanism estimates which hidden representations of the encoder
are most relevant [22].

This is achieved by providing the decoder with a sequence of vectors (the hidden states at
each time step of the encoder) instead of a single vector. At each decoder time-step yt, the
attention mechanism combines the encoder’s hidden states (h1, . . . , hT ) into a context vector ct

by weighting each hidden state hi with an attention weight αti for that step:

ct =
T∑

i=1
αtihi (2.30)

These attention weights α are computed using the attention layer bottleneck between the
encoder and the decoder, this layer combines the activations from all hidden vectors with the
hidden vector from the last time-step in the decoder h′

t−1 to compute the attention scores. Then
a softmax function normalizes these scores to give the weights that sum to one.

First, an attention score eti for each hidden state hi is calculated based on the current decoder
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time-step t:
eti = ϕ(h′

t−1, hi) (2.31)

While ϕ is a predefined function called score function.

Then, the attention weights αti are determined as:

αti = softmax(eti) (2.32)

The hidden vectors from the encoder are then multiplied with the attention weights αti, and the
result is a context vector containing useful activations for every step of the LSTM decoder[22].

At a given time step t, the decoder receives as input the concatenation of the context vector
ct and the decoder’s current input. The decoder’s input can be either the actual target yt (in
the case of teacher forcing) or the highest probability output from the previous state yt−1 (in
Greedy Search). For the initial time step, the input to the decoder can be the Start of Sequence
(SOS) symbol or a zero-initialized input, which signifies the absence of information.

Attention score function
The score function ϕ in Equation 2.31 can take various forms depending on the application

and the required model complexity. Below, we highlight some of the most commonly used score
functions:

- Dot product score

The simplest score, called dot-product attention, implements relevance as attention sim-
ilarity, measuring how similar the decoder’s hidden state is to an encoder’s hidden state,
by computing the dot product between them:

ϕ(h′
t−1, hi) = h′

t−1 · hi (2.33)

The score that results from this dot product is a scalar that reflects the degree of similarity
between the two vectors. The vector of these scores across all the encoder hidden states
gives us the relevance of each encoder state to the current step of the decoder.

Another variant of this function is called the scaled dot score, when the product is divided
by
√

dh′ , while dh′ is the dimension of the decoder’s hidden state h′
t−1. Thus, the score

function becomes as follows :

ϕ(h′
t−1, hi) = h′

t−1 · hi√
dh′

(2.34)

The scaling factor of
√

dh′ is introduced to reduce the magnitude of the scores and decrease
the chances of encountering vanishing gradients. [22]
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- Bilinear score

A more powerful function that computes the relevance of each encoder hidden state to
the decoder hidden state by parameterizing the score with its own set of weights, W. The
weights W, which are then trained during normal end-to-end training, allow the network
to learn which aspects of similarity between the decoder and encoder states are important
to the current application. This bilinear model also allows the encoder and decoder to
use different dimensional vectors, whereas the simple dot-product attention requires that
the encoder and decoder’s hidden states have the same dimensionality. [22]

The bilinear score function is given as follows:

ϕ(h′
t−1, hi) = h′

t−1Whi (2.35)

Figure 2.7 represents a schematic of the attention mechanism in an encoder-decoder model.
The inputs ŷt to the decoder are provided using the Greedy Search technique. While this
method is primarily used during inference, it can also be beneficial during training, particularly
to mitigate overfitting caused by teacher forcing.

Figure 2.7: Attention mechanism illustrated for an encoder-decoder model with two LSTMs: h
and h′ [21].

2.2 State of the art

In this investigate in this part the most significant works that has been done in using machine
learning models for tubo decoding, partitioned to the types of models.

2.2.1 Feed Forward Neural Networks

Feed-forward artificial neural networks (FFNNs or ANNs) are one of the basic architectures
of deep learning models, and it’s used in multiple ways and applications, notably wireless
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communications.

Caid and Means [29] proposed in their work the use of neural networks for error correction in
Electronic Counter Measures (ECM) environments, where traditional assumptions like additive
white Gaussian noise (AWGN) and binary symmetric channels (BSC) fail. By training feed-
forward neural networks with backpropagation to correct corrupted code vectors, the method
shows superior performance to conventional decoders. For example, neural decoders outper-
formed hard decision decoders for both Hamming (7, 4) block codes and k = 3, rate 1/2
convolutional codes, suggesting significant improvements in coding gain, throughput, and cost
for digital transmissions in ECM scenarios.

Marcone et al.[30] present a feedforward artificial neural network (FFNN) trained to decode 1/N

rate convolutional codes. The method partitions the received signal into overlapping sliding
windows, each representing a codeword, and trains the ANN to correct errors and decode the
transmitted bits from noisy signals. With optimal training, the neural network decoder performs
comparably to the Viterbi decoder, but its extensive training length limits its practicality for
real-time applications.

The neurlaized viterbi decoder introduced by Xiao-an Wang and Stephen B. Wicker[31] is an
artificial neural network Viterbi decoder, surpassing digital-only designs with its fully parallel
architecture. The decoder utilizes analog neurons to implement most of the Viterbi algorithm,
eliminating the need for digital circuits and simplifying the design. This results in a significantly
faster decoder, requiring only one-sixth the number of transistors of a digital decoder. The
authors demonstrate that the neural network Viterbi decoder can be designed with fixed weights
and without training, making it suitable for VLSI implementation due to its modularity and
local connectivity. Simulation results confirm its performance equivalence to an ideal Viterbi
decoder.

After introducing Turbo Codes and their attractive error performance, which approached Shan-
non’s limit, Annauth and Rughooputh [32] proposed a neural network for predicting decoder
error in turbo decoders. They utilized the decoder’s log-likelihood ratio (LLR) values as inputs
to train the neural network, optimizing training time by using a global dataset with subsets
of received sequences of specific Hamming distances. Randomly selecting 20% of this dataset
yielded a neural network with 99.8% accuracy. Although slightly less performant than a MAP
decoder, the neural network proved faster and less complex. This approach enhances turbo
decoder performance by adapting the decoding algorithm to specific error conditions.

The adaptive soft decoder, by Rajbhandari et al.[33], proposes a novel approach to decoding
convolutional codes using an FFNN. The neural network decoder uses a sliding block decoding
algorithm, where the received sequence is divided into fixed-size blocks and each block is classi-
fied in a complex vector plane. The overall mechanism is illustrated in Figure 2.8. The neural
network is trained using a log sigmoid transfer function to decode a 1/2 rate convolutional
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code. The results show that the decoder outperforms Viterbi’s ’hard’ decoder but falls short of
Viterbi’s ’soft’ decoder in terms of BER performance across the SNR range.

Figure 2.8: Diagram of ANN soft sliding decoder with input codewords and output bits [33].

2.2.2 Recurrent Neural Networks

The two papers, by Berber et al.[34] and Salcic et al.[35], both focus on the development and
implementation of Recurrent Neural Network (RNN) decoders for convolutional codes. The
first paper in 2005, introduces a novel RNN decoder that addresses a minimization problem
concerning a Noise Energy Function by minimizing the Euclidean distance between received
noisy bits and decoded bits using the Gradient Descent algorithm. This decoder operates with-
out supervision, leveraging the RNN structure to exploit temporal dependencies in sequences
and enhancing message estimation accuracy by optimizing the energy function. The decoder
resets its parameters randomly when transitioning to decode the next message, which allows
it to adapt to changing noise conditions. The authors demonstrate that this decoder exhibits
superior decoding performance by enhancing the Gradient Descent algorithm’s ability to find
the global minimum of the Noise Energy Function through the addition of AWGN noise to
estimated message bit values. The decoder was implemented using the Soft Decision Decod-
ing method, which outperforms Hard Decision Decoding, and the RNN decoder demonstrates
performance closely comparable to the Viterbi decoder.

The 2006 [35] paper discusses the Field Programmable Gate Arrays(FPGA) prototyping of
this RNN decoder. The authors use a system-level design for easy mapping to the FPGA.
The decoder, coupled with a simple neuron activation function, has low complexity and fits
into a standard Altera FPGA. This allows for a complete test bed for prototyping RNN de-
coders, enabling real-time evaluation of the decoder’s BER performance under various channel
conditions.

Figure 2.9 shows the structure of the RNN decoder, where r is the received sequence, w repre-
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sents the weights of the neurons, f is the activation function, and b is the decoded sequence.

Figure 2.9: Structure of RNN Decoder [34].

2.2.3 Turbo inspired models

Hyeji Kim et al.[7] introduce N-Turbo, a novel neural decoder for turbo codes. N-Turbo
uses multiple layers of neural decoders designed for Recursive Systematic Convolutional (RSC)
codes, utilizing Recurrent Neural Networks (RNNs). Inspired by traditional turbo decoders, N-
Turbo’s architecture features neural RSC decoders called N-BCJR layers. Each layer is trained
individually to address the difficulties of training this deep recurrent model end-to-end. These
pre-trained models are then used to initialize the N-Turbo decoder, which is further trained.
The N-BCJR architecture is flexible, handling various bit-wise prior distributions as input. The
study shows that N-Turbo matches or exceeds the performance of conventional turbo decoders.

DEEPTURBO by Jiang et al.[36] is a novel architecture, deep learning-based approach for
Turbo decoding that does not require knowledge of the Bahl-Cocke-Jelinek-Raviv (BCJR) algo-
rithm. It uses a 2-layer Bidirectional Gated Recurrent Unit (Bi-GRU) with non-shared weights
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and passes more information to the next stage. The authors, compare the (Soft Input Soft Out-
put) SISO design of the standard turbo decoder BCJR called TURBO, NEURALBCJR, and
DEEPTURBO, showing that DEEPTURBO outperforms both TURBO and NEURALBCJR in
terms of bit error rate (BER) and block error rate (BLER) for both Turbo-757 and Turbo-LTE
codes under both AWGN and non-AWGN channels. DEEPTURBO achieves superior perfor-
mance with reduced decoding iterations and does not require BCJR knowledge, making it a
promising solution for modern communication systems. The authors evaluate the performance
of DEEPTURBO under both AWGN and non-AWGN channels. Figure 2.10b illustrates the
Bi-GRU-based SISO decoder utilized within the turbo decoder architecture depicted in Figure
2.10a. This configuration explains the structural framework of the DEEPTURBO decoder.

(a) Turbo Encoder (up) and Decoder (down) [36].

(b) Different SISOs: TURBO (left), NEURALBCJR (middle) and DEEPTURBO (right) [36].

Figure 2.10

With a similar architecture of DEEPTURBO, Zhang et al.[37] worked on a parallel turbo de-
coder architecture long short-term memory (LSTM) networks, to improve the bit error rate
(BER) performance and computational complexity of traditional turbo decoders. The LSTM
decoder uses a bidirectional LSTM structure, fully connected dense layers, and custom neural
network Lambda layers to simulate the iterative decoding process. The authors evaluate the
performance of the LSTM decoder in both Gaussian white noise and t-distributed noise chan-
nels, comparing it with the traditional BCJR decoding algorithm. The results show that the
LSTM decoder achieves better BER performance and computational efficiency compared to the
BCJR algorithm in both environments, with a 0.5 dB improvement at BER = 10̂-4 after 15
iterations in the Gaussian white noise channel and a 1 dB improvement at BER = 10̂-4 after
15 iterations in the t-distributed noise channel. Figure 2.11 illustrates the pipeline of parallel
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decoding based on bidirectional LSTM layers.

Figure 2.11: Turbo code decoding network structure [37].

2.2.4 Autoencoders

Sattiraju el al.[38] explores the use of Recurrent Neural Networks (RNNs), for turbo encoding
and decoding in LTE systems. Traditional turbo codes, while effective, are computationally
intensive and limit applicability in devices with constrained resources. The authors propose
using Gated Recurrent Units (GRUs), a type of RNN, to learn the encoding and decoding
processes. Their method frames these operations as supervised learning problems, using GRUs
to process data sequences. Simulations demonstrate that the RNN-based model outperforms
conventional turbo decoders in low Signal to Noise Ratio (SNR) conditions. This approach
leverages the RNNs’ ability to optimize end-to-end performance and efficiently handle temporal
dependencies.

