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ملخص

القسرية القياسات و المدى قسايات على إعتمادا التقدير و القياس مشكل إلى النظر تم الأطروحة, هذه في
بعضها. مع مقارنتها و دراستها و تقديمها تم التوجه لقياس تقنيات عدة طيار, دون لطائرات

و المدى قياسات على تعتمد التي متسارعة الغير الطائرات حالات لقياس طريقتين دراسة و تقديم أيضا تم
في المدى قياسات من انطلاقا الوضعية قياس على الحصول تقنيات أيضا دراسة تمت القسرية, القياسات
المدى قياسات باستعمال المتساعة الطائرات لقياسحالات طريقتين دراسة و تقديم تم أخيرا, الحالات مختلف
عدة عبر الممكنة الطيران حالات مختلف في التقدير القياسو تقنيات مختلف مقارنة تمت القسرية, القياسات و

المدروسة التقنيات فعالية لاضهار رقمية محاكات

الحالة. قياس القسرية, القياسات المدى, قياسات طيار, دون طائرات : الدالة الكلمات

Résumé

Dans cette thèse, le problème d’estimation d’état des véhicules aériens sans pilote
utilisant des mesures vectorielles et de distance a été étudié. Plusieurs observateurs non
linéaires d’attitude s’appuyant sur les mesures de l’inertial measurement unit (IMU) ont
été proposés et comparés.
Deux approches à état complet (orientation, position et vitesse) pour les véhicules non
accélérés reposant sur des mesures IMU et UWB ont été proposées et comparées. Des
méthodes de reconstruction pour les mesures de position ont été proposées lors de
l’utilisation de moins de 4 emetteurs d’UWB.
En outre, deux observateurs non linéaires à état complet ont été proposés, discutés et
comparés pour les véhicules accélérés s’appuyant sur des mesures IMU et de distance.
Enfin, toutes les méthodes d’estimation de l’état complet et l’observateur ont été com-
parées dans différents scénarios pour aider le lecteur à décider et à choisir une méthode
d’estimation en fonction des performances requises, des conditions de vol et du scénario.

Mots clés: UAV, IMU, UWB, Estimation d’état.



Abstract

In this thesis, the state estimation problem for Unmanned aerial vehicles using vector
measurements and range measurements was studied. Several nonlinear attitude ob-
servers relying on Inertial Measurements Unit (IMU) measurements were proposed and
compared.
Two full state (orientation, position and velocity) approaches for non accelerated vehicles
relying on IMU and UWB measurements were proposed and compared. Reconstruction
methods for position measurements were proposed when using less than 4 UWB anchors.
Furthermore, two nonlinear full state observers for accelerated vehicles relying on IMU
and range measurements were proposed, discussed and compared.
Finally, all the full state estimation methods and observer were compared in different
scenarios to help the reader decide and choose an estimation method according to needed
performance and flight condition and scenario.

Key words: UAV, IMU, UWB, State estimation.
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14 Chapter 1. Introduction

1.1 Introduction

Unmanned Aerial Vehicles (UAVs) have gained a lot of interest over the last decade due to
their simplicity as well as their flexibility to reach difficult places, maneuverability, stability
and Take-Off and Landing capabilities. The popularity of UAVs has grown for both military
and civil applications. They have been used in several applications such as surveillance,
rescue, film making, structural inspection and maintenance. Their suitability and efficiency
in accomplishing missions in the mentioned applications brought them rising attention from
the public, turning them into an intriguing research topic. One of the trend topics in the
development of UAVs is related to the state estimation problem. Determining the vehicle’s
state precisely is a basic requirement to achieve reliable control and autonomous flight.
In this thesis, we focus on the full estimation of the UAV’s states(attitude, poistion and
velocity). Early works on state estimation rely mainly on Kalman type filters [20],[1]. Most
common sensors deployed in UAVs are Inertial Measurements Unit (IMU) [12], cameras
and range measurements such as GPS [7] or Ultra-Wide band sensors [4]. The purpose
of this thesis is to propose and study different nonlinear observers for state estimation in
different navigation scenarios and different flight conditions.

1.2 Motivation

The recent proliferation of Micro-Electro-Mechanical Systems (MEMS) components has
lead to the development of a range of low cost and light weight sensors such as Inertial
Measurement Unit (IMU), Global Positioning System (GPS), etc. The low power, light
weight and potential for low cost manufacturing of these sensors made them cheaper and
widely available.

The motivation behind this thesis relies on the use of these low cost sensors to reach
a reliable estimation, as precisely determining the state of the UAV is the key step to
achieve robust control and autonomous flight. However, these cheap sensors often output
low resolution signals which are subject to high levels of noise. To achieve the main goal
of this thesis, robust nonlinear observers need to be developed, studied and compared in
different scenarios and flight conditions.

1.3 Litterature Review

As the UAVs states are not directly measurable, sensors are often used to estimate its
value such as : magnetometer, accelerometer and gyroscope. The accelerometer provides a
body referenced acceleration, the magnetometer provides a body referenced earth magnetic
field measurement, and the gyroscope provides the body referenced angular velocity. The
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straight integration of an IMU measurements would be a simple, yet ineffective way to
determine the attitude of the UAV. This approach is ineffective as it leads to a drift over
time in the attitude estimate as well as in the linear velocity and position estimates, due to
the inherent gyro bias and numerical integration. Another ineffective method for attitude
estimation is one that relies solely on inertial vector measurements such as those proposed
in [8]− [6]. Again, this approach, referred to as static attitude determination, is ineffective
in the presence of measurement noise. It is evident that sensor noise causes a major issue
when trying to estimate the attitude of a rigid body, and thus, filtering techniques must
be implemented. Filtering techniques combine the rigid body kinematic model and sensor
measurements to produce a good estimate of the state of the rigid body. Such technique is
the Kalman Filter (KF) [13] which consists of two steps : first the current state estimates
are updated using the previous states and dynamical model of the system. Second, they
are further updated using weighted noisy sensor measurements. The states estimated are
then used in the next cycle. The KF has been originally designed for linear systems and
does not apply directly to nonlinear systems. A common approach the deals with noisy
nonlinear systems is known as the Extended Kalman Filter (EKF). This approach is not
guaranteed to provide a good performance when the initial errors are wide, as it relies
on system linearization. Further developments led to the Multiplicative [6] and Additive
[24] Kalman Filters (MEKF and AEKF respectively). Although these methods provide
acceptable attitude estimation, they are computationally expensive and as such, are not
often implemented on small quadrotor UAVs, where the processing power is limited.

A computationally efficient alternative for attitude estimation relies upon the nonlinear
dynamics of the system may instead be implemented. Many such complementary filters can
be found in the literature [10]− [10], some of which utilize the full Direction cosine Matrix
(DCM) [15], [10], and others relying only on the unit Quaternion representation [10], [17].

All of these nonlinear observers utilize the assumption that the accelerometer measures the
gravity vector in the body frame, which is only valid under low transitional acceleration. If
the UAV undergoes a large transitional acceleration, the estimation from these observers
will become unreliable. To overcome this problem, nonlinear observers that also include
the transnational state [7], [21], determined from say a GPS or UWB array, are utilized for
UAVs expected to go through some high acceleration movements. These observers utilize
an additional transitional state estimate function in the innovation term of the observer.
A problem with any of these observers is that the earth’s magnetic field becomes very
difficult to measure once the motors of the UAV are activated, as these produce their own
magnetic field further corrupting the measured vector. This problem can be mitigated with
a calibration technique such as one described in [9]. Further through the vector decoupling
strategy proposed with the observers of [10], [11], this coupling problem can be minimized.
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1.4 Thesis Contribution

The first two thesis contributions are based on previous work in the attitude estimation
field such as [14] were the innovation term was borrowed and modified. The same approach
was used to the full state estimation observers proposed in [4] and [5] in the last two
contribution. To summarize, the thesis contribution are as follows :

• A sliding mode attitude observer that estimates the orientation directly on the Special
Orthogonal group is proposed and studied in Chapter 3.

• A super twisting Observer for attitude estimation is proposed in Chapter 3.

• A reconstruction technique for position measurements when using 3 UWB anchors
is proposed in Chapter 4.

• An algorithm that outputs the position measurements when using 2 UWB anchors
and an Altimeter is proposed in Chapter 4.

• A full state estimation approach that uses Sliding mode observer and Kalman filter
for non accelerated vehicles is studied in Chapter 5.

• A simplified and modificated version of a full state observer is proposed in Chapter
6.

1.5 Thesis Outline

This thesis is organised as follows :

• Chapter 2 presents the notation, tools and mathematical background and prelimi-
naries used throughout the thesis, as well as a rigid body model and dynamics.

• Chapter 3 is devoted for the attitude estimation problem and studies various non-
linear attitude observers and compare between the performance of these observers.

• Chapter 4 presents the UWB technology and methods to reconstruct the position
measurements when using less than 4 UWB anchors.

• Chapter 5 is devoted for full state estimation for UAVs undergoing near to zero
linear accelerations and a comparison study between different full state estimation
approaches.

• Chapter 6 is devoted for full state estimation for UAVs performing all kind of
accelerations and a comparison study between the full state observers.
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• Chapter 7 presents a general conclusion about the thesis work and results and future
interests.



CHAPTER 2

Mathematical Background
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2.1 Introduction

In this chapter, we review some of the mathematical background that is used in the de-
velopment and analysis of the estimation laws. A major component of this background
involves the definitions of the attitude parameterizations used to describe the orientation of
a rigid-body. A description of these attitude parameterizations and some of these proper-
ties are provided in Section 2.1. Section 2.2 defines the equations which govern the vehicle
dynamics (system model), and Section 2.3 reviews some preliminary mathematical tools
that will be helpful during the discussion of the estimation and control algorithms.

2.2 Attitude Representations

2.2.1 Coordinate Frames

To represent the orientation of a rigid body, we introduce two reference frames:

• Inertial frame I: a frame rigidly attached to a position on the Earth.

• Body-attached frame B: a frame which is rigidly attached to the vehicle center of
gravity.

Throughout the thesis, we often refer to the orientation of the rigid-body, by which we mean
the relative orientation of B with respect to I. The goal of the attitude representation is
to mathematically describe the orientation of the rigid-body.

2.2.2 Euler Angles Representaion

The most intuitive method for attitude parametrization is the Euler angles that parametrizes
the attitude with three angles (φ, θ, ψ), known as the roll, pitch and yaw. A rotation about
the inertial frame x̂ ŷ, and the ẑ axis are shown below

Rx̂(φ) =

 1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 ,

Rŷ(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 ,

Rẑ(ψ) =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 .
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As the orthogonal base vector is altered after each rotation, it is possible to represent
any orientation. For example performing 3 rotations in the x − y − z order results in the
following rotation matrix.

R = Rẑ(ψ)Rŷ(θ)Rx̂(φ) =

 cφcψ − sφsψcθ −cφsψωθ − sφαψ sψsθ

sφcψcθ + cφsψ cφ(ψcθ − sφsψ −cψsθ
sφsθ cφsθ cθ

 ,

with c(.) and s(.) are cosin and sin functions. For small rotations about the three axes this
matrix is given as :

R =

 1 −ψ − φ 0

φ+ ψ 1 −θ
0 θ 1


which show that we can not represent a small rotation about the ŷ axis. This problem
is known as gimbal lock, and causes the rotation matrix to undergo a large change in an
infinitcsimal amount of time, this issuc ariscs for rotations of ±π about the ŷ axis as well.

