
RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE
MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA

RECHERCHE SCIENTIFIQUE

ÉCOLE NATIONALE POLYTECHNIQUE

Departement du Genie Industriel

End-of- Study Project Dissertation for Obtaining State Engineer’s Degree in
Industrial engineering

Option : Data Science and Artificial Intelligence

Creation of a chatbot assistant for improving Client service

Chebouti Boutheina

jury Composition:

President: Mr Hakim Fourar Laidi ENP MCA
Examiner: Mr Zouaghi Iskandar ENP MCA

Supervisors :

ENP supervisor: Mr Arki Oussama ENP MCA
Company supervsisor: Mr Karel Bourgois Voxist

ENP 2024

RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE
MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA

RECHERCHE SCIENTIFIQUE

ÉCOLE NATIONALE POLYTECHNIQUE

Departement du Genie Industriel

End-of- Study Project Dissertation for Obtaining State Engineer’s Degree in
Industrial engineering

Option : Data Science and Artificial Intelligence

Creation of a chatbot assistant for improving Client service

Chebouti Boutheina

jury Composition:

President: Mr Hakim Fourar Laidi ENP MCA
Examiner: Mr Zouaghi Iskandar ENP MCA

Supervisors :

ENP supervisor: Mr Arki Oussama ENP MCA
Company supervsisor: Mr Karel Bourgois Voxist

ENP 2024

Page 1

RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE
MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA

RECHERCHE SCIENTIFIQUE

ÉCOLE NATIONALE POLYTECHNIQUE

Departement du Genie Industriel

Mémoire de Projet de Fin d’Études En vue de l’obtention du diplôme d’Ingénieur
d’État en Génie Industriel Option : Data Science et Intelligence Artificielle

Creation d’un Chatbot assistant pour l amelioration du service client

Chebouti Boutheina

Composition du jury:

President: Mr Hakim Fourar Laidi ENP MCA
Examinateur: Mr Zouaghi Iskandar ENP MCA

Encadrant :

Encadrant de l’ENP: Mr Arki Oussama ENP MCA
Encadrant de l’enreprise: Mr Karel Bourgois Voxist

ENP 2024

Page 2

Page 5

Resumé

L’évolution rapide des technologies de service client présente à la fois des défis et des op-
portunités, en particulier pour exploiter l’intelligence artificielle afin d’améliorer la qualité et
l’efficacité des interactions. Cette thèse présente le développement et la mise en œuvre d’un
système de chatbot multi-agent sophistiqué conçu pour améliorer les services clients chez Vox-
ist. Intitulé “Construction d’un assistant chatbot pour améliorer les services clients”, ce travail
se concentre sur le dépassement des limites inhérentes aux modèles de langage de grande taille
(LLM), telles que l’incapacité à accéder à des sources de données privées, le manque de mises
à jour en temps réel et les capacités de raisonnement limitées.

Le cœur de la solution proposée repose sur un système multi-agent structuré, centré autour
d’un Agent Meta qui orchestre les interactions entre divers sous-agents spécialisés. Chaque
sous-agent est conçu pour des rôles spécifiques, permettant des interactions dynamiques, une
gestion des données en temps réel et l’exécution de fonctions complexes. Le système utilise la
génération augmentée par récupération (RAG) pour améliorer la réactivité du chatbot et son
accès à des informations mises à jour, améliorant considérablement la capacité du chatbot à
gérer les données sensibles, exécuter des commandes et effectuer des tâches opérationnelles de
manière efficace. De plus, en sollicitant efficacement le LLM, le système améliore ses capacités
de raisonnement, permettant des réponses plus précises et contextualisées.

Les résultats clés de cette mise en œuvre indiquent que le système multi-agent traite efficacement
les limites des LLM traditionnels en facilitant l’accès sécurisé aux bases de données privées, en
permettant des mises à jour en temps réel et en améliorant les capacités de raisonnement.
Le système améliore non seulement l’efficacité opérationnelle, mais garantit également que les
interactions sont personnalisées et contextualisées, ce qui est crucial pour maintenir la confiance
et la satisfaction des clients.

En conclusion, la mise en œuvre de ce système multi-agent chez Voxist représente une étape
transformative dans l’amélioration des services clients. En intégrant des technologies avancées,
des rôles d’agents stratégiques et des capacités de raisonnement améliorées, le système offre
des solutions évolutives qui s’adaptent aux besoins en constante évolution des affaires et aux
attentes des clients, mettant en valeur les capacités robustes des systèmes de chatbots pilotés
par l’IA.
Mots Clés: LLMS,Chatbot,RAG,Agents,Artificial intelligent,

Page 4

abstract

The rapid evolution of client service technologies poses both challenges and opportunities,
particularly in harnessing artificial intelligence to enhance interaction quality and efficiency.
This thesis presents the development and implementation of a sophisticated multi-agent chatbot
system designed to improve client services at Voxist. Titled “Building a Chatbot Assistant to
Enhance Client Services,” this work focuses on overcoming the inherent limitations of large
language models (LLMs), such as the inability to access private data sources, lack of real-time
updates, and limited reasoning capabilities.

The core of the proposed solution involves a structured multi-agent system centered around
a Meta Agent that orchestrates interactions among various specialized sub-agents. Each sub-
agent is tailored to specific roles, enabling dynamic interactions, real-time data management,
and the execution of complex functions. The system leverages Retrieval-Augmented Generation
(RAG) to enhance the chatbot’s responsiveness and access to updated information, significantly
improving the chatbot’s ability to handle sensitive data, execute commands, and perform oper-
ational tasks efficiently. Additionally, by effectively prompting the LLM, the system enhances
its reasoning capabilities, enabling more accurate and contextually aware responses.

Key outcomes from this implementation indicate that the multi-agent system effectively ad-
dresses the limitations of traditional LLMs by facilitating secure access to private databases,
enabling real-time updates, and enhancing reasoning abilities. The system not only improves
operational efficiency but also ensures that interactions are personalized and contextually aware,
which are critical for maintaining client trust and satisfaction.

In conclusion, the implementation of this multi-agent system at Voxist represents a transfor-
mative step in enhancing client services. By integrating advanced technologies, strategic agent
roles, and enhanced reasoning capabilities, the system offers scalable solutions that adapt to
evolving business needs and client expectations, showcasing the robust capabilities of AI-driven
chatbot systems.
Keywords: LLMS,Chatbot,RAG,Agents,Artificial intelligent,

Acknowledgements

I would like to express my profound gratitude to my academic advisor and in-
structor, Mr. Arki Oussama. His consistent support and enlightening teachings
have played a crucial role in shaping my academic journey. The knowledge and
guidance he provided have been indispensable.

I am immensely thankful to my supervisors at Voxist , Karel Bourgois and
Moumene Boumadane, for their expert guidance and steadfast support through-
out my thesis work. Their insights and expertise have been crucial in the suc-
cessful completion of this project.

Special thanks also go to Mr. Abdelwehab Heba, whose pivotal role in securing
this internship was instrumental in providing me with an exceptional platform
to conduct my research. His efforts have significantly enriched my professional
experience.

Additionally, I extend my appreciation to all the professors involved in my
academic program. Their dedication to imparting knowledge and their com-
mitment to fostering student success have not only facilitated my academic
growth but have also been a source of inspiration throughout my studies.

Moreover, I would like to acknowledge all individuals who directly or indirectly
contributed to the completion of this thesis. Your support and encouragement
have been invaluable and deeply appreciated.

Thank you all for your belief in me, your encouragement, and your support.

Chebouti Boutheina

Dedication

To my beloved family—my parents, whose endless love and sacrifice have shaped
the person I am today; my inspiring little sister, whose dreams propel me
forward; and my dear grandmother, whose wisdom and gentle presence have
been my sanctuary. You are my heart’s foundation and my unwavering light.

I also dedicate this to the soul-deep friendships that have blossomed at Polytech.
To my cherished soul sisters—Nesrine, Soundous, and Khawla: in every shared
silence and burst of laughter, you have been my confidants and my joy. Our
friendship is a beautiful tapestry we continue to weave together, filled with
vibrant threads of our memories and dreams.

To my "data girls"—Amira, Samah, Sihem, and Yousra: with every challenge
we faced and every triumph we celebrated, you were there. Your support has
been a gift beyond measure, and my gratitude is as boundless as our shared
aspirations. May our friendship continue to light our paths and warm our
hearts.

To my steadfast companions—Abdelhak, Ouanis, Hamza, and Rayane: thank
you for standing by my side through thick and thin. Your brotherhood has
fortified me, teaching me the true meaning of friendship. Each moment we
have shared is a cherished stone in the mosaic of my life.

And to everyone at Polytech: each of you has touched my life, weaving your
unique threads into the fabric of my days. You have all painted my world with
broader strokes of kindness, laughter, and insight.

Thank you for filling my journey with love, for inspiring me daily, and for
believing in me always.

Contents

List of Tables 12

List of Figures 13

Liste des acronymes 15

General introduction 17

I State Of play 19

1 Company Presentation 20

1.1 Introduction . 20

1.2 Technical Overview . 20

1.3 Terms and Jargon . 21

1.4 Mission and Objectives . 21

1.5 Innovative Products and Partnerships . 22

1.6 Core Values . 22

1.7 Partners and Clients . 23

1.8 Conclusion . 23

2 Problem description 24

2.1 Voxist innovative missions . 24

2.1.1 Information Extraction . 24

2.1.2 Model Fine-Tuning . 24

2.1.3 Custom Voice Assistant Development . 24

2.1.4 Sentiment Analysis . 25

2.2 Challenges AND Limitations Associated with Large Language Models at Voxist 25

8

CONTENTS

2.3 Strategies to Overcome LLM Limitations when creating Chatbots 31

2.3.1 Prompt Engineering . 31

2.3.2 Retrieval-Augmented Generation (RAG) 31

2.3.3 Fine-Tuning . 32

2.4 Improuvement points - What to Choose: RAG with Prompt Engineering vs.
Fine-Tuning . 33

2.5 Retrieval-Augmented Generation (RAG) . 33

2.6 Prompt Engineering . 34

2.7 Retrieval-Augmented Generation (RAG) with Prompt Engineering 35

2.8 Fine-Tuning . 35

2.9 Comparison Matrix . 36

2.10 Conclusion . 36

II State of the Art 37

3 Generalities on Artificial intelligence 38

3.1 Machine learning . 38

3.1.1 Definition . 38

3.1.2 Types of Machine Learning . 38

3.1.3 Limitations of Machine Learning: Challenges and Considerations 39

3.1.4 Conclusion . 39

3.2 Deep Learning . 39

3.2.1 Definition of Deep Learning . 39

3.2.2 Detailed Core Concepts of Deep Learning 40

3.2.3 Neurons and Layers . 40

3.2.4 Activation Functions . 40

3.2.5 Conclusion . 42

3.3 NLP and deep learning . 43

3.3.1 Definition of NLP . 43

3.3.2 Evolution of NLP systems . 43

3.3.3 Key Techniques and Methods in NLP . 43

3.3.4 Deep learning models in NLP . 44

CONTENTS

CONTENTS

3.3.5 Conclusion . 49

4 Large Language Models 50

4.1 Definition of Large Language Models (LLMs) 50

4.2 Key Characteristics of Large Language Models 51

4.3 Applications of Large Language Models . 51

4.4 Notable Examples of Large Language Models 52

4.5 Embeddings . 53

4.5.1 Word Embeddings . 53

4.5.2 How Word Embeddings Work . 54

4.5.3 Word Embedding Algorithms . 54

4.6 Vector DB . 57

4.6.1 Vector Database Management System (VDBMS) 57

4.6.2 Vector DB VS Traditional DB . 57

4.6.3 Use Cases of Vector Databases . 58

4.6.4 How does Vector DB work . 58

4.6.5 Indexing in Vector Databases . 59

4.6.6 Similarity Measures in Vector Databases 59

4.6.7 Vector Database Examples . 60

4.6.7.1 ChromaDB . 60

4.6.7.2 Pinecone . 61

4.6.7.3 Qdrant . 61

4.7 Introduction to Prompt Engineering . 61

4.7.1 Defining Prompt Engineering . 61

4.7.2 Components of Effective Prompts . 62

4.7.3 Types of Prompting . 62

4.8 Conclusion: . 63

5 RAG AND AI AGENTS 64

5.1 Introduction to RAG . 64

5.2 Definition . 64

5.3 RAG Pradigms . 65

CONTENTS

CONTENTS

5.3.1 Naive Rag . 65

5.3.2 Advanced RAG . 66

5.4 Rag Evaluation . 71

5.4.1 Faithfulness . 72

5.4.2 Relevancy . 72

5.5 AI Agents . 72

5.5.1 Definition : . 73

5.5.2 Core Components of AI Agents . 73

5.5.3 Types of AI Agent Architectures . 73

III Proposed Solution 75

6 Proposed Solution 76

6.1 Design of the solution . 76

6.1.1 Client Requirements identification . 76

6.1.2 Proposed Solution: Implementing a Structured Multi agent system . . . 78

6.1.3 Operational Workflow . 80

6.1.4 Benefits of the Multi-Agent System . 80

6.2 Implementation of the solution . 80

6.2.1 Development of the documentation tool -Advanced RAG system 81

6.2.2 User Context Agent . 86

6.2.3 Execute Command Tool . 87

6.2.4 Conversation Saving Tool . 88

6.2.5 Meta Agent Implementation . 88

6.2.6 Testing and Demonstrations Using Gradio Interface 92

6.3 Continuous Improvement . 94

General conclusion 95

Bibliography 96

CONTENTS

List of Tables

1.1 Key Terms in NLP and Voice Recognition Technologies 21

2.1 Prompt Engineering: Advantages and Pain Points 31

2.2 Retrieval-Augmented Generation: Advantages and Pain Points 32

2.3 Fine-Tuning: Advantages and Pain Points . 33

2.4 Comparison of RAG with Prompt Engineering vs. Fine-Tuning 36

6.1 Comparison of Text Embedding Models . 83

6.2 Methods Used for Retrieval and Generation . 84

6.3 Evaluation results using OpenAI embeddings. 85

6.4 Evaluation results using Camembert embeddings. 85

6.5 Cost Comparison of Language Models . 90

12

List of Figures

1.1 The Voice Lab . 23

1.2 Humanum . 23

1.3 Hub France AI . 23

1.4 Laboratoire INformatique d’Avignon . 23

2.1 cut off dates for some LLMs [1] . 25

2.2 Hallucination illustration [2] . 27

2.3 An illustration of reasoning limitations in math problems [3] 28

2.4 Rag process [4] . 32

2.5 Fine tuning process [5] . 33

3.1 Relu acctivation function [6] . 41

3.2 Sigmoid acctivation function [7] . 41

3.3 Tanh acctivation function [8] . 42

3.4 Visualisation of RNN [9] . 45

3.5 Visualisation of LSTM [10] . 47

3.6 Transformers Architecture [11] . 48

4.1 LLM Families [12] . 53

4.2 Dense Vector representation -Databricks Large Language ModelsApplication through
Production . 54

4.3 Bert Embeddings Architecture . 54

4.4 Word2Vec Embeddings Architecture . 56

4.5 Diagram illustrating how vector databases work.[13] 59

4.6 Building llms using chromadb . 60

5.1 Naive rag pipeline [14] . 66

13

https://docs.trychroma.com/

LIST OF FIGURES

5.2 advanced rag pipeline [14] . 66

5.3 Reranking process [15] . 69

5.4 Chat Engine types [14] . 71

6.1 Processing scenario . 77

6.2 Solution Architecture . 79

6.3 A glimpse of the documents used in the RAG 81

6.4 Comparision between the documentation before and after cleaning 82

6.5 Qdrant Vector store cloud . 82

6.6 Qdrant API key Configuration . 83

6.7 Latency Comparison Among Selected Models Facilitated by Langfuse 89

6.8 The total cost of the usage during the testing for a mounth 90

6.9 Total tokens during testing . 91

6.10 Conversation initialization . 92

6.11 Looking for critical or existing issues. 92

6.12 Proposing Solutions . 93

6.13 Proposing other solutions . 93

LIST OF FIGURES

Acronymes

NLP Natural Language Processing

LLM Large Language Model

RAG Retrieval-Augmented Generation

ITSM Information Technology Service Management

ML Machine Learning

DL Deep Learning

API Application Programming Interface

BOW Bag of Words

BERT Bidirectional Encoder Representations from Transformers

GPT Generative Pre-trained Transformer

LLAMA Large Language Model Meta AI

CPU Central Processing Unit

GPU Graphics Processing Unit

IBM International Business Machines

ASR Automatic Speech Recognition

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

AGI Artificial General Intelligenc

General introduction

Context

In the rapidly evolving landscape of digital technologies, businesses are increasingly leverag-
ing artificial intelligence to enhance operational efficiency and customer interactions. Large
Language Models (LLMs) have emerged as powerful tools in natural language processing, of-
fering sophisticated solutions for automating and enhancing communication. However, their
integration into practical applications presents significant challenges, particularly in dynamic
and sensitive environments.

Problem Statement

Given that Voxist’s work is fundamentally based on LLMs, it fully acknowledges the limita-
tions these models encounter, such as handling real-time data, managing sensitive information
securely, and maintaining context over interactions. These challenges limit the practical utility
of LLMs in delivering personalized, accurate, and timely responses. Additionally, integrat-
ing LLMs into existing systems presents substantial technical and operational hurdles. Voxist
is dedicated to overcoming these challenges by enhancing the technology to securely manage
real-time data and maintain context over interactions. We aim to simplify the integration of
LLMs into existing systems through the development of robust frameworks, enabling their full
potential for more personalized and accurate responses.

Objectives

This thesis aims to develop a multi-agent chatbot system that effectively integrates LLMs to
address these inherent limitations at voxist . The proposed system is designed to enhance cus-
tomer service operations by improving interaction quality, response accuracy, and operational
efficiency. The focus is on creating a scalable and adaptable solution that can manage complex
user interactions and sensitive data securely.

Outline of the Chapters

The thesis is organized into the following chapters, grouped into two main sections:

State of Play (Chapters 1 and 2)

17

Introduction générale

- Chapters 1: This chapter offers a comprehensive presentation of the company, empha-
sizing its range of products, core missions, and strategic objectives. It provides insights
into the company’s values, market positioning, and long-term goals, setting the stage for
understanding its overall business philosophy.

