
PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

Ecole Nationale Polytechnique

Electronic Departement
In partial fulfillment of the requirement for

Engineer's Degree

Integration of a Geographic Information
System in a Smart City Solution

BENLEFKI Yasmine
BOUCENNA Manal Maroua

P Presented in public on: 21st June 2018

Jury members

President M. Adel BELOUCHRANI Prof. ENP
M. Rabah SADOUN Dr. ENPSupervisor

Supervisor Dr. Padovani Ventures
Examiner

M. Riad HARTANI
 M. Mourad ADNANE Dr. ENP

ENP 2018

10, Frères Oudek Avenue, Hassen Badi; Bp, 182, 16200 El Harrach, Algiers, Algeria

PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

Ecole Nationale Polytechnique

Electronic Departement
In partial fulfillment of the requirement for

Engineer's Degree

Integration of a Geographic Information
System in a Smart City Solution

BENLEFKI Yasmine
BOUCENNA Manal Maroua

P Presented in public on: 21st June 2018

Jury members

President M. Adel BELOUCHRANI Prof. ENP
M. Rabah SADOUNSupervisor

Supervisor M. Riad HARTANI
Dr. ENP
Dr. Padovani Ventures

Examiner M. Mourad ADNANE Dr. ENP

ENP 2018

10, Frères Oudek Avenue, Hassen Badi; Bp, 182, 16200 El Harrach, Algiers, Algeria

Dedication

This humble work is dedicated to our dear parents and grand parents,
to our families,

to our brothers and sisters,
to our friends and everyone who trusted and supported us.

Acknowledgements

We thank God Almighty for giving us courage, health, and His support during the most
difficult times.

We would like to express our sincere gratitude to our advisor Mr. Rabah SADOUN for
his patience, motivation and understanding over these past three years. His guidance and
relevant questions helped us in all the time of research and writing of this project graduation.
We could not have imagined having a better advisor and mentor.

We also thank Mr. Riad HARTANI for giving us the chance to work on a project of
such a great importance for our country which is the "Algiers Smart City" project.

We are also grateful to all theCDTA’s team, and more particularly, Mr. Amine Bouab-
dellah for his availability, his valuable advice and encouragement; Mrs. AKAK Leila and
Mrs. TITOUCHE Yousra for their patience and availability.

Our heartfelt thanks go to the members of the jury, Mr. Adel BELOUCHRANI and
Mr. Mourad ADNANE for generously offering their time, support, guidance and good
will throughout the examination and review of this document.

Thanks to Mr.BENLEFKI Yazid and Mrs.BOUCHAMA Samira who constantly
checked for our errors and omissions and guided us through this work.

Special thanks to our parents for having relentlessly encouraged us to explore any and
every subject that interested us.

Last but not the least, we would like to thank our families and friends for constantly
supporting us. None of this could have happened without them.

 ملخص

أداة لا غنى عنها في إدارة وتحليل وصنع القرار من خلال الجمع السلس بين البيانات صبح نظام المعلومات الجغرافيةأ
 .المكانية و الوصفية

من خلال زيادة الفعالية وتوفير الثرية لنظم المعلومات الجغرافية على بـنـاء مـدن الـغــد الـذكـيـة المستدامة ستساعد الرؤية
 .أفضل قرارات

توضح هذه الوثيقة بالتفصيل التصميم والتنفيذ في بيئة إنتاجية لنظم المعلومات الجغرافية الموجهة إلى إنترنت الأشياء
تقدم بوابة جغرافية مث بعد ذلك تقدم نتائج اختبار الأداء باستعمال .انطلاقا من مجموعة من البرمجيات مفتوحة المصدر

 .كمثال لإحدى التطبيقات

.، المدينة الذكية البيانات الكبيرة، نظام المعلومات الجغرافية ، إنترنت الأشياء: الكلمات المفتاحية

Abstract

Geographical Information System (GIS) has become an indispensable tool for managing,

analyzing and decision making by seamlessly combining both spatial and non-spatial data.

Semantically enriched vision of GIS, particularly IoT-oriented GIS, will help evolve cities

into tomorrow’s smart cities by providing better decisions, more efficiency and improved

collaboration.

This document presents the design and implementation, in a production environment, of an

IoT-oriented Web GIS built from a combination of open source software. After that it presents

the performance test results and introduces a client Web GIS application.

Key words: Geographical Information System, Internet of Things, Big Data, Smart-City.

Résumé

De nos jours, les Systèmes d’Information Géographiques (SIG) sont devenus des outils

indispensables de gestion, d’analyse et d’aide à la décision en combinant parfaitement les

données spatiales et non-spatiales. Une bonne maitrise du SIG, et plus particulièrement d’un

SIG orienté IoT, peut fortement contribuer au développement des villes intelligentes de

demain en leur permettant de prendre des décisions plus éclairées pour la qualité de vie des

citoyens, tout en améliorant leur efficacité.

Dans ce présent document, nous allons présenter la conception et l’implémentation, dans un

environnement de production, d’un SIG orienté IoT en utilisant des solutions Open Source.

Ensuite, nous effectuerons des tests de performances sur notre architecture et enfin nous

présenterons l’une des applications cliente possible d’un SIG.

Mots clés: Systèmes d’Information Géographiques, Internet des objets, Ville Intelligente.

Contents

List of Figures

List of Tables

1 General introduction 13
1.1 Motivation and Objectives . 13
1.2 Document outline . 14

2 IoT-oriented GIS Smart City platform 15
2.1 Introduction . 15
2.2 Smart City . 15

2.2.1 Definition . 15
2.2.2 Smart City applications and benefits 16

2.3 IoT platforms . 17
2.3.1 Definitions . 17
2.3.2 Types of IoT platforms . 18
2.3.3 Components of an IoT platform . 18

2.4 Big Data platforms . 19
2.4.1 Definitions . 19
2.4.2 Types of Big Data platforms . 20
2.4.3 Components of a Big Data platform 21

2.5 Geographical Information System platforms 21
2.5.1 Definitions . 22

2.5.1.1 Information System . 22
2.5.1.2 Geography Information System 22

2.5.2 Components of a GIS . 22
2.5.3 GIS for Smart City . 23

2.6 Generic architecture for an IoT-oriented GIS Smart City platform: 23
2.7 Conclusion . 25

3 Geographic information system (GIS) 26
3.1 Introduction . 26
3.2 GIS History . 26
3.3 Theoretical part: . 27

3.3.1 Geodetic System . 27
3.3.1.1 Types of geodesic systems 28

3.3.2 Projections . 29
3.3.2.1 EPSG . 29

3.3.2.2 Projection used in Algeria 30
3.3.3 Types of maps . 30

3.4 Type of GIS applications . 31
3.4.1 Standalone GIS . 31
3.4.2 Client/Server GIS . 31

3.4.2.1 Client Side . 31
3.4.2.2 Web Map Server . 32

3.5 Data store . 33
3.5.1 Vector data . 34
3.5.2 Raster data . 34
3.5.3 Spatial database . 35

3.6 Free and open source GIS software . 37
3.7 Conclusion . 37

4 Technical choices 38
4.1 Introduction . 38
4.2 Cloud platform . 38
4.3 IoT platform . 39

4.3.1 Definition . 39
4.3.2 Architecture . 40
4.3.3 Sentilo resources . 41
4.3.4 Sentilo’s HTTP REST API . 42

4.4 Spatial Database Management System . 44
4.4.1 Sentilo agents comparison . 44
4.4.2 PostgreSQL/PostGis vs. Geomesa . 44

4.4.2.1 PostgreSQL/PostGis . 44
4.4.2.2 Geomesa . 45

4.4.3 Greenplum . 46
4.4.3.1 Definition . 46
4.4.3.2 Greenplum architecture . 46

4.5 Web mapping server . 47
4.5.1 GeoServer Vs. MapServer . 48
4.5.2 Geoserver . 51

4.5.2.1 Architecture . 51
4.5.2.2 Geoserver concepts . 52
4.5.2.3 GeoServer REST Interface 53
4.5.2.4 Web services . 53
4.5.2.5 GeoWebCache . 54

4.6 End-to-end architecture . 55
4.7 Conclusion . 55

5 Implementation 57
5.1 Introduction . 57
5.2 Detailed architecture to implement . 57
5.3 Sentilo . 59

5.3.1 Data . 59
5.3.1.1 OpenData . 59
5.3.1.2 Simulated Data . 62

5.3.2 Sentilo relational agent . 63
5.4 Greenplum database . 64

5.4.1 Greenplum and Sentilo interconnection 65
5.5 Geoserver . 68

5.5.1 Publish the data . 68
5.5.1.1 Vector digital map background 68
5.5.1.2 Raster data . 72
5.5.1.3 Greenplum sensor’s data . 74

5.5.2 Geoserver in Production . 76
5.5.3 Clustering . 76

5.5.3.1 Definitions . 76
5.5.3.2 Implementation . 77
5.5.3.3 Security . 82
5.5.3.4 Watchdog . 85
5.5.3.5 GeoWebCache . 85

5.6 Conclusion . 86

6 Performance testing and web-mapping application 87
6.1 Introduction . 87
6.2 Performance testing . 87

6.2.1 Apache Jmeter . 87
6.2.2 Scenario of stress testing . 87
6.2.3 Results . 88

6.3 Application . 92
6.3.1 Web mapping . 92

6.3.1.1 OpenLayers . 93
6.3.1.2 ReactJS . 93
6.3.1.3 Boundless . 93

6.3.2 Web Application’s description . 94
6.4 Conclusion . 95

7 Conclusion and future work 96
7.1 Summary . 96
7.2 Future work . 96

Bibliography 98

Annexes

Annex A: Software installation 102
1 Installation of Sentilo in Ubuntu 14.04 . 102

1.1 Installing dependencies . 102
1.2 Download and build code . 102
1.3 Redis settings . 102
1.4 MongoDB settings . 102
1.5 Configure Tomcat7 . 103
1.6 Start services . 103

2 GeoServer installation and configuration . 103
2.1 Installing Java . 103
2.2 Installation of Tomcat . 104

2.2.1 Create Tomcat User . 104
2.2.2 Install Tomcat . 105
2.2.3 Set up the proper user permissions 105
2.2.4 Create a systemd Service File 105
2.2.5 Adjust the Firewall and Test the Tomcat Server 106
2.2.6 Configure Tomcat Web Management Interface 107
2.2.7 Access the Web Interface 108

2.3 Installing GeoServer . 109
2.3.1 Create a geoserver instance 109
2.3.2 Implement Basic Security 110
2.3.3 Configuring multiple instance in a single server 110

2.4 Install Load Balancer . 112
3 Installation of PostgreSQL . 112
4 Installation of Postgis . 114
5 Installation of Greenplum Pivotal 5.7 onCentOS 64-bit 7.x 114

5.1 Setting the Greenplum Recommended OS Parameters (Master Only) 114
5.1.1 Linux System Settings . 114
5.1.2 Creating the Greenplum Database Administrative User Account115
5.1.3 Installing the Greenplum Database Software 115

5.2 Installing and Configuring Greenplum on all Hosts 116
5.3 Installing Greenplum Database Extensions 117

Annex B: GeoServer Administration Interface 118
1 About Status . 118

1.1 Data . 119
2 Services . 120
3 Settings . 120
4 Tile Caching . 120
5 Security . 121
6 Demos . 121

Annex C: Scripts 123
1 Watchdog Script . 123
2 Python scripts: . 125

2.1 Open data sensors . 125
2.2 Simulated sensors . 125

List of Figures

2.1 Smart City . 15
2.2 Smart city action fields . 16
2.3 IoT ecosystem . 17
2.4 IoT Platform . 18
2.5 The 3 V of Big Data . 20
2.6 MPP Architecture . 20
2.7 Component of a Big Data platform . 21
2.8 GIS components . 23
2.9 Smart city’s generic architecture for GIS case study 25

3.1 Dr. John Snow . 26
3.2 Earth’s shape . 28
3.3 Local and Geocentric coordinate systems . 29
3.4 UTM projection . 30
3.5 Standalone Vs. Client/Server Architecture 31
3.6 Web Map Service . 32
3.7 Web Feature Service . 33
3.8 Vector’s data . 34
3.9 Raster data . 35
3.10 Database . 35
3.11 Bounding Boxes . 36
3.12 The free and open source geographic information software map of 2012.[1] . . 37