2.2.3 Rotation Matrix

The direct-cosine, or rotation matrix, is a three-dimensional orthogonal matrix. A matrix
R ∈ R3×3 is considered a rotation matrix if it is contained within the set

SO(3) :=
{
R ∈ R3×3| det(R) = 1|R>R = RR> = I3×3

}
. (2.1)

The set SO(3) forms a group with the linear matrix multiplication with identity element
I = I3 and inverse R−1 = R>. This set is often used since it offers a global and unique
representation of the orientation of a frame of reference, and therefore we refer to this set
as the rotation space. The Lie algebra of SO(3) is denoted by so(3) and consists of all
skew-symmetric 3 by 3 matrices

so(3) :=
{

Ω ∈ R3×3 : Ω> = −Ω
}
. (2.2)

The Lie algebra so(3) is isomorphic to R3 through the map [·]× : R3 → so(3) defined by:

ω 7→ [ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.3)

The rotation matrix R ∈ SO(3) can be used to map vector coordinates from one frame
to another. For example, let x1 denote the coordinates of a vector in frame I, and x2
denotes the coordinates of x1 expressed in frame B. Let R denotes the rotation matrix
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which describes the rotation from I to B. Then, a well known property of the rotation
matrix is:

x2 = R>x1.

The rotation matrix can also be expressed in terms of the axis-angle representation. For
example, if we let u ∈ R3 denotes a unit-length vector of rotation and θ ∈ R denotes the
corresponding angle of rotation, then the corresponding rotation matrix R(u, θ) ∈ SO(3)

is given by the following transformation:

R(θ, u) = exp([θu]×) = I + sin(θ)[u]× + (1− cos(θ))[u]2×. (2.4)

For a given matrix R ∈ SO(3), this parametrization is not unique. In fact, for attitudes
of angle π, it is not difficult to show that R(π, u) = R(−π, u) for all u ∈ S2 : the unit
n-sphere embedded in R3.

e1

e2

e3

e1

e2

e3

R
⊤

R

I B

Figure 2.1: Rotation of B with respect to I frame.

2.2.4 Unit Quaternion

The unit quaternion representation of an attitude is a four element parametrization defined
on the space

Q =
{
Q = (q0, q) ∈ R× R3|q02 + q>q = 1

}
.

A unit quaternion can be described in terms of the angle-axis representation as follows:

Q =


q0
q1
q2
q3

 =


cos(γ/2)

sin(γ/2)k̂1
sin(γ/2)k̂2
sin(γ/2)k̇3

 =

(
q0
q

)
, (2.5)
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where γ is a rotation about the unit vector u := [û1; û2; û3]
>. The composition of two

rotations described by two quatemions Q1 and Q2 is given by :

Q1 �Q2 =

(
q01q02 − q>1 q2

q01q2 + q02q1 + [q1]×q2

)
(2.6)

The unit quaternion QI = [1; 0; 0; 0]> is the identity element, such that :

Q�Q−1 = Q−1 �Q =


1

0

0

0

 , (2.7)

where

Q−1 =

(
q0
−q

)
. (2.8)

For a given vector v ∈ R3, where vI = RvB one can write

v̄I = Q� v̄B �Q−1, (2.9)

where Q is the unit-quatemion associated with the rotation matrix R and vI =
[

0 vTI
]>

and vB =
[

0 vTB
]>. Furthermore, the nine element rotation matrix can be expressed

with the unit quatemion through the Rodriguez mapR(Q) : QSO(3)

R(Q) = I3 + 2q0[q]× + [q]2×. (2.10)

The unit quaternion parametrization only requires a 4-element vector, making it com-
putationally efficient for real world applications. It comes with the drawback that it is a
non-unique representation of the attitude, since R can be represented by either Q or −Q
as evident from (2.10).

2.3 Rigid Body Dynamics

The motion of a rigid body navigating in three dimensional space can be broken into two
main categories : transational motion and rotational motion. The transational dynamics
are given by :

ṗ(t) = v(t), (2.11)
v̇(t) = ge3 +R(t)aB, (2.12)
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where p(t) ∈ R3 is the inertial position of the vehicle’s center of gravity, v(t) ∈ R3 represents
the inertial linear velocity, R ∈ SO(3) is the attitude matrix describing the orientation of
a body-attached frame with respect to the inertial frame, g is the norm of the acceleration
due to gravity, e3 = [0; 0; 1] and aB(t) = R(t)aI(t) is the “apparent acceleration”, capturing
all non-gravitational forces applied to the vehicle, expressed in the body-attached frame.

The rotational dynamic is derived from the orthogonality condition RR> = I which
gives

d

dt

(
R>R

)
= R>Ṙ + (Ṙ)>R = 0. (2.13)

It follows that R(t)>Ṙ(t) ∈ so(3) for all times t ≥ 0 or, equivalently, there exists ω(t) ∈ R3

such that R(t)>Ṙ(t) = [ω(t)]×. This leads to write

Ṙ(t) = R(t)[ω(t)]×, (2.14)

which represents the attitude kinematics where ω(t) is referred to as the angular velocity
vector. If R is a rotation matrix describing the orientation of a body frame with respect to
an inertial frame then ω(t) is the body-referenced (expressed in body frame coordinates)
angular velocity of the body frame with respect to the inertial frame.

2.4 Numerical Integration on SO(3)

Numerical integration methods that preserve some proprieties of differential manifolds have
been widely discussed. Among these methods, The Lie-Euler integration method for the
SO(3) Lie-group that preserves the determinant propriety of this group. Consider the
following initial value problem on SO(3) :

Ṙ = R[ω]×, R(0) ∈ SO(3). (2.15)

The Lie-Euler formula for this problem is given by :

Rn+1 = Rn exp(h[ωn]×), R(0) ∈ SO(3) (2.16)

with h being the integration step and the exponential map exp ([x]×) ∈ SO(3) is defined
by the Rodriguez Formula on SO(3)

exp ([x]×) =

{
I x = 0

I + sin(‖x‖)
‖x‖ [x]× + 1−cos(‖x‖)

‖x‖2 [x]2× x 6= 0
(2.17)
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2.5 Mathematical Definitions and Identities

2.5.1 Metrics on SO(3)

Roughly speaking, a metric (or distance) tells us how two elements of a given manifold are
close to each other. More rigorously, a metric on SO(3) is a function d : SO(3)× SO(3)→
R≥0 that satisfies the following properties for all R1, R2, R3 ∈ SO(3)

• Non-negativity : d (R1, R2) ≥ 0.

• Identity of indiscernibles : d (R1, R2) = 0 if and only if R1 = R2.

• Symmetry : d (R1, R2) = d (R2, R1).

• Triangle inequality : d (R1, R3) ≤ d (R1, R2) + d (R2, R3) .

One possible way to measure the distance between two rotation matrices on SO(3) is to
use the Frobenious norm on the embedding Euclidean space R3×3 as follows:

dE (R1, R2) = ‖R1 −R2‖F , (2.18)

which defines the Euclidean (or Chordal) distance on SO(3). It can be verified that dE(·, ·)
satisfies the following property

dE (R1, R2) = dE
(
I, R1R

>
2

)
=
√

2 tr
(
I −R1R>2

)
≤
√

8, (2.19)

where the fact that R1R
>
2 ∈ SO(3), and hence tr (R1R2) ≥ −1, has been used to obtain

the upper bound of dE(·, ·). Throughout this work, the following normalized attitude norm
on SO(3) is used

|R|I =
dE(I, R)√

8
=
‖I −R‖F√

8
=

√
tr(I −R)√

4
. (2.20)

2.5.2 Stability

Various types of stability may be discussed for the solutions of differential equations de-
scribing dynamical systems. The most important type is that concerning the stability of
solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr
Lyapunov. In simple terms, solution will stay arbitrary near x0 if they start sufficiently
nearx0. More strongly, if x0 is Lyapunov stable and all solutions that start out near x0
converge to x0, then x0 is asymptotically stable. The notion of exponential stability guar-
antees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. For
more formal stability definitions the reader is referred to Khalil (2002).
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Theorem 1. (Khalil 2002): Let f(x) be a locally Lipschitz function defined over a domain
D ⊂ Rn, which contains the origin, and f(0) = 0. Let V (x) be a continuously differentiable
function defined over D such that

V (0) = 0 and V (x) > 0 for all x ∈ D with x 6= 0 (2.21)

V̇ (x) ≤ 0 for all x ∈ D (2.22)

Then, the origin is a stable equilibrium point of ẋ = f(x). Moreover, if

V̇ (x) < 0 for all x ∈ D with x 6= 0 (2.23)

then origin is asymptotically stable. Furthermore, if D = Rn, (3.7) and (3.9) hold for all
x 6= 0, and

‖x‖ → ∞⇒ V (x)→∞ (2.24)

then the origin is globally asymptotically stable.

Theorem 2. (Khalil 2002) Let f(x) be a locally Lipschitz function defined over a domain
D ⊂ Rn, which contains the origin, and f(0) = 0. Let V (x) be a continuously differentiable
function defined over D such that

k1‖x‖a ≤ V (x) ≤ k2‖x‖a. (2.25)

V̇ (x) ≤ −k3‖x‖a. (2.26)

for all x ∈ D, where k1, k2, k3, and a are positive constants. Then, the origin is an expo-
nentially stable equilibrium point of ẋ = f(x). If the assumptions hold globally, the origin
will be globally exponentially stable.

2.5.3 Useful Mathematical Identities

In this subsection, useful relations and lemmas, which will be used throughout the thesis
are provided.

For any M,N ∈ R3×3, x, y ∈ R3 and α ∈ R one has:
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tr
(
M>) = tr(M), (2.27)

tr(M +N) = tr(M) + tr(N), (2.28)
tr(αM) = α tr(M), (2.29)
tr(MN) = tr(NM), (2.30)
tr(MN) = 0 (if M = M> and N = −N>

)
, (2.31)

det(MN) = det(M) det(N), (2.32)
det
(
I + xy>

)
= 1 + x>y. (2.33)

Using these propertics of the trace function, the following identities are ensily derived in a
straightforward manner. For all x, y ∈ R3 and R,P ∈ SO(3) one has

tr
(
xy>

)
= x>y, (2.34)

tr
(
yx>

(
I −RP>

))
=

1

2

∥∥R>x− P>y∥∥2 − 1

2
‖x− y‖2. (2.35)

For any x, y ∈ R3 one has

[x]×y = x× y, (2.36)
[x]×y = −[y]×x, (2.37)
[x]3× = −‖x‖2[x]×, (2.38)

[x]×[y]× = −
(
x>y

)
I + yx>, (2.39)

x× y = 2ψ
(
yx>

)
, (2.40)

[x× y]x = yx> − xy>, (2.41)
� A,B �f = tr(A>B), (2.42)
〈〈[x]×, [y]×〉〉f = 2x>y. (2.43)

Where� ., .�f represents the Forbenius inner product. Moreover, for any x, y ∈ R3,M ∈
R3×3 and R ∈ SO(3) the following relations hold

〈〈M, [x]×〉〉f = 〈〈πa(M), [x]×〉〉f , (2.44)

[(Mx)× (My)]× = M [x× y]×M
>, (2.45)

M [x]× + [x]×M
> =

[(
tr(M)I −M>)x]× , (2.46)

ψ(MR) = R>ψ(RM), (2.47)
R[x]×R

> = [Rx]×. (2.48)
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where πa, πs denote, respectively, the anti-symmetric and symmetric projection operators
in square matrix space defined as follows :

πa(H) =
1

2

(
H −HT

)
, πs(H) =

1

2

(
H +HT

)
.
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Attitude Estimation



3.1. Introduction 29

3.1 Introduction

In this chapter, different kinds of observers of the rotation matrix R are introduced and
compared in Section 3.7. In control theory, an observer gives an estimate of an internal
state of a system from measurements of the input and output of the system. In this
case, the measurements are provided by sensor readings from the Inertial Measurement
Unit (IMU) as elaborated in the first section. Feedback control of the system is applied
to the observers’ estimation, because the measurements depend on the accuracy of the
equipment. In this case, the state of the attitude R ∈ SO(3) of the vehicle is estimated.
The vehicle’s position depends on the orientation. Therefore, it is essential that the state
estimate of the orientation is as accurate as possible. Four different kinds of attitude
estimation and reconstruction are elaborated. First, The TRIAD reconstruction algorithm
is introduced in section 3.3. Complementary filter and a sliding mode-based observer
are studied respectively in section 3.4 and 3.5. Finally the second order sliding mode or
Super-twisting observer is presented in section 3.6.