- Chapters 2: Provides an overview of the company’s application of LLMs, highlighting
the general challenges, the practical limitations in chatbot design, and the strategies to
mitigate these issues.

State of the Art (Chapters 3 to 5)

- Chapter 3 : Explores foundational concepts in machine learning and deep learning, their
relationship with NLP, and the development of LLMs.

- Chapters 4 and 5 : Discusses the advent and evolution of LLMs, the challenges they face
it also highlights the use of vectore databases , and the techniques like prompt engineering
and RAG that enhance their application in real-world scenarios.

Proposed Solution (Chapter 6)

- Chapter 6: Details the proposed multi-agent system’s design, describing each component
and its role in enhancing client services it also Covers the practical implementation of the
solution, including the development of advanced retrieval methods and the integration of
user context agents and command execution tools.

This introduction sets the stage for a thorough exploration of both the theoretical background
and the practical application of advanced AI technologies to enhance customer service, focusing
on the implementation and evaluation to validate the effectiveness of the proposed solutions.

Page 18

Part I

State Of play

19

Chapter 1

Company Presentation

1.1 Introduction

Established in 2016 and based in Paris, Voxist has emerged as a leader in the fields of voice
recognition and natural language understanding. The company leverages artificial intelligence
to transform spoken data into actionable insights, offering services that include call transcrip-
tion, analysis, and the development of voice assistants tailored to sectors such as hospitality,
healthcare, and IT. With strategic partnerships in both France and the United States, Voxist
excels in developing advanced ASR (Automatic Speech Recognition) models, employing so-
phisticated NLP (Natural Language Processing) techniques, and utilizing comprehensive ma-
chine learning algorithms. Its commitment to ongoing innovation is evident in its adoption of
cutting-edge technologies for enhancing human language comprehension. Voxist’s growing team
is dedicated to research, development, and marketing, positioning the company as a prominent
and influential player in the telecommunications industry.

1.2 Technical Overview

- Business Name: Voxist

- Headquarters: Paris, Île-de-France

- Sector: Specializes in voice recognition and natural language understanding within the
telecommunications industry.

- Website: http://www.voxist.com

20

http://www.voxist.com

Introduction générale

1.3 Terms and Jargon

Term Definition
NLP (Natural Language
Processing)

The branch of AI that enables computers to
understand and process human languages, bridging the
gap between human communication and machine
understanding.

Voice Recognition Technology that allows computers and devices to
interpret spoken commands or dictation.

API (Application Programming
Interface)

Rules and specifications that allow software programs
to communicate and interact with each other.

Endpoint A specific URL within a web API where resources or
services are accessed, such as functions for parsing or
sentiment analysis in NLP.

Deployment The process of implementing a software solution in a
production environment to make it available to users
or other systems.

Framework Software foundation used to develop programs;
important in NLP for providing libraries and tools for
model building and training.

Azure OpenAI Microsoft’s cloud service offering access to OpenAI’s
advanced models, facilitating the integration of AI
capabilities into business applications.

Retrieval-Augmented Generation
(RAG)

Combines retrieval of data with a generative model to
enhance response generation or task performance in
NLP.

Information Extraction Automatically pulling structured information like
entities and relationships from unstructured text.

Large Language Models (LLMs) AI models trained on extensive text data, capable of
performing a broad range of language tasks.

Table 1.1: Key Terms in NLP and Voice Recognition Technologies

1.4 Mission and Objectives

Voxist is dedicated to transforming voice data into valuable information through cutting-edge
voice AI technologies, with services including voice transcription and call analysis. The company
aims to improve how businesses engage with voice data.

1. Product Innovation: Innovate and develop new solutions like intelligent voicemail and
voice recognition APIs.

2. Market Expansion: Broaden market presence in France and the USA and form strategic
partnerships to enhance distribution.

Page 21

Introduction générale

3. Competitive Edge: Strengthen market position by offering competitive solutions with
low error rates and fast response times.

4. Team Expansion: Grow the workforce, particularly in R&D and marketing, to support
ongoing innovation and business needs.

5. Technological Advancement: Advance in technologies such as real-time ASR-LLM
coupling and knowledge management to maintain industry leadership.

1.5 Innovative Products and Partnerships

Voxist is known for its groundbreaking products and ongoing development efforts, including:

1. Intelligent Visual Voicemail: Increasingly popular with 30,000 monthly users and
expanding through partnerships like that with Cisco.

2. Voice Recognition API: Developed in collaboration with OVH, this API is set to
revolutionize voice interaction capabilities in the marketplace.

3. Medical Report Automation: A service that converts voice recordings into structured
medical reports, aiming for a production of 100,000 reports monthly.

4. Customized Voice Assistants: Developing sector-specific assistants for enhanced client
service in areas like hospitality and tech support.

1.6 Core Values

1. Innovation: A relentless pursuit of next-generation technologies in voice recognition and
language processing.

2. Quality: Commitment to high standards through strategic partnerships and specialized
product development.

3. Adaptability: Flexibility in providing sector-specific solutions to meet diverse client
needs.

4. Collaboration: Valuing partnerships with industry leaders to enhance technological and
market reach.

5. Technological Leadership: A focus on advancing in the realm of AI, ASR, and LLM
technologies.

Page 22

Introduction générale

1.7 Partners and Clients

Key collaborators include , The Voice Lab, LIA, Huma-Num, Hub France AI.

Figure 1.1: The Voice Lab Figure 1.2: Humanum

Figure 1.3: Hub France AI
Figure 1.4: Laboratoire INformatique
d’Avignon

1.8 Conclusion

Voxist stands out in the telecommunications sector through its innovative integration of ASR
and NLP technologies, enhancing voice data usability across multiple industries. The com-
pany’s strategic expansions and partnerships, particularly in the US and France, highlight its
commitment to innovation and market leadership. Through continuous technological advance-
ments and a focus on sector-specific solutions, Voxist is poised to maintain its influential status
in the evolving landscape of voice AI.

Page 23

Chapter 2

Problem description

2.1 Voxist innovative missions

Voxist has adeptly integrated Large Language Models (LLMs) into its suite of services, lever-
aging the cutting-edge capabilities of AI to transform spoken data into actionable insights with
precision and efficiency.

2.1.1 Information Extraction

At the core of Voxist’s service offerings is the use of LLMs for information extraction. This
process involves the automatic identification and categorization of key information from spoken
interactions. Important data such as names, dates, locations, customer sentiments, and intents
are extracted from unstructured voice data, making it structured and more analyzable. This
capability is essential for creating meaningful summaries and actionable insights from customer
interactions across various industries.

2.1.2 Model Fine-Tuning

To ensure that the LLMs are optimally aligned with specific client needs, Voxist engages in
fine-tuning these models on sector-specific data. For instance, LLMs are trained on specialized
datasets like medical transcripts for healthcare clients or customer service logs in the hospitality
sector. Fine-tuning enhances the models’ understanding of industry-specific terminologies and
nuances, significantly improving their practical efficacy in targeted applications.

2.1.3 Custom Voice Assistant Development

Voxist also uses LLMs to develop customized voice assistants tailored to different industrial
needs. These voice assistants are designed to understand complex queries, perform tasks, and
engage in natural dialogues. Thanks to the learning capabilities of LLMs, these assistants
continually adapt and evolve based on user interactions, making them more intuitive and user-
friendly over time.

24

Introduction générale

2.1.4 Sentiment Analysis

LLMs at Voxist are instrumental in performing sentiment analysis on transcribed calls. This
allows the company to detect and analyze the emotional undertones of voice interactions, pro-
viding clients with deep insights into customer satisfaction and feedback. This analysis helps
businesses understand their customers better and refine their services accordingly.

By integrating these advanced AI technologies, Voxist not only enhances its existing capabilities
but also sets the stage for continued innovation in the telecommunications industry, thereby
solidifying its position as a market leader.

2.2 Challenges AND Limitations Associated with Large
Language Models at Voxist

Knowledge Cutoff in Large Language Models

we can delve deeper into the implications of the knowledge cutoff in large language models
(LLMs). This knowledge cutoff point is a pivotal concept that significantly influences the
performance and reliability of LLMs like ChatGPT, Google Bard, and Microsoft Bing.

Definition and Significance The knowledge cutoff point in LLMs is analogous to the pub-
lication date of a textbook. It represents the most recent point in time up to which the
information used to train an LLM is current. Beyond this date, the LLM lacks awareness of
new developments, leading to potential gaps in knowledge that can affect the accuracy and
relevance of its responses.

Figure 2.1: cut off dates for some LLMs [1]

- Transparency and Reliability: Transparency about the knowledge cutoff date is cru-
cial for users to assess the reliability of the AI-generated content. Without clear communi-
cation of this cutoff, users may inadvertently rely on outdated or inaccurate information.

Challenges Posed by Ambiguous Knowledge Cutoff Dates The lack of clarity about
the knowledge cutoff dates in various LLMs, as explored in the episode, can lead to inconsis-
tencies and frustration for users:

Page 25

Introduction générale

- Inconsistencies in Responses: Different AI models like ChatGPT, Bing, and Google
Bard may have varying cutoff dates, which can lead to discrepancies in the information
they provide. This inconsistency can be confusing and diminish the user’s trust in the
model’s utility.

- Frustration from Lack of Transparency: As highlighted during the tests conducted
by Jordan, ambiguous or undisclosed knowledge cutoff dates complicate the user’s ability
to gauge the freshness and relevance of the information provided by the LLM. This lack
of transparency can hinder effective decision-making based on AI consultations.

Impact on User Experience and Decision Making Understanding the knowledge cutoff
is essential for users, especially business owners and decision-makers who rely on LLMs for
timely and accurate information:

- Business Decisions: For business applications, where decisions often rely on the latest
information, knowing the cutoff date helps in determining the utility of the LLM. If the
model’s training data is not up-to-date, it may not provide the best advice or insights,
particularly in fast-evolving fields.

- Ethical Implications: Relying on AI for information without awareness of its knowledge
limitations carries ethical implications, particularly if decisions based on this information
have real-world consequences.

The discussion underscores the importance of transparency about knowledge cutoffs in LLMs.
Users need to be aware of the limitations imposed by this cutoff to effectively utilize AI tech-
nologies without overestimating their capabilities. As LLMs continue to evolve, ongoing com-
munication from developers about these cutoff dates will be critical in maintaining trust and
ensuring that these powerful tools are used responsibly and effectively.

This enhanced focus on the knowledge cutoff point illuminates how critical it is for users to
understand and consider this aspect when engaging with LLMs, ensuring that they maintain
realistic expectations about the information provided by these models.

Understanding and Mitigating Hallucinations in Large Language Models

Large Language Models (LLMs) like ChatGPT and Bing Chat are known for their ability to
generate fluent and coherent text across a variety of topics. However, these models are also
prone to producing hallucinations—outputs that deviate from facts or logical consistency. This
section explores the nature of these hallucinations, their causes, and strategies to minimize
their occurrence.

What Are Hallucinations? Hallucinations in LLMs can range from minor inconsistencies to
outright fabricated statements. They are categorized based on their granularity from sentence
contradictions, where the model generates contradicting statements, to factual errors, where
the output contains incorrect information.

Types of Hallucinations

Page 26

Introduction générale

- Sentence Contradiction: The model generates sentences that contradict each other
within the same context.

- Prompt Contradiction: Outputs contradict the initial prompt provided to the model.

- Factual Errors: The model asserts incorrect facts as truths.

- Nonsensical Information: Irrelevant or out-of-place information is included in the
model’s response.

Figure 2.2: Hallucination illustration [2]

Why Do Hallucinations Occur? The generation of hallucinations by LLMs is influenced
by several factors including the quality of training data and the input context provided to the
model.

Common Causes of Hallucinations

- Data Quality: LLMs trained on data with errors, biases, or inconsistencies are more
likely to hallucinate.

Page 27

Introduction générale

- Input Context: Poorly defined prompts or contradictory information can mislead the
model, resulting in inaccurate outputs.

While LLMs offer significant potential, their tendency to produce hallucinations can be a draw-
back. By understanding the underlying causes and employing effective mitigation strategies,
users can enhance the reliability of these models. Through such measures, we harness the full
capabilities of LLMs while minimizing the risks associated with their hallucinatory outputs.

Limitations in Reasoning Abilities of Large Language Models

Large Language Models, while impressive in their linguistic capabilities, often exhibit significant
limitations when faced with tasks requiring advanced reasoning. This section explores these
limitations, the reasons behind them, and the impact they have on the usability and reliability
of LLM outputs.

Figure 2.3: An illustration of reasoning limitations in math problems [3]

Nature of Reasoning Limitations

LLMs are fundamentally statistical models that generate text based on patterns learned from
vast datasets. However, their ability to "reason" in the human sense is inherently limited.

Page 28

Introduction générale

Examples of Reasoning Failures

- Complex Problem Solving: LLMs struggle with problems that require logical deduc-
tions or strategic thinking, often failing to maintain a coherent strategy throughout an
extended line of reasoning.

- Multi-Step Reasoning: Tasks that require considering multiple steps or layers of logic
can confuse LLMs, leading to contradictory or incomplete conclusions.

- Deep Contextual Understanding: LLMs may miss nuances that require an under-
standing of deeper, implicit meanings, such as sarcasm, metaphorical language, or cultural
context.

Causes of Reasoning Limitations The underlying architecture and training processes of
LLMs contribute significantly to their reasoning limitations.

Key Factors Contributing to Limitations

- Training Data Surface-Level Learning: LLMs primarily learn from the surface struc-
ture of data without truly understanding underlying concepts or relationships. They
replicate patterns rather than engage in deductive thinking.

- Lack of World Knowledge: Unlike humans, LLMs do not possess real-world under-
standing or the ability to draw on personal empirical experiences, which are often crucial
for sophisticated reasoning.

- Model Architecture Constraints: The architectures of current LLMs, while effec-
tive for pattern recognition and text generation, do not replicate the neural processes
associated with human reasoning and problem-solving.

Impact on Practical Applications The reasoning limitations of LLMs restrict their effec-
tiveness in scenarios that require precision and reliability, impacting their deployment in critical
areas.

Consequences for User Reliance

- Misinformation and Errors: Inaccurate or illogical outputs can lead to misinformation
if not carefully reviewed.

- Reliability in Critical Applications: For applications like legal advice, medical diag-
nosis, or financial planning, where reasoning accuracy is paramount, the current genera-
tion of LLMs may fall short.

- User Trust: Frequent errors or overt limitations in reasoning can erode trust in the
capabilities of AI systems among users.

Understanding the intrinsic limitations in the reasoning capabilities of LLMs is crucial for
developers, users, and regulators. By acknowledging these limitations, stakeholders can better
manage expectations, implement appropriate safeguards, and focus on continuous improvement
in AI technologies.

Page 29

Introduction générale

Inability to Access or Process Private Data in Large Language Models

Nature of the Limitation Large Language Models operate on fixed datasets comprised of
publicly available information and lack the capability to integrate or retrieve private, personal-
ized, or real-time data during their operations. This inherent limitation significantly restricts
their functionality in environments where access to confidential or personalized information is
critical.

Examples of Practical Implications

- Customer Service: Without access to individual customer histories or specific account
details, LLMs are unable to provide effective personalized support, often resulting in
generic responses that may not address specific user issues.

- Healthcare Advice: LLMs’ inability to consult personal medical records or patient
histories prevents them from offering accurate medical recommendations, making them
unreliable for personal health inquiries or medical advice.

- Personalized Learning: The effectiveness of LLMs in educational settings is hampered
as they cannot tailor learning experiences based on individual student profiles, progress
reports, or learning preferences.

Causes of the Limitation The design and operational framework of LLMs prioritize user
privacy and data security, intentionally restricting their access to private databases to prevent
misuse and ensure compliance with stringent data protection regulations.

Key Factors Contributing to the Limitation

- Privacy and Security Protocols: Stringent data privacy laws such as the GDPR
necessitate these restrictions, as non-compliance can lead to severe penalties. Thus, LLMs
are deliberately designed not to access or store private information.

- Training Dataset Constraints: The general and anonymized nature of the data used
to train LLMs means they are not equipped to handle or interpret sensitive or personalized
data, which limits their applicability in scenarios requiring customized responses.

Impact on Usability and Trust The limitations in handling private data directly influence
the trust users place in LLMs and their applicability across various industries, particularly
those requiring a high degree of personalization and confidentiality.

Consequences for Deployment

- Limited Customization: LLMs provide outputs that are broad and non-specific, which
may not meet the needs of users seeking tailored information or actions based on their
personal data.

- Ethical Concerns: There is an increased risk of generating inaccurate or irrelevant
outputs, which can mislead users, potentially resulting in harm or mistrust.

Page 30

Introduction générale

- Legal and Compliance Risks: Deploying LLMs in areas that require personalized
data handling without adequate safeguards could lead to violations of privacy laws and
regulatory standards.

The restriction on accessing private data underscores a significant challenge in deploying LLMs
across sensitive and personalized domains. Recognizing and understanding these limitations
is crucial for users and developers to navigate potential risks effectively and leverage LLM
capabilities responsibly.

2.3 Strategies to Overcome LLM Limitations when cre-
ating Chatbots

2.3.1 Prompt Engineering

Prompt engineering is the strategic crafting of input prompts to guide the LLM towards gener-
ating the most relevant and accurate responses. This technique involves framing queries clearly
and contextually to optimize the model’s output.

Advantages Pain Points

Enhanced Accuracy: Improves the rele-
vance and precision of the model’s re-
sponses.

Reliance on Skill: Requires skillful crafting
of prompts to avoid misguiding the model.

Contextual Relevance: Ensures that out-
puts are contextually aligned with the in-
tended query.

Limited by Model’s Knowledge: Effective-
ness is bounded by the underlying knowl-
edge and capabilities of the model.

Quick Implementation: Can be quickly im-
plemented without altering the model’s ar-
chitecture.

May Require Iterative Tuning: Often
necessitates multiple iterations to refine
prompts for optimal results.

Table 2.1: Prompt Engineering: Advantages and Pain Points

2.3.2 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation enhances LLM outputs by integrating a retrieval component
that fetches relevant external data before generating responses. This approach combines the
generative capabilities of LLMs with real-time data retrieval.