4.1 OpenStack Architecture . 39
4.2 Sentilo’s user interface . 39
4.4 Sentilo Architecture . 41
4.6 PostgreSQL and PostGIS Database . 45
4.7 Performance comparison[2] . 46
4.13 Geoserver Architecture . 52
4.14 Relationships between workspaces, stores and layers 53
4.15 GeoWebCache . 55
4.16 Logical end-to-end GIS architecture . 56

5.1 Detailed architecture to implement . 58
5.2 Temperature table’s format . 59
5.3 A caption of the temperture001.json file . 61
5.4 Temperature Sensors . 61
5.5 Visualization of temperature data . 62
5.6 Visualization of the velib data . 63

5.7 Universal Viewer . 63
5.8 Greenplum database architecture . 65
5.9 Created table . 66
5.10 Data transfer from Sentilo to Greenplum . 66
5.11 "Sentilo_observations" table’s meta data . 67
5.12 "Sentilo_observations" geometry column . 68
5.13 OpenStreetMap tables . 69
5.14 Layer-like OpenStreetMap tables . 70
5.15 Creation of a new workspace . 70
5.16 Creation of a new store . 71
5.17 Creation of aero-poly layer . 71
5.18 Creation of OsmMap layer group . 72
5.19 Preview of OpenStreetMap data . 72
5.20 Adding a new store . 73
5.21 Satellite imagery . 73
5.22 Preview of Greenplum data . 74
5.23 Greenplum table preview . 74
5.24 Greenplum Data workflow . 75
5.25 Sorted data . 76
5.26 High availability . 76
5.27 Cluster architecture . 77
5.28 Scale up vs scale out . 77
5.29 Geoserver cluster architecture . 78
5.30 GeoServer cluster architecture with shared data directory 79
5.31 Cluster configuration interface . 80
5.32 Clustering configuration settings . 80
5.33 Final architecture of GeoServer cluster . 81
5.34 Authentication and authorization . 82
5.35 Security work flow of Geoserver . 82
5.36 Strong Password Encryption . 83
5.37 Creating groups . 83
5.38 Creating users . 84
5.39 Creating roles . 84
5.40 Linking Groups with roles . 84
5.41 Granting access rights . 85
5.42 Watchdog’s state machine . 85

6.1 Apache Jmeter work flow . 88
6.2 Test1 before clustering . 89
6.3 Test1 after clustering . 89
6.4 Test 2 before clustering . 90
6.5 Test 2 after clustering . 90
6.6 Test 3 before clustering . 91
6.7 Test 3 after clustering . 91
6.8 Average response time per of users . 92
6.9 Geoportal Web Page . 94
6.10 Geoportal’s table . 94
6.11 Area measurement . 94

6.12 New Layer . 95
6.13 Geoportal’s tools . 95

7.4 Apache2 Ubuntu Default Page . 113

List of Tables

2.1 GIS applications for smart cities . 24

3.1 GIS Development’s stages . 27
3.2 Ellipsoids in global geodetic systems . 28
3.3 local and global Datum . 29
3.4 Main types of maps . 30

4.1 REST API Methods . 42
4.2 Publish Data . 43
4.3 PostGIS functions . 45
4.4 Characteristics and limits of Greenplum (source: community.pivotal.io) . . . 47
4.5 Comparison of different Geoportals . 48
4.6 MapServer Vs. GeoServer . 50

5.1 HTTP responses . 83

6.1 Stress testing scenario . 88
6.2 Boundless SDK functions . 93

Chapter 1

General introduction

1.1 Motivation and Objectives
By 2050, 66% of the world’s population is expected to live in urban areas [3]. The challenge
will be to supply this population with basic resources while also ensuring overall economic,
social and environmental sustainability. Without a doubt, this evolution raises significant
changes with regard to the deployment and management of all types of infrastructures within
cities.

Therefore, city operators must place technology at the core of their development strategy
in the upcoming years. This has been translated as the "Smart City" concept.

After Montreal, Cairo, San Diego and Barcelona, the Wilaya of Algiers launched the
project "Algiers Smart City" and called for better and efficient collaboration of Startups,
Research Centers, Universities, Solution providers, etc. The overarching aim of this project is
to improve the quality of living for its citizens by enhancing the efficiency and the performance
of its urban services such as energy, transportation and utilities in order to reduce resource
consumption, wastage and overall costs.

In the context of our graduation project, we took part in a collaborative work with our
colleagues in the electronics/industry department and the computer science school since June
2017, supervised by our tutor Dr. Rabah Sadoun, the CDTA team, and Dr. Riad Hartani.

Each of the projects aimed at contributing in its own way to the implementation of the
Algiers Smart City platform. Our work consisted of the design and development of an IoT
oriented Geographical Information System (GIS) using Open Source solutions.

GIS is actively used to provide solutions in numerous branches of government services as
well as in businesses and industry. Using GIS to visualize and analyze data can enable quicker
interpretation of complex geographical phenomena, identify patterns, and aid in planning,
resource allocations for policy and decision making in smart cities. However, up to date,
The Wilaya of Algiers does not have any IoT oriented GIS. Thus our project will serve as a
reference to the Algiers Smart city project.

13

1.2 Document outline
The present document has seven chapters:

• Chapter 2 (IoT-oriented GIS Smart City platform) Start gives by giving an overview
of the main Smart city key elements. Then it presents and discusses keys elements of
our work: IoT, Big Data and GIS platform, and end up with the generic architecture
of an IoT-oriented GIS platform we propose.

• Chapter 3 (Geographic Information System (GIS)) commences with a brief presen-
tation of GIS history, followed with a theoretical part on the geographic concepts. It,
then, goes through the different types of GIS architectures and GIS datastores. The
chapter concludes with a list of free and Open Source GIS software.

• Chapter 4 (Technical choices) A comparison of different open source software to choose
the most suitable ones for our architecture, it ended up with a functional of an IoT-
oriented GIS platform architecture.

• Chapter 5 (Implementation) discusses the technical details as well as the development
guidelines. It illustrates the steps required for the implementation of the IoT-oriented
GIS stack, as well as the potential difficulties.

• Chapter 6 (Performance tests and web mapping application) contains the detailed re-
sults of the Performance test conducted on the implemented architecture using Apache
Jmeter. It presents then the web-based application of a Geoportal used to illustrate
some of the possible features of our architecture.

• Chapter 7 (Conclusion and future work) summarizes our work and discusses the dif-
ficulties we met. It is concluded with a future outlook.

• Annex contains the installation and configuration steps for the used software and some
scripts.

14

Chapter 2

IoT-oriented GIS Smart City platform

2.1 Introduction
In this chapter, we will introduce the key concepts for our work: Smart City, IoT, Big Data
and Geographical Information System (GIS) platforms. To conclude, we will present a smart
city generic architecture in the use case of an IoT oriented GIS.

2.2 Smart City

2.2.1 Definition

In general terms, most agree that a smart city is one that places technology at the core of
its development strategy. It is predominantly composed of Information and Communication
Technologies that "senses" the environment, using IoT sensors and video cameras, so that
the city operators can decide how and when to take action.

Also, according to Dr. Riad Hartani, the supervisor of the "Algiers Smart City" project,
a smart city is a collaborative city. A city in which citizens, business firms, knowledge
institutions, and municipal agencies collaborate with one another to achieve their goals.

Figure 2.1: Smart City

Source: ookawa-corp.over-blog.com

15

2.2.2 Smart City applications and benefits

An ideal smart city strategy covers six interrelated action fields, comprising a host of sub-
categories and solutions as it is shown in the figure 2.2:

Figure 2.2: Smart city action fields

Source: Think:Act Magazine—Roland Berger

Smart city strategy can bring multiple benefits for municipalities, particularly those that
are struggling with specific problems such as inefficient waste management systems, lack of
civic participation, or traffic and congestion:

1. Cost Savings:

Increasing use of automation, AI, data-sharing, analytics, and sensors by both busi-
nesses and authorities is massively improving the efficiency of public and commercial
operations, ultimately leading to huge cost savings.

2. Environmental Impact:

Installing sensors and cameras in order to measure air quality, sound levels, temper-
ature, water levels will act as a tracker for the city, helping city operators to identify
ways to save energy, use their resources more effectively and reduce waste production.

3. Economic Prosperity:

Smarter cities attract more businesses, thereby boosting their economies and reducing
unemployment.

4. Life Quality:

16

More efficient transport services, smart parking apps, digitized government services
often have a direct positive impact on citizens’ lives because they are created specifically
with people’s needs and experiences in mind.

2.3 IoT platforms
IoT devices and platforms are becoming part of a smart city infrastructure that can combat
the strain of city growth, from traffic control to environmental issues.

2.3.1 Definitions

1. Internet of Things (IoT) is an ecosystem of connected physical objects that are acces-
sible through the internet. The ‘thing’ in IoT is: any object that has an assigned IP
address and has the ability to collect and transfer data over a network without man-
ual assistance or intervention. The embedded technology in the objects helps them
to interact with internal states or the external environment, which in turn affects the
decisions taken[4].

Figure 2.3: IoT ecosystem

Source: www.sensorsexpo.com

2. At a high level, an IoT platform is the support software that connects edge hardware,
access points, and data networks to other parts of the value chain (which are generally
the end-user applications). IoT platforms typically handle ongoing management tasks
and data visualization, which allow users to automate their environment[5].

17

Figure 2.4: IoT Platform

Source: https://dzone.com

2.3.2 Types of IoT platforms

There are 4 types of platforms that are often referred to as “IoT Platform”[6] [7]:

1. Connectivity Management Platforms:

These platforms focus mainly on the connectivity of connected IoT devices via telecom-
munication networks but rarely on the processing and enrichment of different sets of
sensor data.

2. IoT Cloud Platforms:

Cloud platforms aim to get rid of the complexity of building complex network stack from
scratch and offer the back-end services to monitor and tack millions of simultaneous
device connections.

3. End-to-end IoT platforms

These platforms provide the hardware, software, connectivity, security, and device man-
agement tools to handle millions of concurrent device connections.

4. Data Platform:

These IoT data platforms combine many of the tools you need to route device data and
manage/visualize data analytics.

2.3.3 Components of an IoT platform

In its simplest form, an IoT platform is just about enabling connectivity between devices.
The architecture may also consist of a software platform, an application development plat-
form or an analytic platform. A modern IoT Platform architecture comprises 6 important
components:

1. Connectivity: brings different protocols and different data formats into one “software”
interface ensuring accurate data streaming and interaction with all devices.

2. Device management: ensures the connected devices are working properly.

18

3. Database: scalable storage of device data brings the requirements for cloud-based
databases to a new level in terms of data volume, variety, velocity and veracity.

4. Processing action management: brings data to life with rule-based event-action-
triggers enabling execution of “smart” actions based on specific sensor data.

5. Analytics: performs a range of complex analysis from basic data clustering and deep
machine learning to predictive analytics extracting the most value out of the IoT data-
stream.

6. Visualization: enables humans to see patterns and observe trends from visualization
dashboards.

2.4 Big Data platforms
Smart cities create voluminous amount of heterogeneous data, which is commonly referred to
as big data. Big data can be mined and modelled through analytic techniques to get better
insight and to enhance smart cities features.

2.4.1 Definitions

1. Big Data is any voluminous amount of Structured, Semi-structured and Unstructured
data that can be mined for information. The three main characteristics of big data are:

(a) Volume:
The size of data should be larger than terabytes and petabytes. It implies enor-
mous volumes of data generated by Sensors, social media, e-commerce, GPS de-
vices etc...

(b) Velocity:
It represents the rate at which data is pouring in.

(c) Variety:
It implies to the type of formats and they can be classified into three types:

• Structured: It inserts already tagged and easily sorted data, uses RDBMS
(Relational Database Management System) like Oracle, MySQL, etc...

• Semi-Structured: It does not conform to fixed fields but contains tags to
separate data elements. Eg: emails, tweets.

• Un-Structured: It is random and difficult to analyze. Eg: photos, videos,
audio files.

19

Figure 2.5: The 3 V of Big Data

2. Big data platform generally consists of big data storage, servers, database, big data
management, business intelligence1 and other big data management utilities.

2.4.2 Types of Big Data platforms

There are three primary architectures used to handle ‘Big Data’[8]:

1. Massively Parallel Processing (MPP) platform

The Massively Parallel Processing (MPP) platforms manage large volume of structured
data by distributing them across many machines, or nodes. Each node contains its own
storage and compute capabilities that enables it to execute a portion of the query[9].
MPP systems can grow horizontally to increase performance or capacity by simply
adding more processors to the architecture.
MPP Databases are optimized for aggregating and processing large datasets much more
quickly and efficiently by using column oriented storage2.