3.2 IMU Measurements and Observability

3.2.1 Inertial Measurements Unit (IMU)

An Inertial Measurement Unit (IMU) is an electronic device (sensor) that measures and
reports a body’s specific force, angular rate, and sometimes its orientation using a combi-
nation of accelerometers, gyroscopes, and sometimes magnetometers.
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Figure 3.1: MEMS Inertial Measurements Unit

Accelerometer

An accelerometer is an electromechanical device used to measure acceleration forces. Such
forces may be static, like the continuous force of gravity or, as it is the case with many
mobile devices, dynamic to sense movement or vibrations. Acceleration is the measurement
of the change in velocity, or speed divided by time.

Figure 3.2: accelerometer functionning schemes
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Gyroscope

A gyroscope is a device used to measure the angular velocity of an object. It is made of
a spinning wheel or disc in which the axis of rotation (spin axis) is free to assume any
orientation by itself. When rotating, the orientation of this axis is unaffected by the tilting
or the rotation of the mounting, according to the conservation of angular momentum.

Figure 3.3: Gyroscope

When MEMS (Micro-Electromechanical Systems) technology emerged, a miniaturized
MEMS-Gyroscope based on the Foucault pendulum coupled with a vibrating element has
been made.

Magnetometer

A magnetometer is a device that measures direction, strength, or relative change of a mag-
netic field at a particular location. Measurement of the magnetization of a material (like
a ferromagnet) is an example of its use. A compass can be considered as a magnetometer
that measures the direction of an ambient magnetic field, in this case, Earth’s magnetic
field.

In this work,IMUs that provide measurements of angular velocity, body-attached frame
apparent acceleration and body-attached frame magnetic field are assumed available. These
sensors are modelled as follows:

ωy = ω + ηω, (3.1)
mB = R>mI + ηmag, (3.2)
aB = R>aI + ηacc, (3.3)
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where mI is the constant and known earth’s magnetic field and aI a time-varying unknown
apparent acceleration. ηω,ηmag and ηacc are respectively gyroscope, magnetometer and
accelerometer noises.

3.2.2 Observability Assumption

In this subsection, observability assumptions needed to design a converging attitude ob-
server is discussed. The following is a general assumption used in attitude estimation
field:

Assumption 1. There exists a constant c0 > 0 such that ‖mI × aI‖ ≥ c0 for all t ≥ 0.

Assumption 1 is guaranteed if the time-varying apparent acceleration aI(t) is non-vanishing
and is always non-collinear with the constant magnetic field vector mI . Note that (aI(t) =

0) corresponds to the rigid body part of a free-fall case which is not likely under normal
flight conditions.

Assumption 2. There exists a constant c3 ≥ 0 such that ‖ω(t)‖ ≤ c4.

Assumption 2 is due to real physical constraints on the system trajectory which are needed
in the stability analysis.

Assumption 3. The linear acceleration of the vehicle is near to zero aI ≈ −ge3.

3.2.3 Objective

The objective is to design a robust attitude observer that takes measurements (3.1)-(3.3)
and outputs reliable orientation estimation.

3.3 Attitude Reconstruction

Utilizing a widely available Inertial Measurement Unit (IMU), that gives the two non co-
linear vector measurements aB and mB given by (3.1)-(3.3) and relying on Assumption 3.
One can consider that the initial counterpart aI of the vector aB is known and corresponds
to the earth’s gravitational vector aI = [0; 0; g]>. To reconstruct the attitude a third vector
wB can be defined as follows:

wB = [aB]×mB (3.4)

Likewise :

wI = [aI ]×mI (3.5)
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Arranging the three vectors side by side gives the following relation that will be used to
determine the R matrix.

[
aI mI wI

]
= R>

[
aB mB wB

]
(3.6)

which can be solved :

R> =
[
aB mB wB

] [
aI mI wI

]−1 (3.7)

3.3.1 Numerical Simulation

In this subsection, we implement the attitude observers defined in previous section to
estimate the vehicle orientation directly on SO(3) using IMU measurements. Consider a
vehicle navigating with the following angular velocity applied to :

ω(t) =

 0.3 cos (πt/10)

0.5 cos (2πt/10 + π/4)

0.8 cos (4πt/10)

 (3.8)

With an initial attitude R(0) = exp (π
2
[e3]×). The inertial earth’s magnetic field is taken

asmI = [0.42; 0.2949; 0.15]>Gauss, and the earth’s gravity is g = 9.81m/s2. The ini-
tial conditions of the observer is R̂(0) = I3. The measurement noises are modelled as
a Gaussian white noises with variances, σω = 0.16(deg/s2), σacc = 3.10−4(m/s2) and
σmag = 0.025(Gauss).
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Figure 3.4: attitude estimation error using TRIAD Algorithm

Although this method seems simplistic, in real time implementations calculating the
inverse of a matrix is a computationally heavy task, and should be avoided if possible.
Further this method offers no form of filtering for noisy measurements and as such will not
produce reliable result as seen in the figure above.



3.4. Complementary Filter 35

3.4 Complementary Filter

The complimentary filter is a reliable type of attitude observer filters in the field of orien-
tation estimation, as it uses the non-linear dynamic of the system, instead of linearizing
the system around some point, and it proved to be a good filter against noises. This filter
provides an estimation of the rotation matrix R from two vector measurements (aB, mB,
and ωy) from the IMU. The observer is given by :

{
˙̂
R = R̂[ωy + kpσR]×,

σR = ρ1(aB × R̂>aI) + ρ2(mB × R̂>mI),
(3.9)

where R̂ is the estimated rotation matrix and the innovarion term σR represents an error
between the true attitude R and the estimated attitude R̂ and it’s easily seen that this
innovation term will vanish as R̂→ R over time.

The goal of this observer is driving the natural estimation error defined as : R̃ = RR̂>

to the identity I3× over time and it can be illustrated by the following schemes :

IMU

kpσR
+

+

ω
yaB

mB

R̂

R̂

R

˙̂
R = R̂[ωy + kpσR]×

Figure 3.5: complimentary filter for attitude using IMU schemes
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3.4.1 Stability Analysis

Theorem 3. Consider the rotation kinematics (2.15) for a time varying R(t) ∈ SO(3)

and with measurements given by (3.1)-(3.3). Let R̂(t) denotes the solution of the observer
(3.9). taking in cosideration the error R̃ = RR̂>. Then

• All trajectories converge to the set U = {I3}×{R̃ ∈ SO(3) : R̃ = R(π, ε(M0))}, where
ε(M0) represents the eigenvectors of M0

• The set Ū = {R̃ ∈ SO(3) : R̃ = R(π,S2)} is invariant and a repeller.

• The equilibrium R̃ = I3 is locally exponentially stable and almost globally asymptoti-
cally stable.

Proof. 1 Let us consider the following Lyapunov function candidate :

V(R̃) =
1

4
tr(M0 −M0R̃). (3.10)

And taking in consideration that the innovation term σR can also be written as follows :

σR = ρ1(aB × R̂>aI) + ρ2(mB × R̂>mI). (3.11)

The skew-matrix of the innovation term satisfies :

[σR]× = R̂>M0R−R>M0R̂. (3.12)

Multiplyin both sides by R̂ and R̂> will result in:

R̂[σR]×R̂
> = M0RR̂

> − R̂R>M0, (3.13)

[R̂σR]× = M0R̃− R̃>M0. (3.14)

Finally, σR satisfies :

σR = R̂> vex(2πa(M0R̃)). (3.15)

M0 is a symmetric semi-definite positive matrix defined as follows :

M0 = ρ1aIa
>
I + ρ2mIm

>
I . (3.16)
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And the dynamic of the error R̃ = RR̂> is given by:

˙̃R = ṘR̂> +R
˙̂
R>, (3.17)

= R[ω]×R̂
> +R[ω + kpσR]×

>R̂>, (3.18)

= R[kpσR]×
>R̂>, (3.19)

= kpR̃[R̂σR]>×, (3.20)

= −kpR̃[vex(2πa(M0R̃)]×. (3.21)

Then, the time derivative of V can be given by:

V̇(R̃) =
−1

4
tr(M0

˙̃R), (3.22)

=
−1

4
tr(M0R̃[R̂kpσR]>×), (3.23)

=
−kp

4
tr(πa(M0R̃)[R̂σR]>×), (3.24)

=
−kp

4
� [R̂σR]×, πa(M0R̃)�f , (3.25)

=
−kp

2
� [R̂σR]×, [R̂σR]× �f , (3.26)

= −kp〈[R̂σR]×, [R̂σR]×〉, (3.27)

= −kp‖σR‖2. (3.28)

V is a positive definite function and its derivative is negative semi definite function, ac-
cording to Lasalle theorem trajectories will converge to the largest invariant set Ω = {R̃ ∈
SO(3) : V̇(R̃) = 0} = {R̃ ∈ SO(3) : vex(2πa(M0R̃)) = 0} using Quaternion proprietie from
[2].

vex(2πa(M0R̃)) = 2(q0I − [q]×)E(M0)q = 0. (3.29)

where E(M0) = 1
2
(tr(M0)I3 −M0) which is a positive definite matrix.

2(q0I − [q]×)E(M0)q = 0 results in two cases :

• case 1

q = 0 =⇒ vex(2πa(M0R̃)) = 0 =⇒ R̃ = I3. (3.30)

• case 2

q 6= 0 =⇒ q> vex(2πa(M0R̃)), (3.31)
= 2q0q

>E(M0)q = 0, (3.32)
=⇒ q0 = cos(θ/2) = 0 =⇒ θ = π. (3.33)
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The second case also implies that

−2[q]×E(M0)q = 0, (3.34)
=⇒ E(M0)q = λq. (3.35)

q is an eigenvector of E(M0) which means it’s an eigenvector of M0 also and since q =

sin(θ/2)u then u is an eignervector of M0 this prooves that the second case results in
R̃ = R(π, ε(M0)).. and that all trajectories will converge to the set U: solution of (3.30)

Proof. 2 Let us consider the following function :

W = 1 + tr(R̃). (3.36)
= 4q0

2. (3.37)

The derivative of W is :

Ẇ = −kptr( ˙̃R), (3.38)

= −kptr(R̃[vex(M0R̃)]×), (3.39)

= −kptr(πa(R̃)[vex(M0R̃)]×), (3.40)

=
kp
2

vex(πa(R̃))
>

vex(M0R̃)]×), (3.41)

=
kp
2

(2q0q)
>(2(q0I3 − [q]×)E(M0)q), (3.42)

= 2kpq0
2q>E(M0)q. (3.43)

We know that q0 = 0 ∀R̃ ∈ Ū = {R̃ ∈ SO(3) : R̃ = R(π,S2)} this implies that the set
Ū is invariant since W = 0 and Ẇ = 0 and ∀R̃ 6∈ Ū the function W is positive and it’s
derivative Ẇ is positive also thanks to the fact q>E(M0)q > 0.Which implies that the set
Ū is a repeller but it’s also Lebesgue measure zero =⇒ R̃ = I3 is an almost globally
asymptotically stable set.

Proof. 3 to prove that R̃ = I3 is locally exponentially stable let us consider the linearized
error dynamics around R̃ = I3 :

R̃ = I3 + [x]× : x = θu (3.44)

it’s derivative satisfies :

˙̃R = [ẋ]×, (3.45)

= −kpR̃[vex(2πa(M0R̃))]×, (3.46)
= −kp(I3 + [x]×)[E(M0)x]×. (3.47)
= −kp[E(M0)x]×, (3.48)
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this results in:

ẋ = kpE(M0)x, (3.49)

which proves that x = 0 (R̃ = I3) is exponentially stable since E(M0) is positive definite.