Page 31

Introduction générale

Figure 2.4: Rag process [4]

Advantages Pain Points

Rich Contextual Responses: Provides
more informed and context-rich outputs by
leveraging external data.

Higher Latency: The retrieval process can
introduce delays, affecting real-time re-
sponse capabilities.

Enhanced Accuracy: Improves factual cor-
rectness by incorporating the latest data.

Scalability Issues: The retrieval component
may struggle with scaling, especially with
large data sets.

Adaptability to Updates: Remains relevant
by accessing the most current information.

Computational Intensity: Requires more
computational power, potentially increas-
ing operational costs.

Table 2.2: Retrieval-Augmented Generation: Advantages and Pain Points

2.3.3 Fine-Tuning

Fine-tuning adjusts a pre-trained model to specialize in a specific domain or task by continuing
the training on a targeted, smaller dataset. This method refines the model’s parameters to
better align with specific operational needs.

Page 32

Introduction générale

Figure 2.5: Fine tuning process [5]

Advantages Pain Points

Quick Adaptation: Quickly adapts to new
domains or specific tasks without extensive
retraining.

Overfitting Risk: There’s a risk of
the model overfitting to the fine-tuning
dataset, reducing its generalizability.

Improved Performance: Typically en-
hances performance on specialized tasks.

Dependency on Quality Data: Success
heavily relies on the quality and relevance
of the fine-tuning data.

Lower Computational Cost: Less resource-
intensive compared to training from
scratch.

Limited Scope: Improvements are confined
to tasks similar to those in the fine-tuning
dataset.

Table 2.3: Fine-Tuning: Advantages and Pain Points

2.4 Improuvement points - What to Choose: RAG with
Prompt Engineering vs. Fine-Tuning

When deciding between Retrieval-Augmented Generation (RAG) with prompt engineering and
fine-tuning, several factors need to be considered, including the specific requirements of the
application, available resources, and desired outcomes. Both approaches have their distinct
advantages and limitations, making them suitable for different scenarios.

2.5 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of pre-
trained language models by integrating real-time data retrieval. This method pulls relevant
information from external databases to enrich the model’s responses, making them more accu-
rate and contextually appropriate.

RAG leverages a hybrid approach combining traditional language model generation with dy-
namic information retrieval. This integration allows the model to access a vast array of up-to-

Page 33

Introduction générale

date data, significantly enhancing the breadth and depth of its output.

Key Features

- Dynamic Data Integration: By fetching external data as needed, RAG ensures that
the generated content is both current and highly relevant.

- Enhanced Contextual Relevance: The technique uses additional information to pro-
vide responses that are contextually enriched, which is especially beneficial in fields such
as news analysis, financial forecasting, and medical diagnostics.

- Adaptability: RAG adapts to new queries by accessing the most relevant and recent
data, offering flexibility across various applications.

Advantages

- Up-to-date Information: Essential for applications where current information is criti-
cal, such as in market analysis or emergency response systems.

- Improved Accuracy: By incorporating external data, RAG reduces reliance on poten-
tially outdated training datasets, leading to more accurate and factual outputs.

- Versatility: Suitable for a wide range of applications, from customer support systems
to research tools, enhancing performance by utilizing the latest available data.

2.6 Prompt Engineering

Prompt Engineering involves crafting specific inputs (prompts) to guide the behavior of a
language model towards producing desired outputs. This technique is crucial for maximizing
the effectiveness of pre-trained language models by optimizing how queries are structured.

Prompt engineering is the art of designing prompts that effectively leverage the innate capabil-
ities of large language models. By fine-tuning the input, this method ensures that the output
closely aligns with user expectations, reducing the need for extensive computational resources.

Key Features

- Strategic Query Framing: Carefully crafted prompts direct the model’s response,
enabling more accurate and relevant outputs.

- Resource Efficiency: Utilizes the existing capabilities of models without the need for
additional data retrieval or retraining, making it efficient in terms of computational usage.

- Quick Adaptability: Allows for rapid adjustments in the model’s outputs to meet new
requirements or to adapt to different contexts without modifying the underlying model
architecture.

Page 34

Introduction générale

Advantages

- Cost-Effectiveness: Reduces the need for further model training or data retrieval, low-
ering the overall operational costs.

- Flexibility: High adaptability across various domains and tasks, making it ideal for
applications that require quick deployment and versatility.

- Ease of Implementation: Simple changes in prompt design can lead to significant
improvements in model performance, facilitating ease of use and experimentation.

2.7 Retrieval-Augmented Generation (RAG) with Prompt
Engineering

RAG combined with prompt engineering leverages external data sources to enhance the outputs
of large language models. Prompt engineering strategically frames queries to guide the model,
while RAG ensures that the responses are enriched with up-to-date and contextually relevant
information from external databases.

When to Choose RAG with Prompt Engineering:

- Need for Current Information: If your application requires the latest data or fre-
quently updated information, RAG is beneficial as it pulls in the most recent information.

- Complex Queries: For applications involving complex queries that need contextual
understanding from external data, RAG excels.

- Dynamic Domains: In environments where information rapidly changes, such as news,
finance, or research, RAG provides the flexibility to access and incorporate new data.

2.8 Fine-Tuning

Overview: Fine-tuning involves continuing the training of a pre-trained model on a smaller,
domain-specific dataset. This process adjusts the model’s parameters to better perform specific
tasks, enhancing its ability to handle particular contexts and requirements.

When to Choose Fine-Tuning:

- Specialized Tasks: If your application requires high performance in a specific domain,
fine-tuning is ideal.

- Resource Constraints: For applications where computational resources are limited,
fine-tuning is less intensive compared to RAG.

- Consistency: When consistent performance on specific tasks is crucial, fine-tuning pro-
vides tailored improvements.

Page 35

Introduction générale

2.9 Comparison Matrix

Choosing between RAG with prompt engineering and fine-tuning depends on the specific needs
of your application. RAG with prompt engineering is ideal for scenarios requiring dynamic
and up-to-date information, while fine-tuning excels in specialized tasks needing consistent
performance. By understanding the strengths and limitations of each approach, you can make
an informed decision to optimize your large language model’s performance.

Factor RAG with Prompt Engi-
neering

Fine-Tuning

Use Case Dynamic, frequently up-
dated information

Specialized, consistent tasks

Latency Higher due to retrieval pro-
cess

Lower, suitable for real-time
use

Computational Re-
sources

High, especially for large
databases

Moderate, mostly during
training phase

Scalability Complex, can be resource-
intensive

Highly scalable across vari-
ous platforms

Performance Superior for context-rich
tasks

Superior for domain-specific
tasks

Flexibility High, adaptable to multiple
domains

Focused, limited to specific
domains

Table 2.4: Comparison of RAG with Prompt Engineering vs. Fine-Tuning

2.10 Conclusion

In conclusion, addressing the limitations of Large Language Models (LLMs) through Retrieval-
Augmented Generation (RAG) and prompt engineering proves to be a highly effective strategy.
While RAG enhances accuracy by providing access to a broad and up-to-date knowledge base,
prompt engineering fine-tunes the model’s response capabilities. This combination not only
mitigates issues such as hallucinations and contextual errors but also offers a scalable and
adaptable framework for various applications, ultimately maximizing the potential of LLMs.

Page 36

Part II

State of the Art

37

Chapter 3

Generalities on Artificial intelligence

3.1 Machine learning

3.1.1 Definition

Machine Learning (ML), a subset of artificial intelligenc e (AI), focuses on developing algorithms
that enable computers to learn from data and improve automatically through experience. Unlike
traditional programming, where a computer follows predefined instructions, ML algorithms
learn patterns from data to make decisions or predictions without explicit programming. For
instance, instead of defining specific features of a cat, an ML algorithm is trained on thousands
of images of cats to recognize patterns and features that define a cat, improving its accuracy
over time.

3.1.2 Types of Machine Learning

Machine Learning can be categorized based on the learning approach, availability of labeled
data, and feedback mechanism:

Supervised Learning Supervised Learning uses labeled data to learn patterns and rela-
tionships between inputs and outputs. This process, known as training or fitting, involves
algorithms that learn the relationship between features and target variables.

Unsupervised Learning Unsupervised Learning analyzes and clusters unlabeled data to
discover hidden patterns or groupings without human intervention. Main tasks include cluster-
ing, association, and dimensionality reduction.

Semi-Supervised Learning Semi-Supervised Learning combines a small amount of labeled
data with a large amount of unlabeled data during training. This approach is useful in fields
where labeled data is scarce and expensive to obtain.

Reinforcement Learning Reinforcement Learning trains software to make decisions by
mimicking the trial-and-error learning process, aiming to achieve the most optimal results.

38

Introduction générale

3.1.3 Limitations of Machine Learning: Challenges and Considera-
tions

While machine learning is powerful, it faces several limitations:

- Data Dependency: The quality and quantity of training data are crucial. Poorly
labeled or unrepresentative data can lead to inaccurate predictions.

- Overfitting: Complex models may overfit training data and fail to generalize to new
data, resulting in poor performance on unseen data.

- Explainability: ML models can be complex and hard to interpret, making it challenging
to explain their decisions.

- Biased Data: Training data biases, due to selection, human biases, or measurement
errors, can lead to biased predictions.

- Lack of Diversity: ML models may struggle with unstructured data like images, sounds,
and texts.

- Computational Cost: High computational power and storage resources are often re-
quired, making ML costly and time-consuming to train and implement.

3.1.4 Conclusion

In conclusion, while Machine Learning (ML) offers transformative capabilities by learning from
data and making predictions without explicit programming, it faces significant challenges such
as data dependency, overfitting, explainability issues, bias, and high computational costs. Ad-
dressing these limitations is crucial for the effective and ethical application of ML technologies
across various domains.

3.2 Deep Learning

3.2.1 Definition of Deep Learning

Deep learning is a specialized subset of machine learning and a branch of artificial intelligence
that employs multi-layered neural networks, often referred to as deep neural networks. In-
spired by the biological neural networks of the human brain, deep learning models simulate
complex decision-making processes. These networks are capable of learning from vast amounts
of data, largely without direct human intervention, enabling computers to form hierarchical
representations for recognizing patterns and making decisions.

Deep learning has become fundamental in driving the artificial intelligence applications that
permeate our daily lives, from language processing and computer vision to robotics and automa-
tion. This technique excels in high-dimensional function estimation, allowing for sophisticated
predictive capabilities across various fields. Its ability to automatically learn and improve from
experience underpins most of the advanced AI systems in operation today, providing a powerful
tool for tackling complex problems across multiple domains [16, 17, 18, 19, 20].

Page 39

Introduction générale

3.2.2 Detailed Core Concepts of Deep Learning

3.2.3 Neurons and Layers

- Artificial Neurons:

◦ An artificial neuron is a computational unit that receives inputs (features of data),
processes them through a weighted sum, adds a bias, and then applies an activation
function, as explained by Kılıçarslan et al. [21].

◦ The general operation can be expressed mathematically as:

y = f

(
n∑

i=1
wixi + b

)

◦ Here, xi represents the input features, wi are the weights assigned to each feature, b
is the bias, and f is the non-linear activation function.

- Layer Types:

◦ Input Layer: Comprises neurons that directly take the input data and typically
perform normalization or scaling. The structural and functional significance of the
input layer is detailed in Dubey et al. [22].

◦ Hidden Layers: These layers consist of numerous neurons that process inputs from
previous layers. Each neuron in a hidden layer transforms the inputs into forms that
are usable by subsequent layers, extensively discussed by Kılıçarslan et al. [21].

◦ Output Layer: Outputs the final predictions of the neural network. The design
of the output layer is typically tailored to specific tasks, such as using softmax
activation for classification, explained in Dubey et al. [22].

3.2.4 Activation Functions

- Why Non-linear?

◦ Non-linear activation functions allow neural networks to solve complex problems
that are not linearly separable, essential for modeling intricate patterns in high-
dimensional data, as discussed by Kılıçarslan et al. [21].

- Key Activation Functions:

◦ ReLU (Rectified Linear Unit): Preferred in many neural network architectures
due to its simplicity and efficiency in forward and backward propagation, highlighted
by Kılıçarslan et al. [21].

f(x) = max(0, x)

Page 40

Introduction générale

Figure 3.1: Relu acctivation function [6]

◦ Sigmoid: Best suited for output layers in binary classification, transforming inputs
into probabilities between 0 and 1, as noted by Kılıçarslan et al. [21].

σ(x) = 1
1 + e−x

Figure 3.2: Sigmoid acctivation function [7]

◦ Tanh (Hyperbolic Tangent): Provides outputs between -1 and 1, making it useful
for data that needs to be centered around zero, discussed by Kılıçarslan et al. [21].

tanh(x) = ex − e−x

ex + e−x

Page 41

Introduction générale

Figure 3.3: Tanh acctivation function [8]

Backpropagation and Learning

- Mechanics of Backpropagation:

◦ Error Computation: The network makes an initial prediction, calculates the er-
ror using a loss function (e.g., mean squared error for regression), as discussed by
Kılıçarslan et al. [21].

◦ Gradient Calculation: The gradients of the loss function with respect to each
weight are computed using the chain rule of calculus, essential for optimizing neural
networks, explained in Kılıçarslan et al. [21].

◦ Weight Update Rule: Weights are adjusted in the direction that minimizes the
loss, guided by the learning rate (η), which determines the step size in the gradient
descent, as described in Kılıçarslan et al. [21].

wnew = wold − η · ∂E

∂w

- Optimization Algorithms:

◦ Advanced algorithms such as SGD, Adam, and RMSprop improve learning speed and
convergence, ideal for training deep neural networks in various settings, explored in
Ch et al. [23].

These detailed descriptions offer deeper insight into how deep learning networks function and
learn. Understanding these core concepts is crucial for designing and training effective neural
network models that can handle complex tasks like image and speech recognition, natural
language processing, and more.

3.2.5 Conclusion

In conclusion, deep learning represents a profound shift in artificial intelligence, moving beyond
traditional machine learning through its ability to autonomously process and learn from raw

Page 42

Introduction générale

data. By employing intricate neural network architectures that capture hierarchical data ab-
stractions, deep learning models excel in complex pattern recognition tasks across a myriad of
domains, setting the stage for continued advancements in AI technology.

3.3 NLP and deep learning

Natural Language Processing (NLP) is a dynamic field at the intersection of computer science,
artificial intelligence, and linguistics. It focuses on developing algorithms that enable computers
to understand, interpret, and generate human language in a meaningful and effective manner.
The ultimate goal of NLP is to build systems that can communicate with humans in their
natural language, enhancing the accessibility and efficiency of human-computer interaction
[24].

3.3.1 Definition of NLP

NLP is a core technology in artificial intelligence that assists machines in processing and “under-
standing” human language. It bridges linguistic communication between humans and machines,
making it crucial for the development of AI applications that require interaction in natural lan-
guage. NLP heavily leverages deep learning techniques, which utilize advanced neural networks
to dramatically improve the ability of machines to translate text, recognize speech, and perform
sentiment analysis. This synergy has not only propelled the capabilities of NLP but has also
intertwined it deeply with data science, which supports NLP by providing robust statistical
methods to analyze and model vast amounts of language data [25].

3.3.2 Evolution of NLP systems

Rule-Based Systems In its early years, NLP relied predominantly on rule-based systems,
where linguists and computer scientists manually developed a comprehensive set of linguistic
rules for computers to follow. Although effective for structured tasks, these systems lacked the
flexibility needed to handle the ambiguity and variability inherent in natural language, limiting
their applicability in more dynamic real-world scenarios.

3.3.3 Key Techniques and Methods in NLP

Natural Language Processing (NLP) employs a variety of techniques to decompose and under-
stand human language. These fundamental methods include:

- Tokenization: This process divides the text into smaller units, called tokens, which can
be words, phrases, or symbols. This step is essential for preparing the data for more
complex analyses.

- Syntactic Analysis: It involves identifying the grammatical structure of a sentence, us-
ing rules to analyze the relationships between words. This enables machines to understand
how words in a sentence connect with each other to form meaning.

Page 43

Introduction générale

- Semantic Analysis: This method seeks to interpret the meaning of words within their
specific context. It goes beyond grammatical structure to understand the nuances of
language, including ambiguities and variations in meanings.

- Word Embeddings: Embeddings, or lexical embeddings, transform tokens into numer-
ical vectors that capture contextual and semantic aspects of words. This allows models
to process text in a dense vector space, where similar words have close numerical repre-
sentations, thus facilitating tasks such as semantic search and text classification.

In addition to these basic techniques, NLP also relies on advanced models for processing and
generating language:

- Statistical Models: These models use statistical techniques to understand and predict
linguistic structures. For example, they can calculate the probability that one word
follows another in a sentence, which is fundamental for tasks like auto-correction and
text completion.

- Deep Learning-Based Models: With the advent of deep learning, NLP has made sig-
nificant strides. Deep neural networks, such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), are used to process long and complex text sequences.
More recently, Transformer architectures, which use attention mechanisms to enhance
language modeling quality, have revolutionized machine translation, text generation, and
natural language understanding.

3.3.4 Deep learning models in NLP

The shift from rigid, rule-based frameworks to adaptive machine learning models marks a
significant milestone in NLP. Machine learning offers a more flexible approach, as these models
learn to process and interpret language directly from data. This evolution has not only enhanced
the efficiency and accuracy of NLP systems but has also allowed them to rapidly adapt to new
linguistic contexts and challenges, revolutionizing their scalability and utility across diverse
applications.

Building on this foundational progress, the advent of deep learning architectures has further
transformed the field of Natural Language Processing, propelling it into a new era of tech-
nological advancements. These sophisticated models harness the power of large datasets to
automatically learn intricate representations of language, eliminating the dependence on man-
ual feature engineering that was prevalent in earlier methods. By effectively capturing both the
contextual and sequential nuances of text, deep learning techniques have significantly improved
the performance of NLP systems across a broad spectrum of tasks. From machine translation
to sentiment analysis and speech recognition, the capabilities of these models have not only
heightened in accuracy and efficiency but have also broadened in scope. This remarkable evo-
lution in NLP demonstrates a shift towards systems that can engage with human language
in ways that are profoundly more sophisticated and nuanced, closely emulating human-level
understanding and responsiveness.