Figure 2.6: MPP Architecture
1Business intelligence is a technology-driven process for analyzing data and presenting actionable infor-

mation to help executives, managers and other corporate end users make informed business decisions.
2A column-oriented database stores each column continuously. They are extremely quick at aggregate

queries (sum, average, min, max, etc.).

20

2. NoSQL platforms
NoSQL means “Not Only SQL.” These architectures can provide high performance at a
lower cost, with linear scalability, the ability to use commodity hardware and to handle
a number of different data types. NoSQL solutions perform better in conditions where
there are extremely high data volumes or high content of unstructured data such as
documents and media files.
Today the most popular NoSQL platform is Hadoop. Hadoop provides an end-to-end
architecture for large volumes of data, including a distributed file system (HDFS), a
distributed processing manager (MapReduce) and different databases and various data
flow options including Sqoop, Hive, HBase, and Pig.

2.4.3 Components of a Big Data platform

Big data architecture includes mechanisms for ingesting, protecting, processing, and trans-
forming data into filesystems or database structures. Big data architecture has four logical
layers:

1. Big data sources layer: Data can come from different sources: company servers,
sensors, etc.

2. Data storage layer

This layer receives data from the sources, converts unstructured data to a format that
analytic tools can understand and stores it.

3. Analysis layer

The analytics layer interacts with stored data to extract business intelligence.

4. Consumption layer:
This layer receives analysis results and presents them to the appropriate output layer.

Figure 2.7: Component of a Big Data platform

2.5 Geographical Information System platforms
Designing or managing a smart city demands enormous spatially referenced data. GIS han-
dles spatial data and includes operation which supports spatial analysis.

21

2.5.1 Definitions

Before explaining what is a GIS, let’s first define what is an Information System (IS).

2.5.1.1 Information System

An IS is a combination of hardware, software, infrastructure and trained personnel organized
to facilitate planning, control, coordination, and decision making in an organization[10].

2.5.1.2 Geography Information System

GIS is a dedicated IS designed to capture, store, manipulate, analyze, manage, and present
all types of geographical data. The key word to this technology is Geography which means
that some portion of the data is spatial, it referenced to locations on the earth.

Coupled with this data is usually tabular data known as attribute data that can be
generally defined as additional information about each of the spatial features. It is the
partnership of these two data types that enables GIS to be such an effective problem solving
tool through spatial analysis.
Example:

An example of this would be schools. The location of the schools is the spatial data.
Additional data such as the school name, level of education taught, student capacity would
make up the attribute data.

2.5.2 Components of a GIS

An operational GIS has a series of components that combine to make a successful GIS. We
can distinguish four components:

1. Spatial Data: Geospatial data has a significantly different structure and function of
classical data. It includes structured data about objects in the spatial universe – their
identity, location, shape and orientation, etc.

2. Spatial Data Management Spatial database management deals with the storage,
indexing, and querying spatial data, such as location and geometric extent.

3. GIS applications: are tools that allow users to manipulate and analyze spatial infor-
mation.

4. User interface: This component addresses the data visualization function.

22

Figure 2.8: GIS components

2.5.3 GIS for Smart City

Designing or managing a smart city demands enormous spatially referenced data.[11] GIS
has the capacity to incorporate millions of variables, geocode3 them in order to exploit them
for planning, management and development of a city.

The major GIS application for a smart city can be grouped into five categories as detailed
in the table 2.1 [12]

2.6 Generic architecture for an IoT-oriented GIS Smart
City platform:

Although the literature contains several works about Smart city architectures, we barely
found an architecture corresponding to IoT dedicated GIS. The generic architecture that we
propose is composed of 3 main layers:

1. IoT devices Layer:

It represents all the hardware devices found in a city that enables the capture and
integration of live real-world data . It also includes communication technologies used
to connect all the devices.

2. IoT platform layer:

This layer acts like a middleware between the hardware and the big data storage. It
provides Visualization, security and device management tools to handle millions of
concurrent device connections.

3. Big data platform layer:

In this layer voluminous amount of sensor data is stored, managed and modelled
through analytic techniques.

3Geocoding is the process of transforming a description of an address, or a name of a place to a location
on the earth’s surface.

23

Table 2.1: GIS applications for smart cities

Area GIS applications

Facilities Management

Locating underground pipes & cables

Planning facility maintenance

Energy use tracking & planning

Environment and Natural Resources Management

Comprehensive waste management

Environmental impact analysis

Disaster management and mitigation

Street Network

Accidents, Anomaly Prediction

Smart parking

Smart transportation grid

Planning and Engineering

Urban planning

Smart energy grid/renewable energy

framework

Development of public facilities

Land Information System
Cadastre administration

Landuse Classification

24

4. Geographic Information System platform layer:

This layer is a key element for a smart city since it exploits geolocalized information
to detect real needs and optimize the resources. It can go from spatial servers and
databases to end-client applications like geoportals. It enables to visualize data, share
information, apply analytics and predictions on data based on their spatial position
using artificial intelligence methods or what is known as Location Intelligence to solve
complex problems.

Figure 2.9: Smart city’s generic architecture for GIS case study

2.7 Conclusion
In this chapter, we presented the key concepts of our work: Smart city, IoT platform, Big
data and GIS. Then we exposed a generic Smart city’s architecture for a GIS case study.
In the next sections, we will introduce GIS most important notions and then explain our
technical choices according to the generic Smart city architecture given above.

25

Chapter 3

Geographic information system (GIS)

3.1 Introduction
Geography, the science of our world, coupled with information system is helping us under-
stand the Earth and apply geographic knowledge to a host of human activities.
We will introduce in this chapter the foundation of geographical information system and
spatial data by describing, on a general level,some theoretical concepts, technologies and
standards of GIS as described in the literature.

3.2 GIS History
The history of GIS all started in 1854 when Cholera hit the city of London, England. British
physician John Snow began mapping outbreak locations, roads, property boundaries and
water lines [13].
When he added these features to a map, he noticed that Cholera cases were commonly found
along the water line.
His work connected geography and public health safety and demonstrated that GIS is a
relevant problem-solving tool.

Figure 3.1: Dr. John Snow

Source: en.wikipedia.org

26

Stages of GIS development:
We can group the history of GIS into several stages of development [14]:

Table 3.1: GIS Development’s stages

Stage Description

Before 1960:

The GIS Dark Ages
-All mapping was done on paper.

1960 to 1975:

GIS Pioneering

-Roger Tomlinson (GIS’s father) works to initiate the

development of the Canadian Geographic Information System,

resulted in the first computerized GIS in the world in 1963.

- At Northwestern University in 1964, Howard Fisher

created the first computer mapping software programs

known as SYMAP.

1975 to 1990:

GIS Software

Commercialization

-In the late 1970s, memory size and graphics capabilities

were improving.

-New computer cartography products included

MAPICS, SURFACE,

-In the late 1980s, GIS software vendors increased

considerably.

1990 to 2000’s:

User Proliferation

-The importance of spatial analysis for decision-making

is recognized.

- Software was able to handle both vector and raster data.

3.3 Theoretical part:
This section introduces the theoretical part by highlighting concepts of Earth geometry,
coordinate systems and projections.

3.3.1 Geodetic System

Definition According to Geodesy1, the Earth is a geoid (taking the mean sea level), an
irregular sphere, slightly flattened at the poles and bumpy from one continent to another.
To model this surface, we use a more regular geometrical figure, the ellipsoid defined by its
half major axis A, its half minor axis B and its flattening. [15]

1Geodesy is the science of accurately measuring and understanding three fundamental properties of the
Earth: its geometric shape, its orientation in space, and its gravity field.

27

(a) Geoid’s shape (b) Ellipsoid’s shape

Figure 3.2: Earth’s shape

Source: geoconfluences.ens-lyon.fr

The table below provides the parameters of the most commonly used ellipsoids in geodetic
systems:

Table 3.2: Ellipsoids in global geodetic systems

Name A (m) Flattening (A-B)/A

WGS 84 6378137 1/298.257223563

Clarke 1880 6378249.145 1/293.465

South American 1969 6378160 1/298.25

Geodetic Reference System 1980 6378137 1/298.257222101

To define a geographic coordinate system, an ellipsoid is not enough. The definition of a
geodetic system requires knowledge of the following parameters:

1. The shape of the ellipsoid (major axis, minor axis),

2. Offset (in m) of the ellipsoid (Dx, Dy, Dz)with respect to the WGS84 geodetic system,

3. Angle of rotation (in degrees) of the X, Y and Z axes of the mark (Rx, Ry, Rz),

parameters.[16]

3.3.1.1 Types of geodesic systems

There are two types of geodesic systems:

1. Global geodesic systems, or geocentric systems:
It is used when we need coordinates at the scale of the whole Earth. The origin of this
ellipsoid will be the center of the Earth. Example: WGS84, it has become the reference
for geocentric systems. Its accuracy is on average 1 to 2 meters.

2. Local geodetic systems:
A local datum aligns its ellipsoid to closely fit the earth’s surface in a particular area.
It is much more precise than a geocentric system in the area for which it has been
defined.[17]

28

Figure 3.3: Local and Geocentric coordinate systems

Source: www.esri.com

The table 3.3 gives some examples of local and global datum:

Table 3.3: local and global Datum

Datum Ellipsoid Dx Dy Dz Region of use

North Sahara 1959 Clarke 1880 -186 -93 310 Algeria

Merchich Clarke 1880 31 146 47 Morocco

European 1950
International

1924
-87 -98 -121 EU

WGS 1984 WGS 84 0 0 0 Global Definition

3.3.2 Projections

In order to better visualize a map, we must go from the 3D representation of the earth to a
representation in 2D (the map). This involves establishing a mathematical function such as:

(X, Y) = F (latitude, longitude)

No projection completely preserves the metric properties of the ellipsoid, there is some-
times a loss of the values of the angles or the size of the surfaces

3.3.2.1 EPSG

EPSG stands for European Petroleum Survey Group. EPSG codes are a list of geo-referenced
projection coordinate systems used as a GIS standards.

29

3.3.2.2 Projection used in Algeria

We use in Algeria the UTM projection. UTM stands for Universal Transverse Mercator. The
UTM splits the world into a series of 60 vertical slice of meridians spaced 6 ◦ and 20 parallel
strips of 8 ◦ except the most north which is 12 ◦ wide. They are designated from north to
south by a letter of the alphabet from C to X using not the letters I and O.[18]

Algeria spreads from west to east in four zones: 29, 30, 31 and 32. It is 9 ◦ west of the
meridian origin and 12 ◦ east of the meridian of origin. It’s EPSG code is 30731.

Figure 3.4: UTM projection

Source: gisgeography.com

3.3.3 Types of maps

There are different types of map [19]:

Table 3.4: Main types of maps

Type of map Definition

Political map It focuses solely on the state and national boundaries of a place.

Physical map It generally shows things like mountains, rivers, and lakes.

Topographic map It uses contour lines instead of colors to show changes in the landscape

Climate map
It shows information about the climate of an area(temperature, amount of

snow received)

Road map It shows major and minor highways and roads

Thematic map It focuses on a particular theme or special topic like population density

30

3.4 Type of GIS applications
Nowadays, GIS is more and more globalized, integrated and popular. In general, computer-
ized GIS are classified into two categories however different architectures can be drawn by
combining them.

Figure 3.5: Standalone Vs. Client/Server Architecture

3.4.1 Standalone GIS

Standalone GIS is a software that allows users to manipulate spatial data directly from a
database, we can list two majors types:

• Desktop GIS It includes GIS software that runs locally on a personal computer com-
monly used by GIS professionals to create and design maps. Eg.: GRASS GIS.

• Mobile Software It includes GIS software that runs on a mobile platform and provides
special functions that support data acquisition and updating in the field. Eg.: gvSIG
Mobile and Quantum GIS for Android.[1]

3.4.2 Client/Server GIS

This category includes software that enables a developer to deliver (via a server software)
and view (via a client software) geographic data and maps. It does not communicate directly
with the database.

3.4.2.1 Client Side

It contains GIS features and it mainly requests for geographic data from a Web Map server.
There are two types of architecture namely thin and thick client depending upon the client
processing power:

• Thin Client

In this case, the processing power lies in the server and the results are displayed through
a browser. This type of system requires frequent communication with the server even

31

for simple operations like zoom, pan as the client requires the completely processed
data for display. Generally, thin GIS clients are Web clients.