3.4.2 Numerical Simulation

In this subsection, we implement the nonlinear attitude observers defined in previous sec-
tion to estimate the vehicle orientation directly on SO(3) using IMU measurements. Con-
sider a vehicle navigating with the following angular velocity applied to :

ω(t) =

 0.3 cos (πt/10)

0.5 cos (2πt/10 + π/4)

0.8 cos (4πt/10)

 ; (3.50)

With an initial attitude R(0) = exp ([π/6π/5π/5]×). The inertial earth’s magnetic field
is taken asmI = [0.42; 0.2949; 0.15]>Gauss, and the earth’s gravity is g = 9.81m/s2. The
initial conditions of the observer is R̂(0) = I3. The observer parameters are taken as
ρ1 = 2, ρ2 = 2/6 and kp = 2. The measurement noises are modelled as a Gaussian white
noises with variances, σω = 0.16(deg/s2),σacc = 3.10−4(m/s2) and σmag = 0.025(Gauss).
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3.5 Sliding Mode Observer

The idea of the sliding mode observer is to use the innovation term of the complimentary
filter as a sliding manifold and design a correction term u that drives the attitude error to
the following manifold on R3 :

s = k1(mB × R̂>mI) + k2(aB × R̂>aI) = 0 (3.51)

which ensures that the motion on the manifold forces R̂ −→ R as t −→ ∞. Consider the
following positive definite scalar function:

W(s) =
1

2
‖s‖2. (3.52)

The time derivative of W satisfies :

Ẇ(s) = s>(
2∑

n=1

ki([Ṙ
>vi]×R̂vi + [R>vi]×

˙̂
R>vi)), (3.53)

where vi = mI and v2 = aI using proprieties (2.36) and (2.41) Ẇ(s) equals:

Ẇ(s) = s>(
2∑

n=1

ki([[ω]×
>R>vi]×R̂

>vi + [R>vi]×[ω + kpu]×
>R̂vi)). (3.54)

This will result in:

Ẇ(s) = s>[ω + kpu]×
> + s>(

2∑
n=1

kpki(R
>viu

>R̂>vi − uv>i R̃vi)). (3.55)

Choosing u = sign(s) and defining the vector α = R>mIu
>mI ∈ R3 and β = R>aIu

>aI ∈
R3, and the scalars λ1 = m>I R̃mI and λ2 = a>I R̃aI , and taking in consideration the
propriety x>[y]×x = 0,∀x, y ∈ R3, the derivative of W(s) satisfies:

Ẇ(s) = kp(k1s
>α + k2s

>β)− kp|s|(k1λ1 +˛2λ2), (3.56)

=
kp
2

(k1tr([s]×[α]× + k2tr([s]×[β]×)− kp|s|(k1λ1 +˛2λ2), (3.57)

=
kp
2

(k1tr([s]×
>[α]× + k2tr([s]×

>[β]×)− kp|s|(k1λ1 +˛2λ2). (3.58)

λ∗1 and λ∗2 denotes respectively, the maximum values that m>i R̃mI and a>I R̃aI can take,
and taking in consideration the inequality tr(A>B) ≤ ‖A‖1‖B‖1, the derivative satisifies :
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Ẇ(s) ≤ kp
2

(k1‖[s]×‖1‖[α]×‖1 + k2‖[s]×‖1‖[β]×‖1)− kp|s|(k1λ∗1 +˛2λ∗2), (3.59)

≤ kp(k1|s||α|+ k2|s||β|)− kp|s|(k1λ∗1 +˛2λ∗2), (3.60)
≤ kp(k1(|α| − λ∗1) + k2(|β| − λ∗2))|s|, (3.61)

≤ −|s|, ∀k1
k2
≥ |α| − λ

∗
1

λ∗2 − |β|
. (3.62)

Note that |β|, |α|, λ∗1, and λ∗2 are finite scalars and depend directly on mI and aI vectors.

choosing u = sign(s) with a proper tuning of k1 and k2 to satisfy the condition (3.62),
guarantees the reachability of the surface in a finite time starting from any point, meaning
that the attitude error will reach the sliding manifold s = 0 in a finite time and stays there
where the dynamic on s = 0 is forced to drive R̂ −→ R i.e. R̃ tend to the identity matrix i3
as t tend to ∞.

Note that introducing the sign function causes discontinuity problem in the system
dynamics, the idea is to apply a continuous function which has approximately the same
shape as the sign function. Let use a continuous function defined on R →] − 1, 1[ in the
following vector :

u = Ψ(s), (3.63)

with Ψ(s) defined :

Ψ(s) =
2

π

arctan(ms1)

arctan(ms2)

arctan(ms3)

 (3.64)
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function with m = 104 versus the graph of sign(s)

function

choosing m big enough preserves the robustness of the sign function and satisfy the
reachability condition established above.

The observer will then be given by :


˙̂
R = R̂[ωy + kpΨ(s)]×,

s = k1mB × R̂>mI + k2aB × R̂>aI ,

Ψ(s) = 2
π

[
arctan(ms1) arctan(ms2) arctan(ms3)

]>
.

(3.65)
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3.5.1 Stability Analysis

Theorem 4. Consider the rotation kinematics (2.15) for a time varying R(t) ∈ SO(3)

and with measurements given by (3.1)-(3.3). Let R̂(t) denotes the solution of the sliding
mode observer (3.65). taking in consideration the error R̃ = RR̂>. Then

• All trajectories converge to the set U = {I3} × {R̃ ∈ SO(3) : R̃ = R(π, ε(M0))}.

• The set Ū = {R̃ ∈ SO(3) : R̃ = R(π, ε(M0)} is unstable.

• The equilibrium R̃ = I3 is locally exponentially stable and it’s almost globally asymp-
totically stable.

Proof. 1 Let us consider the following Lyapunov candidate function :

V =
1

4
tr(M0 −M0R̃). (3.66)

the time derivative of V is given by:

V̇ =
−1

4
tr(M0

˙̃R), (3.67)

=
−kp

4
tr(M0R̃[R̂u]

>
×), (3.68)

=
−kp

4
tr(πa(M0R̃)[R̂u]

>
×), (3.69)

=
−kp

4
� [R̂u]×, πa(M0R̃)�f , (3.70)

=
−kp

2
� [R̂u]×, [vex(2πa(M0R̃))]× �f , (3.71)

= −kp < [R̂u]×, [R̂s]× >, (3.72)
= −kps>Ψ(s), (3.73)

=
−2kp
π

(s1 arctan(ms1) + s2 arctan(ms2) + s3 arctan(ms3)). (3.74)

V is a positive definite function and it’s derivative is negative semi definite function thanks
to the fact that x arctan(mx) ≥ 0. According to Lasalle theorem, trajectories will converge
to the largest invariant set Ω = {R̃ ∈ SO(3) : V̇(R̃) = 0} . V(R̃) = 0 means that s = 0 or
Ψ(ms) = 0 and since the arctan(x) = 0 only if x = 0. The set Ω = {R̃ ∈ SO(3) : s = 0} =

{R̃ ∈ SO(3) : vex(2πa(M0R̃)) = 0}. same as the previous observer and using Quaternion
proprieties :

vex(2πa(M0R̃)) = 2(q0I − [q]×)E(M0)q = 0. (3.75)
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where E(M0) = 1
2
(tr(M0)I3 −M0) which is a positive definite matrix.

2(q0I − [q]×)E(M0)q = 0 results in two cases :

• case 1

q = 0 =⇒ vex(2πa(M0R̃)) = 0 =⇒ R̃ = I3. (3.76)

• case 2

q 6= 0 =⇒ q> vex(2πa(M0R̃)), (3.77)
= 2q0q

>E(M0)q = 0, (3.78)
=⇒ q0 = cos(θ/2) = 0 =⇒ θ = π. (3.79)

The second case also implies that

−2[q]×E(M0)q = 0, (3.80)
=⇒ E(M0)q = λq. (3.81)

q is an eigenvector of E(M0) which means it’s an eigenvector of M0 also. and since q =

sin(θ/2)u. u is an eignervector of M0 this proves that the second case results in R̃ =

R(π, ε(M0)).. and that all trajectories will converge to the set U: solution of (3.75)

Proof. 2 For rotation of π around the unit vector u ∈ ε(M0), the attitude error matrix is
given by :

R̃ = R(π, u) exp ([x]×), x ≈ 0. (3.82)

for small rotations this can be written as :

R̃ ≈ R(π, u)(I3 + [x]×). (3.83)

the linearized dynamics are :

˙̃R = R(π, u)[ẋ]×. (3.84)

on can write the skew matrix of ẋ as follows :

[ẋ]× = −kpR(π, u)>R̃[R̂Ψ(s)]×, (3.85)

= kpR(π, u)>R(π, u)(I3 + [x]×)[vex(2πa(M0R̃)]×, (3.86)

=
−kp

2
(I3 + [x]×)(M0R̃− R̃>M0), (3.87)

=
−kp

2
(I3 + [x]×)(M0(I3 + [x]×)− (I3 − [x]×)M0), (3.88)

=
−kp

2
(M0R(π, u)[x]× + [x]×R(π, u)M0). (3.89)
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Taking M∗ = M0R(π, u) :

[ẋ]× =
−kp

2
[(tr(M∗)I3 + (M∗)>)x]×, (3.90)

= −kp[E(M∗)x]×. (3.91)

this result in the following linear system :

ẋ = −kpE(M∗)x. (3.92)

To study the stability of this linearized system, we’ll determine the sign of the eigenvalues
of E(M∗) matrix.

u>E(M∗)u =
u>

2
(tr(M∗)I3 −M0R(π, u))u. (3.93)

And since u ∈ ε(M0),M0u = λu, where λ are the eigenvalues of M0.

u>E(M∗)u =
1

2
(tr(M∗)− λ), (3.94)

=
1

2
(tr(M0(2uu

> − I3))− λ), (3.95)

=
1

2
(− tr(M0)), (3.96)

≤ 0. (3.97)

Thanks to the fact that M0 is a positive semi-definite matrix, which means E(M∗) has at
least one negative eigenvalues =⇒ −E(M∗) has at least one positive eigenvalue. This
the equilibrium set Ū is unstable but it’s also Lebesgue measure zero =⇒ R̃ = I3 is an
almost globally asymptotically stable set.

Proof. 3

To prove that R̃ = I3 is locally exponentially stable let us consider the linearized error
dynamics around R̃ = I3 :

R̃ = I3 + [x]× : x = θu. (3.98)

it’s derivative satisfies :

˙̃R = [ẋ]×, (3.99)

= −kpR̃[R̂Ψ(s)]×, (3.100)

= −kp(I3 + [x]×)[R̂Ψ(mR̂> vex(2πa(M0R̃)))]×, (3.101)

= −kp(I3 + [x]×)[R̂Ψ(mR̂>E(M0)x)]×. (3.102)
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And for x ≈ 0 the function arctan(x) ≈ x this results in:

[x]× =
−2mkp
π

(I3 + [x]×)[E(M0)x]×, (3.103)

ẋ =
−2mkp
π

E(M0)x. (3.104)

which proves that x = 0 (R̃ = I3) is exponentially stable since E(M0) is positive definite.

3.5.2 Numerical Simulation

In this subsection, we implement the nonlinear attitude observers defined in previous sec-
tion to estimate the vehicle orientation directly on SO(3) using IMU measurements. Con-
sider a vehicle navigating with the following angular velocity applied to :

ω(t) =

 0.3 cos (πt/10)

0.5 cos (2πt/10 + π/4)

0.8 cos (4πt/10)

 (3.105)

With an initial attitude R(0) = exp (π
2
[e3]×). The inertial earth’s magnetic field is taken

asmI = [0.42; 0.2949; 0.15]>Gauss, and the earth’s gravity is g = 9.81m/s2. The inital
conditions of the observer is R̂(0) = I3. The observer parameters are taken as k1 =

2/6, k2 = 2,m = 104 and kp = 2. The measurement noises are modelled as a Gaussian white
noises with variances, σω = 0.16(deg/s2),σacc = 3.10−4(m/s2) and σmag = 0.025(Gauss).
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Figure 3.8: attitude estimation error using nonlinear sliding mode observer
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3.6 Super Twisting Sliding Mode

The sliding mode technique is essentially based on the resolution of differential equations
with a discontinuous right hand side which is introduced in previous section. Historically,
the twisting mode algorithm is the first 2nd order sliding mode algorithm known. The
Super-Twisting Algorithm (STA) or Super-Twisting observer is a well-known second order
sliding mode (SOSM) algorithm. It was first designed as an absolutely continuous con-
trol law, allowing to compensate Lipschitz perturbations exactly and ensuring finite time
convergence. This algorithm is widely used to substitute discontinuous controllers by con-
tinuous ones and to attenuate the chattering phenomenon caused by the first order sliding
mode (as we can see in the Numerical Simulation section). It features are twisting around
the origin of the 2nd order sliding plane. The trajectories perform an infinite number of
rotations while converging in finite time to the origin. In the super-twisting algorithm the
trajectories on the 2nd order sliding plane are also characterized by twisting around the
origin as illustrated in the following figure.