Recurrent Neural Networks (RNNs) Recurrent Neural Networks (RNNs) are a class
of neural networks designed specifically for handling sequential data, such as text or speech.
Unlike standard feedforward neural networks, RNNs possess the unique ability to maintain

Page 44

Introduction générale

a ‘memory’ of previous inputs using their internal state, allowing them to exhibit dynamic
temporal behavior and process input sequences of any length [25].

The primary architecture of an RNN includes a loop that reuses the same weights at each time
step. Mathematically, at each timestep t, the hidden state ht of the RNN is updated based
on the previous hidden state ht−1 and the current input xt. This process is captured by the
following equation:

ht = f(W · ht−1 + U · xt + b)

where:

- ht is the new hidden state,

- f is a non-linear activation function such as tanh or ReLU,

- W and U are weight matrices for the hidden state and input, respectively,

- b is a bias term,

- xt is the input at time t,

- ht−1 is the hidden state from the previous timestep.

The output yt at each timestep is then computed based on the hidden state:

yt = V · ht + c

where V is the weight matrix connecting the hidden state to the output, and c is a bias term
for the output.

RNNs are particularly useful for tasks where the sequence of the data is important, as they
can consider the entire history of previous inputs when generating the output. This capability
makes RNNs ideal for applications like language modeling and machine translation [26].

Despite their potential, RNNs often present challenges in training effectively due to issues like
vanishing and exploding gradients. These issues arise during backpropagation through time
(BPTT) because gradients propagated over many timesteps can grow exponentially or shrink
to zero, making it difficult for RNNs to learn long-term dependencies [26].

Figure 3.4: Visualisation of RNN [9]

Page 45

Introduction générale

Long Short-Term Memory Networks (LSTMs) Traditional Recurrent Neural Networks
(RNNs) struggle with long-term dependencies due to the vanishing gradient problem, where
gradients of the loss function can decay exponentially with time during backpropagation. This
makes it challenging for RNNs to maintain information in the hidden layers over long sequences.
LSTMs, introduced by Hochreiter and Schmidhuber in 1997 [27], address this issue with a more
complex internal structure that includes mechanisms called gates. These gates control the flow
of information, allowing the network to retain or discard information dynamically.

Architecture and Functionality: LSTM units include three types of gates:

- Forget Gate: Decides what information should be discarded from the cell state. This
gate looks at the previous hidden state ht−1 and the current input xt, and outputs a
number between 0 and 1 for each number in the cell state Ct−1. A 1 represents "completely
keep this" while a 0 represents "completely get rid of this."

ft = σ(Wf · [ht−1, xt] + bf)

- Input Gate: Decides what new information is going to be stored in the cell state. It
involves a sigmoid layer which decides which values to update, and a tanh layer which
creates a vector of new candidate values that could be added to the state.

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

- Output Gate: Decides what the next hidden state should be. The hidden state contains
information about previous inputs. The sigmoid layer decides which parts of the cell state
make it to the output, and then the cell state is passed through tanh (to push the values
to be between -1 and 1) and multiplied by the output of the sigmoid gate, so that we only
output the parts we decided to.

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

These gates allow the LSTM to mitigate the vanishing gradient problem, as they provide
a way to allow gradients to flow unchanged. The architecture of LSTMs enables them to
learn and remember over long sequences of inputs, making them highly effective for tasks
such as time series prediction, sequence generation, and especially complex NLP tasks that
require understanding over larger text sequences, such as document summarization and question
answering.[27]

Page 46

Introduction générale

Figure 3.5: Visualisation of LSTM [10]

Transformer Models: Encoder and Decoder Details The transformer architecture is
a groundbreaking neural network architecture designed for NLP tasks. It was introduced by
Vaswani et al. in the paper "Attention is All You Need" [11]. The architecture relies on the self-
attention mechanism to process and generate sequences, making it highly efficient and scalable
compared to traditional RNNs and LSTM models.

The problem in RNNs and LSTMs is that their network sequence makes it hard to process long
sentences, and the ability to perform tasks in parallel is affected by sequential computation.
The transformer approaches these problems by using encoders, decoders, and self-attention.

Encoder: The encoder in the Transformer model consists of a stack of identical layers, each
layer comprising two main sub-layers. The first is a multi-head self-attention mechanism, and
the second is a position-wise fully connected feed-forward network. The encoder processes the
entire input sequence simultaneously rather than sequentially, facilitated by the self-attention
mechanism that allows each position in the encoder to attend to all positions in the previous
layer.

- Self-Attention in Encoder: This mechanism enables the encoder to consider other
words in the input sentence while encoding a specific word, ensuring that the context
is comprehensively captured. It is particularly useful for understanding the relevance
and relationships between different words in a sentence, irrespective of their positional
distance.

Decoder: Similar to the encoder, the decoder is composed of a stack of identical layers.
However, it includes a third sub-layer that performs multi-head attention over the encoder’s
output, in addition to the two sub-layers found in the encoder layers. This configuration enables
the decoder to focus on relevant parts of the input sequence:

- Masked Self-Attention in Decoder: This attention mechanism is akin to the en-
coder’s self-attention but includes a masking feature to prevent positions from attending
to subsequent positions in the sequence. This ensures that predictions for position i
are dependent only on known outputs at positions less than i, which is critical for text
generation tasks.

Page 47

Introduction générale

- Encoder-Decoder Attention: This sub-layer enables the decoder to focus on relevant
parts of the input sequence, utilizing the attention queries from the decoder combined
with the keys and values from the encoder’s output. This mechanism allows each position
in the decoder to attend over all positions in the input sequence, effectively blending the
features learned by the encoder into the decoder’s processing.

Figure 3.6: Transformers Architecture [11]

Impact and Significance: The integration of encoders and decoders with advanced attention
mechanisms allows Transformers to handle dependencies more dynamically compared to models
that encode or decode only. This architecture excels in tasks requiring comprehension of the
entire input, like translation, where the output sequence needs to be a coherent rephrasing of
the input sequence.

The encoder and decoder’s advanced functionalities enable Transformers to significantly out-
perform earlier sequence-to-sequence models on a variety of complex NLP tasks, demonstrating
considerable improvements in accuracy and efficiency.

Page 48

Introduction générale

3.3.5 Conclusion

In conclusion, the integration of deep learning within the field of Natural Language Processing
(NLP) has fundamentally transformed the capabilities of language technologies. Through the
application of sophisticated neural network architectures like CNNs, RNNs, and Transformers,
NLP systems can now handle complex language tasks with remarkable efficiency and accuracy.
These advancements underscore a significant evolution from rule-based systems to models that
understand and generate language through dynamic learning, marking a pivotal shift towards
achieving human-like linguistic interaction with machines.

Page 49

Chapter 4

Large Language Models

The advent of transformer architectures has catalyzed a significant shift in the landscape of
natural language processing, setting the foundation for the development of Large Language
Models (LLMs). Transformers revolutionized NLP through their unique mechanism of self-
attention, which allows models to weigh the importance of different words within a sentence,
irrespective of their positional distance from each other. This ability to manage long-range
dependencies is crucial for understanding the contextual nuances of language, a critical aspect
that was often challenging for prior models like RNNs and LSTMs.

Transformers are inherently designed for parallel processing, unlike their predecessors that pro-
cessed data sequentially. This architectural advantage means that transformers can be trained
more efficiently on larger datasets—a fundamental characteristic that LLMs exploit. By utiliz-
ing vast amounts of training data, transformers can generate more accurate and contextually
appropriate outputs, which is a significant step towards achieving human-like understanding
and generation of language.

The scalable nature of transformer architectures enables the construction of LLMs, which are
essentially larger and more powerful versions of transformer-based models. These models are
not only trained on extensive text corpora but also fine-tuned through advanced techniques like
transfer learning, allowing them to excel across diverse NLP tasks. The success of transformer-
based LLMs, such as GPT (Generative Pre-trained Transformer) and BERT (Bidirectional
Encoder Representations from Transformers), underscores their pivotal role in pushing the
boundaries of what machines can understand and achieve with human language.

Thus, the evolution from transformers to LLMs represents a natural progression in the quest for
more sophisticated, nuanced, and capable language models in the field of AI. This progression
underscores the transformative impact that these architectures have had, paving the way for
advancements that are redefining the capabilities of NLP systems.

4.1 Definition of Large Language Models (LLMs)

Large Language Models (LLMs) are advanced artificial intelligence models designed to com-
prehend, generate, and manipulate human language text on a vast scale. These models are
characterized by their ability to achieve general-purpose language understanding and genera-
tion through the analysis of extensive datasets using deep learning algorithms [28]. LLMs have
significantly evolved the field of natural language processing (NLP) by leveraging transformer-
based architectures, which enable them to understand and generate text rapidly and accurately

50

Introduction générale

across various domains [28, 29].

4.2 Key Characteristics of Large Language Models

1. Scale and Complexity: LLMs utilize massive amounts of data during training, typically
with at least one billion parameters, allowing them to capture intricate linguistic patterns
and nuances in human language. This scale enhances their performance in understanding
and generating text compared to earlier models [28, 30].

2. Generative AI Capabilities: LLMs are a form of generative AI, enabling them not
only to analyze existing text but also to create original content based on user inputs
and queries. This generative aspect sets them apart from traditional language models by
facilitating the creation of new text rather than just analyzing existing data [28, 29].

3. Adaptability and Extensibility: LLMs serve as a foundation for customized use cases,
allowing additional training on top of pre-existing models to tailor them for specific tasks.
This adaptability makes LLMs versatile and applicable across a wide range of applications
and industries [28, 31].

4. Transformer Models: LLMs leverage transformer models, a type of neural network that
excels in understanding context, making them proficient in interpreting human language
even in ambiguous or novel contexts. This capability to grasp context enhances their
language comprehension and generation abilities compared to earlier models [28, 30].

5. Fine-Tuning and Domain-Specific Models: LLMs can undergo fine-tuning to adapt
to specific tasks, leading to the development of domain-specific models that excel in
particular areas such as programming, translation, or content generation. This fine-tuning
process enhances the model’s performance and applicability in specialized domains [31].

In summary, Large Language Models (LLMs) represent a significant advancement in artificial in-
telligence, particularly in the realm of natural language processing, due to their scale, generative
capabilities, adaptability, utilization of transformer models, and fine-tuning for domain-specific
tasks [28, 32, 30, 29, 31].

4.3 Applications of Large Language Models

Large Language Models (LLMs) have spurred transformative changes across multiple industries,
underscoring their wide utility and significant impact. Below are some pivotal areas where LLMs
are applied:

1. Natural Language Processing, Chatbots, and Language Translation: LLMs
enhance chatbot capabilities in customer service, providing more natural and engaging
user interactions, and are also instrumental in language translation, facilitating accurate
and fluent cross-lingual communication [33, 34].

2. Sentiment Analysis: These models adeptly determine sentiments and emotions from
text, aiding businesses in understanding consumer reactions and gathering actionable
insights from social media and customer reviews [34].

Page 51

Introduction générale

3. Search and Information Retrieval: Enhancing search algorithms and information
retrieval, LLMs improve the accuracy and relevance of search results, enriching user ex-
periences and engagement across digital platforms [33].

4. Healthcare and Life Sciences: In healthcare, LLMs interpret complex biological data,
which helps accelerate medical research and the development of innovative treatments [35].

5. Code Generation and Software Development: Automating coding tasks and aiding
in software development, LLMs streamline the creation of software applications and even
facilitate robotic training [35].

6. Financial Services and Anomaly Detection: In finance, LLMs are pivotal in au-
tomating the summarization of financial documents and detecting anomalies in transac-
tions, enhancing efficiency and security in financial operations [35].

These applications demonstrate the broad and transformative impact of LLMs, extending far
beyond traditional NLP tasks to areas such as customer interaction, complex data analysis,
and sector-specific advancements in healthcare, finance, and more.

4.4 Notable Examples of Large Language Models

Following the introduction of transformer architectures and the definition of Large Language
Models (LLMs), various instances of LLMs have been developed, each contributing uniquely to
the field of NLP. These models exemplify the practical applications and theoretical advance-
ments possible with modern deep learning technologies.

GPT Series:

- The Generative Pre-trained Transformer (GPT) series, developed by OpenAI, showcases
the evolution of LLMs with its successive iterations. Each version aims to refine and
enhance the model’s language processing capabilities.

- GPT-3, introduced in 2020, was a pioneering model capable of producing text that is con-
textually relevant and stylistically coherent, making it suitable for a range of applications
from writing assistance to conversation simulation.

- GPT-4, the latest in the series as of 2023, further improves on the creative and analytical
abilities of its predecessors, setting new standards for the application of LLMs in even
more complex tasks such as summarizing extensive documents, creating content across
various formats, and even solving advanced computational problems.

LLaMA:

- The LLaMA (Large Language Model Meta AI) by Meta AI offers a range of models
tailored to different scales of use, from smaller models suitable for limited-resource appli-
cations to large models designed for cutting-edge research.

- Its ability to be fine-tuned for particular tasks makes it a versatile tool in commercial
NLP applications, contributing significantly to advancements in areas such as automated
customer service and personalized content recommendations.

Page 52

Introduction générale

PaLM (Pathways Language Model) family:
developed by Google, includes the initial PaLM model, announced in April 2022 and made
public in March 2023. This transformer-based large language model (LLM) possesses 540
billion parameters and was pre-trained on a corpus containing 780 billion high-quality text
tokens. It is designed to handle a wide array of natural language tasks and applications.
The model’s pre-training involved the use of 6144 TPU v4 chips within the Pathways system,
enabling highly efficient training across multiple TPU Pods. The PaLM model demonstrates
the ongoing benefits of scaling, achieving state-of-the-art few-shot learning results on numerous
language understanding and generation benchmarks. Furthermore, the PaLM-540B model
not only surpasses state-of-the-art fine-tuned models on a variety of multi-step reasoning tasks
but also performs comparably to humans on the newly introduced BIG-bench benchmark.

Additional LLMs:

- The development of LLMs has not been limited to these examples. Other significant
models include FALCON, Mistral 7B, BLOOM, LaMDA, MT-NLG, Stanford Alpaca,
FLAN UL2, GATO, PaLM, Claude, and ChatGLM.

- Each of these models brings forward unique capabilities, pushing the boundaries of what
artificial intelligence can achieve in understanding and generating human-like text.

These examples of LLMs demonstrate the robustness and diversity of the current landscape in
NLP technology, highlighting the profound impact of these models on various aspects of digital
communication, content creation, and beyond.

Figure 4.1: LLM Families [12]

4.5 Embeddings

4.5.1 Word Embeddings

Word embeddings are a fundamental concept in natural language processing (NLP) that rep-
resent words as numerical vectors in a high-dimensional space. This approach allows machines
to understand the relationships between words, capturing their semantic meaning and con-
text. Word embeddings are a crucial component in many NLP applications, including language
modeling, text classification, and machine translation.

Page 53

Introduction générale

4.5.2 How Word Embeddings Work

Word embeddings work by assigning each word a unique vector in a high-dimensional space,
typically ranging from 100 to 300 dimensions. These vectors are learned through neural net-
works that analyze the context in which words appear, based on the idea that words found in
similar contexts likely share semantic meaning. The training process involves predicting the
surrounding words in a sentence, known as the skip-gram model, or predicting the target word
given the context words, known as the continuous bag of words model.

Figure 4.2: Dense Vector representation -Databricks Large Language ModelsApplication
through Production

4.5.3 Word Embedding Algorithms

BERT Embeddings

BERT (Bidirectional Encoder Representations from Transformers) is a transformative model
in the field of natural language processing (NLP) that generates deep contextualised word
embeddings. Developed by researchers at Google, BERT has significantly advanced the state
of the art in NLP tasks such as question answering, sentiment analysis, and language inference.
Here’s a detailed, step-by-step explanation of BERT embeddings, including theoretical aspects:

Figure 4.3: Bert Embeddings Architecture

1. Foundation of BERT: Transformers
BERT is based on the Transformer architecture, introduced in the paper "Attention is
All You Need" by Vaswani et al. (2017). The Transformer model discards traditional

Page 54

Introduction générale

recurrent layers and relies entirely on an attention mechanism to draw global dependencies
between input and output, which allows for more parallelization and reduces training
times.

- Attention Mechanism: The key innovation of the Transformer is the self-attention
mechanism, which computes the relevance of each part of the input data to other
parts. This mechanism allows the model to weigh the importance of each word in a
sentence, regardless of its position, making it truly bidirectional.

2. BERT Architecture
BERT’s architecture is a multi-layer bidirectional Transformer encoder. Here are the key
components:

- Input Representation: BERT transforms input text into fixed-size vectors. Each
token is represented by combining its corresponding token, segment, and position
embeddings.

- Token Embeddings: Represent the tokens generated from subword tokenization
(WordPiece).

- Segment Embeddings: Differentiate between sentences in tasks that involve mul-
tiple inputs (e.g., question answering).

- Position Embeddings: Indicate the position of a token within a sentence, which
is crucial since the model does not use recurrent layers.

- Bidirectional Context: Unlike previous models that read text from left to right
or right to left, BERT reads the entire sequence of words at once. This allows the
model to learn the context of a word based on all of its surroundings (left and right
of the word).

3. Pre-training BERT
BERT is pre-trained on two unsupervised tasks:

- Masked Language Model (MLM): Random words in each sentence are replaced
with a special token "[MASK]", and the model learns to predict the original word
based only on its context. Unlike traditional left-to-right language modeling, this
allows the representation to fuse the left and the right context, which helps in un-
derstanding the meaning of the sentence better.

- Next Sentence Prediction (NSP): The model learns to predict if a given sen-
tence logically follows another sentence. This is important for tasks that require
understanding the relationship between sentences, such as question answering and
natural language inference.

4. Fine-Tuning BERT
Once pre-trained, BERT can be fine-tuned with additional output layers for a wide array
of specific tasks without substantial modifications to the architecture:

- Fine-tuning: This involves training the entire model end-to-end on a smaller
dataset specific to a particular task. The fine-tuning adjusts the weights of the
pre-trained network to better perform the task, such as sentiment analysis or ques-
tion answering.