• Thick client

In thick client architecture, data and logic can reside locally on the client side. This
reduces the time delay caused due to frequent communication between client and server.
Generally, thick GIS clients are Desktop software such as QGIS.

3.4.2.2 Web Map Server

In essence a web map server is a specialization of a standard web server that can provide Web
Mapping Services (WMS), Web Feature Services (WFS), or Web Coverage Services (WCS).
Eg.: Geoserver, Mapserver.

1. Web Map Service (WMS)

Web Map Service (WMS) is the standard process of accessing map data from map
servers. At each request map tiles will be generated on the server and sent back to the
client in a raster format like PNG, JPEG or vector format like SVG2.

Figure 3.6: Web Map Service

Source: workshops.boundlessgeo.com/

2. Web Map Tile Service (WMTS)

A map service that fulfills requests with pre-created tiles from the cache is called a
cached or tiled maps service.

3. Web Feature Service (WFS)

Unlike a WMS, which provides the user only with a map which he cannot edit, a basic
WFS allows querying and retrieval of spatial data.

2Scalable Vector Graphics

32

A transactional Web Feature Service (WFS-T) allows creation, deletion, and updating
of spatial data through the Web.

Figure 3.7: Web Feature Service

Source: workshops.boundlessgeo.com/

4. Web Coverage Service (WCS)

The WCS web service is used to transfer “coverages”, ie. objects covering a geographical
area. One can think of WCS as the equivalent of WFS, but for raster data instead of
vector data. A WCS service returns data in a format that can be used as input for
analysis and modeling. This is in contrast with the OGC3 Web Map Service (WMS),
which only returns a picture of the data.

5. Web Processing Service (WPS)

A WPS is an OGC standard to invoke serve-side geoprocessing services which are faster
than the client-side [20]. It defines an interface that facilitates the publishing of geospa-
tial processes and clients’ discovery of and binding to those processes.
WPS can describe any calculation (i.e. process) including all of its inputs and outputs,
and trigger its execution as a web service. For example the transformation between 2
systems of coordinates.

3.5 Data store
Each one of the previous architectures needs access to a data store. The data store in a GIS
hosts both files and databases. It supports the two primary spatial data types: vector and
raster.

3The Open Geospatial Consortium (OGC) is an international voluntary consensus standards organization.
In the OGC, more than 500 commercial, governmental, nonprofit and research organizations worldwide col-
laborate in a consensus process encouraging development and implementation of open standards for geospatial
content and services, sensor web and Internet of Things, GIS data processing and data sharing.

33

3.5.1 Vector data

It is represented as either points, lines, or polygons. Data that has an exact location or hard
boundaries are typically shown as vector data. Eg.: country boundaries, the location of roads
and railroads using lines, or point data indicating the location of fire hydrants.

Figure 3.8: Vector’s data

Source: saylordotorg.github.io

Some of the most famous vector formats are:

1. Esri4’s Shapefile: The shapefile format is made up of at least three files :

(a) filename.shp contains the geometric data,

(b) filename.dbf contains the attribute data,

(c) filename.shx is the link between the file shp and dbf. It also stores the index of
geometry thus decreasing the search time space.

2. Keyhole Markup Language (KML): KML was originally used for viewing geographic
data in Google Earth but it became a standard and has become more widespread as a
GIS data exchange format.

3. GeoJSON: is an open standard format designed for representing simple geographical
features, along with their non-spatial attributes. It is based on JSON, the JavaScript
Object Notation.

3.5.2 Raster data

Raster data are viewed as a series of grid cells where each cell has a value representing the
feature being observed. Data stored in a raster format represents real-world phenomena:

1. Thematic data that represents features such as land-use or soils data.

2. Continuous data that represents phenomena such as temperature, elevation.

3. Satellite images, aerial photographs and pictures that include scanned maps or draw-
ings.

34

Figure 3.9: Raster data

Source: desktop.arcgis.com

Some of the most famous raster formats are:

1. GeoTIFF: GeoTIFF is a form of TIFF (Tag Image File Format) format for georeferenced
raster data.

2. GRIB, GRid In Binary: GRIB is the World Meteorological Organisation’s (WMO)
standard for grid-based meteorological data.

3.5.3 Spatial database

Definitions:

1. A database is a data structure that stores organized information. Most databases
contain multiple tables, which may each include several different fields.

Figure 3.10: Database

Source: www.kbmanage.com

2. Database Management System
A database management system (DBMS) is a collection of programs that enables users

4Esri is an international supplier of geographic information system (GIS) software, web GIS and geo-
database management applications. The company is headquartered in Redlands, California.

35

to create and maintain a database. Some DBMS examples include MySQL, Post-
greSQL, Microsoft Access, SQL Server, FileMaker, Oracle.

3. Spatial Database Management System (SDBMS) provides an alternative to
storing geographical data in files. Usually a spatial DBMS is used for large data sets
that need high performance. SDBMS could be defined as a DBMS that offers :

• Spatial data types:
Spatial data types or geometric data types provide a fundamental abstraction for
modeling the geometric structure of objects in space as well as their relationships,
properties, and operations.[21]

• Spatial indexing:
Indexing an ordinary database is usually done with B-tree indexes5, however it
is not optimal in the case of spatial data types. Fortunately, spatial databases
provide a “spatial index” to optimize spatial queries by using bounding boxes,
the smallest rectangle capable of containing a given feature, so rather than giving
accurate results, spatial indexes provide approximate results but perform quickly.

Figure 3.11: Bounding Boxes

Source: workshops.boundlessgeo.com

• Spatial analysis operations:
In addition to typical SQL queries such as SELECT statements, spatial databases
can perform a wide variety of spatial operations [22]

– Spatial Measurements: Computes line length, polygon area, the distance
between geometries, etc.

– Spatial Functions: Modify existing features to create new ones, for example
by providing a buffer around them, intersecting features, etc.

– Spatial Predicates: Allows true/false queries about spatial relationships
between geometries. Examples include "do two polygons overlap".

– Geometry Constructors: Creates new geometries, usually by specifying
the vertices (points or nodes) which define the shape.

5A B-tree partitions puts the data into the hierarchical tree using the natural sort order.

36

– Observer Functions: Queries which return specific information about a
feature such as the location of the center of a circle

The most used SDBMS are PostGIS, which provides spatial data types and analysis functions
for the free PostgreSQL database, MySQL Spatial project for to the free MySQL database,
and the SpatiaLite project for SQLite.

3.6 Free and open source GIS software
Software that is used to create, manage, analyze and visualize geographic data is usually
incorporated under the umbrella term ‘GIS software’. Steiniger and Weibel (2009) identified
seven major types of GIS software[23]: Desktop GIS, Spatial Data Base Management Systems
(SDBMS), Web Map Server, Server GIS, Web GIS clients, Mobile GIS, and Libraries and
Extensions. The figure 3.12 [1] list the free and open source geographic information software
map for 2012.

Figure 3.12: The free and open source geographic information software map of 2012.[1]

3.7 Conclusion
In this chapter, we had a brief but complete introduction to spatial data and GIS architecture.
We concluded by presenting a state-of-art of Open Source GIS software that will be used, in
order to compare and choose the most appropriate solution for our IoT oriented GIS.

37

Chapter 4

Technical choices

4.1 Introduction
In this chapter, we will first present CDAT1’s OpenStack cloud where our work was hosted
and then compare various open source software to choose the most relevant one for each
block of our GIS architecture: IoT platform, spatial database and GIS server.
We will summarize by presenting our end-to-end solution architecture.

4.2 Cloud platform
Our work was hosted on the Cloud Computing infrastructure of CDAT. It is a public cloud
that allows easy access, on demand, anytime and anywhere to shared and configurable com-
puting resources.
The physical infrastructure of the CDTA cloud is made up of a set of powerful equipment
(servers, switches, routers and firewalls) ,powered by a stable and redundant electrical system,
that provides the management of the cloud itself, virtual machine hosting, supercomputing
and storage in order to satisfy high availability and the increasing demand of users for re-
sources.

It offers the "IaaS: Infrastructure as a Service"2 service model that is deployed using an
open-source software layer known as "OpenStack".

OpenStack is a set of Open Source software tools for building and managing cloud com-
puting platforms for public and private clouds. It uses virtualization technology to break up
the physical system into several distinct and secure virtual environments. This virtualization
makes it possible to determine the processing power, the storage space and the memory to
be allocated to the various applicants.

1Center for Development of Advanced Technologies
2IaaS provides access to computing resources in a virtualized environment “the cloud” on internet. It

provides computing infrastructure like virtual server space, network connections, bandwidth, load balancers
and IP addresses. The pool of hardware resource is extracted from multiple servers and networks usually
distributed across numerous data centers. This provides redundancy and reliability to IaaS.

38

Figure 4.1: OpenStack Architecture

Source: openstack.org

4.3 IoT platform
Sentilo has been chosen by the "Algiers Smart City" project’s team as the IoT platform
solution in order to exploit the data generated by the layer of sensors deployed in the city.

Figure 4.2: Sentilo’s user interface

4.3.1 Definition

Sentilo is an open source sensor and actuator platform. It was started in November 2012
by the Barcelona City Council, through the Municipal Institute of Informatics (MII), for its
smart city project called City OS.

39

4.3.2 Architecture

Sentilo is the piece of architecture that isolates applications that use the sensor data from
the layer that provides the data.

The main modules of Sentilo are:

1. Real Time Storage
It is the primary repository where the platform stores all the information received
(observations, alarms orders). It uses Redis as a database.

2. PubSub Platform
It allows the platform clients (application/modules or provider/sensors) to publish or
retrieve information and to subscribe to system events.
This module is a stand-alone Java process that uses Redis as a publish/subscribe mech-
anism.

3. Catalog
Catalog is a web application built with Spring on the server side using jQuery and
bootstrap as presentation layer and MongoDB as data storage database.
It provides tools to administer, rule and monitor the Sentilo platform resources :
providers, applications, components, sensors, alerts and users.
The Catalog allows us also to display some Sentilo statistics like total requests pro-
cessed, number of sensors registered, current requests per second, max daily average
and max average requests per second...

Figure 4.3: Sentilo statistics

4. Restful API
Sentilo gives the possibility to create components and sensors, publish and read data
through Restful API requests, that we will detail in the next sections.

5. Agents
Agents are Java processes that expand the core functionality of the platform using the
Redis publish and subscribe mechanism.
Sentilo currently provides several agents:

40

• Relational database agent: used to export all information received from Pub-
Sub platform into a set of relational databases.

• Alert agent: used for processing each data received by the platform and publish
a notification when any of the configured integrity rules are not met.

• Activity Monitor Agent: subscribes itself to the list of events and uploads
them to a search engine ElasticSearch.

• Historian Agent: Likewise the Activity Monitor Agent, this module also sub-
scribes itself to the list of events and uploads them to an OpenTSDB database.

Figure 4.4: Sentilo Architecture

Source: sentilo.io

4.3.3 Sentilo resources

Sentilo components are :

1. Sensor
Any software or hardware device that generates data in the Smart City. All sensors are
identified by sensor type, data type and the measurement units.

2. Component
A component represents one or more sensors and it is identified by its location.

3. Provider A provider is an entity that manages devices (sensors). Each provider is
defined by a name and an authentication key that allows him to publish and read data
through the REST API.

4. Client Application
Application are the data clients of the Sentilo platform

41

4.3.4 Sentilo’s HTTP REST API

In this part we will take a closer look at the Sentilo REST API. We will start by defining
what is an API and a REST API. Then, we will list the operations that can be performed
by Sentilo API and how to use them.

• Application Programming Interface (API)
An API represents a set of functions that allows two or more applications to commu-
nicate with each other.
APIs make it easier for developers to use certain technologies in building applications
by abstracting the underlying implementation and only exposing objects or actions the
developer needs.[24]

Figure 4.5: API

• REST API
A RESTful API is an API that takes advantage of the HTTP methodologies, the table
below summarize this:

Table 4.1: REST API Methods

Method Description

GET To retrieve information of a resource

POST To change the state of or update a resource

PUT To create that resource

DELETE To remove it

• Operations of Sentilo REST API
The services offered by Sentilo through its REST API can be classified into five main
groups:

1. Catalog: provides operations to insert, update, query and delete catalog resources
(sensors, components and alerts).

2. Data: provides operations to publish, retrieve, delete the observations of the
registered sensors.

42

3. Order: provides operations to publish, retrieve, delete orders to sensors and
actuators.

4. Alarm: provides operations to publish, retrieve, delete alarms associated with
alerts stored in catalog.

5. Subscribe: provides operations to subscribe, retrieve and cancel subscriptions to
system events(data, order, alarm).

• Connect to the REST API
In order to connect to this REST API, we have to specify:

1. An identifier: an URL in the form http(s)://domain:8081/service

2. The format of data: JSON or XML.

3. Operators: GET, POST, PUT, DELETE.

4. Authorization token: a string of letters and numbers unique to every provider.

• Example

The API is in the form of

curl -X METHOD -H "IDENTITY -KEY: Authorization -token"
-H "Content -Type: application/json" URL

In the table below gives an example of a publish request.