Figure 3.10: Super twisting phase trajectory
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The super twisting observer algorithm is given by :



˙̂
R = R̂[ωy + kpu]×,

u = u1 + u2,

u1 = −k3|s|
1
2 sign(s),

u̇2 = −k4sign(s),

s = k1(mB × R̂>mI) + k2(aB × R̂>aI) = 0,

(3.106)

where s is the sliding surface the same used for the first order sliding mode in the previous
section and ki i = 1 . . . 4 are tunning scalars. The finite time stability is often used to
proove the convergence of the Super-twisting algorithm in a finite time.

3.6.1 Numerical Simulation

In this subsection we implement the nonlinear attitude observers defined in previous section
to estimate the vehicle orientation directly on SO(3) using IMU measurements. Consider
a vehicle navigating with the following angular velocity applied to :

ω(t) =

 0.3 cos (πt/10)

0.5 cos (2πt/10 + π/4)

0.8 cos (4πt/10)

 (3.107)

With an initial attitude R(0) = exp (π
2
[e3]×). The inertial earth’s magnetic field is taken

asmI = [0.42; 0.2949; 0.15]>Gauss, and the earth’s gravity is g = 9.81m/s2. The initial
conditions of the observer is R̂(0) = I3. The observer parameters are taken as k1 =

2/6, k2 = 2,k3 = −1.3,k4 = −1.5,m = 104 and kp = 2. The measurement noises are
modelled as a Gaussian white noises with variances, σω = 0.16(deg/s2),σacc = 3.10−4(m/s2)

and σmag = 0.025(Gauss).
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Figure 3.11: attitude estimation error using nonlinear sliding mode observer
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3.7 Comparaison and Robustness Study

In this section, we will compare the previous attitude observers and test their robustness
by corrupting the Gyroscope measurements i.e.: adding (10%, 30%..) of the measurements
to the measured values, increasing the noise and adding perturbations. The behaviour of
the attitude observers will be compared in a single graph by plotting the trace function
Φ(R̃) = tr(I3−R̃). First let us put together the performance of the three nonlinear observers
in normal conditions to compare the convergence speed. Consider a vehicle navigating with
the following angular velocity applied to :

ω(t) =

 0.8 cos (πt/10)

cos (2πt/10 + π/4)

1.2 cos (4πt/10)

 (3.108)

With an initial attitude R(0) = exp (π/2
4

[e3]×). The inertial earth’s magnetic field is
taken asmI = [0.42; 0.2949; 0.15]>Gauss, and the earth’s gravity is g = 9.81m/s2. The
inital conditions of the observer is R̂(0) = I3. The observer parameters are taken as
k1 = 1/12, k2 = 1.5,k3 = −1.3,k4 = −1.5,ρ1 = 1.5,ρ2 = 1/12,m = 104 and kp = 2.
The measurement noises are modelled as a Gaussian white noises with variances, σω =

0.16(deg/s2),σacc = 3.10−4(m/s2) and σmag = 0.025(Gauss).

time(s)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Complimentary Filter

Sliding Mode

Super-Twisting

Figure 3.13: convergence speed of the attitude estimation error using the three nonlinear
observers versus time
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3.7.1 Noise and Bias Filtering

In this subsection, we will test the filtering of the nonlinear observers by multiplying the
noise variance of the accelerometer, gyroscope and magnetometer.

ωy = ω + αηω, (3.109)
mB = R>mI ,+αηmag, (3.110)
aB = R>aI + αηacc. (3.111)

First let’s consider the cases α = 10 (Multiplying the variance noise ten times) then
α = 20. and considering the same observer’s constants and simulation scenario as the
previous subsection :
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Figure 3.14: Comparison between the three observers when noise variances is 10 times
bigger
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Figure 3.15: Comparison between the three observers when noise variances is 20 times
bigger

Note that the noise variances σω = 0.16(deg/s2),σacc = 3.10−4(m/s2) and σmag =

0.025(Gauss) are taken from the data-sheet of a cheap commercial IMU.

We can see that the Complimentary filter offers a very good noise filtering and tops the
other two observers. However, if the Gyroscope measurements are corrupted by a constant
gyro bias bω = 5(deg/sec) at the form of :

ωy = ω + bω + ηω, (3.112)
mB = R>mI ,+ηmag, (3.113)
aB = R>aI + ηacc. (3.114)

We can see that the complimentary filter implemented in the section 3.4 offers no form
of bias elimination and the estimated attitude is not reliable. However, the sliding mode
observer and the super twisting observers eliminates the gyro bias and offers a very reliable
estimation of the attitude.
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Figure 3.16: Comparison between the three observers when a constant bω is added

3.7.2 Corrupted Measurements

In this subsection, we will compare the previous attitude observers and test their robust-
ness by corrupting the Gyroscope measurements by adding 10%, 30% and finally 50% of
the gyroscope measurements to the measured angular velocity. Let us consider the same
simulation scenario and same observers constants :
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Figure 3.17: Comparison between the three observers when Gyroscope measurements are
corrupted by 10% of the measured value
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Figure 3.18: Comparison between the three observers when Gyroscope measurements are
corrupted by 30% of the measured value
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Figure 3.19: Comparison between the three observers when Gyroscope measurements are
corrupted by 50% of the measured value
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3.7.3 Initial Values

In this subsection, we will compare the observers behaviour by considering a large initial
angle error. Let us consider the initial values : R(0) = exp ((π − 0.1)[e3]×), and R̂(0) = I3
with same simulation scenario and same observer constants as before the results are as
follows :
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Figure 3.20: Comparison between the three observers when the initial angle error is close
to π

3.8 Conclusion

In this chapter we proposed three nonlinear attitude observers and a TRIAD reconstruction
method. All of the proposed methods require the use of vector measurements. The stability
of the nonlinear complimentary filter and the sliding mode observer were discussed and
proved. The three observers were compared :

• First, by amplifying the noise and adding a constant bias. The complimentary fil-
ter showed a very good noise filtering while the other two observers gave acceptable
results. However, the sliding mode observer and Super-twisting observer eliminated
the constant gyro bias while the complimentary filter offers no form of bias elimina-
tion. Note that a bias-attitude complimentary filter (Mahony and Hamel 2007) can
be used to solve this problem but that will require more time to converge and more
computational resources. A possible solution can be studied also for the noise filter-
ing using the sliding mode and the Super-twisting observers, this possible solution
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consist of using a Volterra estimator[19] to filter the measurements from the IMU
before using them in the sliding mode or Super-twisting observers since this type of
filters has been studied recently and showed a very good noise elimination.

• Second, the observer’s performances were compared by corrupting the angular veloc-
ity measurements obtained from the gyroscope. The sliding mode and Super-twisting
observers showed a very good results while the complimentary filter gave unreliable
estimation.

• Third, the observer’s performances were compared by increasing the angle initial error
close to π. The sliding mode and super-twisting observers showed a faster convergence
than the complimentary filter. Note that the difference in the converging speed is
also present in the case of small initial angle error as seen in figure(3.13).



CHAPTER 4

Position Reconstruction Using UWB Range
Measurements
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4.1 Introduction

Inertial navigation systems (INS) are widely deployed in many autonomous and robot
platforms [22]. INS systems use measurements from accelerometers, gyroscopes and some-
times magnetomers to provide an estimate of the position, velocity and orientation of a
vehicle. These sensors are often available inside a single low-cost unit called an Inertial
Measurement Unit (IMU). The use of INS alone for navigation might lead to unreliable
state estimates since measurement errors and unknown initial conditions lead to drifts in
the estimation over long time horizons [1]. For this reason, INS are usually aided by other
sensors such as Global Positioning Systems (GPS) which allow to correct the position es-
timates over time, thus, restricting the estimation errors to small bounds, or Ultra-Wide
Band (UWB) sensors which is a radio technology that can use a very low energy level for
short-range, high-bandwidth communications over a large portion of the radio spectrum.
Range measurements using UWB radio technology is getting popular in indoor applica-
tions. The idea is to deploy n source points (anchors) of transmitter modules at known
locations and a receiver module installed on board the UAV. By communicating signals
between the receiver and the transmitters, it is possible to calculate the ranges (distances)
between the receiver and the anchors and determine the position of the UAV. Generally
n ≥ 4 anchors are used to determine the vehicle’s position without ambiguity. In this chap-
ter we will discuss different methods to reconstruct the position information from UWB
sensors for different scenarios.

4.2 Ultra-Wide Band technology

UWB is a wireless technology intended for digital data transmission over short distances
at low power density. The name reflects that the technology occupies a large bandwidth
of the radio frequency spectrum. In unlicensed applications, the UWB uses short-duration
pulses over a spectrum of frequencies between 3.1GHz to 10.6GHz. The Ultra-Wide Band
dates back to the beginning of radio when G. Marconi used spark-gap transmitters in
transatlantic radio communication. The technology evolved considerably in the mid 20th
century as it proved to be very useful in short range positioning for indoor environment
applications.
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Figure 4.1: UWB frequency spectrum figure from [18]

4.3 Position Reconstruction Using n ≥ 4 Range Mea-
surements

We assume that we have n ≥ 4 non-coplanar UWB anchors (source points) with known
constant locations (positions), denoted as di .The corresponding UWB range measurements
are given by :

di = ‖p− pi‖, i = 1, . . . , 4 (4.1)

we can proceed as follows.First define the following measurable scalars :

yi =
1

2
(d2i − d21 − ‖pi‖2 + ‖p1‖2), i = 2, . . . , 4. (4.2)

Then, one can show that yi = (p1 − pi)>p, i = 2, . . . , 4. By defining y = [y2, . . . , yn]>, one
can obtains :
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y =

(p1 − p2)>
...

(p1 − pn)>

 p, (4.3)

which encodes the position information provided by the range measurements.

4.4 Position Reconstruction Using 3 Range Measure-
ments

The idea is to deploy 3 UWB anchors (source points) in a non colinear form. These 3 points
make a plan given by an equation of this type : ax + by + cz + d = 0. Then restrict the
vehicle movement to either above the plan only or under the plan only and make sure that
the vehicle will not cross the plan formed by the three source points during it’s operating
time. To illustrate this method first, let us assume that the ground surface corresponds to
z = 0 plane in the reference frame, which limits the unmanned vehicle movement only in
the z > 0 area.

Now assume we have 3 source points (UWB anchors) deployed at these locations
p1(0, 0, 0), p2(1, 0, 0) and p3(0, 1, 0), the corresponding range measurements denoted by
di, i = 1, 2, 3 and where p = [x, y, z]> are given by:

x2 + y2 + z2 = d21 (4.4)
(x− 1)2 + y2 + z2 = d22 (4.5)
x2 + (y − 1)2 + z2 = d23 (4.6)

subtracting (4.5) from (4.4) and (4.6) from (4.4), we obtain:

x =
1

2
(d21 − d22 + 1), (4.7)

y =
1

2
(d21 − d23 + 1) (4.8)

and :

z2 = d21 − x2 − y2. (4.9)

Note that d21−x2−y2 = f(d1, d2, d3) = q21− 1
4
(d2−d22+1)2− 1

4
(d2−d23+1)2 is always a positive

value because of the existence of intersection point between the three spheres defined at
(4.4)-(4.5) and (4.6) which corresponds to (p UAV center). The positiveness z2 can also
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be shown by determining the minimum value of f(d1, d2, d3) under the different triangular
inequalities constraint of the triangles formed by the anchors and the UAV using Lagrange
method, which results in finding that, the nature of the point(d1, d2, d3) = (0, 1, 1) in a
minimum of f under the previous constraints. The positiveness of z2 means that z will
always have positive and negative values, and taking the assumption established before
into consideration, we can reconstruct the output vector y by always taking the positive
value of z.