The novel approach introduced by Balevi and G.Andrews [39] of a channel autoencoder that
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can be used to obtain optimum channel codes for any block length. The proposed method
involves training an autoencoder with a one-bit quantized AWGN channel. The results show
that the proposed coding scheme can achieve very close performance to turbo codes and turbo
decoders that work with unquantized samples. The authors also demonstrate that the proposed
method can be extended to higher-order modulations, although the performance may degrade.
Figure 2.12 is the representation of the channel autoencoder.

Figure 2.12: A channel autoencoder encodes a message into a k-bit sequence, maps it to a
length-n codeword for transmission, and decodes the received signal to retrieve the original
message [39].

2.2.5 Turbo autoencoders

In their novel work, Jiang et al.[40] introduce the Turbo AutoEncoder (TurboAE), a new neural
network-based architecture for channel coding that aims to achieve performance comparable to
traditional Turbo codes for Additive White Gaussian Noise (AWGN) channels. The method
involves using a deep learning framework to jointly train the encoder and decoder as an au-
toencoder. The key innovation is the use of convolutional neural networks (CNNs) to generate
parity bits and an interleaver to enhance memory and performance. The results demonstrate
that TurboAE can achieve bit error rates (BER) similar to those of traditional Turbo codes un-
der AWGN conditions, showing that deep learning can be an effective tool for designing robust
channel codes. However, the study primarily focuses on AWGN channels and does not explore
performance in more complex channel conditions. Figure 2.13 represents a general overview of
the design of TurboAE.
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Figure 2.13: Autoencoder framework for channel coding: channel encoder and decoder are
modeled as neural networks and are trained jointly [41].

Subsequently, Chahine et al.[41] , building upon the original TurboAE, introduce Turbo Au-
toencoder with a Trainable Interleaver (TurboAE-TI). The core contribution is the integration
of a trainable interleaver within the TurboAE framework, allowing the interleaver to be op-
timized jointly with the encoder and decoder. This is achieved through a carefully designed
training procedure and an interleaver penalty function to guide the optimization. The results
show that TurboAE-TI outperforms both the original TurboAE and LTE Turbo codes in various
practical channels, including fading channels and channels with bursty noise. The performance
improvements are significant, with gains in reliability up to 1dB over AWGN channels. This
paper highlights the adaptability and robustness of TurboAE-TI, demonstrating its superiority
in more realistic communication scenarios.

Following that, a study by Hatami et al.[42] evaluates the performance of Turbo Autoencoder
(TurboAE) under various interleaver configurations, including random, trainable, and opti-
mized interleavers. The method involves systematic testing of these interleavers across different
channel conditions to understand their impact on the overall coding performance. The results
indicate that trainable interleavers generally offer better performance compared to random in-
terleavers, particularly in challenging channel conditions like fading and bursty noise. However,
the optimized interleavers, which are designed through an additional layer of complexity, pro-
vide the best results, showing significant improvements in BER. This paper emphasizes the
critical role of interleaver design in the effectiveness of TurboAE, suggesting that future work
should focus on further refining these components to enhance communication reliability.

Table 2.1 summarizes the techniques introduced previously, highlighting the neural network
architecture used in each work, along with their advantages, limitations, and key performance
metrics.
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Method Architecture Advantages Limitations Performance
Caid and Means
[29]

FFNN Superior to conven-
tional decoders in
ECM environments

Requires extensive
training

Outperforms hard
decision decoders
for convolutional
codes

Marcone et al.[30] FFNN Comparable to
Viterbi

Limited practical-
ity for real-time ap-
plications

Comparable to
Viterbi decoder

Wang and Wicker
[31]

Neuralized Viterbi
Decoder

Fast, fewer tran-
sistors, suitable for
VLSI

Fixed weights, no
training required

Equivalent to ideal
Viterbi decoder

Annauth and
Rughooputh [32]

FFNN Fast, less complex Slightly less per-
formant than MAP
decoder

Faster and less
complex than
MAP

Rajbhandari et
al.[33]

FFNN for Convolu-
tional Codes

Outperforms hard
decision decoder

Falls short of soft
decision decoder in
BER

Improved BER
across SNR range

Berber et al.[34] RNN Exploits temporal
dependencies, un-
supervised

Requires parame-
ter reset for each
message

Comparable to
Viterbi decoder

Salcic et al.[35] RNN Decoder on
FPGA

Low complexity,
real-time evalua-
tion

Limited to FPGA
resources

Effective BER
performance under
various conditions

Hyeji Kim et al.[7] RNN-based Neural
Decoder

Matches/exceeds
conventional turbo
decoders

Training challenges High performance,
flexible architec-
ture

Jiang et al.
(DEEPTURBO)
[36]

Bi-GRU-based
Turbo Decoder

Superior BER and
BLER, no BCJR
knowledge required

Requires reduced
decoding iterations

Outperforms
TURBO and NEU-
RALBCJR

Sattiraju et al.[38] GRU Turbo De-
coder

Effective in low
SNR conditions

Computationally
intensive

Outperforms con-
ventional turbo de-
coders

Balevi and An-
drews [39]

Channel Autoen-
coder

Close performance
to turbo codes

Performance may
degrade with
higher-order mod-
ulations

Near-turbo code
performance

Jiang et al. (Tur-
boAE)[40]

CNN Turbo Au-
toencoder

Comparable to
traditional turbo
codes

Focused on AWGN
channels

Similar BER to
traditional turbo
codes

Chahine et al. [41] Turbo Autoen-
coder with Train-
able Interleaver

Superior in various
practical channels

Complexity in
training and opti-
mization

Significant BER
improvements in
practical scenarios

Table 2.1: Summary of neural network-based decoding methods

85



Neural Networks for Turbo Decoding

Conclusion

This chapter focuses on introducing deep neural networks (DNNs), including architectures from
Feed Forward Neural Networks (FFNN) to sequence-to-sequence LSTM attention models, these
architectures mark a departure towards more adaptive and reliable decoding solutions.

Moreover, we explore deep learning methods for decoding convolutional and turbo codes, re-
vealing a significant shift from traditional iterative turbo decoders like BCJR and SOVA.

Each neural network type is explored in detail, emphasizing its potential to improve error rates,
computational efficiency, and adaptability compared to conventional methods.

The exploration covers various neural network architectures and their applications in decoding
techniques, laying the groundwork for more effective error correction strategies in communica-
tions engineering.

This investigation leads to the introduction of new approaches of using other machine learning
architectures on turbo decoding, specifically attention models, which will be explored in two
ways in the next Chapters 3 and 4 .
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TurboAttention: Sequence to Sequence Bi-LSTM Attention Model for Turbo Decoding

Introduction

In this chapter, we introduce a new approach to turbo decoding using RNNs, specifically a
sequence-to-sequence attention model based on Bi-LSTMs, which we call TurboAttention.
We explore the inspiration and motivation behind employing this technique, provide a detailed
description of the model’s architecture, and outline the methodology for training and testing.
Finally, we present the results produced by this decoder.

TurboAttention represents a novel approach by leveraging turbo-inspired decoding models and
Natural Language Processing models, particularly the sequence-to-sequence models based on
attention mechanism 2.1.5.2. This approach draws an analogy between text translation and
turbo decoding sequences. We investigate whether the model can identify patterns in turbo
codes to correct errors in these sequences and outperform both standard decoders (SOVA) and
state-of-the-art deep learning decoding models.

3.1 Background and motivation

Iterative turbo decoders (BCJR, SOVA) lack robustness and adaptivity in non-AWGN settings,
with performance severely degraded by burst noise. Additionally, turbo codes suffer from an
error floor at high SNRs, making them unsuitable for high-reliability applications such as
secure communications. Techniques like better interleavers, and concatenating outer codes like
BCH have been proposed to mitigate these issues but have had limited success. Consequently,
traditional turbo designs struggle to consistently achieve high reliability, robustness, adaptivity,
and low error floors.

Sequence-to-sequence models 2.1.5 are a class of neural networks designed to transform an
input sequence into an output sequence. Initially introduced for natural language processing,
these models consist of an encoder, which generates a context vector from the input sequence,
and a decoder, which produces the output sequence based on this context vector. To enhance
the model’s ability to focus on important parts of the sequence, the attention mechanism was
developed and has proven to be highly efficient. Applications of sequence-to-sequence models
extend beyond natural language processing to other domains, such as wireless communications.
Cao el al.[43] proposes a Long Short-Term Memory (LSTM) Attention Neural Network-based
signal detection method for hybrid modulated Faster-Than-Nyquist (FTN) Optical Wireless
Communications (OWC), significantly improving the accuracy of signal recovery in atmospheric
turbulence channels. The proposed model outperforms traditional methods.

The inspiration of TurboAttention model came from DEEPTURBO [36] [36] and its technique
to use the same structure of a iterative turbo decoder but based on learnable RNN model as Soft
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Input SOft Output (SISO) block, plus the sequence to sequence attention models by Bahadanau
et al. [27] and Luong et al. [28], where they introduced new effective mechanisms added to
language translation models to solve some of the problems that the previous sequence models
suffered from like the limitations in processing long sequences and improving the performance
of translation.

In the next part, we explain in detail the architecture of TurboAttention model and how it
functions by explaining its composing parts.

3.2 Architecture of TurboAttention

To investigate the impact of the attention mechanism on turbo decoding, we propose Tur-
boAttention inspired by DEEPTURBO [36] model and sequence to sequence LSTM attention
model. Each (Soft Input Soft Output) SISO block uses an attention model based on multilayer
Bi-LSTMs as the building block. Keeping the extrinsic connection between each block as a
shortcut for gradient. For this model, the number of iterations defines the number of TruboAt-
tention SISO blocks, so the model doesn’t share weights across each iteration to make each
block deal with the prior information differently. Moreover, non-shared weights improve the
training stability [36]. TurboAttention model passes more information from one stage to the
next one, unlike iterative turbo decoders (SOVA) represent the posterior of each code bit by
a single value log-likelihood (LLR). A single value for each code bit may not convey adequate
information [36]. Drawing inspiration from ensemble methods used to address calibration is-
sues [44], K bits are employed instead of just 1 bit for each code bit position. For instance,
with a block length L, the SOVA posterior LLR has a shape of (L, 1), whereas TurboAttention
transmits a posterior with a shape of (L, K) to the next stage.

The expected advantage of using the attention mechanism for decoding lies in its ability to
dynamically focus on different parts of the received sequence, assigning higher weights to more
reliable parts and down-weighting erroneous parts using the iterative update of posterior in-
formation between each TurboAttention SISO block, similar to iterative turbo decoding, allows
the model to improve its estimates over multiple iterations, thereby improving error localization
and correction.

By maintaining a context vector that captures relevant information from the entire received
sequence, the attention mechanism helps the decoder make better-informed decisions, con-
tributing to robustness against noise and higher decoding accuracy, especially in the presence
of burst errors. Despite introducing additional parameters for computing attention scores and
more layers of Bi-LSTMs for the encoder and decoder, and increasing memory usage, the atten-
tion mechanism requires more computations per training iteration, resulting in longer training
times per epoch compared to models without attention. However, these models tend to con-
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verge faster to better solutions by effectively handling long-range dependencies and complex
alignments, which is not the case for simple sequence models, leading to fewer epochs required
to reach desired performance levels. Consequently, the overall impact is that attention models
might take more total training time due to higher per-iteration costs, but they typically provide
significantly better performance, making the trade-off worthwhile.

The configuration of the proposed TurboAttention decoder is depicted in Figure 3.1, which
showcases a 1/3 rate decoder. Each decoding iteration employs two TurboAttention SISO
decoders. The initial block utilizes the deinterleaved posterior p from the preceding block as
prior information, along with the received systematic bits y1 and parity check bits y2 as inputs.
Conversely, the second block uses the interleaved π(q) as prior and the received interleaved
systematic bits π(y1) and parity check bits y3 as inputs. The TurboAttention block generates
the posterior q, which is then passed to the subsequent block. In the final iteration, decoding
is executed based on the estimated posterior, which is the input of the sigmoid function that
estimates the decoded bits û.

Figure 3.1: Diagram of TurboAttention Trubo Decoder

In the following sections, we will explain the main constituents of TurboAttention: the Encoder,
Attention Layer, and Decoder.

3.2.1 The encoder

The encoder is the first stage of TurboAttention. It comprises stacked Bi-LSTM layers, with the
number of layers adjustable to match the desired model complexity. The LSTM is chosen for
its ability to handle long-term dependencies, provide sequence flexibility, learn context, resist
noise, and integrate well with attention mechanisms. Additionally, the bidirectional LSTM
captures context from both past and future states in the received sequence.