Table 4.2: Publish Data

URL http://server-ip:8081/data/providerId/sensorId

Method PUT

Content-Type application/json

IDENTITY_KEY Authorization token

Observation

{"observations":[{

"value":"9.6",

"timestamp":"17/02/2016T11:43:45CET",

"location": "41.3888 2.15899"}

]}

43

4.4 Spatial Database Management System
Due to limited system resources, Sentilo does not store the sensor data forever. Thus, we
have to copy it regularly in a Big Data database and, as seen previously, Sentilo has four
agents that expand its core functionality.
In this section, we will discuss each Sentilo agent and the possibilities it gives. Next, we will
compare two paradigms for systems that manage Spatial Big Data then choose the best one.

4.4.1 Sentilo agents comparison

1. Activity Monitor Agent:

This agent is a connector to the search engine ElasticSearch, an open-source, RESTful,
distributed search and analytic engine. ElasticSearch is suitable only for real time
analysis, not as long term repository. Add to that it does not support GIS features and
does not allow the connection to a GIS Server.

2. Historian Agent:

This module is a connector to OpenTSDB, a scalable time series database built on top of
Hadoop and HBase3. It stores and analyzes large amounts of time-series data generated
by endpoints like sensors or servers. However, it does not support GIS functionality
and at the same time does not allow the connection to a GIS Server.

3. Alert Agent:

This agent is used as a notifier when any of the configured integrity rules are not met.
It is not used for storage or analysis.

4. Relational Agent

The relational agent is used to export all information received from PubSub platform
into a set of relational databases such as MySQL, Oracle and PostgreSQL. PostgreSQL
has a powerful extension called Postgis, that allows GIS features and connection to a
GIS server.

4.4.2 PostgreSQL/PostGis vs. Geomesa

4.4.2.1 PostgreSQL/PostGis

PostgreSQL is an open source relational database management system (DBMS) devel-
oped by a worldwide team of volunteers. It provides transaction management, disk storage
routines, SQL processing, planning, etc. It supports text, images, sounds, and video, and
includes programming interfaces for C/C++ , Java ...

PostGIS is a spatial database which is build on top of PostgreSQL. It provides spatial
data types (point, linestring, polygon...), functions (area, distance, union, difference, buffer,
touches..) and indexes.

3Apache HBase is an open-source, distributed and non-relational database

44

Figure 4.6: PostgreSQL and PostGIS Database

Some of the most used PostGIS functions are:

Table 4.3: PostGIS functions

PostGIS Functions Description

ST_MakePoint(Longitude, Latitude) Returns a new point.

ST_AsGeoJSON(geometry) Returns a geometry to a standard GeoJSON format.

ST_Area(geometry)
Returns the area of the geometry in the units of the

spatial reference system.

ST_Distance(geometry, geometry)
Returns the distance between two geometries in the

units of the spatial reference system.

ST_Crosses(geometry, geometry)
Returns true if a line or polygon boundary crosses

another line or polygon boundary, otherwise false.

PostGIS provides most of the Gis functions needed to store and analyze spatial data
efficiently. However, the current deluge of big-data, especially in the case of a Smart City,
requires spatially-aware big-data platforms which are capable of performing geospatial ana-
lytics on distributed computing systems.
The common solutions for a spatial Big Data problem are Geomesa/Accumulo and POST-
GIS/Greenplum database. We will compare the two paradigms.

4.4.2.2 Geomesa

GeoMesa enables indexing and querying of spatiotemporal data on key/value databases such
as Accumulo4.
Similar to the relationship between PostGIS and PostgreSQL, GeoMesa is a library added-on
to Accumulo to enable support for spatiotemporal data. GeoMesa uses and extends the OGC
SimpleFeature data model and supports spatiotemporal indexing.

A study that compares two solutions Postgis and Geomesa showed that GeoMesa query
time is significantly worse than the Vector Cluster5 and PostGIS time[2], moreover the doc-

4It is not limited to Accumulo, it supports other databases such as HBase, Cassandra, Kafka, etc. But
Accumulo is best supported.

5Vector Cluster is a geospatial data storage format created by the Geospatial Computing Section at the
United States Naval Research Laboratory (NRL)

45

umentation of Geomesa was complicated to implement.

Figure 4.7: Performance comparison[2]

We found a good alternative for Geomesa: "Greenplum", which is a massive parallel
processing (MPP) database based on PostgreSQL open-source technology. In addition to
providing GIS features for Spatial Big data through PostGis it can connect to Sentilo through
the relational agent.

4.4.3 Greenplum

4.4.3.1 Definition

Pivotal Greenplum Database is an advanced, fully featured, open source (since 2015) data
platform. It provides powerful and rapid analytics on petabyte scale data volumes. It is es-
sentially several PostgreSQL disk-oriented database instances acting together as one cohesive
database management system (DBMS)[25].

4.4.3.2 Greenplum architecture

Greenplum Database is composed of a master and segments. The master coordinates its
work with the segments, which store and process the data.

1. Greenplum Master:

The master is the entry point where clients connect and submit SQL statements to
the Greenplum Database. It stores the Metadata about the Greenplum Database itself
but it does not contain any user data. The master authenticates client connections,
processes incoming SQL commands, distributes workloads among segments, coordi-
nates the results returned by each segment, and presents the final results to the client
program.

2. Greenplum Segments

Greenplum Database segment instances are independent PostgreSQL databases that
each store a portion of the data and perform the majority of query processing.

3. Greenplum Interconnections:

The interconnect is the networking layer of the Greenplum Database architecture. The
Greenplum software uses User Datagram Protocol Interconnect with Flow Control (UD-
PIFC) to send messages over the network and performs packet verification which cou-
ples the reliability of Transmission Control Protocol (TCP), and the performance and
scalability of UDP.

46

Figure 4.8: High-Level view of the Greenplum Database Architecture

Source: gpdb.docs.pivotal.io

Since Greenplum is a cluster of Postgres database, it gives the possibility to add the
spatial extension PostGIS. It also has a powerful open-source library of machine learning’s
algorithms called: MADlib.

The table 4.4 summarize the main characteristics and limits of Greenplum:

Table 4.4: Characteristics and limits of Greenplum (source: community.pivotal.io)

Dimension Limit

Maximum size for a database unlimited

Maximum size of a table unlimited, 128 TB per partition per segment

Maximum number of rows in a table 2^48

Maximum number of columns in a table 1600

Maximum number of tables per database 4200 million

Maximum active concurrent transactions unlimited

4.5 Web mapping server
The Server Side in the most crucial part in a GIS architecture because it will define its
capabilities and features.

In our journey to choose the most suitable GIS server, we analyzed some governmental
geoportals, using the Google Chrome DevTools Network, to determine the most used GIS
Servers and then compared them based on their capabilities.
In each geoportal we followed the same steps:

47

1. We sent requests to the GIS server by zooming on the map,

2. The GIS server generated new maps corresponding to the zoom level,

3. At the same time, we tracked the request using Chrome DevTools Network.

Figure 4.9: Chrome’s Dev Tools

The table 4.5 summarize the results obtained:

Table 4.5: Comparison of different Geoportals

Geoportal GIS Server used

French geoportal

https://www.geoportail.gouv.
GeoServer

Geoportal of Wallonie

http://geoportail.wallonie.be
MapServer

Geoportal of Brussels

http://geobru.irisnet.be
Geoserver

Commision for the protection of agricultural Land in Quebec Portal

http://www.cptaq.gouv.qc.ca/
MapServer

Global Earth Observation System of Systems (GEOSS) Portal

http://www.geoportal.org/
GeoServer

Australian flood risk information portal

http://www.ga.gov.au/
GeoServer

We can notice that the most used GIS servers are MapServer and GeoServer. Next we
will compare them, based on their capabilities, in order to choose the most suitable solution
for our architecture.

4.5.1 GeoServer Vs. MapServer

GeoServer:

48

Geoserver is an Open Source Java based server that allows map creating and spatial data
sharing [26]. It handles both Raster and Vector data, and works under OGC main standards
such as: WMS, WFS, WCS, WPS and WFS-Transaction.
Geoserver has a web administration interface for configuring its settings.

Figure 4.10: GeoServer’s User Interface

MapServer:
To quote from the MapServer home page, “MapServer is an OpenSource development

environment for building spatially enabled Internet-web applications.” It also handles both
vector and raster data and works under the main OGC standards but unlike GeoServer it
does not support Modification Web Services (WFS-T) and server-side geoprocessing services
(WPS).

A simple MapServer application consists of [27]:

1. Map File: A structured text configuration file (.map) that defines the needed param-
eters to generate a map like data source, projections, and the path of output image.

2. MapServer CGI/ MapScript: The binary or executable file that receives requests
and returns images, data, etc. Mapscript provides a scripting interface for MapServer
for the construction of Web applications. It is a loadable module that adds MapServer
capability to a scripting language like PHP, Perl, Python, etc ..

3. Web/HTTP Server: It serves up the HTML pages when hit by the user’s browser.
Most of the time Apache HTTP Server is used.

49

Figure 4.11: MapServer’s architecture

Source: www.mapserver.org

The table 4.6 summarize the comparison between the two GIS Servers:

Table 4.6: MapServer Vs. GeoServer

GIS Server GeoServer MapServer

Administration User friendly Tool Mapfile

Technology Java based C/C++

Vector data YES YES

Raster data YES YES

OGC Services WMS/WFS/WCS WMS/WFS/WCS

OGC Modification’s Services

WFS-T
YES NO

Server side GeoProcessing WPS YES NO

After comparing the two open solutions, we opted for Geoserver. Unlike MapServer,
GeoServer uses WPS and WFS-T OGC standards which allow a better flexibility in spatial

50

data management and geoprocessing. [28].

4.5.2 Geoserver

Since GIS server is a crucial element in our architecture, we will take a closer look to
GeoServer’s architecture and main components in order to better exploit them.

4.5.2.1 Architecture

Geoserver is built on top of Open Source Java libraries: GeoTools, Java Topology Suite,
Spring Framework and Freemaker. To better understand how it works we will define each
one of them:

1. GeoTools:

GeoTools is an open source Java library[29]. It is the equivalent of PROJ6 and GDAL/OGR
7 all assembled into one. It includes lots of plug-ins to support different data formats
(vector and raster) like ESRI Shapefile, Geographic Markup Language (GML) and Geo-
tiff. It supports also spatial databases such as PostGIS, Oracle Spatial and MySQL.

2. Java Topology Suite (JTS):

JTS is a Java library for creating, manipulating and representing geometric objects and
the relationships among them. It provides robust implementations of the fundamental
geometric functions.

3. Spring Framework:

Spring is an open source framework that allows Java developers to easily build appli-
cations on the Java EE (Enterprise Edition) platform. It has many positive features
such as being lightweight and modular.

Using Spring Framework in 2006 made Geoserver more component-oriented architecture
which allows developers to extends it via simple and isolated plug-ins without having
to learn the inner works of the entire system.
Spring has a complete security subsystem that supports a wide variety of authentication
schemes which is essential for GeoServer.

4. Freemarker:

Freemarker is an open source ’template engine’ which takes data, runs it through a
series of rules and logic, and produces a presentation of that data based on those rules.

6Program proj is a software library that converts geographic longitude and latitude coordinates into
Cartesian coordinates

7It is a software library for writing and reading spatial data in different data format.

51

Figure 4.12: Freemarker Example

Source: freemarker.apache.org

The figure 4.13 shows the architecture of Geoserver:

Figure 4.13: Geoserver Architecture

4.5.2.2 Geoserver concepts

In this section we will introduce some of the commonly-used terms in Geoserver:

1. Workspace

A workspace is a virtual container related to a certain project, it organizes the layers
by grouping similar data together. Different workspace allows us to create layers and
stores with the same name.