4.5 Position Reconstruction Using 2 Range Measure-
ments and Altimeter

4.5.1 Barometric Altimeter Sensor

Altimeters are devices designed to calculate the height of a vehicle above the surface directly
below it. This height may be Above Ground Level (AGL) or Above Sea Level (ASL).

Different types of altimeter use different technologies to calculate the altitude, including
pressure-density to altitude relation. The altitude can be calculated by comparing the
atmospheric pressure at the current height with the pressure at ground level. In general
terms, the greater the altitude the lower the pressure. However, air pressure is affected
not only by altitude, air pressure may also fluctuate due to changes in the weather which
may cause changes in both pressure and temperature. These variables must be taken
into account during the calibration process in order to obtain an accurate reading from
a barometric altimeter. To calculate altitude, a barometric altimeter uses the following
equation:

z = log(P0/P ). (4.10)

where :

µ : is a constant that depends on the acceleration of gravity and the molar mass of the
air,

T : is absolute temperature,

P : is the pressure at the altitude z,

Po : is the pressure at the ground level.
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Figure 4.2: MEMS Barometric Altimeter

4.5.2 Inertial Navigation System (INS)

An Inertial Navigation System (INS) is a device that uses accelerometer data with gy-
roscope data to calculate the position, velocity and orientation of the vehicle. The INS
algorithmes are based on the Dead Reckoning method which consists of calculating the
current position by using a previously determined position. The orientation and the tran-
sitional states are obtained from integrating the measurements of the IMU (gyroscope and
accelerometer) and using a stochastic estimation method to filter the noise such as Kalman
filter. However, All inertial navigation systems suffer from integration drift, small errors
in the measurement of acceleration and angular velocity are integrated into progressively
larger errors in velocity, which are compounded into still greater errors in position. Since
the new position is calculated from the previous calculated position and the measured
acceleration and angular velocity, these errors accumulate roughly proportionally to the
time since the initial position was input. Even the best accelerometers, with a standard
error of 10(/sec2), would accumulate a large significant error within minutes. Therefore,
the position must be periodically corrected by input from some other type of position
measurements such as GPS or UWB.
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4.5.3 Reconstruction Method

We assume available 2 UWB source points deployed at these locations p1(0, 0, 0) and
p2(1, 0, 0), an altimeter sensor that provides z position and an INS (Inertial Navigation
System) algorithm that uses accelerometer and gyroscope data from and Inertial Measure-
ment Unit (IMU) to output linear velocity, and position measurements, these measurements
are given by:

x2 + y2 + z2 = d21, (4.11)
(x− 1)2 + y2 + z2 = d22, (4.12)
zmes = z + ηalt, (4.13)
vins = v + δv, (4.14)
pins = p+ δp, (4.15)

where ηalt is the altimeter noise, pins and vins are position and velocity measurements
provided by the INS algorithm, δv and δp are integration drifts. From (4.11) and (4.12)

and altimeter measurements, we can obtain:

x =
1

2
(d21 − d22 + 1), (4.16)

y2 = d21 − x2 − z2. (4.17)

Same as the previous method, y here has a positive and a negative value. We propose
the following algorithm to reconstruct the y position measurement and here y1 and y2 are
solutions for equation (4.17) and yins is the measurement output from the INS algorithm.
:

Algorithm 1: y position measurement reconstruction
Result: y
initialization;
while t ≤ tf do

if abs(y1 − yins) < abs(y2 − yins) then
y=y1
yins = y1

else
y=y1
yins = y1

end
yins = yins + h.vyins

end

This algorithm takes INS outputs and compares it with the two values of y from (4.17),
since the difference between the INS outputs and real y value is the integration drift. The



66 Chapter 4. Position Reconstruction Using UWB Range Measurements

algorithm corrects yins each step to ensure that the difference between the real y value and
yins is the drift due to one integration step denoted h.

4.6 Conclusion

In this chapter we presented the UWB technology for range measurements and the vehi-
cle position measurements reconstruction using 4 or more anchors. We also proposed two
solution to reconstruct the position information when less than 4 anchors are available.
The first method imposes some limitation to the vehicle’s movement area while the second
method works in all cases. However, both methods don’t perform well when the range mea-
surements are very noisy, a possible and interesting solution is to filter the measurements
using Volterra observer [19] before using them in the two reconstruction algorithms.



CHAPTER 5

State Estimation for Non-Accelerated Vehicles
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5.1 Introduction

In this chapter, we study two estimation approaches for UAV that performs low linear
accelerations, a Complimentary filter with linear Kalman filter in section 5.2.1 and an
attitude Sliding Mode observer with linear Kalman filter in section 5.2.2. Both estima-
tion approaches provide position, linear velocity and orientation obtained directly on the
rotation group to avoid singularities or ambiguities. The observers uses IMU measure-
ments along with range sensors that provides position information. A comparison study is
provided in section 5.3.

5.2 Complete State Estimation

In this section, we want to estimate the full state of the vehicle (position, velocity and
attitude) under the following main assumption :

Assumption 1. The vehicle is near to hover and performs near to zero accelerations
aB ≈ −gR>e3.

Assumption 1 means that the rotational dynamics is decoupled from the transitional
dynamics, which means we can estimate the attitude of the vehicle using one of the ob-
servers defined in Chapter 3, then use the estimated attitude to estimate the transitional
states (position and velocity).

5.2.1 Complimentary Filter and Kalman Filter

Decoupling the attitude estimation from the position and linear velocity estimation allow
us to estimate the attitude first then use the estimated attitude to estimate the transitional
states, this approach is given as follows :

{
˙̂
R = R̂[ωy + kpσR]×,

σR = ρ1(aB ×R>aI) + ρ2(mB ×R>mI).
(5.1)

And

{
ṗ = v,

v̇ = u,
(5.2)

where

u = ge3 + R̂aB. (5.3)
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We can safely represent the transitional system as follows :{
ẋ = Ax+Bu,

y = Cx,
(5.4)

where x = [p>; v>]> and A =

[
03×3 I3
03×3 03×3

]
, B =

[
03×3
I3

]
and C =

[
I3 03×3

]
The Kalman filter of the transitional system is given by :{

˙̂x = Ax̂+Bu+ LC(x− x̂),

ŷ = Cx̂,
(5.5)

and

L = PC>R−1, (5.6)

Ṗ = AP + PA> − PCR−1CP +Q (5.7)

with P being the solution of the differential Riccati equation thanks to the fact that the
pair (A,C) is uniformly observable, the Riccati equation is well conditioned and the solution
converges to a constant. and R and Q are the process and covariance matrices.

Numerical Simulation

In this section, we implement the estimation approach defined in the previous section to
estimate the vehicle’s full state using UWB and IMU measurements. Consider a vehicle
navigating in inertial frame following this low accelerated trajectory:

p(t) =

 1.5 + 1
2

sin (2πt/T )

2.5 + 1
2

cos (2πt/T )

1.25 + 1
4

cos(2πt/T )

 , T = 100. (5.8)

The angular velocity applied to the vehicle is given by:

ω(t) =

 0.3 cos (πt/10)

0.5 cos (2πt/10 + π/4)

0.8 cos (4πt/10)

 (5.9)

With an initial attitude R(0) = exp ([r0]×), r0 = [π/6; π/5;π/5]>. The inertial earth’s
magnetic field is taken as mI = [0.42; 0.2949; 0.15]>Gauss, and the earth’s gravity is g =

9.81m/s2. The inital conditions of the observer are x̂ = [0; 0; 0; 0; 0; 0]>. R̂(0) = I3 and
P (0) = I6 with Q = 0.01× I3 and V = 0.2× I6, and the parameters are taken as ρ1 = 2,
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ρ2 = ρ1/6,and kp = 1. The measurement noises are modelled as a Gaussian white noises
with variances, σω = 0.16(deg/s2),σacc = 3.10−4(m/s2) and σmag = 0.025(Gauss).
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Figure 5.1: Position and velocity estimation errors versus time using Complimentary filter
with Kalman filter
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5.2.2 Sliding Mode Observer and Kalman Filter

Same as the previous observer, the rotational dynamics are decoupled from the transitional
dynamics. Here we use the Sliding mode defined in the section 3.5 to estimate the orienta-
tion, then we estimate the rotational states using Kalman filter, the estimation approach
is given as follow:

˙̂
R = R̂[ωy + kpΨ(σ)]×,

σ = ρ1(aB ×R>aI) + ρ2(mB ×R>mI),

Ψ(σR) = 2
π

[
arctan(mσ1) arctan(mσ2) arctan(mσ3)

]>
.

(5.10)

The Kalman filter of the transitional system is given by :{
˙̂x = Ax̂+Bu+ LC(x− x̂),

ŷ = Cx̂.
(5.11)

and

L = PC>R−1, (5.12)

Ṗ = AP + PA> − PCR−1CP +Q. (5.13)

Numerical Simulation

In this subsection, we implement the estimation approach defined in the previous section
to estimate the vehicle’s full state using UWB and IMU measurements. Consider a vehicle
navigating in inertial frame following this low accelerated trajectory:

p(t) =

 1.5 + 1
2

sin (2πt/T )

2.5 + 1
2

cos (2πt/T )

1.25 + 1
4

cos(2πt/T )

 , T = 100. (5.14)

The angular velocity applied to the vehicle is given by:

ω(t) =

 0.3 cos (πt/10)

0.5 cos (2πt/10 + π/4)

0.8 cos (4πt/10)

 . (5.15)

With an initial attitude R(0) = exp ([r0]×), r0 = [π/6;π/5;π/5]>. The inertial earth’s
magnetic field is taken asmI = [0.42; 0.2949; 0.15]>Gauss, and the earth’s gravity is g =

9.81m/s2. The inital conditions of the observer are x̂ = [0; 0; 0; 0; 0; 0]>. R̂(0) = I3 and
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P (0) = I6 with Q = 0.01× I3 and V = 0.2× I6, and the parameters are taken as ρ1 = 2,

ρ2 = ρ1/6,and kp = 1. The measurement noises are modelled as a Gaussian white noises
with variances, σω = 0.16(deg/s2),σacc = 3.10−4(m/s2) and σmag = 0.025(Gauss).
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Figure 5.3: Position and velocity estimation errors versus time using Complimentary filter
with Kalman filter
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5.3 Comparison Study

In this section, we will compare the previous full state estimation approaches and test their
robustness by increasing the acceleration performed by the vehicle and see the performance
of the two estimation approaches. It is easily seen that decreasing T in the following
trajectory will result in performing bigger acceleration. First let us consider the case
where T = 100s :

p(t) =

 1.5 + 1
2

sin (2πt/T )

2.5 + 1
2

cos (2πt/T )

1.25 + 1
4

cos(2πt/T )

 , T = 100. (5.16)

The angular velocity applied to the vehicle is given by:

ω(t) =

 0.3 cos (πt/10)

0.5 cos (2πt/10 + π/4)

0.8 cos (4πt/10)

 . (5.17)

First let us see the noise filtering :
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Figure 5.5: Noise filtering comparison between Sliding mode with Kalman filter observer
and Complimentary with Kalman filter
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Figure 5.6: Comparison between Sliding mode with Kalman filter observer in red and
Complimentary with Kalman filter in blue in case of T=100
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The case when T = 30s will result in a faster trajectory :
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Figure 5.7: Comparison between Sliding mode with Kalman filter observer in red and
Complimentary with Kalman filter in blue in case of T=100
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Finally the case when T = 10s :
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5.4 Conclusion

In this chapter, we proposed two estimation approaches for UAV that performs low linear
accelerations. The two estimation approaches require the use of vector measurements. The
two observers were compared by increasing the vehicle’s linear acceleration. The sliding
mode observer with Kalman filter converges faster than the Complimentary filter with
Kalman filter for all the accelerations. However, the Complimentary filter with Kalman
filter have a better noise handling in attitude estimations than the Sliding mode with
Kalman filter due to the chattering phenomenon that occurs when using the Sliding mode
observer.