At each iteration, the received sequence y is demultiplexed, reshaped, and fed into the encoder
of TurboAttention block. For decoding iteration m, the TurboAttention1,m block receives at each
time step l the systematic bit y(1,l), the parity check bit y(2,l), and the deinterleaved posterior
π−1(q) as prior information from the previous block. The TurboAttention2,m block receives the
interleaved systematic bits π(y(1,l)), the parity check bits y(3,l), and the interleaved posterior
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π(p) from the previous block as prior information.

The received sequence is structured as follows:

y = (y1,1, y2,1, y3,1, . . . , y1,i, y2,i, y3,i, . . .) (3.1)

Figure 3.2 illustrates the diagram of the encoder, the Bi-LSTM layers project an input sequence
of size [B, L, 2+K] to an output of size [B, L, D×H]. Additionally, they output the final hidden
states and cell states of the latest element in each batch of sequences. The shape of hidden
states and cell states is [B, 1, D×H]. These parameters are utilized in the subsequent attention
mechanism stage of the model.

Figure 3.2: Encoder of TurboAttention Block

3.2.2 The attention mechanism

The attention mechanism introduces an additional computational stage after the encoder, al-
lowing the model to focus on relevant parts of the input sequences, which may be erroneous
and noisy, at each decoding step. This improves the accuracy and contextual relevance of the
generated outputs and enhances the model’s adaptability to varying block lengths.

The computation of the attention mechanism is illustrated in Figure 3.3, and can be described
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in the following steps:

1. The attention mechanism iterates over each position in the input sequence of length L,
extracting the query vector from the hidden state of the decoder at the previous decoding
step l − 1. For a batch of sequences, at a decoding step l, the shape of the query is
[B, 1, D × H]. At the initial position l = 0, it uses the latest encoder’s hidden state as
the query vector instead of the decoder’s current hidden state, as the latter is not yet
available.

2. The attention scores are calculated by batch matrix multiplication between the query and
the transpose of the encoder’s outputs, scaling those scores by the dimension of the query
vector using the scaled dot product function:

Score(l) = Query(l)× Encoder OutputsT (3.2)

3. The scores are then masked to exclude future positions by setting their values to a very low
number. Masking the attention score vector enables efficient handling of variable-length
sequences by focusing on actual and previous sequence content. This enhances gener-
alization, improves training efficiency, synergizes with attention mechanisms for better
relevance capture, and enhances model interpretability [45].

The mask used is an upper triangular mask where the upper elements take a very low
value and the lower elements, including the diagonal, take a zero value. Every row of the
mask matrix corresponds to its index l to mask the attention scores given at the time
step l:

Masked Score(l) = Score(l) + Mask(l, 0 : L) (3.3)

Mask(L,L) =



0 −∞ −∞ · · · −∞

0 0 −∞ · · · −∞

0 0 0 · · · −∞
... ... ... . . . ...

0 0 0 · · · 0


(3.4)

4. The Softmax function is applied to these masked scores to convert them into a probability
distribution, allowing the model to assign relative importance to different parts of the
input sequence by producing attention weights α that sum to a value of one.

Attention Weights(l) = Softmax(Masked Score(l)) (3.5)

5. The context vector is the result of the batch matrix multiplication between the attention
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weights and the encoder outputs.

Context(l) = Attention Weights× Encoder OutputsT (3.6)

6. Finally, the context vector is concatenated with the current decoder target to form the
attention parameters, which serve as the input to the decoder. The context vector makes
the decoder focus on the most relevant parts of the input sequence at each decoding step.

Figure 3.3: The Attention Layer of TurboAttention block

3.2.3 The decoder

The decoder is the final stage of TurboAttention block and shares an identical architecture with
the encoder.
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At time step l, the input to the decoder is the concatenation of the attention parameters with
the target. Additionally, it inputs the hidden state and cell state from the previous decoding
step. At step l = 0, it uses the latest hidden state and cell state from the encoder.

The output of the last Bi-LSTM layer in the decoder is passed to a Feed-Forward Neural
Network (FFNN), which produces the decoder output for step l that has the shape [B, 1, 2+K].

Using a greedy search approach, the targets of the decoder at step l = 0 are zero-initialized to
indicate the absence of information about this initial state. For subsequent steps, the decoder
uses the previous output from the FFNN layer.

Figure 3.4 shows the diagram of the decoder. The input size is [B, 1, 2 + K + D ×H], which
represents the size of the concatenated decoder target and attention parameters.

The output of the FFNN corresponds to one bit in the sequence, so at each decoding step, the
outputs of the FFNN are concatenated to get a shape [B, L, K + 2] for the whole sequences in
a batch, this output is passed through a log-softmax function, it improves numerical stability
and computational efficiency when calculating softmax probabilities, especially when dealing
with large and low numbers.

Finaly, if the decoder corresponds to the latest iteration block TurboAttentionM,2, the output
of the log-softmax function passes through a FFWD linear layer with an output shape [B, 1, L]
which represents the estimated information sequence û. If the decoder corresponds to the
previous iterations, the prior features of the previous iteration are subtracted from the output
of the log-softmax function to give the posterior features that pass to the next stages.
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Figure 3.4: The Decoder of TurboAttention Block

3.3 Methodology

The methodology sums up the process of training and evaluating the model, including details
about the data we used, configurations of models, and some metrics

3.3.1 Data preparation

The data is randomly generated binary sequences using MATLAB, the block length can be
defined according to the needed application. The block length chosen to train and test our
model is 100, 98 bits are information bits and the last 2 bits are tail bits.

The turbo encoder (7, 5, 7) is used for in this work, with code rate R = 1
3 . The quadratic

interleaving 1.2.3 is also chosen for this encoder. The interleaver configuration for sequence
length 100 is given as follows:

95



TurboAttention: Sequence to Sequence Bi-LSTM Attention Model for Turbo Decoding

π(x) = (34 · x + 63 · x2) moduloN (3.7)

The resulting encoded sequence is 302 bits, thus 294 bits are the encoding of the original
information sequence and 8 bits represent two tail bits of systematic bits, parity check bits 1,
parity check bits 2, and interleaved systematic bits.

To create a training set that mimics transmitted sequences in a wireless communication system,
we simulate the communication channel, with its consecutive stages.

First is the modulation, where the sequences are modulated using Binary Phase Shift Keying
(BPSK) to give polarized values. Next, the modulated sequences pass through an Additive
White Gaussian Noise (AWGN) channel with a noise level controlled by the Signal-to-Noise
Ratio (SNR).

The training set consists of 105 noisy messages. Of this set, 90% have an SNR range between
-1.5 dB and 4 dB, with noise levels added randomly to these sequences. The remaining 10%
have an SNR fixed at -1.5 dB to provide additional data for very low SNR levels, helping the
model adapt better to worst-case noise scenarios.

The validation set contains 2 × 104 encoded sequences, with an SNR range between -1.5 dB
and 4 dB randomly distributed among the sequences in this set.

3.3.2 Training

3.3.2.1 Loss function and optimizer

In the final decoding iteration, the output is passed through a sigmoid function, which provides
the probability of each decoded bit. If this probability is greater than 0.5, the bit is decoded
as 1; otherwise, it is decoded as 0. This approach transforms the sequence decoding problem
into a series of binary classification problems, making the Binary Cross Entropy (BCE) loss
function the most suitable choice.

The BCE loss function compares the estimated information sequence û with the ground truth
information sequence u, and is calculated as follows:

BCE(u, û) = − 1
L

L∑
i=1

[ul log(ûi) + (1− ul) log(1− ûl)] (3.8)

where L is the number of bits in the sequence, ui is the i-th bit of the ground truth sequence,
and ûi is the i-th bit of the estimated sequence. The optimizer chosen to train this model is
ADAM optimizer 3 is advantageous due to its adaptive learning rates, efficient computation,
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and fast convergence, making it effective easy to use, and more reliable in training deep neural
networks.

3.3.2.2 Hyperparameters of models

The trained TurboAttention model comprises identical encoder and decoder components, each
with two Bi-LSTM layers containing 100 hidden units per LSTM. The number of features K is
set to 5, which was determined to be optimal for training stability and performance, and the
model undergoes 6 iterations.

This configuration was selected after model tuning to balance complexity, in terms of parameter
count and time complexity, with performance. The chosen model will be compared to the
baseline model.

The learning rate is initially set to 0.001 for the first epoch and is reduced when the validation
loss saturates. The batch size is set to 100. Although a larger batch size could be used.
However, a small batch size like this helps to update the loss more quickly, leading to faster
convergence. Additionally, the noise introduced by a small batch size acts as a regularization
method, helping to prevent overfitting.

The model trained on 16 epochs only when the loss saturates, knowing that this small number
of epochs is due to limitations on computational resources, which makes trying multiple models
with different configurations and more regularization are not considered that much.

Table 3.1 summarizes the hyperparameters and the configuration of the model:

Model Configurations
TurboAttention Block 2-layer Bi-LSTM with 100 units
Learning rate 0.001, decay when saturated loss
Num epoch 16
Block length 100
Batch per epoch 1000
Optimizer Adam
Loss BCE
Train SNR range -1.5 dB to 4 dB
Batch size 100
Posterior feature size K 5
Decode iterations 6
Number of Trainable Parameters 9.828532 M

Table 3.1: Model Configurations of TurboAttention Block
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We train the baseline model DEEPTURBO [36] using the same dataset and under comparable
conditions to facilitate a performance comparison with our proposed approach. The architecture
of this model comprises two Bidirectional Gated Recurrent Unit (Bi-GRU) layers, each with
100 hidden units. The number of prior features K is set to 5, and the model includes 6 decoding
iterations. This configuration mirrors the model proposed in the referenced paper. The training
was conducted over 25 epochs, at which point the validation loss ceased to improve.

Table 3.2 summarizes the configuration of the baseline model and the number of trainable
parameters.

DEEPTURBO [36] Configurations
DEEPTURBO Block 2-layer Bi-GRU with 100 units
Learning rate 0.001, decay when flattened loss
Num epoch 25
Block length 100
Batch per epoch 1000
Optimizer Adam
Loss BCE
Train SNR Range :-1.5 dB to 4 dB, step 0.2 dB
Batch size 100
Posterior feature size K 5
Decode iterations 6
Number of Trainable Parameters 2.970456 M

Table 3.2: Model Configurations of DEEPTURBO [36] Block

3.3.3 Evaluation metrics

Two main metrics are used to evaluate the decoding performance, the bit error rate (BER)
introduced in 1.3.2.5.1 and the block error rate (BLER) introduced in 1.3.2.5.2, those metrics
can give a better view of the decoding performance on different levels of noise that affected the
received sequences.

3.4 Experimental setup

Machine learning models demand a specific environment, whether it is hardware or software,
plus previous implementations and source codes to inspire from. This all is explained on this
part.
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3.4.1 Hardware

For our experiments, we used a Kaggle platform that provides a cloud computational environ-
ment. It environment contains 73.1 GB disk space, with Intel Xeon 2.20 GHz CPU. The
GPU used is Nvidia Tesla P100 with VRAM of 16 GB, paired with 32 GB RAM.

3.4.2 Software

For Data preparation, we use MATLAB to generate noisy sequences, decode those sequences
using SOVA decoder, and retrieve the BER values that will be compared to the performance
of the model. The deep learning framework PyTorch 2.4 is used, with Python 3.10 and
CUDA 12.1 for parallel computing using the GPU.

3.4.3 Implementation

The implementation of the selected model was based on the DEEPTURBO [36] code provided
by the authors online.1 This code served as the foundation upon which we added an attention
layer, thereby structuring each block to include an encoder, decoder, and attention mechanism.

The implementation of the attention mechanism was inspired by Bahdanau Attention [27] used
in an online source code2 of neural machine translation (NMT) model. Several modifications
were made to adapt the mechanism for turbo decoding. Specifically, the word embeddings used
in the original NMT implementation were removed, allowing the inputs to be directly fed into
the model.

3.5 Results and analysis

This part analyses the results related to our method, like the training process, comparison of
tests with the baseline model, and some specific experiments.

3.5.1 Training results

The training was done for our proposed model TurboAttention and the baseline model DEEPTUEBO
in the same conditions using the same train, validation, and test sets to make the comparison
more fair.