Page 55

Introduction générale

Word2Vec

Word2Vec is a shallow, two-layer neural network model designed to reconstruct the linguistic
contexts of words. It takes a large corpus of text as input and produces a high-dimensional
vector space, typically consisting of several hundred dimensions. Each unique word in the
corpus is assigned a corresponding vector in this space. Words that share common contexts in
the corpus are positioned closely to one another, facilitating efficient similarity computations.
including theoretical aspects:

Figure 4.4: Word2Vec Embeddings Architecture

Architecture

Word2Vec can be implemented in two forms: the Continuous Bag of Words (CBOW) model
and the Skip-Gram model. Both models are algorithmically similar but differ in the way they
process the input and output data.

- CBOW Model: This model predicts a target word based on the context words sur-
rounding it. It treats the entire context as a single observation, which tends to smooth
over the distributional information, making it particularly useful for smaller datasets.

- Skip-Gram Model: In contrast to CBOW, the Skip-Gram model predicts the surround-
ing context words from a target word. It treats each context-target pair as a separate
observation.

Mechanism of Learning Word Embeddings

Word2Vec utilizes a simple feedforward neural network with a single hidden layer. During
training, the model adjusts the weights of the network to minimize a loss function, aiming to
improve the prediction accuracy of context words given a target word.

- Input Layer: The model takes one-hot encoded vectors representing words from the
vocabulary.

- Hidden Layer: This layer acts as a fully connected layer whose weights form the word
embeddings. The output from this layer is essentially the word vector for the input word.

Page 56

Introduction générale

- Output Layer: The output layer uses a softmax function to provide a probability dis-
tribution over the vocabulary, predicting the likelihood of context words.

4.6 Vector DB

4.6.1 Vector Database Management System (VDBMS)

A Vector Database Management System (VDBMS) is a specialized form of database designed
to efficiently handle vector data, which are high-dimensional representations of data objects.
Unlike traditional databases that manage scalar values and structured data, VDBMSs are opti-
mized to store, manage, and process vector embeddings that capture the complex relationships
and semantic meanings inherent in various forms of unstructured data such as text, images,
audio, and video. [36]

4.6.2 Vector DB VS Traditional DB

Aspect Traditional DB Vector DB
Data Type Handling Primarily designed for structured

data with fixed schemas. Inef-
ficient in handling unstructured
data like text, images, audio.

Optimized for managing unstruc-
tured data by transforming it into
vector embeddings that are effi-
ciently stored and retrieved.

Scalability Struggle with the volume, veloc-
ity, and variety of modern data.
Performance bottlenecks often re-
quire costly hardware upgrades.

Designed to scale effectively with
large datasets, supporting high-
speed similarity searches and low-
latency queries.

Flexibility Schemas are predefined and in-
flexible, making it difficult to
adapt to changing data struc-
tures and requirements.

Schema-less and more adaptable,
allowing for seamless integration
of diverse data sources and evolv-
ing data structures.

Performance Can face significant performance
issues when managing large
amounts of unstructured data,
leading to increased costs.

More cost-effective scaling and
improved performance capabili-
ties make handling large data vol-
umes more feasible.

Data Retrieval Limited to exact matches and
simple queries. Cannot perform
complex similarity searches re-
quired by modern applications.

Capable of complex similarity
searches across high-dimensional
data spaces, crucial for AI-driven
applications like recommendation
systems.

Cost Efficiency Handling large and complex
datasets can be costly due to the
need for frequent upgrades and
maintenance.

Generally more cost-effective in
the long run due to better scal-
ability and the avoidance of fre-
quent hardware upgrades.

Page 57

Introduction générale

4.6.3 Use Cases of Vector Databases

1. Enhanced Search Capabilities:

- Similarity Search: Utilizes vector embeddings to perform deep, content-based searches
across various media such as text, images, and audio. This technology allows plat-
forms to offer searches that consider the context and content of the items rather
than just metadata.

- Semantic Match: Moves beyond traditional keyword matching by understanding the
semantic meaning of the content, providing more accurate search results that reflect
the intent and context of user queries.

- Product Search Enhancement: Optimizes e-commerce search engines by interpreting
product features and user intent at a semantic level, improving the relevancy of search
results and thereby enhancing user experience.

2. Personalization through Recommendation Systems:

- General Use: Vector databases power recommendation systems that personalize user
experiences by matching user profiles with item embeddings. This results in highly
tailored suggestions across various services.

4.6.4 How does Vector DB work

This subsection elucidates the operational mechanisms and workflow of vector databases, spe-
cialized systems designed to efficiently manage and process high-dimensional vector embeddings.
The comprehensive explanation extends from the initial data input to integration with broader
data ecosystems, emphasizing the technological advancements and operational efficiencies.

1. Data Embedding

- Transformation Process: The process commences with the conversion of raw data
from varied sources, including text, images, audio, and video, into vector embed-
dings. These embeddings are numerical representations that encapsulate the seman-
tic meaning and intrinsic features of the data.

- Technological Tools: Advanced services such as Azure OpenAI Embedding Service
or using local embedding models from Hugging Face are deployed to facilitate this
transformation, ensuring precise and meaningful vector representation.

2. Indexing and Storage

- Algorithmic Indexing: Following vectorization, the embeddings are indexed using
state-of-the-art algorithms like Product Quantization (PQ) or Hierarchical Navi-
gable Small World (HNSW). These algorithms organize the embeddings into data
structures optimized for rapid search and efficient retrieval.

- Structured Storage: The indexed embeddings are systematically stored within the
vector database, which enables swift access and robust management, underpinning
the performance and responsiveness of the system.

3. Querying and Retrieval

Page 58

Introduction générale

- Processing of Queries: Queries are submitted to the database in vector form and pro-
cessed through a comparison with the indexed vectors, utilizing predefined similarity
metrics.

- Efficient Retrieval: The most congruent vectors are retrieved based on these metrics,
providing users with results that are not only relevant but also precise.

Figure 4.5: Diagram illustrating how vector databases work.[13]

4.6.5 Indexing in Vector Databases

Indexing in vector databases is a data structure technique that organizes high-dimensional
vector embeddings to facilitate quick and efficient data retrieval. This process is crucial for
enabling rapid similarity searches, which are essential for AI applications like recommendation
systems and natural language processing. By structuring data into easily searchable formats,
indexing significantly enhances the performance of vector databases, improving query speed
and reducing computational load. This optimization allows vector databases to manage large
datasets effectively, supporting dynamic AI-driven environments with enhanced scalability and
responsiveness.

4.6.6 Similarity Measures in Vector Databases

Similarity measures are pivotal in various domains like natural language processing and com-
puter vision for assessing the closeness of vector embeddings. These measures play a critical
role in applications ranging from semantic search and recommendation systems to anomaly
detection. The choice of an appropriate similarity metric is crucial as it directly influences the
effectiveness of algorithms used for retrieving the most relevant vectors in response to a query.

.

Euclidean Distance Euclidean distance measures the straight-line distance between two
vectors in a multidimensional space and is calculated using the formula:

d(a, b) =
√√√√ n∑

i=1
(ai − bi)2

where a and b are vectors. It is most suitable for systems where the magnitude of vector
components represents meaningful data. However, it is sensitive to the scale of the data, which
can be a limitation in environments where different dimensions do not share a common scale.

Cosine Similarity Cosine similarity, on the other hand, evaluates the cosine of the angle
between two vectors, providing a measure of orientation and not magnitude:

sim(a, b) = a · b

∥a∥∥b∥

Page 59

Introduction générale

This measure is independent of the vector magnitude, making it ideal for comparing the simi-
larity in direction of two vectors, often used in text analysis and other fields where orientation
is more significant than magnitude.

Dot Product Similarity Dot product similarity is a straightforward approach that sums
the products of corresponding components of two vectors:

a · b =
n∑

i=1
aibi

This metric can reflect both magnitude and orientation, making it useful in environments where
both properties of vectors are essential for performance.

4.6.7 Vector Database Examples

In the dynamic field of data science, vector databases are crucial for managing high-dimensional
data efficiently. These databases are tailored for applications in artificial intelligence (AI),
machine learning (ML), and natural language processing (NLP), where traditional databases
fall short due to their inability to handle complex data relationships and unstructured formats
effectively.

4.6.7.1 ChromaDB

ChromaDB is an open-source vector database that enhances the development of Large Language
Model (LLM) applications by allowing easy management of text documents and conversion of
text to embeddings for similarity searches.

Figure 4.6: Building llms using chromadb

Key Features:

- Open-source, with over 8,000 GitHub stars.

- Supports extensive queries, filtering, and density estimates.

- Scalable from a Python notebook to production clusters seamlessly.

Page 60

https://docs.trychroma.com/

Introduction générale

4.6.7.2 Pinecone

Pinecone is a managed vector database designed specifically for handling the challenges of high-
dimensional data. It supports scalable, real-time data ingestion and low-latency search, making
it ideal for large-scale ML applications.

Key Features:

- Provides a fully managed service.

- Ensures real-time data ingestion and low-latency searches.

- Highly scalable and integrates with LangChain.

4.6.7.3 Qdrant

Qdrant is both a vector database and a powerful tool for vector similarity searches, suitable for
developing complex applications like matching systems and recommendation engines.

Key Features:

- Open-source with over 12,500 GitHub stars.

- Features a versatile API and advanced filtering options.

- Designed with a cloud-native architecture for superior scalability and efficiency.

These vector database examples illustrate the variety of tools available for effectively man-
aging high-dimensional vector data, each equipped with unique features to cater to different
application needs in AI, ML, and beyond.

4.7 Introduction to Prompt Engineering

Prompt engineering has rapidly evolved into a critical technique within the field of Natural
Language Processing (NLP), especially pertinent to the deployment of Large Language Models
(LLMs). This method involves the strategic use of task-specific instructions or prompts that
guide the behavior of these models, simplifying the application of deep learning models and
extending their utility across diverse domains [37].

4.7.1 Defining Prompt Engineering

Prompt engineering is the art and science of crafting textual prompts that effectively guide the
outputs of pre-trained models like LLMs. These prompts act as direct instructions, which the
models interpret to generate desired responses without any modifications to their underlying
architecture, democratizing the use of sophisticated machine learning models [?].

Page 61

Introduction générale

4.7.2 Components of Effective Prompts

Effective prompting of Large Language Models (LLMs) involves a series of key components
that structure the interaction and guide the model’s responses:

- Input Data: This is the primary information that the model encounters and needs to
process, influencing the model’s output accuracy [38].

- Exemplars: Specific examples of correct input-output pairs provided within the prompt,
serving as a guide to the desired format and quality of the model’s responses [38].

- Instruction: A clear and concise textual description of the expected output, directing
the model’s attention and processing [38].

- Indicators: Tags or formatting elements that introduce structure to the prompt, aiding
in the effective segmentation of the prompt [38].

- Context: Additional information that enhances the model’s understanding of the input,
improving accuracy and relevance of responses [38].

4.7.3 Types of Prompting

Prompting techniques are categorized based on complexity and the specificity of the task they
address:

- Zero-shot Prompting: Involves presenting a model with a task it has not explicitly
seen during training, testing the model’s ability to generalize from its training data [39].

- Few-shot Prompting: Provides the model with a few examples of the task, helping it
understand the task’s requirements more clearly [39].

- Chain of Thought Prompting: Encourages the model to simulate a step-by-step
reasoning process before arriving at a conclusion, useful for complex problem-solving [39].

- Instruction-based Prompting: Direct and task-specific prompts that guide the model
to produce outputs that adhere closely to the given instructions [39].

- Hybrid Prompting: Combines elements of the above strategies to optimize model
performance for more complex or nuanced tasks [39].

Advanced Prompting Techniques: Tree of Thoughts and Graph of Thoughts

Advanced techniques like Tree of Thoughts (ToT) and Graph of Thoughts (GoT) are designed
for tackling complex problems that benefit from strategic problem-solving, allowing for dynamic
exploration of possible solutions. These approaches use natural language to evaluate progress
and integrate search algorithms for enhanced problem-solving capabilities

Each of these prompting techniques demonstrates the flexibility and adaptability of prompt
engineering, applying LLMs to a range of NLP tasks from simple classification to complex
problem-solving scenarios [39].

Page 62

Introduction générale

4.8 Conclusion:

In conclusion, the progression from traditional NLP methods to the transformative introduction
of transformer architectures has set the stage for the development of Large Language Models
(LLMs). These models, embodying advanced transformer technology, are crucial in handling the
complexities of human language by efficiently managing long-range dependencies and context.
The evolution to LLMs illustrates a significant leap forward in AI, providing more nuanced,
accurate, and contextually relevant language processing capabilities. This advancement not
only enhances the practical applications of AI in various domains but also signifies a pivotal
shift towards models that more closely emulate human-like understanding and interaction.

Page 63

Chapter 5

RAG AND AI AGENTS

5.1 Introduction to RAG

In the field of artificial intelligence, large language models (LLMs) such as GPT-3 and BERT
have revolutionized text generation. Despite their remarkable capabilities, they face significant
challenges, including reliability and the timeliness of the information provided. Due to their
reliance on static training data, a major limitation is their inability to access private organi-
zational data. As a result, LLMs may produce outdated, inaccurate, or even “hallucinated”
responses, inventing fictional information.[40]

To address these challenges, fine-tuning LLMs for specific tasks is often employed. This method
requires substantial resources in terms of annotated data and processing capacity. Moreover,
the increasing complexity of the algorithms used in fine-tuning LLMs leads to a significant
rise in time and computational resource costs. Advanced algorithms require intensive com-
putations and robust computing infrastructures to function efficiently, which can considerably
burden operational costs. Additionally, continuous updating is necessary to incorporate recent
information developments, further increasing the complexity and associated costs.

Retrieval-Augmented Generation (RAG) emerges as an innovative response to these challenges.
RAG redirects LLMs towards reliable and up-to-date knowledge sources, enabling better con-
trol over the generated content and offering more transparency to users. This approach is
particularly relevant for organizations looking to securely integrate their own private data into
the text generation process, thus overcoming one of the main limitations of LLMs.

In this chapter, we will explore the impact of RAG on the use of LLMs, focusing on how it
addresses issues of reliability, timeliness, and access to private data. We will also examine how
RAG, by enhancing the accuracy and relevance of the generated responses, makes LLMs more
suited for applications in professional and sensitive environments.

5.2 Definition

Retrieval-Augmented Generation (RAG) is a framework originally developed by researchers
at Meta AI, which merges information retrieval and text generation, thereby enriching the
responses of LLMs with data from external sources such as databases and websites. As explained
by Luis Lastras, an expert in language technologies at IBM Research, the operation of RAG can
be likened to that of a model relying on external resources, similar to consulting a book, rather

64

Introduction générale

than being confined solely to its internal knowledge. This approach enhances the accuracy and
relevance of the responses produced by LLMs, thus providing results that are richer in context
and tailored to the specific needs of the user.‘[40, 41, 42]

5.3 RAG Pradigms

5.3.1 Naive Rag

In the Naive Retrieval-Augmented Generation (RAG) method, the process involves three main
phases: Indexing, Retrieval, and Augmentation & Generation. This basic form of RAG is a
straightforward implementation of the concept and follows these steps:

Indexing:

- Loading Data: Import of all documents or information to be used, which can be in
various formats such as PDF, HTML, Word, Markdown, or from websites or databases.

- Data Splitting: Division of large documents into smaller pieces or chunks, typically less
than 500 characters each, but adjusted according to the LLM’s context limitations.

- Data Encoding (embeddings): Conversion of data into a vector form using an encod-
ing model to make them comprehensible for computers.

- Data Storage: Saving these vector embeddings in a vector database for easy search and
retrieval.

Retrieval:

- When a user query is received, it is transformed into a vector using the same encoding
model as in the indexing phase.

- The system calculates similarity scores between the query vector and the vectors of chunks
in the corpus, identifying and retrieving the top K chunks that have the highest similarity
with the query.

Augmentation & Generation:

- The selected chunks, along with the original query, are compiled into a prompt.

- The LLM then responds to this prompt, drawing on its inherent knowledge or the infor-
mation contained in the provided documents.

- For multi-turn dialogues, the existing conversational history can be incorporated, enhanc-
ing the model’s capability in ongoing interactions.

Page 65

Introduction générale

Figure 5.1: Naive rag pipeline [14]

Naive RAG is characterized by its "Retrieve-Read" framework and straightforward approach
of combining retrieval and generation. The process involves indexing, retrieval, and gener-
ation, allowing the inclusion of external information to enhance the LLM’s responses. This
makes Naive RAG a fundamental and essential approach in the development and application
of Retrieval-Augmented Generation systems.[40, 41, 42]

5.3.2 Advanced RAG

Figure 5.2: advanced rag pipeline [14]

Chunking and Vectorization

Chunking: In the context of Retrieval-Augmented Generation, ’chunking’ involves segmenting
large texts into manageable pieces. The size of the chunks, adjusted according to the embedding
model, aims to balance the necessary context for understanding and the specificity required for

Page 66

Introduction générale

effective retrieval. Various chunking strategies are employed to optimize information retrieval.
Among these are fixed-size chunking, which ensures uniformity, and recursive chunking, suited
for texts with varied structures. These methods aim to balance the amount of context needed
for understanding and the precision necessary for effective search within the RAG system.

Vectorization: Following chunking, the next step is to convert these text chunks into vectors
using suitable models. Models like bge-large or embeddings from the E5 family are often used
for this purpose. The choice of embedding model is crucial as it determines the quality and
utility of the vectors in the retrieval process. To evaluate and compare the performance of
various embedding models, one can refer to the rankings available on the Hugging Face Model
Hub, a recognized leaderboard in the field of artificial intelligence.

Overall, chunking and vectorization are critical for transforming large textual documents into
a format that can be utilized by machine learning models, particularly in the context of RAG
systems. Proper execution of these steps is essential to ensure that the system can retrieve the
most relevant and contextually appropriate information in response to user queries.

Search Index

Vector Stores: In the context of Retrieval-Augmented Generation (RAG) systems, embed-
dings are numerical representations in a multidimensional space, typically for unstructured
data. Given this specificity, traditional Relational Database Management Systems (RDMS)
are unsuitable for storing these vector embeddings. In response, vector databases, or vector
stores, are developed specifically to store and retrieve embeddings efficiently. These databases
are unique in their ability to support various embedding models and to implement advanced
search algorithms for identifying similar vectors, making them indispensable in RAG applica-
tions.