CHAPTER 6

Stat Estimation for Accelerated Vehicles



6.1. Introduction 79

6.1 Introduction

Early works on UAV state observation use stochastic observers such as Kalman filter to
navigate. However, these stochastic observers rely on linearization assumption and may
not be reliable in certain cases when the initial errors are important. Recently, nonlinear
deterministic observers are studied as they offer robustness and stability properties pro-
vided by Lyapunov theorems while dealing with the interconnection between the rotational
and transitional state due to performing accelerated trajectory. Moreover, compared to
stochastic estimators, the nonlinear deterministic estimators are usually less computation-
ally demanding.

In this chapter, we propose two nonlinear deterministic observers a Riccati high-order
observer in section 6.3 and a constant gain observer in section 6.4. Both observers provide
position, linear velocity and orientation obtained directly on the rotation group to avoid
singularities or ambiguities. The observers use IMU measurements along with range sensors
that provides position information. The asymptotic stability of the two observers is proved
using Lyapunov-based stability tools.

6.2 System Model and Measurements

6.2.1 System Model

ṗ = v, (6.1)
v̇ = ge3 +RaB, (6.2)

Ṙ = R[ω]×, (6.3)

where p ∈ R3 is the inertial position of the vehicle’s center of gravity, v ∈ R3 represents
the inertial linear velocity, R ∈ SO(3) is the attitude matrix describing the orientation
of a body-attached frame with respect to the inertial frame, ω is the angular velocity of
the body-attached frame with respect to the inertial frame expressed in the body-attached
frame, g in the norm of the acceleration due to gravity,e3 = [0, 0, 1]T and aB = RTaI is
the "apparent acceleration", capturing all non gravitational forces applied to the vehicle,
expressed in the body-attached frame.

6.2.2 Measurements

We assume available an IMU that provides measurements of the angular velocity, the body-
attached frame apparent acceleration and the body-attached frame magnetic field. These
sensors are modelled :
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ωy = ω + ηω, (6.4)
aB = R>aI + ηacc, (6.5)
mB = R>mI + ηmag, (6.6)

where mI is the constant and known earth’s magnetic field, aI is a time-varying unknown
apparent acceleration, ηω, ηacc and ηmag are respectively gyroscope, accelerometer and
magnetometer noises. We also assume that we have measurements of the following output
vector :

y = p. (6.7)

6.2.3 Objective

The objective is to design a converging state observer to estimate position, velocity and
orientation of the vehicle relying on measurements (6.4)-(6.6) under these assumptions :
Assumption 1. There exists a constants c0 such that
‖mI × aI‖ ≥ c0 for all t ≥ 0.

Assumption 2. There exist constants c1, c2, c3 > 0 such that c1 ≤ ‖aI(t)‖ ≤ c2 and
‖ȧI(t)‖ ≤ c3 for all t ≥ 0.

Assumption 3. There exists a constant c4 ≥ 0 such that ‖ω̇I(t)‖ ≤ c4.

These assumptions are due to real physical constraints on the system.
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6.3 Riccati High-Order State Observer

In this section, we design a time-varying gain observer by considering the extended transna-
tional state x :=

[
p>, v>, a>I

]> ∈ R9. In view of (6.1)−(6.3) and (6.4)−(6.6), the dynamics
of x are written as follows :

ẋ = Āx+Bge3 +BȧI , (6.8)
y = Cx, (6.9)

where the matrices Ā, B̄, B and C are defined as follows:

Ā =

 03×3 I3 03×3
03×3 03×3 I3
03×3 03×3 03×3

 , B̄ =

 03×3
I3

03×3

 , B =

 03×3
03×3
I3

 , C =
[
I3 03×3 03×3

]
.

(6.10)

We have simplified the observer given in [4] by ignoring the gyro bias estimator, it is given
as follows :

x̂ = BR̂aB + ẑ, (6.11)

˙̂z = Āẑ + B̄
(
ge3 + R̂aB

)
+K(t)(y − Cx̂) + σ1, (6.12)

˙̂
R = R̂ [ωy + k1σ2]× , (6.13)

with initial conditions x̂(0) ∈ R6, R(0) ∈ SO(3). The innovation terms σ1 ∈ R9 and
σ2 ∈ R3 are defined as follows:

σ1 = −k1B
[
R̂σ2

]
×
R̂aB, (6.14)

σ2 = ρ1

(
mB × R̂>mI

)
+ ρ2

(
aB × R̂> satĉ2 (âI)

)
, (6.15)

âI = R̂aB +B>ẑ, (6.16)

where k1, k2, ρ1, ρ2and ĉ2 are positive with ĉ2 > c2, the gain matrix is chosen as K(t) =

γLγP (t)C>Q(t), with Lγ = blockdiag (I3, γI3, γ
2I3), satĉ2(âI) = min(1, ĉ2/‖âI‖)âI and

P (t) is solution to the following continuous differential Riccati-like equation:

1

γ
Ṗ = ĀP + PĀ> − PC>Q(t)CP + V (t)

where γ ≥ 1, P (0) ∈ R9×9 positive define, Q(t) ∈ R3×3 and V (t) ∈ R9×9 are continuous,
bounded and uniformly positive definite matrices. Note that choosing γ = 1 yields the
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traditional continuous Riccati equation used in the Kalman filter where Q−1(t) and V (t)

are interpreted as the covariance matrices for the output y and the process, respectively.
The introduction of the scalar γ allows for the asymptotic stability of the interconnection
of the transnational and rotational parts of the nonlinear observer.

6.3.1 Stability Analysis

Let us define the following error variables:

x̃ = x− x̂, (6.17)

R̃ = RR̂>, (6.18)
ζ = L−1γ x̃. (6.19)

Now consider the following positives definite functions:

V(ζ) =
1

γ
ζ>P−1ζ. (6.20)

W(ζ, R̃) = V(ζ) +
1

4
tr(M0 −M0R̃). (6.21)

One can show the following result by following the proof steps of the same observer found
in [4] :

Ẇ ≤ −kp‖σ2‖2 −
γβ1vm

2β2
2

V(ζ). ∀‖ζ‖2 ≥ 4cgβ
2
2

γ3β1vm
(6.22)

W shows that the proposed nonlinear observer guarantees the convergences and the
asymptotic stability of the zero estimation errors, for t ≥ T and angles errors less than
180◦.
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6.3.2 Numerical Simulation

In this section, we implement the Riccati high-gain observer defined in section 6.3 to
estimate the vehicle full state using 3 range measurements. Consider a vehicle navigating
in inertial frame following this trajectory:

p(t) =

sin (π/3) sin (2kt)/2

cos (π/3) sin (2kt)/2

3 + cos(kt)

 , k = 0.5. (6.23)

The angular velocity applied to the vehicle is given by:

ω(t) =

 0.3 cos (πt/10)

0.5 cos (2πt/10 + π/4)

0.8 cos (4πt/10)

 . (6.24)

With an initial attitude R(0) = exp (π
2
[e2]×). The inertial earth’s magnetic field is

taken asmI = [0.42; 0.2949; 0.15]>Gauss, and the earth’s gravity is g = 9.81m/s2. The
initial conditions of the observer are ẑ = [1; 1; 1; 1; 1; 1; 1; 1; 1]>. R̂(0) = I3 and P (0) = I9
with Q = 0.1 × I3 and V = 0.15 × I9, and the parameters are taken as ρ1 = 2/6, ρ2 = 2,

k1 = k2 = 2, γ = 4 and ĉ2 = 15. The measurement noises are modelled as a Gaussian white
noises with variances, σω = 0.16(deg/s2),σacc = 3.10−4(m/s2) and σmag = 0.025(Gauss).
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Figure 6.1: Attitude and acceleration estimation errors versus time using Riccati high-order
observer
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6.4 Constant Gain State Observer :

In this section, we study a constant gain observer to estimate the full state (p, v, R)

consisting of position, velocity and attitude. We define the combined following state
x = [p>, v>]> ∈ R6, the dynamics of x are written as follows :

ẋ = Ax+B(ge3 +RaB), (6.25)
y = Cx, (6.26)

where

A =

[
03×3 I3
03×3 03×3

]
, (6.27)

C =
[
I3 03×3

]
, (6.28)

B =
[
03×3 I3

]>
. (6.29)

We propose the following modified version of the nonlinear observer found in [5]:

˙̂x = Ax̂+B(ge3 + R̂aB) +K(y − Cx̂) + σ1, (6.30)
˙̂
R = R[ωy + k1Ψ(σ2)]× (6.31)

with initial conditions x̂(0) ∈ R6 and R̂(0) ∈ SO(3). The innovation terms σ1 ∈ R6 and
σ2 ∈ R3 are defined as follows:

σ1 = −k1(A−KC)−1B[R̂Ψ(σ2)]×R̂aB, (6.32)

σ2 = ρ1(mB × R̂>mI) + ρ2(aB × R̂>satĉ2(aI)), (6.33)

Ψ(σ2) =
2

π

[
arctan(mσ21) arctan(mσ22) arctan(mσ23)

]>
, (6.34)

âI = R̂aB +B>K(y − Cx̂). (6.35)

The scalars k1, ρ1, ρ2 and ĉ2 are positive tuning parameters with ĉ2 > c2 (defined in
assumption (2)), K ∈ R6×6 is a constant gain matrix chosen as K = γLγK0 such that
A−K0C is Hurwitz, Lγ = blockdiag(I3, γI3) and γ > 1.

Introducing the Ψ(σ2) function eliminates any constant gyroscope bias measurements
(bω) that may come with the IMU measurements at the form of ωy = ω + bω + ηω. Note
that eliminating the gyro bias using the observer found in ref8 requires adding a gyro
bias estimator which results in a slower convergence of the estimation error. However,
chattering phenomenon occurs when using the sliding mode based-observer, as shown in
the simulation section.
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6.4.1 Stability Analysis

Let us define the following estimation errors

R̃ = RR̂>, (6.36)
x̃ = x− x̂. (6.37)

We also define the auxiliary variable:

ζ = L−1γ(A−KC)x̃+ L−1γB(I3 − R̃)>aI . (6.38)

it is straightforward to verify the following facts:

aI − âI = B>Lγζ, (6.39)
L−1γKCLγ = γK0C, (6.40)
L−1γALγ = γA, (6.41)

L−1γB =
1

γ
B. (6.42)

in view of (6.40)-(6.49) and (6.50)-(6.51), and the previous facts. One can derive the
following dynamics:

˙̃x = (A−KC)x̃+B(I3 − R̃)>aI − σ1, (6.43)
˙̃R = k1R̃[R̂σ2]

>
×, (6.44)

ζ̇ = γ(A−K0C)ζ +
1

γ
B(I3 − R̃)>ȧI . (6.45)

Now consider the following positive definite function:

V(ζ) =
1

γ
ζ>Pζ. (6.46)

where P is solution of the Lyapunov equation P (A+K0C) + (A−K0C)>P = −I3 which
exists and is positive definite thanks to the fact that (A−K0C) is Hurwitz. Denote β1 and
β2 the smallest and biggest eigenvalues of P , respectively. The time derivative of V is:

V̇(ζ) = −‖ζ‖2 +
2

γ2
ζ>PB(I3 − R̃)>ȧI . (6.47)

In view of Assumption 2, it follows that:

‖(I3 − R̃)>ȧI‖ ≤
√

8 tr(I3 − R̃)‖ȧI‖, (6.48)

≤
√

8× 3c3, (6.49)
:= cg. (6.50)
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Then, the derivative of V satisfies :

V̇(ζ) ≤ −‖ζ‖2 +
2cgβ2
γ2
‖ζ‖, (6.51)

≤ −1

2
‖ζ‖2 + ‖ζ‖(2β2cg

γ2
− 1

2
‖ζ‖), (6.52)

≤ −1

2
‖ζ‖2, ∀‖ζ‖ ≥ 4β2cg

γ2
, (6.53)

≤ −γ
2β2

V(ζ). ∀‖ζ‖ ≥ 4β2cg
γ2

(6.54)

Let cζ and T be any two positive constant scalars. Consider the set Ω = {ζ : V(ζ) ≤
γ−3cζ

2β1}. For any ζ ∈ Ω one has ‖ζ‖2 ≤ γβ−1
1V(ζ) ≤ (cζγ

−1)2. On the other hand, if
ζ /∈ Ω and if we pick γ ≥ 4β1

− 1
2β2

3
2 cgcζ

−1 then :

‖ζ‖2 ≥ γ2
−1V(ζ) > γ−2cζ

2β1β2
−1 ≥ 16β2

2cg
2γ−4. (6.55)

It follows that for all ζ /∈ Ω one has V̇(ζ) ≤ − γ
2β2

V(ζ), Which means ζ must enter Ω before
the following time:

T ∗ =
2β2
γ

ln(
γV(ζ(0))

β1c2ζ
). (6.56)

which can be tuned arbitrary small by increasing the value of γ. The following result
immediately follows:

∀cζ , T > 0,∀ζ(0).∃γ1 ≥ 1 s.th γ ≥ γ1 =⇒ ‖ζ(t)‖ ≤ γ−1cζ , ∀t ≥ T .