1DeepTurbo code available at: https://github.com/yihanjiang/turboae
2NMT code available at: https://github.com/mhauskn/pytorch_attention/tree/main
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3.5.1.1 TurboAttention model :

The training of TurboAttention was followed by monitoring the training loss for each epoch on
the whole train set, plus monitoring the loss value and the average BER value on the validation
set after each epoch, thus we can observe better the progress of the model and investigate if any
improvement or actions are needed for the model, like adjusting the learning rate, regularization,
or even the data.

Training time for each epoch is 52 minutes, and validation time is 2 minutes.

Figure 3.5 , shows the results obtained after training 16 epochs, where the loss values for both
train and validation sets decreased to low values after a few epochs only to keep decreasing
slowly for the rest of the training steps to reach 0.067 for the validation loss, this latter started
to increase at the latest few epochs which led to early stop the model to avoid overfitting.
More regularization could be added like augmenting data or introducing dropout, but that will
demand retraining the model since keeping that model and fine tuning is not very stable.

Figure 3.5: TurboAttention : Train and Validation Loss

Figure 3.6 depicts the progress of the average of the BER on the validation set, those values
are not significant to evaluate the performance of the model since the average is on samples
that have different SNR levels, but it is still important to monitor the training.
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Figure 3.6: TurboAttention : Validation Average BER

We can see that the loss or the BER of the train set is most of the time higher than the validation
set because of the high percentage of samples of SNR value -1.5, which their sequences have a
higher number of errors.

3.5.1.2 Baseline model: DEEPTURBO [36]

We train the model on 25 epochs, every epoch takes time of 1 minute and 35 seconds and
validation time of 3 seconds.

Figure 3.7 shows the training results, we can see that the model’s validation loss started to
overfit after the 20th epoch, also reached a validation loss 0.0319.

Figure 3.7: DEEPTURBO [36] : Train and Validation Loss

101



TurboAttention: Sequence to Sequence Bi-LSTM Attention Model for Turbo Decoding

Figure 3.8 shows the average BER for the baseline model training, it has the same behavior
as the loss, where the BER of the train set keeps decreasing after epoch 20, but the validation
BER starts to increase.

Figure 3.8: DEEPTURBO [36] : Validation Average BER

Figure 3.9 illustrates a detailed comparison of the average BER progression across validation
epochs for both the attention model and the baseline model. Initially, at epoch one, the
attention model exhibits a relatively high BER. However, it demonstrates a significant and
rapid decrease in BER over the subsequent epochs. This rapid decline highlights the efficiency
and effectiveness of the attention model in achieving superior performance within a relatively
small number of iterations.

Notably, the attention model consistently outperforms the baseline model, even from the early
stages of training. The plot shows that, despite the initial high BER, the attention model
converges faster towards a lower BER. By requiring fewer epochs to reach a similar or better
performance level compared to the baseline, the attention model proves its robustness and
capability in optimizing the error rate efficiently. This observation underscores the advantage
of incorporating attention mechanisms in the model, leading to improved performance with
reduced training time.

This expanded version provides a clearer and more detailed explanation of the figure, empha-
sizing the efficiency and superiority of the attention model in reducing BER over fewer epochs
compared to the baseline model.
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Figure 3.9: TurboAttention, DEEPTURBO [36] : Average Validation BER

3.5.2 Test results

The test set comprises 1.5 × 105 encoded sequences, each with an information sequence block
length of 100 bits. The SNR for this set ranges from −2 dB to 5 dB, with increments of 0.5 dB
between each SNR value. Consequently, each SNR level is represented by 104 samples.

Figures 3.10 and 3.11 show the performance metrics of TurboAttention, DEEPTURBO [36] ,
and Soft Output Viterbi Algorithm (SOVA) turbo decoder on the test set, evaluated in terms
of Bit Error Rate (BER) and Block Error Rate (BLER).

In terms of BER, TurboAttention consistently outperforms the iterative SOVA decoder across
the entire SNR range. It also closely matches the performance of the DEEPTURBO [36]
baseline model or slightly better numerically. Notably, both TurboAttention and DEEPTURBO
[36] achieve zero errors for all test samples at SNR levels above 3 dB, indicating their robustness
in high SNR conditions.

The BLER results, as shown in Figure 3.11, mirror the observations in the BER performance.
TurboAttention demonstrates a similar advantage over SOVA and comparable performance
to DEEPTURBO [36] . This consistent performance across both BER and BLER metrics
underscores the efficacy of the TurboAttention model in decoding efficiency and error correction,
even under varying SNR conditions.
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Figure 3.10: TurboAttention, DEEPTURBO [36] , SOVA : BER performance on different SNRs

Figure 3.11: TurboAttention, DEEPTURBO [36] , SOVA : BLER performance on different
SNRs

In the next part, we explore more details about specific cases on the proposed model, mentioning
tests on a different block length, and hardware inference.

104



TurboAttention: Sequence to Sequence Bi-LSTM Attention Model for Turbo Decoding

3.6 Case studies

We will study the capacity of TurboAttention to generalize the predictions to different block
lengths and then analyze the hardware implementation in terms of execution time.

3.6.1 Genralization on different block lengths

Standard turbo decoders, such as the Soft Output Viterbi Algorithm (SOVA), exhibit asymp-
totic performance improvements with increasing block length, meaning that the longer the
received encoded message, the lower the error rate in decoding. This behavior, however, is
not observed in the baseline model, where performance deteriorates with increasing sequence
length when the model is trained on a fixed sequence length.

To investigate the effect of block length on performance, we compare TurboAttention and DEEP-
TURBO [36] using a different test set comprised of encoded sequences with an information
sequence length of 258 bits. The SNR range for this test set spans from −1.5 dB to 4 dB, with
steps of 0.5 dB between each value. For each SNR value, there are 104 samples, resulting in a
total of 1.2× 105 samples for the entire test set.

Figures 3.13 and 3.12 present the results of these tests. The performance of TurboAttention
and DEEPTURBO [36] is analyzed in terms of both Bit Error Rate (BER) and Block Error
Rate (BLER). These figures highlight the incapability of TurboAttention model in handling
longer sequence lengths, which means that training it on constant block length (100 bits) is not
helpful for the model to generalize to the variety of block lengths. DEEPTURBO is better in
generalization, while SOVA can even outperform TurboAttention on higher SNRs.
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Figure 3.12: (Block Length = 258) TurboAttention, DEEPTURBO [36] , SOVA : BER perfor-
mance on different SNRs

Figure 3.13: (Block Length = 258) TurboAttention, DEEPTURBO [36] , SOVA : BLER per-
formance on different SNRs

3.6.2 Inference execution time on edge hardware

In this study, we performed inference tests of our deep learning model on the NVIDIA Jetson
Nano, a compact AI computer designed for edge computing applications. The Jetson Nano is
equipped with a quad-core ARM Cortex-A57 CPU, a 128-core NVIDIA Maxwell GPU, 4 GB of
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LPDDR4 RAM, and supports various AI frameworks.Jetson Nano is compatible with Pytorch
1.10 and CUDA 10.2.

The hardware and software configuration used for the tests included the following settings:

- CPU: Quad-core ARM Cortex-A57

- GPU: 128-core NVIDIA Maxwell

- Integrated GPU : 1 GB

- RAM: 4 GB LPDDR4

- Operating System: Ubuntu 18.04

- Python 3.6

- Pytroch 1.10

- CUDA 10.2

We evaluate the performance of the trained models by running inference with a batch size of
200 and measuring the batch execution time, sequence execution time, GPU usage, and RAM
usage. The results are summarized in Table 3.3. Using CUDA environment, we can parallelize
the process during inference, but we should mention that the models use only the integrated
GPU of 1 GB of memory.

Model Batch Size Batch Execu-
tion Time (s)

Sequence Ex-
ecution Time
(ms)

GPU Usage
(%)

RAM Usage
(MB)

TurboAttention 200 10.5 52 85.3 314
DEEPTURBO
[36]

200 1.45 7 48.3 483

Table 3.3: Inference Performance on Jetson Nano.

Parallel computing in inference enables models to simultaneously process multiple sequences,
significantly enhancing the throughput of the decoder. However, methods like Turboattention
suffer from higher time complexity, primarily due to the attention bottleneck. In contrast,
DEEPTURBO [36] demonstrates approximately seven times faster performance. Figure 3.14
illustrates Jetson Stats, an interface displaying resource utilization on Jetson Nano. It tracks
real-time metrics such as GPU and CPU usage, RAM consumption, power consumption, and
component temperatures during the execution of the model.
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Figure 3.14: Jetson Stats: Usage of resources usage on Jetson Nano

3.7 Discussion

The performance of TurboAttention closely matches or slightly exceeds that of the baseline
model when trained on constant block lengths. However, extending testing to longer block
lengths did not improve the model’s ability to generalize, suggesting potential overfitting to
specific block lengths. In contrast, typical sequence-to-sequence attention models used in lan-
guage processing tasks are trained across various sequence lengths to enhance generalization, a
capability lacking in our model.

The attention mechanism in our model is trained to establish relationships between input
and output sequences, which may explain its difficulty in generalizing to longer sequences and
the occurrence of gradient vanishing in LSTM layers. Furthermore, attention models heavily
depend on large datasets to maximize their performance and outperform traditional sequence
models. Interestingly, the Bi-GRU baseline model did not experience a significant performance
drop compared to TurboAttention, which is back to its lower complexity that didn’t make the
model overfit on a single block length. Instead, TurboAttention is more complex and needs
more regularization and data variety to explore the full potential of seq2seq models based on
attention.

Moreover, the attention model introduces additional complexity to the decoder, particularly in
terms of model parameters due to both encoder and decoder components, and in terms of time
complexity due to the attention bottleneck involving matrix multiplication and step-by-step
decoding.
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Regarding inference time on hardware, experiments demonstrate that models like TurboAt-
tention and DEEPTURBO [36] can be effectively implemented on edge devices and used in
real-time applications across various domains.

Conclusion

The attention model TurboAttention, originally designed for turbo decoding, showcased the
potential of applying attention mechanisms—typically used in natural language processing—to
the decoding of erroneous binary sequences. By leveraging the encoding scheme and updating
prior information at each epoch, the model effectively identified temporal dependencies within
sequences, enhancing its ability to decode messages reliably.

In comparison to the iterative turbo decoder, our proposed approach achieved performance on
par with the baseline model, with notable degradation observed only for longer block lengths in
TurboAttention. To further explore the potential of attention models in this context, additional
avenues such as increasing dataset size, applying regularization techniques, and configuring
more complex model architectures warrant detailed investigation.

Demonstrating the feasibility of deploying sequence models for turbo decoding on edge hardware
devices is a significant achievement. Future research could expand beyond these experiments
to explore implementations on FPGA, Raspberry Pi, and conduct real-world tests using radio
interfaces to evaluate the real-time applicability of these models in communication channels.

While both models could potentially benefit from further parameter tuning and extended train-
ing, computational resource limitations currently constrain our ability to achieve optimal re-
sults, particularly notable for TurboAttention, which requires longer epochs for training.

In the next chapter, another deep learning approach for tutro decoding is introduced, it also
relies on attention mechanism but in another way and another view.
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Introduction

In this chapter, we introduce a new approach to turbo decoding using Transformer models,
which we call TurboTransformer.

TurboTransformer represents a novel approach by leveraging the gathered knowledge on turbo
codes and advancements in Natural Language Processing. This approach draws an analogy
between text generation and turbo decoding sequences. We investigate whether the model
can identify patterns in turbo codes to correct errors in these sequences and outperform the
standard iterative decoder based on SOVA.

The Transformer model, renowned for its success in NLP tasks, relies entirely on self-attention
and cross-attention mechanisms that allow it to process sequences in parallel, rather than
sequentially as in RNNs or convolution. This parallel processing capability, combined with its
ability to capture long-range dependencies in sequences, makes it a promising candidate for
turbo decoding. In TurboTransformer, we adapt this architecture to decode turbo codes by
training the model to recognize and correct errors in the received sequences.

In the following sections, we will provide a comprehensive overview of the TurboTransformer ar-
chitecture, detailing each component and its role in the decoding process. We will also describe
the training and testing procedures used to evaluate the model’s performance. Finally, we will
compare the results of TurboTransformer with traditional decoder and the decoder proposed
in the previous chapter 3 to highlight its effectiveness and potential for future applications in
error correction coding.