In RAG systems, two types of vector storage are distinguished:

- Vector Storage Libraries: Libraries such as FAISS and ANNOY are designed for
scenarios where vector data remains static, suitable for batch data applications that
do not require frequent updates. They are limited to storing embeddings and do not
support CRUD (Create, Read, Update, Delete) operations, complicating the addition or
modification of data in existing indexes.

- Vector Databases: On the other hand, vector databases like Pinecone, Weaviate, and
Milvus facilitate dynamic management of vector data, including CRUD operations. These
systems store both the embeddings and the associated documents, making them suitable
for environments requiring frequent updates, flexibility, and scalable data management.
These databases are optimized for speed and scalability, meeting the needs of applications
requiring fast queries and regular updates.

Hierarchical Index:

In the case of large databases containing numerous documents, efficient search and retrieval
of relevant information become crucial. A strategic approach to address this challenge is the
implementation of a two-level indexing system. This system comprises two distinct indices: one
for summaries and the other for document fragments.

Page 67

Introduction générale

- Summary Index: The first index contains summaries of each document. These sum-
maries are comprehensive representations of the main ideas or content of the documents.
The purpose of this index is to provide an initial, high-level filtering mechanism. When
a query is received, it is first executed against this summary index. This step acts as a
preliminary filter, quickly narrowing down the potential pool of documents to those most
likely to contain relevant information based on their summaries. This helps to swiftly
eliminate irrelevant documents and focus the search on a more manageable subset.

- Chunk Index: The second index consists of smaller, more detailed fragments of each
document. After identifying relevant documents through their summaries, the query is
then processed against this second index. This deeper search is limited to the already
filtered set of documents. The fragment-based index allows for more granular and precise
information retrieval. It examines the details of each relevant document, retrieving the
exact fragments containing information aligned with the query.

Fusion Retrieval / Hybrid Retrieval

Hybrid retrieval, or fusion retrieval, is an advanced method that combines the strengths of
keyword-based search and semantic search to improve the accuracy and relevance of search
results. This approach compensates for the limitations of each method by using their com-
plementary capabilities, thus offering a more robust solution for complex information retrieval
tasks[?].

1. Keyword-Based Search: Traditionally, keyword-based search is the cornerstone of
search engines. It operates on the principle of exact word matching. This method utilizes
sparse vector search, where documents are represented as vectors in a multi-dimensional
space. Each dimension corresponds to a unique keyword, and the value in each dimension
reflects the presence and frequency of the keyword in the document, often enhanced by
the TF-IDF (Term Frequency - Inverse Document Frequency) weighting scheme. Despite
its effectiveness for retrieving precise terms, this method is limited by its sensitivity to
synonyms and variations in wording, which can result in missing contextually relevant
documents that do not contain the exact keywords.

2. Semantic Search: In contrast, semantic search, also known as dense vector search, uses
machine learning algorithms to understand the meanings behind words and phrases, cre-
ating richly detailed vector representations of data. These dense representations, with
predominantly non-zero values, capture contextual relationships between words, allowing
the system to effectively handle synonyms, linguistic nuances, and even multilingual con-
tent. The main challenge here is that semantic search may overlook important keywords
if these are not well represented in the training data for the vector models.

3. Combining Both Methods: Hybrid retrieval integrates these two approaches by inde-
pendently processing a query through both keyword-based and semantic search methods.
Each generates a list of results based on their respective algorithms. The fusion of these
results is accomplished through a reranking process, where relevance scores from both
methods are combined using a weighted sum formula:

hybrid score = (1 − α) × keyword score + α × semantic score

where α is a parameter ranging from 0 to 1, allowing the system to balance the influence of
keyword accuracy and semantic context according to the specific needs of the user[?, 43].

Page 68

Introduction générale

Reranking

1. Definition: Reranking, in the context of information retrieval, is a crucial process that
involves reorganizing the documents or data segments initially retrieved by a search sys-
tem. This technique adjusts the ranking of these items to improve the quality of the
final results presented to the user. Initially, a basic retrieval step extracts a broad set of
potentially relevant results using methods such as sparse vector similarity or dense vector
search. However, these initial rankings often lack precision, requiring further refinement
to ensure that the most relevant results are prioritized at the top of the list.

Figure 5.3: Reranking process [15]

2. Necessity of Reranking: The main purpose of reranking is to address the deficiencies
of the initial retrieval phase, which often produces a list with a suboptimal order. The
initial list, though expected, may include relevant documents that are not highly ranked
due to the limitations of traditional ranking algorithms that heavily rely on keyword
matching or basic vector similarity. Consequently, important contextual cues and deeper
content relevance, crucial for high-quality retrieval, might be overlooked.

3. Implementation of Reranking: Reranking can be executed by various methods:

- Rule-Based Methods: These rely on predefined metrics such as Diversity, Relevance,
and Mean Reciprocal Rank (MRR). They use simple but effective criteria to reor-
ganize results based on specific, often quantifiable, attributes of the search results.

- Model-Based Approaches: These involve more sophisticated techniques using ma-
chine learning models, particularly those in the BERT series like Span BERT. These
models are trained to better understand the nuances of language and context, pro-
viding a more nuanced reranking based on a deeper semantic understanding.

- Specialized Reranking Models: Tools such as Cohere reranker or bge-reranker-large
are specifically designed for reranking tasks and are optimized to improve relevance
and diversity in reranked results.

- Large Language Models: Models like GPT can also be adapted to perform reranking
by leveraging their extensive training on vast datasets to assess relevance and context
more effectively than traditional methods.

Page 69

Introduction générale

Query Transformation

1. Purpose: Query transformation is an essential process in the retrieval pipeline, aiming
to convert user queries into a form that enhances the effectiveness and efficiency of the
retrieval system. This transformation adjusts the query to better match the underlying
data structure and retrieval algorithms[44].

2. Techniques:

- Expansion: This technique involves adding related terms or synonyms to the query
to increase the scope of the search and improve the chances of retrieving relevant
documents.

- Simplification: Simplifying the query can help focus the search on key terms, reduc-
ing the noise and increasing precision.

- Normalization: Converting terms to a standard format, such as lowercasing, stem-
ming, and lemmatization, ensures consistency in how queries and documents are
matched.

3. Benefits: Query transformation enhances the search process by ensuring that the query
aligns more closely with the semantics of the data and the capabilities of the search engine.
It helps bridge the gap between the user’s natural language expression and the technical
requirements of the retrieval system[44].

Chat Engine

One of the essential aspects of building an effective RAG (Retrieval-Augmented Generation)
system, capable of processing the same query multiple times, lies in the dialogue logic. This
includes accounting for the context of the dialogue, similar to classic chatbots from the pre-
LLM era. This feature is crucial for managing follow-up questions, anaphoras, or arbitrary user
commands relating to the previous dialogue context.

There are several modes of the chat engine:

- ContextChatEngine: A popular and relatively simple approach. This method starts
by retrieving the relevant context for the user’s request, then sends this context to the
LLM, accompanied by the chat history from the memory buffer. This allows the LLM to
consider the previous context when generating the next response.

- CondenseChatEngine: A simple chat mode based on a query engine that directly
queries your database. For each interaction in the chat:

1. Generate a standalone question: First, generate a standalone question from the
context of the conversation and the last message received.

2. Query the Query Engine: Next, query the query engine with the condensed question
to obtain a response.

- Condense Plus Context Mode: A more sophisticated method, where during each
interaction, the chat history and the last message are condensed into a new query. This
query is then sent to the index, and the retrieved context is transmitted to the LLM with
the original user message to generate a response.

Page 70

Introduction générale

Figure 5.4: Chat Engine types [14]

It is important to note that there is also support for OpenAI agents in the LlamaIndex Chat
Engine, offering a more flexible chat mode. Similarly, Langchain supports OpenAI’s functional
API.

Illustration of different types and principles of Chat Engine

While other types of dialogue engines, such as the ReAct agent, exist, we will directly address
the agents themselves later This segmentation of dialogue management techniques showcases
the evolution of interactive dialogue systems, leveraging advanced technologies to enhance the
accuracy and relevance of responses in continuous conversation contexts.

Example of Application

Illustration with a chatbot programmed to answer questions about programming. Depending
on the nature of the question, the chatbot uses routing to consult the relevant index, thereby
improving the accuracy and speed of the responses provided.

5.4 Rag Evaluation

Generation metrics used in rag

The primary objective of a Retrieval-Augmented Generation (RAG) system is to produce a
meaningful and contextually relevant output. The evaluation of such systems must ensure that
the generated content effectively utilizes the retrieved context without merely duplicating it,
thereby avoiding redundancy and incomplete responses. It is essential to develop metrics that
accurately assess each of these criteria.[45]

RAG systems utilize two key metrics to evaluate the performance of a Large Language Model’s
(LLM) output: Faithfulness and Answer Relevance.

Page 71

Introduction générale

5.4.1 Faithfulness

This metric evaluates how factually correct the generated answer is based on the provided
context. A response is considered faithful if it can be verified against the context without
introducing inaccuracies. However, a high faithfulness score does not necessarily imply relevance
to the query posed, as the response could simply reiterate the context without addressing the
query’s specifics[46].
Faithfulness score = Number of claims in the generated answer that can be inferred from given context

Total number of claims in the generated answer

5.4.2 Relevancy

This metric determines the pertinence of the response to the posed question. An answer
scoring high on this metric directly addresses the query, enhancing user satisfaction. However,
it is penalized if it includes irrelevant or repetitive information, or if it fails to provide a
comprehensive answer.

To summarize, the evaluation of a RAG system involves a combination of assessing the factual
accuracy (Faithfulness), contextual relevance (Answer Relevance), of the responses. These
metrics ensure that the generated answers are not only accurate and relevant but also provide
meaningful engagement in conversational applications.

5.5 AI Agents

The advent of generative AI, notably through platforms like ChatGPT, initially popularized
applications focused primarily on dialogue systems that interact over a fixed corpus using
Retrieval-Augmented Generation (RAG). As the field matures, there is a growing pivot towards
next-generation AI applications embodying a more sophisticated architectural paradigm—AI
agents. These agents are envisioned not merely as tools for dialogue but as robust systems
capable of complex reasoning, strategic planning, and dynamic interaction with both data and
environments.

Recent strides in foundation models, particularly those like GPT-4, alongside burgeoning open-
source initiatives such as AutoGPT and BabyAGI, illustrate a significant shift. These models
are no longer confined to the traditional frameworks of response generation but are evolving into
autonomous agents that exhibit a higher degree of functionality and intelligence. Unlike the
zero-shot prompting approach, where a user inputs a query and receives a static response, these
agentic systems integrate planning, iterative loops, reflection, and advanced control structures
to manage tasks comprehensively from start to finish. This enhanced capability is further
augmented by their proficiency in utilizing external tools, plugins, and function calling, enabling
them to perform a wide array of general-purpose tasks.

The research community is actively exploring the potential of these AI agents, particularly
debating the merits of single-agent versus multi-agent systems. Single-agent architectures excel
in well-defined problem spaces with minimal need for external feedback, whereas multi-agent
systems are designed for scenarios requiring collaboration and diverse execution paths. Multi-
agent systems leverage the communicative and reasoning abilities of LLMs, allowing multiple
specialized agents to interact and solve complex problems collaboratively.

In summary, AI agents represent a significant evolution in artificial intelligence, expanding

Page 72

Introduction générale

the capabilities of generative models beyond simple dialogue to encompass comprehensive task
management and strategic planning. These advancements promise to unlock new potential
across various applications, driving further innovation and development in the field.

5.5.1 Definition :

AI agents are sophisticated entities powered by language models capable of planning and ex-
ecuting actions to fulfill specific goals across multiple iterations. These agents are complex
systems comprising potentially single or collaborative multiple agents working together to ad-
dress various challenges [47]. Each agent, equipped with distinct personas, utilizes a range of
tools to perform tasks either autonomously or as a part of a team. A key feature of some AI
agents is their ability to retain and retrieve information outside their immediate interactions,
significantly enhancing their functionality.

5.5.2 Core Components of AI Agents

The core functionality of an AI agent is encapsulated in the triad of “brain, perception, and
action,” essential for the agents to comprehend, reason, and interact with their environment
[47]. This conceptual framework allows AI agents not only to interact dynamically with external
data sources but also to alter these sources through sophisticated toolsets. Thus, AI agents
transcend traditional static data interactions, moving towards a more interactive and mutable
engagement with data.

- Decision-making Thought: AI agents, particularly those based on large language mod-
els (LLMs), exhibit a sophisticated decision-making process. Guided by prompts, these
agents can decompose complex tasks into manageable subgoals [48], methodically think
through each part (sometimes exploring multiple paths) [49], and incorporate lessons from
past experiences [50] to enhance decision-making in complex situations. This capability
significantly boosts the autonomy and problem-solving effectiveness of a single LLM-based
agent.

- Tool-use: LLM-based agents possess the capability to employ external tools and re-
sources to execute tasks, thus expanding their operational functionalities [51, 52, 53].
This ability enables agents to operate more effectively within diverse and dynamic envi-
ronments, handling various interactive and data-manipulation tasks.

- Memory: The memory capabilities of LLM-based agents involve both short-term in-
context learning [54] and long-term storage using external vector databases [55]. Such
memory functionalities allow agents to preserve and retrieve information over extended
periods, enhancing contextual coherence and the ability to learn from interactions [56].

5.5.3 Types of AI Agent Architectures

AI agents can be structured in various architectures, each designed to optimize different aspects
of task execution and collaboration:

Page 73

Introduction générale

- Single Agent Architectures: These systems rely on a single language model to perform
all planning, reasoning, and tool execution. In these architectures, the agent operates
independently, though there may be mechanisms for human feedback [47].

- Multi-Agent Architectures: In contrast, multi-agent systems involve two or more
agents that may use the same or different language models. These agents can share or
have access to distinct tools, and each agent typically maintains its own persona [47].

- Vertical vs. Horizontal Architectures: Multi-agent systems can be organized in
vertical architectures where one agent leads and others report to them, or in horizontal
architectures where agents operate as equals in a collaborative environment. These se-
tups reflect different strategies for task division and collaboration, suitable for varying
operational needs and complexity levels [57].

The exploration and implementation of AI agents in various configurations offer a promising
avenue for enhancing the interactivity and capability of language model-based systems. By
structuring agents in single or multi-agent systems, and further refining their operational models
to vertical or horizontal architectures, we can tailor AI systems to meet specific operational
and collaborative needs effectively.

Page 74

Part III

Proposed Solution

75

Chapter 6

Proposed Solution

6.1 Design of the solution

In response to the comprehensive study of the technologies currently employed by the company,
and after closely examining their pain points, we have decided to adopt a modern approach
to develop our chatbot assistant. This initiative is part of our commitment to leveraging
cutting-edge technology to enhance our operational efficiency and customer interaction. In the
following sections, we will outline the design of this solution, revisiting the initial needs and
objectives that we aim to achieve. We will also detail the necessary steps for its implementation,
showcasing our concrete vision for its application.

6.1.1 Client Requirements identification

To elaborate on the needs for this project, we must address the specific requirements essential
for the effective operation of the customer service chatbot at Voxist. This chatbot, designed to
serve as a competent and knowledgeable first point of contact, aims to handle a wide range of
queries and tasks, from accessing tickets and private client data to managing complex company
documents and executing orders. Here is a structured breakdown of the needs and objectives:

1. Sensitive Data Access:

- Client and Patient Data: The chatbot must be able to securely access and interact
with private data including detailed tickets where clients describe their issues. This
includes fields containing sensitive client information, which are crucial for providing
personalized and effective support.

- Company Documentation: The chatbot must have access to internal documents
that describe troubleshooting processes and methods. This includes ITSM diagnos-
tics and client-validated documentation, which must be dynamically retrieved and
used in accordance with confidentiality standards to ensure data security.

2. Command Execution:

- The chatbot should be capable of carrying out actions directly via commands. This
includes routine troubleshooting tasks such as resetting passwords, unlocking ac-
counts, or software installations, which the chatbot must manage either through
scripted actions or direct intervention.

76

design of the solution

3. Dynamic Interaction and Real-Time Updates:

- Context Awareness: The system must be adept at understanding and adapting to
the ongoing context of a client or patient, such as recognizing an open ITSM ticket
or identifying specific needs based on the user’s history and current state.

- Real-Time Data Management: Despite the inherent limitations of LLMs in up-
dating real-time, the chatbot must incorporate techniques like Retrieval-Augmented
Generation (RAG) to retrieve the most relevant and updated information from a
mix of private databases and public data sources.

4. Handling Complex Cases:

- Simple vs. Complex Requests: The chatbot must differentiate and handle
simple requests requiring quick solutions and more complex scenarios where higher-
level intervention is necessary. For complex cases, the chatbot must be able to
efficiently escalate the problem to human agents, ensuring smooth transition and
communication.

5. User Interface and Experience:

- Ease of Use: The interface must be intuitive, allowing users to navigate and in-
teract easily without confusion, which is particularly important in high-tension en-
vironments like customer service.

6. Saving the Conversation

The design and implementation of this chatbot require a clear understanding of these needs
to ensure thatit enhances the efficiency and effectiveness of customer service operations at
Voxist. The following sections will delve deeper into the design of this solution, detail the
implementation steps thoroughly, and present a vision of its practical application.

Figure 6.1: Processing scenario

Page 77

design of the solution

6.1.2 Proposed Solution: Implementing a Structured Multi agent
system

Overview

The envisioned solution for enhancing client service within the company involves constructing
a sophisticated multi-agent system. This system is centered around a Meta Agent, which
functions as the orchestrator, orchestrating interactions among various specialized sub-agents
tailored to specific roles. Each sub-agent acts as a tool or extension of the Meta Agent, equipped
to handle different aspects of the service process based on user inputs and enriched prompts.

Technologies Used

The development of the multi-agent chatbot system involved the integration of several ad-
vanced technologies and platforms. These technologies played crucial roles in ensuring robust
performance, scalability, and seamless integration with existing business operations. The key
technologies used are as follows:

- OpenAI APIs
The OpenAI APIs, specifically the GPT-4o model, were central to the chatbot’s nat-
ural language processing capabilities. The APIs facilitated the seamless generation of
human-like text, enabling the system to understand and respond to user queries with
high accuracy and relevance. The choice of GPT-4o was driven by its balance of cost ef-
ficiency and performance, making it suitable for dynamic customer service environments.