Now consider the following Lyapunov function candidate :

W(ζ, R̃) = V(ζ) + V2(R̃). (6.57)

Where V2(R̃) = 1
2

tr(M0 − R̃M0) and M0 = ρ1mImI
> + ρ2aIaI

>.

One can verify that :

Ẇ ≤ −k1σ>2 Ψ(2)−
−γ
2β2

V(ζ). ∀‖ζ‖ ≥ 4β2cg
γ2

(6.58)

W shows that the proposed nonlinear observer guarantees the convergences and the
asymptotic stability of the zero estimation errors, for t ≥ T and angles errors less than
180◦.
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6.4.2 Numerical Simulation

Navigation Using 3 UWB Anchors

In this section, we implement the nonlinear observers defined in section 6.4 to estimate
the vehicle full state using 3 range measurements. Consider a vehicle navigating in inertial
frame following this trajectory:

p(t) =

sin (π/3) sin (2kt)/2

cos (π/3) sin (2kt)/2

3 + cos(kt)

 , k = 0.5. (6.59)

The angular velocity applied to the vehicle is given by:

ω(t) =

 0.3 cos (πt/10)

0.5 cos (2πt/10 + π/4)

0.8 cos (4πt/10)

 . (6.60)

With an initial attitude R(0) = exp (π
2
[e2]×). The inertial earth’s magnetic field is

taken asmI = [0.42; 0.2949; 0.15]>Gauss, and the earth’s gravity is g = 9.81m/s2. The
initial conditions of the observer are x̂ = [0, 0, 2, 0, 0, 0]>. R̂(0) = I3 and K0 = PC>Q with
P is the solution of the algebraic Riccati equation PA+A>P +V −PCQ−1C>P = 0 with
Q = 1.5 × I3 and V = 0.15 × I6, and the parameters are taken as ρ1 = 2/6, ρ2 = 2, k1 =

0.5, γ = 5 and ĉ2 = 15. The measurement noises are modelled as a Gaussian white noises
with variances, σω = 0.16(deg/s2),σacc = 3.10−4(m/s2) and σmag = 0.025(Gauss).
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Figure 6.4: Attitude and acceleration estimation error versus time with the constant gain
observer using 3 range measurements
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Navigation using 2 UWB and an altimeter

Same as the previous subsection, we implement the observers defined in section 6.4 to
estimate the vehicle full state using 2 range measurements and an altimeter. Consider a
vehicle navigating in inertial frame following this trajectory:

p(t) =

 1.5 + 1.5 sin(2πt/T )

2.5 + 1.5 cos (2πt/T )

1.25 + 1.5
2

sin (2πt/T )

 , T = 30. (6.61)

The angular velocity applied to the vehicle is given by:

ω(t) =

 0.3 cos (πt/10)

0.5 cos (2πt/10 + π/4)

0.8 cos (4πt/10)

 , (6.62)

and taking the same conditions and constants.
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Figure 6.8: Attitude and acceleration estimation error versus time with the constant gain
observer using 2 range measurements and an altimeter
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Figure 6.9: Position and velocity error versus time with the constant gain observer using
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Figure 6.10: estimated trajectory with the constant gain observer using 2 range measure-
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6.4.3 Comparison Study

In this section we will compare the converging speed of the two full state nonlinear observers
defined in the previous section. Let us consider the same simulation scenarios with the
same constants :
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Figure 6.11: Comparison between the Riccati high-order observer and the modified con-
stant gain observer
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As we can see in thee figures the Riccati high-order observer showed very good result
and a better noise filtering than the constant gain observer, but it is more computationally
demanding due to the state augmentation. However, the modified constant gain observer
with Ψ function decreases the convergences time and insures a faster convergences than
the other observers, still, chattering phenomenon occurs due to the sliding mode observer
as shown in the numerical simulation section.

6.5 Full State Estimation Comparison Study

In this section, we will compare the full state estimation observers and methods in different
simulation scenarios to prove the effectiveness of the nonlinear full state observers proposed
and studied in chapter 6. In the first section, we will simulate the simple, yet ineffective
way to obtain the position analytically directly from the UWB ranges measurements as
shown in Chapter 4. In subsection 2, we will consider a scenario where the vehicle performs
near to zero accelerations and compare the Complimentary-Kalman filter approach with
the two nonlinear observers presented in Chapter 6. In subsection 3, we will consider an
accelerated scenario and we will compare the three observers to demonstrate the limitations
of the approaches presented in Chapter 5 and the effectiveness of the nonlinear deterministic
observers presented in Chapter 6.

6.5.1 Position Reconstruction

In this subsection, we assume 4 non co-planar UWB anchors are deployed, and the position
is reconstructed directly from the range measurements of the 4 anchors as shown in Chapter
4. Let us consider a vehicle navigating in inertial frame following this trajectory :

p(t) =

 1.5 + 1
2

sin (2πt/T )

2.5 + 1
2

cos (2πt/T )

1.25 + 1
4

cos(2πt/T )

 , T = 30. (6.63)

Note that the range measurements are corrupted by noise, modelled as a Gaussian
white noise with variance σuwb = 10cm.
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Figure 6.12: Position error versus time using position reconstruction directly from UWB
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Figure 6.13: Reconstructed trajectory directly from UWB

Although this method seems simplistic, it offers no form of filtering for noisy measure-
ments and as such will not produce reliable result as seen in the figure above. However, the
output of this method are often used as input measurements for state observers to obtain
a reliable filtered estimations as it is seen in chapter 5 and chapter 6.
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6.5.2 Non Accelerated Trajectory

In this subsection, we assume a non accelerated scenario and compare the three full state
observers :The complimentary-Kalman filter, the Riccati high-order observer and the con-
stant gain observer. Let us consider a vehicle navigating in inertial frame following this
low accelerated trajectory :

p(t) =

 1.5 + 1
2

sin (2πt/T )

2.5 + 1
2

cos (2πt/T )

1.25 + 1
4

cos(2πt/T )

 , T = 100. (6.64)
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Figure 6.14: Comparison between the complimentary-Kalman filter, the Riccati high-order
observer and the constant gain observer in the case of non accelerated vehicles
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(b) Riccati High-order observer
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Figure 6.15: Estimated trajectory vs real trajectory in the case of non accelerated vehicles
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6.5.3 Accelerated Trajectory

In this subsection, we assume two accelerated scenarios and compare the three full state
observers : The complimentary-Kalman filter, Riccati high-order observer and constant
gain observer. In the first scenario, we consider a vehicle navigating in inertial frame
following this accelerated trajectory :

p(t) =

 1.5 + 1
2

sin (2πtT/)

2.5 + 1
2

cos (2πt/T )

1.25 + 1
4

cos(2πt/T )

 , T = 5. (6.65)

The angular velocity applied to the vehicle is given by:

ω(t) =

 0.3 cos (πt/10)

0.5 cos (2πt/10 + π/4)

0.8 cos (4πt/10)

 . (6.66)

Second scenario, we will consider a case where the acceleration increases with time and the
same angular velocity is applied :

p(t) =

 1.5 + 1
2

sin (2πtT/)

0.4t3/6

1.25 + 1
4

cos(2πt/T )

 , T = 25. (6.67)
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Figure 6.16: Comparison between the complimentary-Kalman filter, the Riccati high-order
observer and the constant gain observer in the case of accelerated vehicles
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Figure 6.17: Estimated trajectory vs real trajectory in the case of accelerated vehicles
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Figure 6.18: Comparison between the complimentary-Kalman filter, the Riccati high-order
observer and the constant gain observer in the case where the acceleration increases with
time
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Figure 6.19: Estimated trajectory vs real trajectory in the case where the acceleration
increases with time
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6.6 Conclusion

In this chapter, we proposed two nonlinear complete state observers. The proposed ob-
servers require the use of vector measurements from IMU and some position information
from the UWB. The stability of the nonlinear Riccati high-order observer and the standard
constant observer were discussed and proved. Furthermore, we compared these nonlinear
full state observers with the complimentary-Kalman filter and a position reconstruction to
show the advantages of these observers. All of the compared methods require also the use
of UWB range measurements. The position reconstruction method proved to be unreli-
able as it contains no form of noise filtering as shown in the simulation. The other three
observers were compared in different navigation scenarios as follows :

• First, by considering a low accelerated trajectory, all the three observers converged
and gave good results and noise filtering. However, the converging speed of the
complimentary-Kalman filter was slower then the two other deterministic nonlinear
observers.

• Second, by considering an accelerated trajectory where the complimentary-kalman
filter showed very poor unreliable results for attitude, position and velocity while the
other two nonlinear observers gave excellent results in both convergence speed and
noise filtering.

• Finally, we considered a trajectory that increases its acceleration with time, as shown
in the simulation figures, the complimentary-Kalman filter converges at slow accel-
eration, then diverges and give poor results as the acceleration increases. The other
two nonlinear observers gave excellent results in both convergence speed and noise
filtering.
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State estimation for Unmanned Aerial Vehicles is a key step to achieve reliable control and
autonomous flight. The use of nonlinear state observers that rely on the nonlinearity of
the vehicle’s model proved to be reliable and solved the problems encountered when using
stochastic observers that rely on linearization assumptions. In this thesis, the full state
estimation problem is considered when using IMU and UWB measurements.
As first, we presented the mathematical tools and background needed in this thesis. we
defined then the mathematical model of rigid body in space.
After that, we studied and proposed different nonlinear attitude observers that gives the
attitude estimation directly on the special orthogonal group SO(3), a comparison study
between these observers in the case of measurement anomalies is done at the end of the
chapter to illustrate the effectiveness of the proposed observers.
Furthermore, the UWB technology is presented and position measurements reconstruction
methods are proposed in the case of using less than 4 UWB anchors.
Moreover, the full state estimation problem for non accelerated vehicles is considered and
two estimation approaches are studied and compared in the case of vehicles performing
near to hover accelerations.
Finally, two nonlinear observers are studied and discussed in the case of accelerated vehicles,
a comparison study in different scenarios is done at the end to show the limitation of
the classical non accelerated vehicles observers and the effectiveness of the two nonlinear
observers.

Futur Outlook
As a future work, it would be interesting to implement these estimation methods with
nonlinear control laws in a real physical system. Another interesting work would be to
combine these estimation and control laws with obstacle avoidance algorithms and methods
to achieve a fully autonomous navigation system for different aerial vehicles.
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