2. Store

A store is connected to a data source that contains raster or vector data. It can be a
file or group of files, a database or a raster file [28]. A store must contain at least one
layer. Each store must be associated with a unique workspace [30].

52

3. Layer

A layer is a collection of geospatial features or a coverage and their associated data
such as projection information, bounding box, and styles. Typically a layer contains
one type of data (points, lines, polygons, raster). A layer corresponds to a table or
view8 from a database, or an individual file. Each layer must be associated with a
unique workspace.

Figure 4.14: Relationships between workspaces, stores and layers

4. Layer Group

A layer group, as its name suggests, is a collection of layers that allows requesting
multiple layers with a single WMS request[30].

5. Style

A style in GeoServer contains rules for color, shape, and size, along with logic for styling
certain features or points in certain ways based on attributes or scale level [30].

4.5.2.3 GeoServer REST Interface

The main reason behind the use of Geoserver REST API is to automate the repetitive ad-
ministrative tasks such as the creation of workspaces, data stores, styles and Layers by using
GET, POST, PUT, and DELETE operations.

For example to get the workspaces defined in our Geoserver we can use cURL9:

curl -u admin:geoserver -v -XGET -H ’Accept: application/json ’
http :// address :8080/ geoserver/rest/workspaces

4.5.2.4 Web services

As seen previously Geoserver supports the OGC main standards such as WMS, WFS, WCS,
WPS.

• WMS

An example of GetMap request that retrieves a map image for a specified area and
content.

8In a database, a view is the result set of a stored query on the data.
9cURL is a computer software project providing a library and command-line tool for transferring data

using various protocols[31] from the command line

53

http :// localhost :8080/ geoserver/topp/wms?service=WMS\
&version =1.1.0& request=GetMap&layers=top:tasmania&styles =&
bbox =145,-43,148,-40& width =512& height =427& srs=EPSG :4326&
format=image/png

Where "srs" is the spatial Reference System for map output and format is the format
of the map output.

• WFS

An example of a GetFeature request that returns a selection of features from a data
source including geometry and attribute values.

http :// localhost :8080/ geoserver/wfs?service=wfs&version =1.1.0&
request=GetFeature&typeNames=namespace:featuretype

• WPS

An example of a " DescribeProcess" request that returns an XML document that
provides a detailed description of the process JTS:buffer is:

http :// localhost :8080/ geoserver/ows?
service=WPS&
request=DescribeProcess&
identifier=JTS:buffer

• WCS

An example of "GetCapabilities" request that retrieves a list of the server’s data, as
well as valid WCS operations and parameters:

http :// localhost :8080/ geoserver/wcs?service=wcs&
AcceptVersions =1.1.0&
request=GetCapabilities

4.5.2.5 GeoWebCache

For each GetMap request Geoserver load the data, apply styles, deliver the result in a raster
format, and send it to the client. This may be time and resource consuming especially when
data are not changing and tiles generated by WMS are always the same. That is where
GeoWebCache comes handy.
GeoWebCache is a tiling server that runs as a proxy between a map client and map server,
caching (storing) tiles as they are requested, eliminating redundant request processing and
thus saving large amounts of processing time.

54

Figure 4.15: GeoWebCache

Source: geowebcache.org

4.6 End-to-end architecture
We will summarize the previous technical choices in the logical architecture 4.16.

4.7 Conclusion
In this chapter, we first presented the CDTA’s OpenStack cloud that hosted our work then
compared various open source software and picked the most suitable one for each part of our
IoT-oriented GIS architecture:

• IoT platform: Sentilo.

• Spatial Database: PostGIS/PostGreSQL and Greenplum Pivotal.

• Web Mapping Server: Geoserver.

In the next chapter, we will present our physical architecture and its implementation, in a
production environment.

55

Figure 4.16: Logical end-to-end GIS architecture

56

Chapter 5

Implementation

5.1 Introduction
In this chapter we will document the implementation in a production environment of our
web based IoT oriented GIS according to the technical choices fixed previously.

5.2 Detailed architecture to implement
In order to exploit the sensor data for GIS end user applications, we followed this procedure:

1. We injected Smart city’s sensor data in the IoT platform Sentilo using its API REST,

2. Since Sentilo does not store data forever because of limited system resources, we had
to copy them in another database using Sentilo’s relational agent,

3. We stored the data in the MPP database Greenplum Pivotal where we performed
spatial analysis operations to exploit the data,

4. We shared these sensors’ data, as well as other spatial data , using Geoserver’s web
services.

Each of the chosen platform has been installed for a production environment that requires
high availability and scalability

1. Sentilo : one instance for test before migrating to the official Sentilo’s platform imple-
mented by the "Algiers Smart City" project’s team.

2. Greenplum Pivotal: one master and three segments,

3. Geoserver: four instances (distributed on two physical machines, two in each machine)
supervised by a load balancer,

The figure 5.1 summarize our physical architecture.

57

Figure 5.1: Detailed architecture to implement

58

5.3 Sentilo

5.3.1 Data

Since sensors and actuators are not deployed yet in the Wilaya of Algiers, which means there
is no available data, we used Open and simulated Data in order to test our architecture.

5.3.1.1 OpenData

Open data is a data that can be freely used, shared and built-on by anyone, anywhere,
for any purpose [32]. There is open information in transport, science, products, education,
sustainability, maps, etc.

We used sensors data published by PARISDATA for temperature and pressure. But
considering that Sentilo’s API Rest requires a specific format of data, we had to modify it.

• Preparation of the data
First, we prepared the data by:

– Putting it in the format below:

{" observations ":[{
"value ":"9.6" , "timestamp ":"17/02/2016 T11 :43:45C ET",
"location ": "41.3888 2.15899"}
]}

– Linking the sensors to positions in Algiers.

The figure 5.2 shows the original data’s format:

Figure 5.2: Temperature table’s format

Followed steps:

We will present the followed steps for temperature data but the same ones are used for
pressure data. We used the data of eight sensors in Paris.

1. Download the csv file and delete the empty column "Class":

wget https :// opendata.paris.fr/explore/dataset/place -de -la-
nation -temperature/download /? format=csv
vi temperature.csv
:g/;;/s//;/g

2. Import csv file into PostgreSQL table to prepare it.

59

(a) Create a new user and a database:

createuser opendata_user
createdb -e opendata -O opendata_user

(b) Create a new table "temperature" with the open data’s format.

psql -h localhost -U opendata_user opendata

CREATE TABLE temperature (
metric character varying (50),
value float ,
value_type character varying (50),
host character varying (50),
timestamp date);

(c) Copy the data into the table created

COPY temperature FROM ’/home/gpadmin/temperature.csv’
DELIMITER ’;’ CSV HEADER;

3. Create a table named "position" with two columns "host" and "location" and fill
it with the name of the eight sensors and positions in Algiers:

CREATE TABLE position (host character varying (50),
location text);
INSERT INTO position(host , location)
VALUES
(’CISCO_CT_PARIS_257 ’,’36.60507 3.11’),
(’CISCO_CT_PARIS_258 ’,’36.66138 2.88254 ’),
(’CISCO_PARIS_005 ’,’36.8678 2.77954 ’),
(’CISCO_PARIS_004 ’,’36.64078 2.93541 ’),
(’CISCO_CT_PARIS_260 ’,’36.69914 2.9512 ’),
(’CISCO_PARIS_003 ’,’36.58791 2.95052 ’),
(’CISCO_PARIS_002 ’,’36.714170 3.021964 ’),
(’CISCO_PARIS_001 ’,’36.788722 3.015700 ’));

4. Join the "temperature" table with "position" table, modify its format so it matched
that of Sentilo and copy the table into a json file:

CREATE TABLE temperature001 AS (
SELECT CAST(j.value AS varchar (10)) AS value ,
TO_CHAR(j.timestamp ,’dd/mm/yyyyTfmhh:mi:ss’) AS timestamp ,
l.location AS location FROM temperature AS j,
position AS l WHERE j.host=l.host AND
j.host=’CISCO_PARIS_001 ’);
COPY (SELECT row_to_json(t) ||’,’FROM temperature001 as t) to
’/home/ubuntu/temperature001.json’;

Script explanation

– Convert value to a char using CAST function,
– Change the format of data to dd/mm/yyyyTfmhh:mi:ss to match Sentilo’s

one,

60

– Get the location by joining the two tables using the relationship established
by "host",

– Repeat for all the sensors.

5. Add a ’{"observations":[’ at the beginning of the json file and ’]}’ at the end. We
get files in the format of the figure 5.3, which can be now used with Sentilo’s API
Rest:

Figure 5.3: A caption of the temperture001.json file

• Publish the data
Now that the data are ready, we published it as follow:

1. Create a provider as described in Sentilo’s website,

2. Create the sensors by running the python program in the annex C.
Script explanation:
The code takes advantage of Sentilo REST API by defining, using a loop, a JSON
file that holds the sensors’ configurations, and then send a POST request to create
them.

3. The creation of the sensors can be verified in Sentilo website as shown in the figure
5.4 :

Figure 5.4: Temperature Sensors

4. Publish the data by running this command from the bash:

curl -X PUT -H "IDENTITY_KEY:Identity_key"
-H "Content -Type: application/json"
-d @temperature001.json
http ://ip-address :8081/ data/ANM/temperature -1

The figure 5.5 shows that the data have been correctly published:

61

Figure 5.5: Visualization of temperature data

5.3.1.2 Simulated Data

Some Open data were not available, so we decided to simulate our own data of trash cans
and public bicycle sharing stations (vélibs) to emulate a realistic smart city scenario.

To do so we wrote a Python program that:

1. Generates random time, location and sensor’s data using Python’s function "np.random.uniform":

np.random .=np.random.uniform(low=[lower_limit],
high =[upper_limit],size=[size_of_vectordata])

2. Creates, using a loop, the sensors in Sentilo and publish the data by taking advantage
of Sentilo’s API REST syntax as done previously.

The complete code is attached in the annex C. By running the program we can see in the
figure 5.6 that the data have been received

62

Figure 5.6: Visualization of the velib data

The figure 5.7 shows different sensors deployed in the Wilaya of Algiers.

Figure 5.7: Universal Viewer

5.3.2 Sentilo relational agent

Sentilo does not store data forever because of limited system resources so we have to transfer it
regularly in another database. As defended in the previous chapter, we opted for Greenplum
database and connected it with Sentilo using the relational agent.

However, by default, this agent is configured to send data to MySQL database. In the
following, we will explain the configurations performed in order to connect Sentilo with
Greenplum.

1. The relational agent’s POM1 contains dependency for MySQL connector, so we replaced
1POM is an acronym for Project Object Model. file, The pom.xml file contains information of project and

configuration information for the maven to build the project such as dependencies, build directory, source
directory, test source directory, plugin, goals etc.[33]

63

it by PostgreSQL’s connector:

cd sentilo/sentilo -agent -relational
vi pom.xml

Commented the dependency of MySQL and added the code below:

<dependency >
<groupId >org.postgresql </groupId >

<artifactId >postgresql </artifactId >
<version >42.2.1 </version >

</dependency >

2. Next, we specified the properties of our database: ip-address, port, user, password,
database’s name.

vi src/main/resources/properties/relational -client -config.properties

sentiloDs.jdbc.driverClassName=org.postgresql.Driver
sentiloDs.url=jdbc:postgresql ://ip-address :5432/ sentilo
sentiloDs.username=sentilo_user
sentiloDs.password=sentilo_pwd
sentiloDs.validationQuery= Select 1

3. We generated an "appassembler" directory inside ./sentilo-agent-relational/target/ :

mvn clean install
mvn package appassembler:assemble -P dev

4. The "appassembler" folder contains two sub directories "repo" and "bin" [?]:

• repo: directory contains all libraries needed to run the process.

• bin: directory contains the script (sentilo-agent-relational) needed to initialize the
process (there are two scripts, one for Linux systems and one for Windows).

5. We moved this two files in the root directory, and changed the permission of the script:

mv target/appassembler /* /opt/sentilo -agent -relational/
chmod 555 /opt/sentilo -agent -relational/bin/*

6. we run the script in order to send the data regularly to the corresponding database.

/opt/sentilo -agent -relational/bin/sentilo -agent -relational -server

5.4 Greenplum database
We managed to install Greenplum database on one master and three segment hosts as in the
figure 5.8 (The complete installation process is found in the annex A).