- Llama Index
The Llama Index was used as a core framework for managing and retrieving large volumes
of text data. It enabled the system to perform advanced Retrieval-Augmented Generation
(RAG) tasks, ensuring that responses were not only contextually accurate but also backed
by relevant information from the company’s document repository. This integration was
crucial for maintaining the depth and reliability of interactions.

- GROQ Cloud
GROQ Cloud provided the computational infrastructure necessary to handle the intensive
processing demands of the multi-agent system. Its scalable and efficient cloud-based
solutions ensured that the system could manage high volumes of concurrent interactions
without compromising on performance. This infrastructure was essential for the real-time
processing and delivery of responses, supporting the system’s operational efficiency.

- Hugging Face
The Hugging Face platform was utilized for accessing a variety of pre-trained models
and tools that enhanced the system’s natural language understanding capabilities. By
leveraging Hugging Face’s extensive library of models, the system was able to incorporate
state-of-the-art techniques in NLP, improving its ability to comprehend and generate
complex responses. This platform also facilitated the integration of additional models,
providing flexibility and scalability.

- Langfuse
Langfuse played a critical role in monitoring and optimizing the performance of the LLMs
used in the system. It provided tools for tracing, evaluating, and managing prompts,

Page 78

design of the solution

as well as metrics for cost and latency analysis. Through Langfuse, the system was
able to track the cost per million tokens and compare the latencies of different models,
ensuring that the chosen model, GPT-4o, offered the best trade-off between cost and
performance. This ongoing monitoring and optimization were vital for maintaining the
system’s efficiency and reliability.

System Components

1. Meta Agent (Orchestrator): This is the central decision-making agent that coordi-
nates all other sub-agents. It assesses user inputs, determines the necessary action, and
delegates tasks to the appropriate sub-agents. The Meta Agent ensures seamless inte-
gration of responses and actions to provide a cohesive user experience. It is enhanced
with a comprehensive prompt that contains all operational guidelines, ensuring it makes
informed decisions and effectively manages the orchestration of sub-agents.

2. User Context Agent: Using a RAG (Retrieval-Augmented Generation) mechanism,
this agent manages a database of user profiles stored in JSON format. It retrieves user-
specific information relevant to the interaction, ensuring that all communication and
solutions are tailored to individual user needs and historical interactions.

3. Documentation Agent: Another RAG-based agent, this one facilitates access to the
company’s internal documentation. It retrieves information and solutions pertinent to
user issues, including detailed processes and internal company knowledge that may aid in
resolving user queries.

4. Execution Agent: Responsible for executing commands as part of the solution process,
this agent handles operational tasks that require interaction with the company’s systems,
such as resetting passwords or updating user settings.

5. Conversation Saving Agent: This agent archives all user interactions, ensuring that
every conversation is recorded for future reference. This is crucial for maintaining conti-
nuity in user service and for leveraging past interactions to train and improve the system.

Figure 6.2: Solution Architecture

Page 79

design of the solution

6.1.3 Operational Workflow

we have developed a streamlined operational workflow that ensures efficient handling of user
interactions and optimal performance of our intelligent systems. This workflow includes the
following steps:

- Initial Interaction: Users initiate contact through a defined interface, presenting their
issue or request.

- Input Assessment: The Meta Agent analyzes the input and decides which agents need
to be engaged based on the nature of the request and the context provided.

- Agent Coordination: Depending on the assessment, the Meta Agent may call on:

◦ The User Context Agent to fetch personalized user data.
◦ The Documentation Agent to access relevant procedural content.
◦ The Execution Agent if a direct action needs to be performed.

- Action and Response Formulation: The Meta Agent compiles the outputs from the
various agents, formulates a coherent response or set of actions, and communicates this
back to the user.

- Conversation Archiving: The Conversation Saving Agent archives the entire interac-
tion for compliance, training, and enhancement purposes.

6.1.4 Benefits of the Multi-Agent System

- Personalized Interactions: By leveraging the User Context Agent, the system en-
sures that all interactions are deeply personalized, increasing user satisfaction and service
efficiency.

- Resource Accessibility: The Documentation Agent provides quick access to necessary
information, reducing the time needed to resolve queries.

- Operational Efficiency: The Execution Agent automates parts of the solution process,
streamlining operations and reducing manual intervention.

- Continuous Improvement: The Conversation Saving Agent allows for ongoing learning
and system refinement, enhancing the system’s performance over time based on real
interactions.

This multi-agent system architecture not only promises to enhance the efficiency and effective-
ness of client service operations but also ensures adaptability and scalability. By integrating
advanced technologies such as RAG with strategic agent roles, the system is poised to transform
client service management in a dynamic business environment.

6.2 Implementation of the solution

This chapter focuses on the practical implementation of the multi-agent system designed for
enhancing client services. It details the critical steps involved, from the development of the

Page 80

design of the solution

dataset to the deployment of system components and the design of the user interface. The fol-
lowing subsections will provide a detailed account of each step, highlighting the methodological
choices, technologies employed, and the outcomes achieved during the implementation process.

6.2.1 Development of the documentation tool -Advanced RAG sys-
tem

This section outlines the development of an advanced Retrieval-Augmented Generation (RAG)
method utilizing the Llama Index framework. Each phase of the development process is focused
on specific aspects of the RAG tool.

Document Collection

The initial phase of the RAG development process commences with the acquisition of internal
company documents. These documents, numbering 25 in total and comprising a mix of PDFs
and DOC files, serve as the primary data sources for the project. Each document contains up
to 30 pages, providing a substantial volume of content for analysis.

Figure 6.3: A glimpse of the documents used in the RAG

Document Cleaning

The collected documents undergo thorough cleaning to remove any undesired characters and
annotations, such as part-of-speech tags. This step ensures the purity and usability of the data
for subsequent processes.

Data Preparation and Vector Database Configuration

The cleaned documents are then prepared for embedding and storage. The Qdrant database,
selected for its robust vector data handling capabilities, is configured as follows:

Page 81

design of the solution

(a) a part of the documentation before cleaning (b) a part of the documentation after

Figure 6.4: Comparision between the documentation before and after cleaning

- Establishment of a collection within the Qdrant vector store.

- Configuration of a free trial setup, including:

◦ 4GB Disk Storage
◦ 1GB RAM
◦ 0.5 vCPU

Figure 6.5: Qdrant Vector store cloud

Database Integration

Integration of the Qdrant database with our Python project is achieved by configuring the API
key and cluster URL, thereby establishing a seamless connection for data handling.

Page 82

design of the solution

Figure 6.6: Qdrant API key Configuration

Document Embedding and Storage

Documents are embedded into the vector store using the chosen embeddings after evaluating
several options, including OpenAI and CamemBERT embeddings. The preferred method is
OpenAI embeddings, specifically the Ada 2 model, primarily due to its superior performance in
preliminary trials. The main reason for selecting the OpenAI Ada 2 model over CamemBERT is
its computational efficiency. CamemBERT, being a larger model, requires significant processing
time when run on a CPU, which makes the Ada 2 model more suitable for our needs due to its
faster performance on less powerful hardware.

Table 6.1: Comparison of Text Embedding Models

Attribute OpenAI Ada-002 Sentence-
CamemBERT
Large

Model Name text-embedding-
ada-002

sentence-
camembert-large

Token Limit 8191 tokens 512 tokens
Embedding Di-
mension

1536 1024

Model Size Not specified 335Billion parame-
ter

Computational
Efficiency

High (optimized for
CPU)

Lower (best with
GPU)

Retrieval and Generation Methods

This phase of the project explores various retrieval strategies, including semantic search en-
hanced by a dedicated reranking step. We employed several large language models (LLMs)

Page 83

design of the solution

for generative capabilities, such as GPT and open-source alternatives like Llama2 and Mistral.
Below is a summary of the techniques and configurations used:

Table 6.2: Methods Used for Retrieval and Generation

Embedding
Technique

Document
Chunking
Strategy (Node
Parser)

Retrieval Strat-
egy

Language
Model (LLM)

OpenAI Em-
beddings

Simple Node Parser
with Chunk Size of
200 and Overlap of
100

Small to big re-
trieval

GPT-4 and
Mistral (GROC)
Models

Camembert
(By Hugging
Face)

Simple Node Parser
with Chunk Size of
200 and Overlap of
100

Small to big re-
trieval

GPT-4 and
Mistral (GROC)
Models

Mini LM
(By Hugging
Face)

Simple Node Parser
with Chunk Size of
200 and Overlap of
100

Small to big re-
trieval

GPT-4 and
Mistral (GROC)
Models

Reranking

For the reranking process, we utilized the SentenceTransformerRerank model specifically de-
signed for enhancing retrieval precision. This model, cross-encoder/ms-marco-MiniLM-L-2-v2,
reranks the top N results to prioritize the most relevant documents, significantly refining the
output of our semantic search.

- Model Used: cross-encoder/ms-marco-MiniLM-L-2-v2

- Top N: 10

- Device: CPU

Evaluation of LLMs: Relevancy and Faithfulness

The evaluation of large language models (LLMs) in our Retrieval-Augmented Generation (RAG)
method is a critical step to ensure the integrity and effectiveness of the generated content. This
subsection details the methodology used to evaluate the performance of the LLMs based on
their relevancy and faithfulness.

Generation of Benchmark Dataset

The evaluation process begins with the generation of a benchmark dataset consisting of ques-
tions and their corresponding answers. This dataset is created using a high-performance LLM,
specifically GPT-4 Turbo, to ensure that the generated answers are of high quality and rele-
vance. The steps include:

Page 84

design of the solution

1. Question Generation: Using the internal company documents as input, GPT-4 Turbo
is tasked with generating a diverse set of questions that cover the key topics and infor-
mation contained in the documents.

2. Answer Generation: For each generated question, GPT-4 Turbo also produces an
answer, aiming to reflect a deep understanding and accurate extraction of information
from the input documents.

Comparative Evaluation

Once the benchmark dataset is prepared, the answers generated by the RAG system are com-
pared against the answers provided by GPT-4 Turbo. This comparison aims to assess two main
aspects:

1. Relevancy: This metric evaluates how relevant the answers generated by the RAG
system are in relation to the questions posed. It checks if the answers adequately address
the questions based on the information available in the documents.

2. Faithfulness: This metric assesses the factual accuracy of the answers generated by the
RAG system. It is crucial that the answers not only pertain to the questions but also are
factually correct and do not introduce misinformation.

Performance Metrics with OpenAI Embeddings The table below shows the perfor-
mance of different language models using OpenAI embeddings. The metrics evaluated include
relevancy and faithfulness, with response times noted to assess operational efficiency.

LLM Relevancy Faithfulness Number of Questions Response Time
GPT-4 0.875 1.0 40 9–10 sec
GPT-3 0.825 0.95 40 1–2 sec

Mistral (GROC) 0.7 0.9 20 6–7 sec

Table 6.3: Evaluation results using OpenAI embeddings.

Performance Metrics with Camembert Embeddings Similarly, the following table presents
the performance using Camembert embeddings from Hugging Face. The focus was on relevancy
and faithfulness without the influence of response time, as it did not vary significantly from
OpenAI embeddings.

LLM Relevancy Faithfulness Number of Questions
GPT-4 0.9 0.925 40

Mistral (GROC) 0.625 0.95 20

Table 6.4: Evaluation results using Camembert embeddings.

Page 85

design of the solution

6.2.2 User Context Agent

This section aims to explain the implementation steps of the user tool which has access to the
user database to extract relevant information

Database Creation and Schema

We initiated by constructing a simulated user information database in a structured JSON
format, essential for delivering personalized services. The database schema includes:

- Username (String)

- User Index (if applicable)

- Machine Blocked Flag (Boolean)

- Unsuccessful Login Attempts (Integer)

- List of Installed Applications on the Machine with Status (Blocked/Unblocked)

- Support Ticket List, with fields such as:

◦ Primary Key (Ticket Identifier)
◦ Ticket Opening DateTime
◦ Ticket Closure DateTime (if closed)
◦ Message DateTime
◦ Sender’s Name/Identifier (String)
◦ Message Content
◦ Closure Cause Status (String, if possible)
◦ Progress Status in a Process (String, if possible)

Critical User Issue Detection Attributes are designed to identify critical issues, requiring
swift responses. A chat engine enhanced with GPT-4o is integrated to manage urgent concerns
effectively, with specialized prompts to ensure appropriate actions.

Embedding Technique and Storage

For effective data handling and retrieval, OpenAI embeddings were selected due to their superior
performance in capturing semantic meanings. The vectorized data is stored locally using the
Llama Index’s storage context, which facilitates the local management of a vector database,
allowing for efficient retrieval-augmented generation (RAG) operations directly on the user’s
machine.

Page 86

design of the solution

Retrieval Mechanism and Chat Engine Integration

Given the complex nature of user interactions and the need for contextual understanding, a
sophisticated retrieval mechanism was implemented. Beyond a basic search engine, a chat
engine was integrated to provide the large language model (LLM) with greater flexibility in
handling conversational queries. This setup ensures that the system can interpret and respond
to user contexts dynamically

Reranking Integration

For the reranking process, we utilized the SentenceTransformerRerank model specifically desi-
gned for enhancing retrieval precision. This model, cross-encoder/ms-marco-MiniLM-L-2-v2,
reranks the top N results to prioritize the most relevant documents, significantly refining the
output of our semantic search.

Prompt Integration

Strategically crafted prompts guide the LLM’s interactions, focusing on relevance and appro-
priateness, particularly for critical issues.

6.2.3 Execute Command Tool

The Execute Command Tool is a streamlined function within the multi-agent system designed
to execute operational commands directed by the Meta Agent. This tool acts upon user re-
quests that require system interactions, such as resetting passwords, updating configurations,
or initiating system diagnostics.

Functionality

When activated, this tool receives command directives from the Meta Agent, which discerns
the need for action based on user inputs and system context. The Execute Command Tool is
capable of:

- Processing system commands securely and efficiently.

- Returning feedback to the Meta Agent about the success or failure of executed commands.

Implementation

The development of the Execute Command Tool begins with defining its primary function
within the system’s architecture. This involves establishing the logical framework necessary
to handle and execute operational commands as directed by the Meta Agent. Once the basic
function is established, it undergoes a transformation into a ’function tool’ by employing a
specific conversion method from the Llama Index framework. This transformation equips the
tool with advanced capabilities, enabling it to:

Page 87

design of the solution

- Directly interact with the large language model (LLM) for dynamic command execution.

- Seamlessly integrate within the multi-agent system to ensure coherent operational work-
flows.

- Enhance responsiveness and reliability in executing system commands.

6.2.4 Conversation Saving Tool

The Conversation Saving Tool is essential for maintaining a record of all interactions handled by
the system. This tool captures and stores the details of each conversation, aiding in compliance,
training, and system improvement efforts.

Functionality

This tool is designed to:

- Automatically log all dialogues between users and the system.

- Store conversation data in a structured format that includes timestamps, user IDs, and
the content of interactions.

Implementation

The initial setup for the Conversation Saving Tool involves programming the essential function-
ality to capture and store interaction data systematically within the system. This foundational
function is crafted to automatically log all dialogues, incorporating detailed metadata such as
timestamps and user identifiers. Following its basic configuration, this function is transformed
into a ’function tool’ through a conversion process facilitated by the Llama Index framework.
This enhancement allows the tool to:

- Interface effectively with the large language model (LLM) to utilize contextual data from
user interactions.

- Integrate smoothly into the multi-agent framework, aligning with the data retention and
retrieval protocols.

- Improve the system’s capability to access and analyze historical interaction data for con-
tinuous learning and system refinement.

6.2.5 Meta Agent Implementation

Having established the foundational tools—User Context Agent, Documentation Tool, Conver-
sation Saving Tool, and Execution Command Tool—we are now positioned to integrate these
components into the Meta Agent. This section details the implementation of the Meta Agent,
which orchestrates interactions between the user queries and our multi-agent system.

Page 88

design of the solution

Integration with OpenAI’s GPT-4o Model

The core of the Meta Agent’s functionality is driven by OpenAI’s GPT-4o model, chosen for its
exceptional speed and performance metrics. The integration process involves several key steps:

Model Selection and Integration Using Langfuse

The selection of the GPT-4o model from the Llama Index’s suite of tools was made due to its
cutting-edge capabilities in understanding and generating human-like text, which are critical
for handling complex user interactions in our system. To ensure the optimal selection of the
language model for our multi-agent system, we utilized Langfuse, a comprehensive LLM Engi-
neering Platform, to conduct a comparative analysis among several leading models, including
GPT-4, GPT-4o, Llama3, and GPT-3.5.

Comparative Analysis of Models Using Langfuse

Langfuse provided the necessary tools to systematically track and analyze various performance
metrics such as latency and cost efficiency of each model. Here’s how Langfuse facilitated the
comparison:

1. Latency Tracking: We used Langfuse to measure the response times of each model,
providing a clear benchmark of their performance under operational conditions.
Our findings, detailed through Langfuse’s comprehensive analytics, revealed that GPT-4o
offers the best trade-off between response time and cost, while maintaining high standards
of performance. These results are visually represented in the comparative latency chart
below, which underscores the performance advantages of GPT-4o over its counterparts.

Figure 6.7: Latency Comparison Among Selected Models Facilitated by Langfuse

2. Cost Analysis Using Langfuse
We utilized Langfuse to perform a detailed cost analysis for each model considered. The
following table presents the cost per million tokens for input and output processes of each
model, providing a clear comparative view of their cost efficiency.

Page 89

design of the solution

Table 6.5: Cost Comparison of Language Models

Model Cost per 1M Tokens (Input) Cost per 1M Tokens (Output)
GPT-4o $5.00 $15.00

GPT-3.5 Turbo (0125) $0.50 $1.50
GPT-4 $30.00 $60.00
Llama3 Free Free

This cost analysis highlights the economic efficiency of using GPT-4o and its variants,
which offer significant cost savings for both input and output operations compared to
GPT-4, while maintaining high standards of performance. Although Llama3 is a free
model and presents an appealing option for projects with limited budget constraints, our
comparative analysis raised concerns regarding its stability and performance consistency.
The performance of Llama3 is not always guaranteed, with significant variations that
could impact service quality. This inconsistency led us to favor GPT-4o, which provides
more reliable and stable performance across various operational conditions. This decision
underscores our commitment to delivering a dependable and efficient service to our users,
where the slightly higher expense is justified by superior consistency and user satisfaction.