4.1 Background and motivation

Channel decoding succeeds due to its ability to detect and correct errors in received sequences.
While knowing the encoding scheme is essential, ensuring reliable communication through
highly corrupted channels is insufficient. Deep learning approaches enable models to learn
how to transform corrupted encoded sequences into the desired information sequences. In this
context, a transformer architecture with advanced attention mechanisms can learn to focus on
the corrupted positions within a sequence.

The decoding scheme used by transformers, where tokens are generated incrementally based on
previously generated outputs, mirrors the dependency introduced in convolutional codes. This
concept of focusing attention on errors and maintaining a gradual dependency inspired the use
of transformer architecture for turbo decoding. Notably, the transformer architecture has not
yet been explored in the context of turbo decoding. This presents a significant challenge, as
there is no baseline or starting point in the existing literature to guide this research.
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The only notable use of transformers in channel decoding, introduced in [46], focused on block
codes and other encoding techniques. However, this approach was not adapted to turbo codes,
as TurboAttention does. This pioneering approach aims to leverage the strengths of trans-
former models in handling sequence dependencies and attention mechanisms to enhance error
correction in turbo decoding.

4.2 TurboTransformer architecture

In this section, we present the detailed architecture of the proposed model. The description is
provided block by block, outlining both the foundational components derived from the trans-
former architecture introduced in the paper "Attention is All You Need" [47], and the unique
adaptations specific to TurboTransformer. These adaptations represent our efforts to tailor the
architecture for our specific application. Figure 4.1 illustrates the detailed architecture of the
model. We will proceed with a block-by-block explanation.
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Figure 4.1: TurboTransformer detailed architecture.
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4.2.1 Input features

The input features constitute the initial block of the model, gathering the necessary data to
be fed into the system. In the context of turbo decoding, a set of key features is employed
to capture the complexities of the code sequences. For the turbo code configuration described
previously in 1.3.2.4.1, the extracted features are as follows:

- Systematic bits: This is the most important feature, representing the original informa-
tion sequence.

- Interleaved systematic bits: The interleaved version of the information sequence,
included to help the model understand the interleaving scheme and the relationships and
dependencies within the sequence.

- Parity 1 bits: The parity bits sequence produced by the inner RSC encoder, which
provides information on the encoding of the systematic sequence.

- Parity 2 bits: The parity bits sequence produced by the outer RSC encoder, which
provides information on the encoding of the interleaved information sequence.

- Convolutional states 1: These states are related to the encoding/decoding of the coded
sequence from the inner RSC encoder. Including this feature reinforces the relationship
between the systematic bits and parity 1 bits, enhancing the model’s understanding of
the convolutional encoding scheme.

- Convolutional states 2: These states are related to the encoding/decoding of the coded
sequence from the outer RSC encoder. Including this feature reinforces the relationship
between the interleaved systematic bits and parity 2 bits, further enhancing the model’s
understanding of the convolutional encoding scheme.

After further preparation, these features are designated for either the encoder block or the
decoder block. This distinction allows us to categorize the features into two sets: source
features, which are intended for the encoder block, and target features, which are intended for
the decoder block.

4.2.1.1 Target features

The target features for the decoder block are the features that we want our model to learn
and replicate. As the name implies, the decoder aims to match these target features during
its learning process. This concept of target features is crucial in the training process, which
will be discussed later. Essentially, the target features are the correct turbo code features that

114



TurboTransformer: Transformer Model for Turbo Decoding

have not been affected by channel impairments. These include the original information bits,
the correctly encoded parity bits, and the convolutional states from the encoding process of the
two RSC encoders.

4.2.1.2 Source features

The source features for the encoder block are the features that we want our model to correct.
The encoder aims to analyze these features and learn the tendencies of error occurrences. Es-
sentially, the source features are the corrupted turbo code features received from a noisy channel
transmission, including the corrupted received information bits and parity bits. Regarding the
convolutional states, in a reception situation, no knowledge is communicated about the encod-
ing states of the sequence, nor are decoding states provided. Therefore, we face a lack of state
features. To address this, several methods can be employed, as listed below:

1. Set all source convolutional states to a fixed state, preferably the all-zeros state. This
approach conveys no information to the encoder block about these features. The decoder
will have to learn to infer the corresponding states from scratch.

2. Set source convolutional states to random sequences of states. This approach introduces
randomness to the input data. Neural networks are known for their capacity to model
well on random data following a fixed distribution, such as the Gaussian distribution.

3. Use a pretrained neural network model that estimates the convolutional states of a se-
quence. This approach adds a layer of complexity to the model but enables the model to
begin with somewhat less erroneous feature values.

All three approaches were thoroughly tested to determine the best solution for the lack of source
convolutional state values.

Approach (2) was the first to be eliminated because the model could not comprehend the
relationships between the received bits and the random states. This approach produced an
error rate of 88.3% on the generated states.

Approach (3) involved training a model to input the received encoded sequence and output an
estimation of the encoding states. The model, termed the "States Estimator," used an LSTM
sequential network to analyze the received bits, passing the values of its hidden states to a
feedforward network (FFN) with two hidden layers, ultimately outputting the estimated states
after a softmax activation. The training process used the correct encoding states as labels. This
method reduced the error rate on the convolutional states to 31.6%. Despite this improvement,
the estimations were not consistent enough for the TurboTransformer to extract meaningful
dependencies from the sequence.
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The selected approach was Approach (1). This technique showed the most consistency. Its
impact was particularly noticeable in the initial stages of training, where the model converged
significantly faster compared to the other techniques. The all-zero states initialization allowed
the model to build an estimation of the features from values that had not been corrupted or
altered. This straightforward approach performed best overall and was adopted in subsequent
work.

4.2.2 Multi-feature tokenizer

Tokenization, in the realm of Natural Language Processing (NLP) and machine learning, refers
to the process of converting a sequence of text into smaller parts, known as tokens. These
tokens can be as small as characters or as long as words.

In our application, tokenization aims to construct a dictionary of unique values for a given
set of features. Each combination of feature values should have a unique representation to be
distinguished by the model. Essentially, we need to combine our set of features in a way that
guarantees distinctiveness for correct reconstruction. Figure 4.2 shows the simplified operation
of the multi-feature tokenizer.

Figure 4.2: Simplified operation of the multi-feature tokenizer.

Given that the token values must be of an unsigned integer type, the proposed approach to
tokenization for a set of N features of values {f1, f2, . . . , fN}, with these values in ranges
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{R1, R2, . . . , RN}, is given by the following formula:

TOKEN = f1 + f2 × (R1) + f3 × (R1R2) + . . . + fN × (R1R2 . . . RN−1) (4.1)

Which can be expressed as:

TOKEN =
N∑

i=1
fi

i−1∏
j=1

Rj (4.2)

This mathematical solution ensures the correct reconstruction of the unique generated features
using a simple iterative method, called tokenizer decoding, which proceeds as follows:

1. Initialize the values of feature ranges R, ordered according to feature placements.

2. Initialize index i = N , where N is the number of features.

3. Repeat until i = 0:

a. Compute the scale, si = ∏i−1
j=1 Rj

b. Compute feature value fi using floor division of the tokenized sequence by the scale
si.

c. Update the tokenized sequence to be the remainder after division by the scale.

d. Decrement the index i.

Having presented the proposed tokenization scheme and its usage for our application, we con-
ducted a grid search on tokenizers with all possible combinations of feature placements. Our
comparison focused on the reconstruction of the most important feature, the systematic bits.
We altered a number of tokenized sequences within a fixed range of errors and passed them to
different tokenizers for systematic bit extraction. We then compared the resulting Bit Error
Rate (BER) after reconstruction.

Tokenizers that assign the largest scale to the information bits systematically outperform other
configurations. A larger scale for this feature allows for a greater error margin before producing
an erroneous result. The best-performing configuration is described in Table 4.1. We also note
that for this configuration, the extraction of the information bit is even simpler. Specifically, a
token value greater than or equal to 128 indicates an information bit of 1, while a token value
less than 128 indicates an information bit of 0.

Features Sys. Bit Parity 1 States 1 Int. Sys. Bit Parity 2 States 2
Values [0, 1] [0, 1] [0, 1, 2, 3] [0, 1] [0, 1] [0, 1, 2, 3]
Range 2 2 4 2 2 4

Notation u p1 s1 ui p2 s2

TOKEN = 128u + 64p1 + 16s1 + 8ui + 4p2 + s2

Table 4.1: Summary of the designed multi-feature tokenizer.
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The proposed tokenizer creates 256 tokens to represent different turbo code features. The
number of tokens in this collection is referred to as the vocabulary size in the literature. Addi-
tionally, we introduce special tokens that do not hold any meaningful turbo code information
but are used to signal events to the transformer and organize the sequences.

First, the Start Of Sequence (SOS) token indicates the beginning of the sequence and is added
to the start of a sequence to signal the model that a new sequence has begun. Next, the End
Of Sequence (EOS) token signals the model that the sequence has ended. Lastly, the Padding
(PAD) token is added as a filler to ensure that all sequences are of the same length. These
three special tokens are assigned the next available token values: 256, 257, and 258, respectively.
Including these special tokens, the total vocabulary size increases from 256 to 259.

This results in an enhanced tokenization scheme that accommodates special tokens while main-
taining a distinct representation for each combination of turbo code features.

4.2.3 Embedding

Similarly to other sequence transduction models, we use learned embeddings to convert the
input tokens and output tokens to vectors of dimension dmodel. We also use the usual learned
linear transformation and softmax function to convert the decoder output to predicted next-
token probabilities. In our model, we share the same weight matrix between the two embedding
layers and the pre-softmax linear transformation. In the embedding layers, we multiply those
weights by

√
dmodel [47].

4.2.4 Multi-head attention

Instead of performing a single attention function with dmodel-dimensional keys, values, and
queries, we found it beneficial to linearly project the queries, keys, and values h times with
different, learned linear projections to dk, dk, and dv dimensions, respectively. On each of
these projected versions of queries, keys, and values we then perform the attention function
in parallel, yielding dv-dimensional output values. These are concatenated and once again
projected, resulting in the final values, as depicted in Figure 4.3.
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Figure 4.3: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of
several attention layers running in parallel [47].

Multi-head attention allows the model to jointly attend to information from different repre-
sentation subspaces at different positions. With a single attention head, averaging inhibits
this.

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O (4.3)

where headi = Attention(QW Q
i , KW K

i , V W V
i )

Where the projections are parameter matrices W Q
i ∈ Rdmodel×dk , W K

i ∈ Rdmodel×dk , W V
i ∈

Rdmodel×dv , and W O ∈ Rhdv×dmodel . [47]

4.2.5 Feed forward layer

In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully
connected feed-forward network, which is applied to each position separately and identically.
This consists of two linear transformations with a ReLU activation in between: [47]

FFN(x) = max(0, xW1 + b1)W2 + b2 (4.4)

While the linear transformations are the same across different positions, they use different
parameters from layer to layer. [47]
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4.2.6 Normalization and residual connections

Similar to the encoder, we employ residual connections around each of the sub-layers, followed
by layer normalization. We also modify the self-attention sub-layer in the decoder stack to
prevent positions from attending to subsequent positions. This masking, combined with the
fact that the output embeddings are offset by one position, ensures that the predictions for
position i can depend only on the known outputs at positions less than i. [47]

4.2.7 Positional encoding

Since our model contains no recurrence and no convolution, in order for the model to make use
of the order of the sequence, we must inject some information about the relative or absolute
position of the tokens in the sequence. To this end, we add "positional encodings" to the input
embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have
the same dimension dmodel as the embeddings, so that the two can be summed. There are
many choices of positional encodings, learned and fixed. In this work, we use sine and cosine
functions of different frequencies:

PE(pos,2i) = sin
(

pos

100002i/dmodel

)
(4.5)

PE(pos,2i+1) = cos
(

pos

100002i/dmodel

)
(4.6)

where pos is the position and i is the dimension. That is, each dimension of the positional
encoding corresponds to a sinusoid. The wavelengths form a geometric progression from 2π to
10000 · 2π. We chose this function because we hypothesized it would allow the model to easily
learn to attend by relative positions, since for any fixed offset k, PEpos+k can be represented
as a linear function of PEpos. [47]

4.2.8 Encoder block

The encoder is composed of a stack of N identical layers. Each layer has two sub-layers. The
first is a multi-head self-attention mechanism, and the second is a simple, position-wise fully
connected feed-forward network. We employ a residual connection around each of the two
sub-layers, followed by layer normalization. That is, the output of each sub-layer is:

LayerNorm(x + Sublayer(x)) (4.7)

where Sublayer(x) is the function implemented by the sub-layer itself. To facilitate these
residual connections, all sub-layers in the model, as well as the embedding layers, produce
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outputs of dimension dmodel. [47]

4.2.9 Decoder block

The decoder is also composed of a stack of N identical layers. In addition to the two sub-
layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual
connections around each of the sub-layers, followed by layer normalization. We also modify the
self-attention sub-layer in the decoder stack to prevent positions from attending to subsequent
positions. This masking, combined with the fact that the output embeddings are offset by one
position, ensures that the predictions for position i can depend only on the known outputs at
positions less than i. [47]

4.3 Methodology

In this section, we describe the methodology applied to the TurboTransformer. We specify
the properties of the data used, detail the training and inference processes, and introduce the
evaluation metrics employed for analyzing the results discussed in Section4.5.