64

Figure 5.8: Greenplum database architecture

Once we had Greenplum installed, the next step was to create the database that holds
Sentilo’s data and connect it with Sentilo via the relational agent then adapt the table to
GeoServer.

5.4.1 Greenplum and Sentilo interconnection

1. Create a new user and database

sudo -u postgres createuser -P sentilo_user
sudo -u postgres createdb -O sentilo_user sentilo
psql -h localhost -U sentilo_user sentilo

2. Create the table:

CREATE SEQUENCE sentilo_observations_seq;
CREATE TABLE sentilo_observations (

id INT NOT NULL DEFAULT NEXTVAL (’sentilo_observations_seq ’),
provider VARCHAR (128) NOT NULL ,
sensor VARCHAR (128),
value VARCHAR (512) NOT NULL ,
timestamp varchar (20) NOT NULL ,
event_timestamp timestamp (0) NOT NULL ,
published_at timestamp (0) NOT NULL ,
publisher VARCHAR (128),
location varchar (50),
PRIMARY KEY(id));

65

Figure 5.9: Created table

3. Start the sentilo’s relational agent
Now, that the table is created, we run the sentilo’s relational agent to start the con-
nection. As we can see in the figure 5.10 the observations have been sent:

Figure 5.10: Data transfer from Sentilo to Greenplum

However, at this point our data does not have support for spatial operations, thus it cannot
be exploited by a GIS server, because the table sent by Sentilo had no "geometry2" column.
As a solution to this issue, we managed to:

1. Create a geometry column named "geom" and then create a spatial index using PostGIS
spatial function:

(a) AddGeometryColumn: Adds a geometry column to an existing table of attributes:
text AddGeometryColumn(varchar table_name, varchar column_name, integer
srid3, varchar type, integer dimension);

SELECT AddGeometryColumn(sentilo_observations , geom ,
4326, POINT , 2);

(b) CREATE INDEX: build a spatial index on a table with a geometry column.
CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]
);

2The geometry column is in the standard format: Well-Known Binary (WKB). It includes information
about the type of the object and the coordinates which form the object.

3A spatial reference identifier (SRID) is a unique identifier associated with a specific coordinate system,
tolerance, and resolution. There are various recognized standard SRIDs, such as those defined by EPSG.

66

CREATE INDEX index_gis ON sentilo_observations USING
GIST (geom);

2. Create a rule that updates the table at each new insert event (new data), transforms
the char type of the "location" column into a geometry type and puts the result in the
"geom" column. We used Greenplum and PostGIS functions:

(a) CREATE RULE: defines a new rule applying to a specified table or view: CRE-
ATE RULE [rule_name] AS ON [event] TO [table_name] DO [ALSO | INSTEAD
] command

(b) UPDATE: updates rows of a table:
UPDATE [table_name] SET [column_name]=command

(c) ST_PointFromText — Makes a point Geometry from a text:
geometry ST_PointFromText(text TEXT);

(d) split_part: Split string on delimiter and return the given field (counting from one)
split_part(string text, delimiter text, field int)

CREATE RULE test as on INSERT to sentilo_observations do also
UPDATE sentilo_observations
SET geom= (CASE WHEN (location IS NOT NULL)

THEN ST_PointFromText(’POINT(’|| split_part(location ,’ ’,
2)||’ ’||
split_part(location ,’ ’, 1)||’)’ ,4326)
ELSE geom end);

The figures 5.11 and 5.12 show that the SQL script did the job as we were expecting by
creating geometric objects in the geometry column "geom".

Figure 5.11: "Sentilo_observations" table’s meta data

67

Figure 5.12: "Sentilo_observations" geometry column

Now the data are ready to be exploitable for GIS purposes such as:

1. Spatial data analysis and machine learning using MADlib,

2. OGC Services through a GIS Server such as GeoServer.

5.5 Geoserver
In this section, we will explain the steps we followed to implement Geoserver in a production
environment. We will present

1. The publication of our sensor’s data coupled with vector and raster backgrounds,

2. The development of the architecture in a production environment to provide Scalability,
Security and High availability.

3. The integration of GeoWebCache in a cluster architecture.

5.5.1 Publish the data

An IoT-oriented GIS solution needs to deliver efficiently both vector and raster data in
addition to real time sensor’s data.

Our database will be built around the following repositories:

• A vector digital map background,

• A raster background: satellite images,

• Greenplum sensor’s data.

5.5.1.1 Vector digital map background

Accessing government data is expensive and complicated, so we used the OpenStreetMap’s
(OSM) data for testing our architecture.

OpenStreetMap is a free, editable map of the whole world that is being built by vol-
unteers and released with an open-content [34]. Often considered as the geographic analog
of Wikipedia. The real power of OSM is that it gives access to the data rather than just
rendering the map as in the case of Google-Map.

In this part we will explain the followed steps to publish OSM data in Geoserver.
OSM is made up of polygons, lines and points so we used PostgreSQL database with POST-
GIS extension to publish it.

68

1. First we got the OSM data of Algeria in the osm.pbf4

wget http :// download.openstreetmap.fr/extracts/africa/algeria
-latest.osm.pbf

2. Next, we created a new database and added the postgis extension.

sudo -u postgres createdb -O postgres osm
sudo -u postgres psql -c "CREATE EXTENSION postgis;
CREATE EXTENSION postgis_topology;" osm

3. We loaded the file into the osm database using osm2pgsql command where default.style
is the default osm2pgsql .style.

osm2pgsql -c -d osm -U postgres -W -H
localhost -S default.style algeria -latest.osm.pbf

This resulted in four tables:

Figure 5.13: OpenStreetMap tables

4. In order to have a comprehensible map, we created “layer-like” tables using the "creat-
eDBobjects" code published by Boundless.

wget https :// github.com/boundlessgeo/OSM/blob/master/create
DBobjects.sql
psql -h localhost -U postgres -d osm -a -f createDBobjects.sql

4PBF Format ("Protocolbuffer Binary Format") is a highly compressed, optimized binary alternative to
the XML format [35].

4osm2pgsql is a command-line based program that converts OpenStreetMap data to postGIS-enabled
PostgreSQL databases[36]

69

Figure 5.14: Layer-like OpenStreetMap tables

5. Next, we configured Geoserver to connect and exploit the database:

(a) Create a new workspace as described in figure 5.15:

Figure 5.15: Creation of a new workspace

(b) Create a new store as described in figure 5.16:

70

Figure 5.16: Creation of a new store

6. We created styles using the CSS extension5. The code below shows an example of the
Grass layer’s style:

* {
fill: #bbf9ca;
fill -opacity: 50%;
stroke: #7 cabf9;
stroke -width: 0.5;
stroke -opacity: 50%;
}

7. We published the data and linked each table with its corresponding style.

Figure 5.17: Creation of aero-poly layer

5The installation of the extension is explained in the annex A

71

8. To get the map, we created a layer group that contains all the layers:

Figure 5.18: Creation of OsmMap layer group

9. We can visualize the map from layer preview section:

Figure 5.19: Preview of OpenStreetMap data

5.5.1.2 Raster data

Raster data of Algiers are not available for free, however in our researches we came across
Global Mapper software, defined as "An affordable and easy-to-use GIS application that
offers access to an unparalleled variety of spatial data sets and provides just the right level
of functionality to satisfy both experienced GIS professionals and beginning users."
By using the free trial we were able to download some raster images for testing with the
resolution of 1:500 000.

1. Prepare the data
Structuring and organizing the data can make a huge difference on the response times
of a mapping server. So in this part, we will explain the steps we went through to
prepare satellite imagery using GDAL library 6[37].

6GDAL is an open source library designed to process and transform raster data.

72

• We added overviews7 to our GeoTIFF file.
gdaladdo -r nearest -b 1 algiers.tiff 2 4 8 16

• We wrote the image data in uncompressed tiled structure so that it can be ex-
tracted easily.
gdal_translate -of GTiff -a_srs EPSG :4326 -co "COMPRESS=NONE"

"TILED=YES" algiers.tif algiers_tiled.tif

2. Publish the data
Publishing raster data in Geoserver is a straight forward task, we just created a new
store and added the corresponding file.

Figure 5.20: Adding a new store

The data can be visualized from the layer preview:

Figure 5.21: Satellite imagery
7Overviews are different zoom’s levels of the complete image.
7Tiles arrange the image data in blocks.

73

5.5.1.3 Greenplum sensor’s data

We needed also to connect GeoServer with the Greenplum database to share sensor’s data.
As we have seen before, the master is the entry point to the Greenplum Database system, so
GeoServer needs to connect to the Master host in the port 5432.

Connect to the database
To do that we had to:

1. Create a new "Store" in GeoServer and enter the required parameters about the Green-
plum database (Master’s host IP address, Database,...) as described previously in the
figure 5.16:

2. Create a new layer with the following parameters:

(a) Name title: greenplum_sentilo_observations
(b) Native SRS: EPSG:4326 which correspond to WGS84 datum.
(c) Native Bounding Box:Compute from data.
(d) Lat/Lon Bounding Box: Compute from native bounds.

The data can be visualized from the layer preview as shown in the figure 5.22

Figure 5.22: Preview of Greenplum data

By clicking on a sensor, we can see a table of all its data as shown in the figure 5.23:

Figure 5.23: Greenplum table preview

74

So the data feedback worked perfectly. However all the data is mixed up, also each time
a request is made all Greenplum database’s content is loaded, which over time can represent
a huge amount of data, and slows down the time response of the server. As a solution we
used GeoServer’s option "SQL Views"8to :

1. Separate each sensor,

2. Upload only the last ten observations for each sensor. Ten was a personal choice, it
may vary as needed.

3. Create a layer for each family of sensor,

Figure 5.24: Greenplum Data workflow

SQL Script:

SELECT *
FROM (

SELECT
ROW_NUMBER () OVER (PARTITION BY sensor ORDER BY timestamp DESC)
AS r,
t.*

FROM
sentilo_observations t

where t.sensor LIKE ’%temperature -%’) x
WHERE

x.r <= 10

8SQL Views allow executing a stored SQL query on each request to the layer.

75

At the end, we will have sorted and recent data.

Figure 5.25: Sorted data

5.5.2 Geoserver in Production

Now that our data is available and ready to be used, we need to provide a GIS Server that
couples high-availability and reliability. In other word the system needs to perform with min-
imum down-time. For example if one instance fails, a fail over instance should be provided
while fixing the problem using a watchdog.

Figure 5.26: High availability

Source: kb.vmware.com

Strategies for achieving high availability include [30]:

• Balancing processing load across multiple servers: clustering and load-balancing,

• Monitoring the server and removing single points of failure: watchdog.

5.5.3 Clustering

5.5.3.1 Definitions

A cluster, in the context of servers, is a group of computers that are connected with each
other and operate closely to act as a single computer.[38]

76

Figure 5.27: Cluster architecture

Source: boundlessgeo.com

To gain in performance we need to scale Geoserver both vertically (Scale Up) and hori-
zontally (Scale Out).

1. Scaling horizontally is adding an additional node to the environment to increase its
capacity.

2. Scaling vertically is running more than one instance of Geoserver on the same ma-
chine to maximize the use of the resources on each node.

Figure 5.28: Scale up vs scale out

Source: http://www.pc-freak.net

5.5.3.2 Implementation

Before implementing a cluster of Geoserver we need to take into consideration some facts
about the internal work of Geoserver.

1. By default, the internal configuration of Geoserver (List of workspaces, layers, ...) is
contained in XML files inside the data directory.

2. A cluster of Geoserver needs to share the same data directory.

3. When we add, change or delete a workspace, a Store, a layer, .. through the Web GUI
or the REST API, it is written in the configuration files.

4. The configuration are loaded into memory at start up.

77

5. Changes in this files are not token into consideration by other GeoServer’s instances
unless the reload catalog operation is called or the instance is restarted.

Reloading the catalog in all the instances manually can be overwhelming, fortunately
Geoserver provides a clustering extension, based upon a Message Oriented Middleware9

(MOM) to automate the reload.
The extension has three components:

1. MOM: Makes the masters and slaves exchange the configuration changes through
messages.

2. The master: A master instance has the permissions to make changes in the config-
uration files. It publishs the changes to its own MOM which in turn is configured to
automatically discover other MOM in the same network via Multicast and spread the
changes over to the Slaves.

3. The Slaves: A slave instance doesn’t have the permissions to make the changes, it
receives the new configuration changes from the master through the MOM.