Figure 6.8: The total cost of the usage during the testing for a mounth

Page 90

design of the solution

Figure 6.9: Total tokens during testing

Integration and Configuration

Following the selection of GPT-4o, we integrated the model into our system’s existing in-
frastructure. This process involved configuring API endpoints for seamless communication,
ensuring data security through robust encryption and access controls, and tuning performance
parameters to optimize cost and efficiency.

System Testing and Validation

With the integration complete, we conducted extensive testing to validate GPT-4o’s perfor-
mance. Langfuse’s tracing and logging features were instrumental in monitoring the model’s
responses in real-time, allowing us to refine its functionality based on empirical data.

By leveraging Langfuse for a detailed comparative analysis and utilizing its tools for ongoing
monitoring and optimization, we have ensured that our system not only selects the most ap-
propriate model but also maintains high performance standards to meet the evolving demands
of our users.

Prompt Refinement

To tailor the behavior of the GPT-4o model to our specific needs, we engaged in prompt
engineering. This process involved crafting detailed prompt instructions that guide the model
to respond in a manner aligned with our objectives for user interaction. The prompts were
designed to leverage the model’s capabilities to interpret context, make informed decisions, and
generate responses that are not only relevant but also concise and user-friendly.

Behavioral Tuning

The prompts were iteratively refined based on trial interactions to perfect the model’s responses.
We monitored the model’s performance closely, adjusting the nuances of the prompts to better
capture the desired behavior and ensure that the Meta Agent acts in full compliance with our
operational guidelines and user expectations.

Page 91

design of the solution

6.2.6 Testing and Demonstrations Using Gradio Interface

For testing and demonstrating the capabilities of the Meta Agent, we utilized the Gradio
interface. This platform enabled us to create a user-friendly interface for real-time interaction
with the Meta Agent, facilitating easy demonstration and rapid prototyping,We have also
integrated a changelog to transparently demonstrate the background processes and track the
tools the agent is utilizing.. Gradio helped us simulate realistic user scenarios to evaluate the
agent’s ability to handle diverse and complex requests accurately and efficiently.

Figure 6.10: Conversation initialization

Figure 6.11: Looking for critical or existing issues.

Page 92

design of the solution

Figure 6.12: Proposing Solutions

Figure 6.13: Proposing other solutions

Page 93

design of the solution

6.3 Continuous Improvement

Following the initial tests, the Meta Agent enters a continuous cycle of performance evaluation
and enhancement. Utilizing feedback from these interactions and system performance metrics,
we periodically refine the model’s prompts and adjust operational parameters. This iterative
improvement ensures that the Meta Agent remains effective as user needs evolve and new
challenges arise.

This section demonstrates the critical role of the Meta Agent in our multi-agent system, high-
lighting the technical sophistication and adaptability required to manage and direct complex
automated interactions in client services. Through the use of advanced AI models and strategic
implementation, the Meta Agent stands as a cornerstone of our system, ensuring high-quality,
efficient service delivery.

Furthermore, the development team is actively working on the production phase , of our so-
lutions. These efforts have already culminated in the successful sale of the system to a client,
marking a significant milestone in the project’s commercial deployment.

Page 94

General conclusion

This thesis explores the practical application of Large Language Models (LLMs) in enhancing
customer service operations, focusing on a project undertaken at Voxist for one of its clients.
It addresses the significant challenges LLMs face, such as handling real-time data, managing
sensitive information securely, and maintaining interaction context.

The proposed multi-agent chatbot system, now in the production phase by the development
team, aims to mitigate these challenges by improving interaction quality, response accuracy,
and operational efficiency. Through a detailed examination of foundational concepts in ma-
chine learning and the evolution of LLMs, the thesis lays a solid theoretical groundwork. It
then transitions into practical insights, detailing Voxist’s application of LLMs, the challenges
encountered, and the strategies developed to overcome these obstacles.

In the course of this thesis, we explored the limitations of frameworks like Llama Index and con-
ducted a comparative analysis between OpenAI models and open-source models such as Llama
3 and Mistral. This comparison provided a solid understanding of these models’ strengths and
weaknesses. Additionally, we delved into vector databases, prompt engineering, and compared
multiple embeddings, enhancing the chatbot system’s capabilities.

By leveraging advanced techniques like Retrieval-Augmented Generation (RAG) systems and
focusing on prompt engineering, the thesis identifies effective methods to enhance the capa-
bilities of LLMs. The design and implementation of the multi-agent system are thoroughly
discussed, highlighting how each component contributes to enhanced client services.

This thesis demonstrates that with the right framework, the integration of LLMs into existing
systems can be simplified, allowing for more personalized and effective customer interactions.
The thesis underscores the potential of advanced AI technologies to transform customer service
operations by making them more scalable and adaptable to complex user interactions and
sensitive data management.

95

Bibliography

[1] Otterly AI. Title or description of the photo, 2023.

[2] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang,
Enbo Zhao, Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi,
and Shuming Shi. A survey on hallucination in large language models. Journal Name
Here, 2023.

[3] Ines Almeida. Improving the reasoning capabilities of large language mod-
els: Chain-of-thought prompting. https://www.nownextlater.ai/Insights/post/
Improving-the-Reasoning-Capabilities-of-Large-Language-Models, 8 2023. Accessed:
2023-08-08.

[4] Ben Lorica. Best practices in retrieval augmented generation. https://gradientflow.
substack.com/p/best-practices-in-retrieval-augmented, 2023.

[5] Towards Data Science. Rag vs finetuning — which is the best
tool to boost your llm application? https://towardsdatascience.com/
rag-vs-finetuning-which-is-the-best-tool-to-boost-your-llm-application-94654b1eaba7,
2023.

[6] Leo Pauly, Harriet Peel, Shan Luo, and Raul Fuentes. Deeper networks for pavement crack
detection.

[7] Sagar Sharma. Activation functions in neural networks: Sigmoid, tanh,
softmax, relu, leaky relu explained!!! https://towardsdatascience.com/
activation-functions-in-neural-networks-1c53fdb8df08, 2017.

[8] O’Reilly Media. Intelligent projects using python: 9 real-world ai projects
leveraging machine learning and deep learning with tensorflow and keras.
https://www.oreilly.com/library/view/intelligent-projects-using/9781788996921/
0cce5e73-bfa7-4219-97dd-19a6b7d40d35.xhtml, 2019. Image reference.

[9] DSA. Introduction to recurrent neural network. https://www.geeksforgeeks.org/introduction-
to-recurrent-neural-network/.

[10] Krzysztof Zarzycki and Maciej Ławryńczuk. Lstm and gru neural networks as models of
dynamical processes used in predictive control: A comparison of models developed for two
chemical reactors.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[12] Shervin Minaee et al. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024. [cs.CL].

96

https://www.nownextlater.ai/Insights/post/Improving-the-Reasoning-Capabilities-of-Large-Language-Models
https://www.nownextlater.ai/Insights/post/Improving-the-Reasoning-Capabilities-of-Large-Language-Models
https://gradientflow.substack.com/p/best-practices-in-retrieval-augmented
https://gradientflow.substack.com/p/best-practices-in-retrieval-augmented
https://towardsdatascience.com/rag-vs-finetuning-which-is-the-best-tool-to-boost-your-llm-application-94654b1eaba7
https://towardsdatascience.com/rag-vs-finetuning-which-is-the-best-tool-to-boost-your-llm-application-94654b1eaba7
https://towardsdatascience.com/activation-functions-in-neural-networks-1c53fdb8df08
https://towardsdatascience.com/activation-functions-in-neural-networks-1c53fdb8df08
https://www.oreilly.com/library/view/intelligent-projects-using/9781788996921/0cce5e73-bfa7-4219-97dd-19a6b7d40d35.xhtml
https://www.oreilly.com/library/view/intelligent-projects-using/9781788996921/0cce5e73-bfa7-4219-97dd-19a6b7d40d35.xhtml

Bibliographie

[13] Roie Schwaber-Cohen. What is a vector database & how does it work? use cases +
examples. https://www.pinecone.io/learn/vector-database/, 2024.

[14] Advanced rag techniques: an illustrated overview. https://pub.towardsai.net/
advanced-rag-techniques-an-illustrated-overview-04d193d8fec6.

[15] Leonie Monigatti. Advanced retrieval-augmented generation: From theory to llamaindex
implementation. Towards Data Science.

[16] Michael Paluszek and Stephanie Thomas. What is deep learning, 2020.

[17] Michael Paluszek and Stephanie Thomas. What is deep learning, 2020.

[18] Michael Paluszek and Stephanie Thomas. What is deep learning, 2020.

[19] Nicholas G. Polson and Vadim Sokolov. Deep learning, 2018.

[20] Nicholas G. Polson and Vadim Sokolov. Deep learning, 2018.

[21] Activation functions: Comparison of trends in practice and research for deep learning,
2021.

[22] A survey on activation functions and their effects on deep learning, 2022.

[23] Optimization algorithms for stability and convergence in natural language processing using
deep learning algorithms, 2023.

[24] Daniel Jurafsky and James H. Martin. Speech and Language Processing. 3rd ed. draft
edition, 2021. Retrieved from https://web.stanford.edu/ jurafsky/slp3/.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[26] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training re-
current neural networks. International conference on machine learning, pages 1310–1318,
2013.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[28] Q. Zhang and Y. Wang. When large language models meet citation: A survey. Semantic
Scholar, 2023.

[29] Another N. Author. Transformative approaches in nlp using llms. In Proceedings of the
2023 Conference of the Association for Computational Linguistics, 2023.

[30] A. N. Author. Exploring the capabilities of llms in nlp. arXiv, 2023.

[31] National Institutes of Health. Advancements in biomedical nlp using llms. PubMed Central,
2023.

[32] Open Reviewer. Deep insights into llms: A review. OpenReview, 2023.

[33] Large language model applications. https://aloa.co/blog/
large-language-model-applications, 2022.

[34] Large language model apps. https://indatalabs.com/blog/large-language-model-apps,
2022.

Page 97

https://www.pinecone.io/learn/vector-database/
https://pub.towardsai.net/advanced-rag-techniques-an-illustrated-overview-04d193d8fec6
https://pub.towardsai.net/advanced-rag-techniques-an-illustrated-overview-04d193d8fec6
https://aloa.co/blog/large-language-model-applications
https://aloa.co/blog/large-language-model-applications
https://indatalabs.com/blog/large-language-model-apps

Bibliographie

[35] What are large language models used for? https://blogs.nvidia.com/blog/
what-are-large-language-models-used-for/, 2022.

[36] Renu Khandelwal. Vector database: Empowering next-gen applications – unlocking the
future of efficient data retrieval in an ai-driven world. https://medium.com/GoPenAI/
vector-database-empowering-next-gen-applications-123456789, Sep 2023.

[37] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and
Aman Chadha. A systematic survey of prompt engineering in large language mod-
els: Techniques and applications. Department of Computer Science And Engineering,
Indian Institute of Technology Patna and Stanford University and Amazon AI, 2023.
Emails: {pranab_2021cs25, ayush_2211ai27, sriparna, samrat}@iitp.ac.in, hi@vinija.ai,
hi@aman.ai.

[38] Ph.D. Cameron R. Wolfe. Chain of thought prompting for llms: A practical and simple
approach for "reasoning" with llms, 2023.

[39] Saumajit Saha. Prompt engineering techniques — brief survey, 2024.

[40] Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu,
Ling Yang, Wentao Zhang, Jie Jiang, and Bin Cui. Retrieval-augmented generation for
ai-generated content: A survey. arXiv preprint arXiv:2402.19473, 2024.

[41] IBM Research. Retrieval-augmented generation (rag). https://research.ibm.com/blog/
retrieval-augmented-generation-RAG, 2024. Accessed: [insert today’s date].

[42] Retrieval augmented generation (rag) for llms. https://www.promptingguide.ai/research/
rag, 2024. Accessed: [insert today’s date].

[43] L. Monigatti. Amélioration de la performance de récupération dans les pipelines rag avec
la recherche hybride. Towards Data Science, 2023. Accessed: [insert today’s date].

[44] Query transformations. https://blog.langchain.dev/query-transformations/, Oct 2023.

[45] Metrics. https://docs.ragas.io/en/stable/concepts/metrics/index.html.

[46] Ravi Theja. Evaluate rag with llamaindex. https://cookbook.openai.com/examples/
evaluation/evaluate_rag_with_llamaindex, Nov 2023.

[47] Tula Masterman, Sandi Besen, Mason Sawtell, and Alex Chao. The landscape of emerging
ai agent architectures for reasoning, planning, and tool calling: A survey. Neudesic, an
IBM Company, 2023.

[48] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark,
and Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex
tasks. 2023.

[49] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberative reasoning in language models. 2023.

[50] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan,
and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. 2023.

[51] Ziyue Li et al. Title of the paper. Journal Name, 2023.

[52] Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu, Tianpeng Bao, Guoqing Du, Shiwei
Shi, Hangyu Mao, Ziyue Li, Xingyu Zeng, and Rui Zhao. Title of the paper. Journal
Name, 2023.

Page 98

https://blogs.nvidia.com/blog/what-are-large-language-models-used-for/
https://blogs.nvidia.com/blog/what-are-large-language-models-used-for/
https://medium.com/GoPenAI/vector-database-empowering-next-gen-applications-123456789
https://medium.com/GoPenAI/vector-database-empowering-next-gen-applications-123456789
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://www.promptingguide.ai/research/rag
https://www.promptingguide.ai/research/rag
https://blog.langchain.dev/query-transformations/
https://docs.ragas.io/en/stable/concepts/metrics/index.html
https://cookbook.openai.com/examples/evaluation/evaluate_rag_with_llamaindex
https://cookbook.openai.com/examples/evaluation/evaluate_rag_with_llamaindex

Bibliographie

[53] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei
Sun, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2023.

[54] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing
Xu, Lei Li, and Zhifang Sui. A survey on in-context learning. 2023.

[55] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Na-
man Goyal, Heinrich Kuttler, Mike Lewis, Wen tau Yih, Tim Rocktaschel, Sebastian
Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Journal Name, 2021.

[56] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan
Chen, Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong
Wen. A survey on large language model based autonomous agents. 2023.

[57] Weize et al. Chen. Agentverse: Facilitating multi-agent collaboration and exploring emer-
gent behaviors. arXiv preprint arXiv:2308.10848, 2023.

Page 99

	4606e8c1234fc422fc098e3ddfce9a07f43953688148513a68152406323e5834.pdf
	4606e8c1234fc422fc098e3ddfce9a07f43953688148513a68152406323e5834.pdf
	4606e8c1234fc422fc098e3ddfce9a07f43953688148513a68152406323e5834.pdf
	4606e8c1234fc422fc098e3ddfce9a07f43953688148513a68152406323e5834.pdf
	4606e8c1234fc422fc098e3ddfce9a07f43953688148513a68152406323e5834.pdf
	List of Tables
	List of Figures
	Liste des acronymes
	General introduction
	I State Of play
	Company Presentation
	Introduction
	Technical Overview
	Terms and Jargon
	Mission and Objectives
	Innovative Products and Partnerships
	Core Values
	Partners and Clients
	Conclusion

	Problem description
	 Voxist innovative missions
	Information Extraction
	Model Fine-Tuning
	Custom Voice Assistant Development
	Sentiment Analysis

	Challenges AND Limitations Associated with Large Language Models at Voxist
	Strategies to Overcome LLM Limitations when creating Chatbots
	Prompt Engineering
	Retrieval-Augmented Generation (RAG)
	Fine-Tuning

	Improuvement points - What to Choose: RAG with Prompt Engineering vs. Fine-Tuning
	Retrieval-Augmented Generation (RAG)
	Prompt Engineering
	Retrieval-Augmented Generation (RAG) with Prompt Engineering
	Fine-Tuning
	Comparison Matrix
	Conclusion

	II State of the Art
	Generalities on Artificial intelligence
	Machine learning
	Definition
	Types of Machine Learning
	Limitations of Machine Learning: Challenges and Considerations
	Conclusion

	Deep Learning
	Definition of Deep Learning
	Detailed Core Concepts of Deep Learning
	Neurons and Layers
	Activation Functions
	Conclusion

	NLP and deep learning
	Definition of NLP
	Evolution of NLP systems
	Key Techniques and Methods in NLP
	Deep learning models in NLP
	Conclusion

	Large Language Models
	Definition of Large Language Models (LLMs)
	Key Characteristics of Large Language Models
	Applications of Large Language Models
	Notable Examples of Large Language Models
	Embeddings
	Word Embeddings
	How Word Embeddings Work
	Word Embedding Algorithms

	Vector DB
	Vector Database Management System (VDBMS)
	Vector DB VS Traditional DB
	Use Cases of Vector Databases
	How does Vector DB work
	Indexing in Vector Databases
	Similarity Measures in Vector Databases
	Vector Database Examples
	ChromaDB
	Pinecone
	Qdrant

	Introduction to Prompt Engineering
	Defining Prompt Engineering
	Components of Effective Prompts
	Types of Prompting

	Conclusion:

	RAG AND AI AGENTS
	Introduction to RAG
	Definition
	RAG Pradigms
	Naive Rag
	Advanced RAG

	Rag Evaluation
	Faithfulness
	Relevancy

	AI Agents
	Definition :
	Core Components of AI Agents
	Types of AI Agent Architectures

	III Proposed Solution
	Proposed Solution
	Design of the solution
	Client Requirements identification
	Proposed Solution: Implementing a Structured Multi agent system
	Operational Workflow
	Benefits of the Multi-Agent System

	Implementation of the solution
	Development of the documentation tool -Advanced RAG system
	User Context Agent
	Execute Command Tool
	Conversation Saving Tool
	Meta Agent Implementation
	Testing and Demonstrations Using Gradio Interface

	Continuous Improvement

	General conclusion
	Bibliography