4.3.1 Data preparation

The data used for this model can be represented as a source to construct a dictionary of various
turbo code features. This set of features, that were earlier discussed in the model’s architec-
ture, were generated in MatLab. The environment used simulated a communication system
with turbo code channel coding. We established a random generation of binary information
sequences, divided into blocks of length K = 100. The information is encoded using the turbo
code configuration as presented in the consideration on further work in 1.3.2.5.6. The encoded
information is then modulated using BPSK modulation and passed through an AWGN channel,
and the recieved sequences are collected. This procedure enables us to generate the following:

- Encoded sequences, from which we extract the following features: systematic bits, inter-
leaved systematic bits and parity bits for the model’s target.

- Encoding states, that represent features for the model’s target.

- Received encoded sequences, from which we extract the following features: systematic
bits, interleaved systematic bits and parity bits for the model’s source.
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The considerations regarding the SNR values used in the channel are specific to each dataset
generated. Since, we generated a total of three datasets: the train set, validation set and test
set.

The train set contains 800000 samples and the validation set contains 50000 samples. The SNR
distributions across the received sequences in train and validation set are shown in Figure4.4.
The test set mainly has low values of SNR, with a considerable amount of data at SNR=−1dB.
This choice was motivated by multiple suggestions in literature, that state that the model learns
best when faced to highly corrupted data. The validation set was chosen to have an averagely
distributed SNR to specifically verify the generalization capacity of the model. The test set on
the other hand contains a number of 2000 samples per SNR value in the range of −1.5 to 7 dB.

Figure 4.4: SNR distributions in train and validation sets.

We must note that transformer models are highly dependent on the quantity of data they are
fed. While generating larger datasets is not particularly challenging, as the datasets described
above only took approximately 16 hours to generate, the substantial size of these datasets
impacts the training time of the model. Given our constrained resources, this configuration of
data preparation represents the maximum feasible amount for our needs.

4.3.2 Training

The TurboTransformer model was trained from scratch, as the only publicly available pre-
trained transformers are specific to NLP tasks. Adapting a pre-trained NLP model to our
application was not considered viable due to the significant differences between our task and
typical NLP applications. We will specify the training method used, the loss function and
optimizer applied and present the different model configurations trained.
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4.3.2.1 Training method

Various methods exist for training transformer models, including teacher forcing, scheduled
sampling, and normal mode. We will focus on the chosen method: teacher forcing.

In teacher forcing mode, the decoder predicts the next token based on the correct input, referred
to as the target input. The decoder leverages the cross-attention mechanism, which incorporates
the attention given to the source sequence by the encoder. This approach forces the decoder to
replicate the correct input patterns during training, enhancing its ability to generate accurate
predictions during inference.

Unlike teacher forcing in RNNs, the transformer model executes a training step in a single pass.
Instead of predicting the output token-by-token as in recurrent networks, the causal masking
applied in the decoder simulates this behavior. This allows the model to encode, decode, and
project once for any given sequence of any length, as each token only attends to previous tokens.

The training process described in Figure 4.5 goes as follow:

- The tokenized source sequence is concatenated with an EOS token and PAD tokens if
needed. And the tokenized target sequence is concatenated with an SOS token, EOS
token, and PAD tokens if needed. Adding the SOS token is crucial for the inference
scheme that will be discussed later.

- The source sequence, after embedding and positional encoding, is fed to the encoder.
The encoder applies self-attention to the source sequence and passes the output to the
decoder.

- The target sequence, after embedding and positional encoding, is fed to the decoder. The
decoder applies self-attention to the target sequence, followed by cross-attention with the
encoder’s output.

- The decoder output is projected, and a softmax activation is applied to provide a sequence
where each position in the sequence contains the probability distribution over the entire
vocabulary for the token predicition in that position.

- The loss function, which we will discuss later, takes the model output and the label
sequence (a sequence with target features, tokenized and concatenated with an EOS
token). The loss value is backpropagated and an optimizer updates and the model’s
weights.
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Figure 4.5: TurboTransformer during training.

4.3.2.2 Loss function

The model output provides a probability distribution over the vocabulary for each token in the
sequence. The labels represent the correct tokens that the model should predict, with each label
value indicating the index of the correct token in the probability vectors. Given the nature of
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our task, we employ a Cross-Entropy (CE) loss function, which is well-suited for measuring the
performance of tokens predictions.

For a single sequence of length N , assuming that the labels are represented by the correct
tokens {t1, t2, . . . , tN}, the formula for the CE loss in this context is:

CE = − 1
N

N∑
i=1

log(pi,ti
) (4.8)

where:
ti is the correct token index for the i-th position.
pi,ti

is the predicted probability of the i-th position being the correct token ti.

The CE loss used was often joint to the label smooting technique. It is a regularization technique
used during training to improve the generalization of neural networks. In the context of CE
loss, label smoothing adjusts the target probabilities y by distributing some probability mass
from the correct target 1 to other incorrect targets. This is achieved by interpolating between
the hard targets and a uniform distribution.

For a single sequence of length N , assuming label smoothing parameter ϵ, the modified target
distribution ỹ is:

ỹi,ti
= (1− ϵ) · yi,ti

+ ϵ

V
(4.9)

where:
yi,ti

is the original target probability for correct token ti at position i.
V is the total number of possible tokens, or vocabulary size.
ϵ is a small positive smoothing parameter.

The modified CE loss with label smoothing is then computed as:

CEsmooth = − 1
N

N∑
i=1

V∑
k=1

ỹi,k log(pi,k) (4.10)

where:
pi,k is the predicted probability of token k at position i.

Adjusting ϵ allows for controlling the degree of smoothing applied during training.

4.3.2.3 Optimizer

For our application, we employ the Adaptive Moment Estimation with Weight Decay (AdamW)
optimizer. It is an extension of the Adaptive Moment Estimation (Adam) optimizer. The
AdamW optimizer improves upon Adam by decoupling the weight decay from the gradient
update, which helps to ensure that L2 regularization does not interfere with the learning rate.
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The configuration of the optimizer used covers values of the exponential decay rates for the
moment estimates, β1 and β2, fixed at 0.9 and 0.98 respectively and the value of the weight
decay coefficient, λ. The optimization process is defined the Algorithm 4

Algorithm 4 Optimization using AdamW.
Require: α: learning rate
Require: β1, β2 ∈ [0, 1]: exponential decay rates
Require: λ: weight decay coefficient
Require: θ0: parameter set
Require: f(θ): network function

m0 ← 0
v0 ← 0
t← 0
while θt not converged do

t← t + 1
gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt

vt ← β2 · vt−1 + (1− β2) · g2
t

m̂t ← mt/(1− βt
1)

v̂t ← vt/(1− βt
2)

θt ← θt−1 − α · (m̂t/(
√

v̂t + ϵ) + λ · θt−1)
end while
return θt

where:
gt is the gradient of the loss function with respect to the parameters at time step t.
mt and vt are the first and second moment estimates, respectively.
m̂t and v̂t are the bias-corrected moment estimates.
α is the learning rate.
ϵ is a small constant to prevent division by zero.

When using AdmaW instead of Adam, we reaffirmed that the decoupling of weight decay from
the gradient update leads to more stable convergence, which is crucial for training transformer
models. Also the weight decay term acts as a regularizer, preventing overfitting and helping
the model generalize better.

During training, we observed that setting the weight decay value relatively high, such as λ =
0.05 or higher, in initial stages promotes a smoother convergence. In advanced stages, this
value was reduced to decrease regularization, allowing the model to focus more on learning.

4.3.2.4 Model configurations and hyperparameters

Given the absence of a predefined starting point for the TurboTransformer, the process of select-
ing the optimal model configuration involved extensive experimentation. A model configuration
is characterized by the following components:
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- N : This parameter represents the number of stacked encoder and decoder blocks.

- dmodel: This denotes the dimensionality of the model’s hidden states or embeddings. It
determines the size of the vector space in which the model operates.

Before presenting the experimented configuration, we address the learning rate hyperparameter.
We observed that the use of a learning rate scheduler is crucial for the convergence during
training. We used the following types of schedulers:

- Scheduler with learning rate warmup posposed in [47]. This scheduler was used at train-
ing start, where the warm-up stage was observed to be crucial for a faster and stable
convergence. The scheduling formula, based on the current step is given by:

α = d−0.5
model ·min(step_num−0.5, step_num · warmup_steps−1.5) (4.11)

This corresponds to increasing the learning rate linearly for the first warmup_steps train-
ing steps, and decreasing it thereafter proportionally to the inverse square root of the
step number [47].

- The learning rate reducing on plateau. This scheduler reads a metrics quantity and if
no improvement is seen for an epoch, the learning rate is reduced. It is called when the
learning stagnates and the tracked metric stopped improving. We used this technique at
late training stages with the validation loss as the tracked metric and a reducing factor
k = 0.5.

Building on this foundation, we introduce the experimented configurations in Table 4.2, focusing
primarily on the tiny, small, medium, and large architecture setups.
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Configurations Tiny Small Medium Large

d_model 128 256 256 512

Number of layers 6 4 6 12

Block Length 100 100 100 100

Vocabulary Size 259 259 259 300,000

Train epochs 30 30 30 15

Training time (hours) 62 76 94 210

Batch size 32-1024 64-2048 64-4096 256-4096

Dropout 0.1 0.1 0.1 0.3

Loss Function Cross-Entropy Cross-Entropy Cross-Entropy Cross-Entropy

Label Smoothing 0.05 0.01 0.01 0.005

Optimizer AdamW AdamW AdamW AdamW

Weight Decay 0.05 0.05 0.05 0.01

Warmup Steps 2500 3000 3000 4000

Trainable Parameters (Millions) 2.86 7.56 11.24 88.61

Table 4.2: Experimental configurations for TurboTransformer.

Our initial experimentation began with the large configuration, which featured a highly complex
model with 88.61M parameters. This choice was inspired by findings from [48], demonstrating
that increasing both model width and depth can expedite convergence in terms of gradient
steps and training duration.

Our observations indicate that the large model experienced significant underfitting, likely due
to its complexity and challenges in pattern detection. Switching to smaller configuration not
only accelerated the training but offered better convergence and overall better performance.

The chosen configuration for TurboTransformer is the medium setup. Models with fewer than
6 layers in both encoder and decoder blocks proved lacking during inference. Similarly, models
with a dimensionality less than 256 struggled to capture a detailed enough representation of
sequences.

4.3.3 Inference

Various variations exist for the inference of transformer model. These variations get in com-
mon the same baseline process of decoding, the greedy decoding. The inference process for
TurboTransformer is described in Figure 4.5.
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4.3.3.1 Greedy decoding

The greedy decoding process goes as follow:

- The tokenized source sequence is concatenated with an EOS token and PAD tokens if
needed.

- The source sequence, after embedding and positional encoding, is fed to the encoder. The
encoder applies self-attention to the source sequence and passes the output to the decoder.
The same encoder output is used across all decoding iterations for a given sequence.

- The decoder input is initially a SOS token. The process aims to fill this sequence over the
decoding iterations. The decoder applies self-attention to the target sequence, followed
by cross-attention with the encoder’s output.

- The decoder output is projected, and a softmax activation is applied to provide a sequence
where each position in the sequence contains the probability distribution over the entire
vocabulary for the token predicition in that position.

- The output probabilities go through an argmax function. Argmax returns the index of
the maximum value in the input array. In this case, we obtain the next predicted token.

- The predicted token is fed back and concatenated to the decoder output for the next
decoding iteration.

- The steps mentioned above are repeated until the model predicts the total number of
tokens in a sequence.

- At last, we obtain a decoder input buffer with the complete predicted sequence, right-
shifted by the SOS token.
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Figure 4.6: TurboTransformer during inference.

Greedy decoding is a simple and computationally effective method to predict corrected tokens.
The predicted tokens are then used to reconstruct the turbo code features. The reconstruction
of the information bits feature finalizes the process of decoding turbo codes using TurboTrans-
former.
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Given the tokenization scheme described earlier, an alternative approach to the extracting of
information bits was considered. This technique takes advantage of the tokenization scheme
used and the redundancy of information present in a tokenized sequence. We call the clas-
sic approach "Hard reconstruction" and the proposed technique "Soft reconstruction". Both
techniques are explained in the following:

4.3.3.1.1 Hard reconstruction of information bits simply consists of using the tokenizer
decoding presented in the process in 4.2.2 and selecting the systematic bits feature.

4.3.3.1.2 Soft reconstruction of information bits takes advantages of the existence of two
features that convey knowledge on the information bits. Indeed, both the systematic bits and
interleaved systematic bits features can be used to obtain a better reconstruction of information.

We know that a token at a position i will contain insight on the predicted bit for position i

through the systematic bit feature, but also on the predicted bit for the interleaved position
int(i) through the interleaved systematic bit feature. Inversely, the same applies for a token at
the interleaved position int(i) that will contain insight on the predicted bit for position int(i)
through the systematic bit feature, but also on the predicted bit for the interleaved position i

through the interleaved systematic bit feature. Essentially, this offers a doubled prediction for
each information bit. The predictions hold probabilities that represent the model’s confidence
in the selection of token. These probabilities combined with the decisions on a specific bit can
be used to offer a more reliable reconstruction of information bits.

Given token predictions at position i and int(i), with a probabilities Pi and Pint(i) to which
we associate weight factors w1 and w2, and bit decisions ui systematic and uint(i) interleaved
systematic respectively which we transform to a signed representation (bit 0 takes -1 and bit 1
takes 1), we define the soft reconstruction of information bit ûi for position i as follow:

ûi = w1 · (uiPi) + w2 · (uint(i)Pint(i)) (4.12)

The Figure 4.7 illustrates the explained workflow of the proposed approach to bit reconstruction.
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Figure 4.7: Illustrated process of the soft reconstruction of information bits.

This reconstruction approach has proven efficient for greedy decoding, and the results of its
application are presented in the upcoming sections. Despite some improvements to greedy
decoding, it remains constrained by the limitations of the standard iterative technique. Greedy
decoding for token prediction suffers from multiple disadvantages. First, it is short-sighted:
Greedy search only considers the best immediate option at each step without regard for the
long-term implications of its choices. Second, it is prone to the propagation of errors: Once a
erroneous decision is made, all future decisions are affected, with no mechanism to correct the
course. Therefore, we introduce beam search decoding next to mitigate some of these issues.

4.3.3.2 Beam search decoding

Beam search is an advanced decoding technique used in sequence generation tasks, such as in
Turbo decoding, where it maintains multiple candidate sequences, known as the beam width k,
at each decoding step. This approach contrasts with Greedy Search, which simply selects the
most likely word at each step without considering alternatives.

To illustrate, in the turbo decoding context. Greedy Search settles on the most probable token
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at each step, potentially missing a more coherent overall sequence. In contrast, Beam Search
expands upon this by predicting several possible continuations for each sequence it’s considering,
evaluating and retaining the top k sequences based on their combined probabilities. This
flexibility increases the likelihood of finding a more contextually appropriate sequence, even if
it doesn’t always guarantee the most probable one. Figure 4.8 shows a simplified explanation
of the search process, where Ti are the candidate tokens for a sequence position i.

Figure 4.8: Simplified beam search for a beam size of k = 2.

Beam search’s advantage lies in its ability to explore a wider range of potential sequences, often
offering more reliable outputs compared to Greedy Search. By maintaining multiple hypotheses
of predictions, it mitigates the risk of prematurely committing to less likely sequences due to
locally optimal decisions.

However, beam search comes with computational costs. It requires resources to manage and
compute probabilities for multiple sequences at each decoding step. Additionally, the effective-
ness of beam search is influenced by the choice of beam width k; a smaller k may restrict its
ability to capture the most probable sequence effectively.

4.3.4 Evaluation metrics

The train, validation, and test performances are quantified using the following metrics:

Bit Error Rate (BER) and Block Error Rate (BLER): These metrics are already defined.

Token Error Rate: TER is a metric used to evaluate the performance of a token-based model.
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It measures the number of token errors to the total number of tokens. The TER is given by:

TER = Number of erroneous predicted tokens
Total number of tokens (4.13)

Mean Absolute Error: MAE is a common regression metric that measures the average mag-
nitude of the errors in a set of predictions, without considering their direction. It is the average
over the test sample of the absolute differences between prediction and actual observation. The
MAE is given by:

MAE = 1
n

n∑
i=1
|yi − ŷi| (4.14)

where yi is the actual token, ŷi is the predicted token, and n is the number of observations.

Perplexity: is a measurement of how well a probability model predicts a sample. It is com-
monly used in language modeling to evaluate the performance of models in inference. Lower
perplexity indicates better predictive performance. The perplexity is given by:

Perplexity = exp
(
− 1

N

N∑
i=1

log P (wi)
)

(4.15)

where N is the number of tokens, and P (wi) is the probability of the i-th token in the sequence.

Additionally, during training, gradient norms-2 are monitored. Gradient norms-2 provide in-
formation on the magnitude of the gradients during training, which helps in diagnosing issues
like vanishing or exploding gradients. Monitoring these norms ensures that the gradients are
within a reasonable range and helps in stabilizing the training process. The gradient norm-2 is
given by:

∥∇∥2 =
√∑

i

(∇i)2 (4.16)

where ∇i represents the gradient of the i-th parameter.

4.4 Experimental setup

The setup for TurboTransformer is similar to TurboAttention in 3.

4.4.1 Hardware

The cloud computational environment of Kaggle is used, with 73.1 GB disk space available ,
Intel Xeon 2.20 GHz CPU. The GPU used is Nvidia Tesla P100 with 16 GB VRAM, and
32 GB RAM. In addition, the platform provides a double GPU Nvidia Tesla T4, this latter
was used to divide TurboTransformer model into two main parts and run each one on a GPU,
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this will help to improve training conditions of larger models.

4.4.2 Software

To develop the model, we use PyTorch 2.4 with Python 3.10 and CUDA 12.1 to run the
GPU.

4.4.3 Implementation

In order to develop the code for TurboTransformer we use the basic architecture of transformer
which its source code provided in online github repository "pytorch-transformer"1.

The additional features of TurboTransformer were implemented from scratch.

4.5 Results and analysis

We present the results of TurboTransformer and its performance over the training and valida-
tion steps for all of the presented configuration. Then the results of tests, using the selected
configuration "Medium".

4.5.1 Training results

For the training results, we only present the most important metrics for the configurations that
were not selected as the final TurboTransformer model.

4.5.1.1 Results of the "Large" configuration

Figure 4.9 represents the train and validation loss of the given configuration.
1PyTorch Transformer code available at: https://github.com/hkproj/pytorch-transformer
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Figure 4.9: TurboTransformer "Large": train and validation loss.

4.5.1.2 Results of the "Medium" configuration

Figures 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15 represent the train and validation loss, the TER,
MAE, Perplexity, BER and gradient norms evolution of the given configuration.

Figure 4.10: TurboTransformer "Medium": train and validation loss.
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Figure 4.11: TurboTransformer "Medium": train and validation TER.

Figure 4.12: TurboTransformer "Medium": train and validation MAE.
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Figure 4.13: TurboTransformer "Medium": validation Perplexity.

Figure 4.14: TurboTransformer "Medium": train and validation BER.
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Figure 4.15: TurboTransformer "Medium": train gradient norms.

4.5.1.3 Results of the "Small" configuration

Figures 4.16, 4.17 and 4.18 represent the train and validation loss, TER and BER for the given
configuration.

Figure 4.16: TurboTransformer "small": train and validation loss.
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Figure 4.17: TurboTransformer "small": train and validation TER.

Figure 4.18: TurboTransformer "small": train and validation BER.

4.5.1.4 Results of the "Tiny" configuration

Figures 4.19, 4.20 and 4.21 represent the train and validation loss, TER and BER for the given
configuration.
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Figure 4.19: TurboTransformer "tiny": train and validation loss.

Figure 4.20: TurboTransformer "tiny": train and validation TER.
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Figure 4.21: TurboTransformer "tiny": train and validation BER.

4.5.1.5 Discussion

From the training results obtained for each configuration of the model, several observations can
be made:

- All configurations exhibit a stable learning process as shown by the evolution of loss values.
Sudden plateau changes in loss at certain steps can be attributed to adjustments in the
loss function parameter, specifically label smoothing, which was tuned during training to
improve model performance.

- Comparing the evolution of train and validation losses across all configurations reveals
close alignment between their values. This consistency suggests that the models are
not underfitting, especially given the large size of the dataset, which typically mitigates
risks of underfitting. Regarding overfitting, while it’s unclear whether the models have
reached their global minima, the "Medium" configuration consistently showed the best
convergence.

- The TER and BER show a strong correlation in their evolution. The model’s performance
in information bit reconstruction is notably efficient, owing to the effectiveness of the
proposed tokenizer, which significantly reduces error rates from token prediction to bit
reconstruction.

- Perplexity values for the "Medium" configuration closely track TER evolution, reaffirming
perplexity’s role in assessing the model’s predictive efficiency.
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- Gradient norms for the "Medium" configuration were monitored throughout training.
Initial stages showed steep gradient explosions, which were effectively managed using
gradient clipping. This technique involves limiting gradient norms-2 to a threshold value
to stabilize training. In this case, a threshold of th = 2.5 was applied to prevent excessive
gradient magnitudes.

4.5.2 Test results

For the tests, we conduct an evaluation of the selected model configuration "Medium" over an
extended range of SNRs. Then we proceed by comparing the model to the iterative decoding
SOVA approach.

4.5.2.1 Evaluation of the model

Figures , , and represent the test TER, MAE, BER and BLER respectively for the final selected
configuration "Medium".

Figure 4.22: TurboTransformer "Medium": test TER.
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Figure 4.23: TurboTransformer "Medium": test MAE.

Figure 4.24: TurboTransformer "Medium": test BER.
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Figure 4.25: TurboTransformer "Medium": test BLER.

4.5.2.2 Comparison to SOVA

Figure 4.26 shows the results of our model TurboTranformer in terms of BER performance
compared to the studied iterative decoder SOVA.

Figure 4.26: BER comparison between TurboTransformer and SOVA.
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4.5.2.3 Discussion

From the test results given for the selected configuration "Medium" for TurboTransformer, we
can extract the following interpretations:

- The consistent decrease in evaluation metrics across varying SNR ranges indicates the
model’s ability to generalize predictions across data of different natures. This reaffirms the
importance of training on samples with lower SNR values to enhance overall performance.

- When comparing the different decoding techniques, we observe:

◦ Naturally, both the greedy and soft greedy techniques perform similarly on token
prediction-based metrics, due to their shared estimation scheme.

◦ Beam search decoding consistently outperforms greedy decoding across all SNRs,
utilizing a beam size of k = 5.

◦ While beam search improves token prediction, its impact on BLER performance is
less pronounced, suggesting limitations in predicting entirely correct bit sequences
at lower SNRs.

◦ The proposed soft reconstruction of information bits demonstrates superior BER
performance compared to traditional methods across the entire SNR range. However,
it falls short compared to beam search decoding due to its inherent disadvantage
relative to the greedy approach.

- When comparing the TurboTransformer performance to the SOVA algorithm, we observe:

◦ At lower SNRs, specifically at Eb/N0 = −1 : −0.5dB, TurboTransformer matches
the SOVA performance. This shows that the train set, containing samples of low
SNRs helped the model predict in this range.

◦ At higher SNRs, starting from Eb/N0 = 2dB, the difference in performance becomes
highly noticeable. TurboTransformer could was able to generalize to a limited extent.
This suggests that the inference performance is highly reliant on the nature of the
data from which the model learned.

4.5.3 Inference execution time on edge hardware

We performed inference tests of TurboTransformer on the NVIDIA Jetson Nano, in the same
way for TurboAttention.

We evaluate the performance of the trained model by running inference with a batch size of
20 and measuring the batch execution time, sequence execution time, GPU usage, and RAM
usage. The results are summarized in Table 4.3.
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Model Batch Size Batch Execu-
tion Time (s)

Sequence Ex-
ecution Time
(ms)

GPU Usage
(%)

RAM Usage
(MB)

TurboTransf 20 16 800 78.4 513

Table 4.3: Inference performance on Jetson Nano

TurboTransformer has the highest time complexity compared to other models, DEEPTURBO
and I, due to its large number of parameters which represents a computing complexity.

Figure 4.27 illustrates the interface Jetson Stats, tracking real-time metrics such as GPU and
CPU usage, RAM consumption, power consumption, and component temperatures during the
execution of the Python3 -based PyTorch model.

Figure 4.27: Jetson Stats : Usage of resources usage on Jetson Nano of TurboTransformer

4.6 Discussion

Based on the architecture explanation of TurboTransformer and the provided results, the train-
ing process yielded satisfactory outcomes. However, the large dataset and extensive training
time constrained further improvements. Extending the training period would likely enhance
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performance significantly. Comparing our results with the SOVA iterative decoding demon-
strates competitive performance, though some gaps remain, especially at higher SNRs. This
could be a topic for further fine-tuning with higher SNR training sets. Additionally, the infer-
ence time of the selected configuration is less efficient, indicating the need for developing more
performant inference approaches in the future.

4.7 Conclusion

The application of transformers in turbo decoding, exemplified by TurboTransformer, holds con-
siderable promise for advancing error correction techniques in communication systems. While
our current results indicate a need for further training and optimization, TurboTransformer
represents a novel approach for this application. The absence of prior studies focusing on
transformers in turbo decoding underscores the novelty and potential of this work. Future
efforts should prioritize enhancing training methodologies to achieve even better performance,
particularly in challenging conditions such as SNRs. Additionally, optimizing the inference effi-
ciency of TurboTransformer remains a critical area for improvement, offering opportunities for
developing more efficient decoding approaches. Overall, TurboTransformer establishes a foun-
dation for future research endeavors in utilizing transformer architectures for advanced error
correction applications.
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General Conclusion

This work encompasses extensive results and details related to the subject and objectives of
this study.

First, it includes a detailed analysis of turbo decoding, covering related aspects such as convo-
lutional codes, turbo codes, their various structures, and key characteristics.

Simulations were conducted for the SOVA turbo decoder, with experiments demonstrating its
performance under different conditions.

A theoretical overview of neural networks is also provided, focusing on architectures useful for
turbo decoding, such as sequence models like LSTMs and RNNs. Basic methods for training
and optimizing these models, including optimization algorithms and hyperparameter tuning,
are introduced.

To investigate related works and gain a better understanding of existing methods, the state-of-
the-art section reviews various machine learning techniques used for turbo and convolutional
code decoding over the past three decades.

Inspired by prior works on neural network-based turbo decoders and natural language process-
ing models, we present TurboAttention and TurboTransformer, attention-based models. These
models, originally developed for NLP tasks, were adapted to explore their utility in turbo
decoding and to investigate their performance in this context.

Finally, inference tests on the Jetson Nano were successfully conducted using the available
environment for parallel computing AI models. The resource usage varied depending on the
complexity of the models.

149



TurboTransformer: Transformer Model for Turbo Decoding

Perspectives

The promising results achieved by TurboAttention and TurboTransformer highlight the
potential for further enhancements through refined training and tuning. Scaling these models to
achieve higher accuracies and surpass current benchmarks could involve enriching the training
datasets with diverse data variations such as varying block lengths, different SNR levels, and
complex channel conditions, leveraging their foundation in NLP models trained on extensive
datasets.

Balancing model performance with computational efficiency is crucial for integrating these
advancements into high-throughput communication systems. Enhancements in neural network
turbo decoders, such as shared weighting schemes across iterations, could offer a viable approach
to achieve this balance.

Exploring the applicability of these algorithms to other types of channel codes, particularly
those used in advanced communication systems like 6G and 5G, presents an exciting avenue
for future research.

Given the resource-intensive nature of attention models, optimizing computational resources
and experimenting with different configurations and hyperparameters will be essential to real-
izing their full potential.

Finally, considering the implementation of these decoders on programmable hardware like
FPGA holds significance, as it can validate their utility in real-world applications and clears
the way for practical deployment.
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SOVA code implementation

1 % Function name: SOVA

2 %

3 % Goal:

4 % This SOVA function is designed to decode 4-state convolutional codes with

5 % the ability to provide soft output information .

6 % The primary purpose of this function is to deliver both the hard decision

7 % output ( decoded bit sequence ) and the associated soft metric values

8 % for each bit in the sequence .

9 %

10 % Inputs :

11 % - y1: systematic information bits sequence .

12 % - y2: parity bits sequence .

13 % - Lc: channel reliability value.

14 % - Le_in: extrinsic information from previous decoder .

15 % - norm: soft information normalization settings ,

16 % vector 1x2 of scale and threshold value.

17 % - BITS_SIZE : block length value.

18 %

19 % Outputs :

20 % - decoded_bits : estimated decoded sequence .

21 % - Le_out : extrinsic information produced .

22 % - ML_path : maximum Likelihood path/ decoding states .

23 %

24 % Example usage:

25 % - For SOVA_1 block:

26 % [decoded_u , Le_1 , decoding_states_1 ] = ...

27 % SOVA(y1 , y2 , Lc , deintrlv (Le_2), normalization , 100)

28 % - For SOVA_2 block:

29 % [ decoded_u_interleaved , Le_2 , decoding_states_2 ] = ...

30 % SOVA( intrlv (y1), y3 , Lc , intrlv (Le_1), normalization , 100)

31 %

32 % External functions used:

33 % - Function name: get_trellis

34

35 function [ decoded_bits ,Le_out , ML_path ] = sova(y1 , y2 , Lc , Le_in , norm ,

BITS_SIZE )

36

37 % Initialization of path and branch metrics

38 M = zeros (4,2, BITS_SIZE +1); % All path metrics

39 M1 = zeros (4, BITS_SIZE +1); % All Survivor paths metrics

40 M2 = zeros (4, BITS_SIZE +1); % All Competing paths metrics

41 Mt = zeros (4 ,2); % Branch metrics for time t

42

43 % Initialization of survivor and competing branches

44 SURV_branches = ones (4, BITS_SIZE );
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45 COMP_branches = ones (4, BITS_SIZE );

46

47 % Initialization of ML/ competing paths and correspoding hard decision

48 ML_path = ones (1, BITS_SIZE +1);

49 COMP_path = ones (1, BITS_SIZE +1);

50 ML_bits = zeros (1, BITS_SIZE );

51 COMP_bits = zeros (1, BITS_SIZE );

52

53 % Initialization of the reliability values

54 Rel = zeros (1, BITS_SIZE );

55

56

57 % Forward iterations ,

58 % Compute all paths metrics , survivor and competing paths

59 for ii =2: BITS_SIZE +1

60

61 % Get trellis properties for the first 2 timesteps then keep it for the

rest of the sequence

62 if ii <=4

63 [Prev_State ,Prev_u ,Prev_p ,~] = get_trellis (ii);

64 end

65

66 % Compute next path metrics

67 Mt (: ,1) = M1( Prev_State (: ,1) ,ii -1) + Lc* Prev_u (: ,1)*y1(ii -1) + Lc* Prev_p

(: ,1)*y2(ii -1) + Le_in(ii -1)* Prev_u (: ,1);

68 Mt (: ,2) = M1( Prev_State (: ,2) ,ii -1) + Lc* Prev_u (: ,2)*y1(ii -1) + Lc* Prev_p

(: ,2)*y2(ii -1) + Le_in(ii -1)* Prev_u (: ,2);

69

70 % Store paths metrics

71 M(:,:,ii) = Mt;

72

73 % Extract survivor and competing metrics and indices

74 [M1(:,ii), SURV_branches_index ]= max(Mt ,[] ,2);

75 [M2(:,ii), ~]= min(Mt ,[] ,2);

76

77 % Deduce surv. and comp. branches from metric index

78 SURV_branches (:,ii -1) = transpose ( Prev_State ( sub2ind (size( Prev_State ),

1: length ( SURV_branches_index ), SURV_branches_index ’)));

79 COMP_branches (:,ii -1) = transpose ( Prev_State ( sub2ind (size( Prev_State ),

1: length ( SURV_branches_index ), (3- SURV_branches_index ) ’)));

80 end

81

82 % Back tracing ,

83 % Compute the ML path and decoded sequence

84

85 [~,~,~, pn_u] = get_trellis (1);

86

87 for jj= BITS_SIZE : -1:1

158



APPENDIX : SOVA code implementation

88 % Tracing from last all -zeros state through the survivor branches

89 ML_path (jj) = SURV_branches ( ML_path (jj +1) ,jj);

90 ML_bits (jj) = pn_u( ML_path (jj),ML_path (jj +1));

91 end

92

93 % Compute and update the realibility values

94 for ii =1: BITS_SIZE

95

96 Rel(ii) = 0.5* abs(M1( ML_path (ii +1) ,ii +1) - M2( ML_path (ii +1) ,ii +1));

97

98 if(ii <=3)

99 % Attribute reliability value to the first 2 timesteps

100 Rel (1: ii) = Rel(ii);

101 else

102 MEM = ii;

103

104 % Extraction of the competing path

105 COMP_path (ii +1) = ML_path (ii +1);

106 COMP_path (ii) = COMP_branches ( COMP_path (ii +1) ,ii);

107

108 for jj=ii -1: -1:1

109 COMP_path (jj) = SURV_branches ( COMP_path (jj +1) ,jj);

110

111 % Store levels where surv. and comp. bit estimation differs

112 if( pn_u( COMP_path (jj),COMP_path (jj +1)) ~= ML_bits (jj))

113 MEM = [jj MEM ];

114 end

115

116 % No need to continue if ML and comp. paths merge

117 if COMP_path (jj)== ML_path (jj)

118 break

119 end

120 end

121

122 % Update reliability values from smallest to largest MEM level

123 for kk= length (MEM): -1:2

124 Rel(MEM(kk -1)) = min(Rel(MEM(kk -1: length (MEM))));

125 end

126 end

127 end

128

129 % Hard ecoded sequence

130 decoded_bits = ML_bits ;

131

132 % Normalization parameters of extrinsic information

133 scale = norm (1);

134 threshold = norm (2);

135
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136 % Compute extrinsic information

137 Le_out = scale *( ML_bits .* Rel - Lc*y1 ’ - Le_in);

138 Le_out (Le_out >= threshold ) = threshold ;

139 Le_out (Le_out <=- threshold ) = -threshold ;

140

141 end

We also provide the code for the dependencies of the given SOVA function. The code for the
external functions used by the SOVA function is provided below.

1 % Function name: get_trellis

2 %

3 % Goal:

4 % Extract the trellis properties of the 757 convolutional encoder

5 % based of the current time step in trellis .

6 % Information is provided using predefined lookup tables .

7 %

8 % Inputs :

9 % - t: time step in the trellis .

10 %

11 % Outputs :

12 % - Prev_State : row indexing with current state ,

13 % columns give possible previous states .

14 % - Prev_u : row indexing with current state ,

15 % columns give systematic bit decisions .

16 % - Prev_p : row indexing with current state ,

17 % columns give parity bit decisions .

18 % - pn_u: row indexing with previous state ,

19 % column indexing with current state ,

20 % gives systematic bit decision .

21

22 function [Prev_State , Prev_u , Prev_p , pn_u] = getTrellis (t)

23

24 if(t <=3)

25 % Tables for trellis debut

26 Prev_State = [1 ,1; 3,3; 1,1; 3 ,3];

27 Prev_u = [-1,-1; 1,1; 1,1; -1,-1];

28 Prev_p = [-1,-1; -1,-1; 1,1; 1 ,1];

29 else

30 % Tables if trellis construction completed

31 Prev_State = [1 ,2; 3,4; 1,2; 3 ,4];

32 Prev_u = [-1,1; 1,-1; 1,-1; -1,1];

33 Prev_p = [-1,1; -1,1; 1,-1; 1,-1];

34 end

35

36 pn_u = [-1,0,1,0; 1,0,-1,0; 0,1,0,-1; 0,-1,0,1];

37

38 end
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