To implement our architecture, we followed these steps:

1. Create multiple instances of Geoserver,

2. Create a shared data directory for those machines,

3. Install Geoserver’s cluster extension to keep all the nodes in the cluster in synch.

4. Create a load balancer to distribute requests between the multiple instances of GeoServer.

Explanation:

1. First, we installed 4 instances of Geoserver in two physical machines; 2 instances in each
one; as in the figure below (The complete installation process is found in the annex A).

Figure 5.29: Geoserver cluster architecture

9Message oriented middleware (MOM), also called broker,is a type of software product that enables
message distribution over complex IT systems. In general, middleware serves as a connector for two different
applications or platforms.[39]

78

2. However, the two physical machines didn’t share the same data directory and this could
be a problem when upgrading or synchronizing all the machines. In order to do that
we used sshfs10.

#INSTALL SSHFS
sudo apt -get install sshfs
#CREATE A NEW DATA DIRECTORY
mkdir /mnt/share/geoserverdata
#Run the sshfs command:
sudo sshfs -o allow_other ,uid=1002,gid =1002

ubuntu@192 .168.20.40:/ mnt/share/shared_geoserver_data/
/mnt/share/geoserverdata/
-o IdentityFile =/home/ubuntu/enp -binome2.pem

3. Next, we added the MOM extension and configured the instances as Master and Slave
at the same time allowing a Peer-to-Peer set-up11.

Figure 5.30: GeoServer cluster architecture with shared data directory

• Download the extension:

wget https :// build.geoserver.org/geoserver /2.13.x/
community -latest/geoserver -2.13- SNAPSHOT -jms -cluster -
plugin.zip

10SSHFS is a filesystem client to mount and interact with directories and files located on a remote server
over a normal ssh connection.

11In a Peer-to-peer network, the "peers" are instances which are connected to each other via the Internet.
Files can be shared directly between systems on the network without the need of a central server.

79

• Unzip it inside Geoserver’s lib directory

unzip geoserver -2.13 - SNAPSHOT -jms -cluster -plugin.zip -r
/opt/tomcat/webapps/geoserver/WEBINF/lib

• Repeat for all the instances and restart them.

sudo systemctl restart tomcat

• Verify that the extension was installed properly by checking a new section in the
GeoServer user interface called Cluster configuration as shown below.

Figure 5.31: Cluster configuration interface

• Configure the cluster extension in order to get the architecture in the figure 5.30:

– Enable the embedded broker (MOM).
– Enable master
– Enable slave.
– Enable slave connection .
– Disable the "read only" toggle.

Figure 5.32: Clustering configuration settings

4. Finally we installed and configured the load balancer Apache2 as seen in the figure
5.33(Detailed installation in the annex A). We configured it by:

• Modifying the server.xml files of our tomcat instances inside /opt/tomcat/con-
f/server.xml

80

#Add the following portion of code
<Engine name="Catalina"
defaultHost="localhost"
jvmRoute="route1">

• Modifying the file /etc/apache2/mods-enabled/ proxy_balancer.conf:

#Add the following portion of code
<Proxy "balancer :// mycluster">
BalancerMember "ajp ://192.168.20.40:8009" route=route1
BalancerMember "ajp ://192.168.20.40:8010" route=route2
BalancerMember "ajp ://192.168.20.27:8009" route=route3
BalancerMember "ajp ://192.168.20.27:8010" route=route4
ProxySet lbmethod=bybusyness
Order deny ,allow
Allow from all

</Proxy >
ProxyPass "/ geoserver" "balancer :// mycluster/geoserver"
stickysession=JSESSIONID

To make it simple:

(a) The user accesses the cluster via: http://[IP_address]/geoserver
(b) The load balancer points to the geoserver instances using the ajp protocol12.
(c) It distribute the requests over the instances based on the busyness of each one.

Figure 5.33: Final architecture of GeoServer cluster
12Apache JServ Protocol (AJP) is a Tomcat connector that allows Tomcat to communicate with the Apache

load balancer. It is an optimized binary version of HTTP.

81

5.5.3.3 Security

As with any other production system, we must consider securing our instances of Geoserver
against malicious attacks and preventing unauthorized access to certain layers.[37]
A security model must respond to two questions before allowing access to the system:

1. Who? who is making the request defined as user authentication.

2. What? What can this person do in other words user authorization.

Figure 5.34: Authentication and authorization

Source: www.soapui.org

The following diagram shows the security work flow of Geoserver:

Figure 5.35: Security work flow of Geoserver

The meaning of each response is summarized in the table 5.1:

82

Table 5.1: HTTP responses

Code Definition

HTTP 401 The request lacks valid authentication credentials for the target resource.

HTTP 403 The request was valid, but the server is refusing action

HTTP 200 Standard response for successful HTTP requests

In order to secure our GeoServer, we needed to:

1. Change the default password,

2. Activate the encryption13,

Figure 5.36: Strong Password Encryption

3. Secure our data and who is accessing it:
Security in Geoserver is based on a role system where each role defines a specific set of
functions (read, write..). Roles can be assigned to users/groups.
The configuration of security (list of the users, groups, and passwords) can be stored
in a XML files (by default), a JDBC database or LDAP14 directory. Due to the lack
of the time, we used the default service (XML based) to create groups and users and
associate them with roles.

(a) Create groups: Admins, Editors, Viewers.

Figure 5.37: Creating groups
13The GeoServer user interface (UI) can sometimes expose parameters in plain text inside the URLs. As

a result, it may be desirable to encrypt the URL parameters.[28]
14The Lightweight Directory Access Protocol (LDAP) is a directory service protocol that runs on a layer

above the TCP/IP stack. It provides a mechanism used to connect to, search, and modify Internet directories.

83

(b) Create Users create some users and link them with groups.

Figure 5.38: Creating users

(c) Create roles

Figure 5.39: Creating roles

A child role inherits all the grants from the Parent role.

(d) Associate a role to users or groups by editing the groups.

Figure 5.40: Linking Groups with roles

(e) Secure data and service Now, that groups are linked to roles, we can secure
data and service by specifying which role can modify or read specific layer..

84

Figure 5.41: Granting access rights

5.5.3.4 Watchdog

When running GeoServer in a production environment, we need to check at schedule that
Geoserver is still up and responding to requests using a watchdog script.
The watchdog script performs the checks described in the state machine of figure 5.42

Figure 5.42: Watchdog’s state machine

Our watchdog code (can be found in the Annex C) has been inspired by the code published
in the book: Mastering GeoServer [37].

5.5.3.5 GeoWebCache

GeoWebCache is integrated with GeoServer, however,in a cluster architecture it is better to
use it as a standalone product to avoid duplication and waste of memory. In this part we
will go through the steps followed to implement Geowebcache as standalone.

1. Download geowebcache war and unzip it inside tomcat folder

85

wget https :// sourceforge.net/projects/geowebcache/files/
geowebcache /1.12.2/ geowebcache -1.12.2 - war.zip
unzip geowebcache -1.12.2 - war.zip -r /opt/tomcat/webapps

2. Restart tomcat,

3. Configure the layers from geowebcache.xml file. In our case it is located by default
inside /opt/tomcat/temp/geowebcache:

vi geowebcache.xml

4. Add the static layer, in our case satellite imagery and OSM data.

<wmsLayer >
<name >raster layer </name >
<mimeFormats >

<string >image/gif </string >
<string >image/jpeg </string >
<string >image/png </string >
<string >image/png8 </string >

</mimeFormats >
<wmsUrl >

<string >http ://ip-address/geoserver/wms </string >
</wmsUrl >
<wmsLayers >algeria:algiers_image1 </wmsLayers >

<legends defaultWidth ="20" defaultHeight ="20"
defaultFormat ="image/png">

<legend style =""/>
</legends >

</wmsLayer >

5. In the demo page, reload the configuration.

6. GWC creates a folder for each layer and every time a tile is created it is stored to be
used.

5.6 Conclusion
In this chapter, we documented the development and implementation in a production en-
vironment of our Iot-oriented GIS built from the combination of Open Source solutions:
Sentilo, Greenplum, Geoserver.

86

Chapter 6

Performance testing and web-mapping
application

6.1 Introduction
In this last chapter, we will start by testing the performance of our GeoServer architecture
and, at the same time, highlighting the effects of the cluster on the response time.
We will conclude by presenting our GIS end-user application: a Geoportal. Which underlines
the main features of our architecture. A Geoportal is one of the many applications of GIS in
Smart City.

6.2 Performance testing
In the following, we will present the results obtained from the performance testing using
Apache Jmeter. These results show the impact of the clustering on the response time of the
server.

6.2.1 Apache Jmeter

Apache JMeter is an open source Java desktop application, built to verify functional behavior,
perform load tests, and measure performance. JMeter send requests to a target server by
simulating a group of users as shown in the figure 6.1 then collect data to calculate statistics
and display performance metrics through various formats.

6.2.2 Scenario of stress testing

The performance test aims to stress GeoServer and evaluates the response time and through-
put with an increasing number of simulated users sending concurrent requests for vector data
to the server.

The test’s configurations are:

1. Test duration: 600 s for scenario 1 and 2, 1200s for scenario 3.

2. Jmeter is sending the requests from a machine in the same network as GeoServer.

3. The data layer used for the tests is the sensors data layer : algeria:greenplum_sentilo_observations.

87

Figure 6.1: Apache Jmeter work flow

4. The Geo Web cache is not activated

The number of users has been gradually increased to simulate low and high demand scenarios
and test the availability of the server. In each test, we tried different scenarios, that are
summarized in the table 6.1:

Table 6.1: Stress testing scenario

Scenario # of users

Test 1 4

Test 2 30

Test 3 60

Those tests have been done twice: before and after clustering in order to compare the
impact of clustering on the performance of Geoserver.

6.2.3 Results

The performance test aims to stress the server and to evaluate the response time1 with an
increasing number of simulated users sending concurrent requests to the server.

We will evaluate and compare the response time for each scenario before and after clus-
tering.

1. Results of scenario 1:

Before clustering:
1The total amount of time it takes to respond to a request for service

88

Figure 6.2: Test1 before clustering

After clustering:

Figure 6.3: Test1 after clustering

2. Results of scenario 2:

Before clustering:

89

Figure 6.4: Test 2 before clustering

After clustering:

Figure 6.5: Test 2 after clustering

3. Results of scenario 3:

Before clustering:

90

Figure 6.6: Test 3 before clustering

After clustering:

Figure 6.7: Test 3 after clustering

Observations:

1. In non-clustered architecture the response time proportionately increases with the load
charge while in the clustered architecture the response time is relatively constant.

2. The average response time is improved with cluster architecture because since more
GeoServer instances are available, the requests are processed faster.

91

Figure 6.8: Average response time per of users

3. We can also notice peaks with the increase in the number of users that we could not
interpret.

From these results, we can come with the conclusion that the cluster architecture had con-
siderably improved the performance of GeoServer by decreasing the response time.

6.3 Application
Finally, to illustrate our work with a web mapping application, we opted for a geoportal.
Geoportals are crucial for smart cities, they play an increasingly important role in sharing
geographic information via Internet and can avoid duplicated efforts, inconsistencies,delays,
confusion and waste of resources.[40]. They act as the bridge towards e-government services
by providing information about the city and its available services such as:

1. Parking facilities

2. Light sensors distributed throughout the city

3. City temperature and humidity levels

4. Garbage collection

6.3.1 Web mapping

As we said in the chapter 3 (client side), a web-based map application is a thin GIS client.
In this section, we will present the solutions used for the development of our web mapping
application. In our journey to find an easy and rapid way to develop our web map applica-
tion, we get across Boundless SDK2. The strength of Boundless SDK is that it is based on
OpenLayers and ReactJS.

2An SDK or Software Development Kit provides a set of tools, libraries, relevant documentation, code
samples, processes, and or guides that allow developers to create software applications on a specific platform.

92

6.3.1.1 OpenLayers

OpenLayers is a free Open Source JavaScript library for displaying map data in web browsers.
Its main role is asking the map server for maps through OGC services.

6.3.1.2 ReactJS

ReactJS is a JavaScript library for building user interfaces by providing modular components,
which can be used to create complete web applications quickly and easily.

6.3.1.3 Boundless

Boundless provides out of the box components for making it easy to build modern web map-
ping applications. It provides modular components, in other words, building an application
become as simple as playing legos. In the table 6.2, we will define the main Boundless’s
functions:

Table 6.2: Boundless SDK functions

Function Definition

AddLayerModal
Modal window to add layers from a WMS, WFS,WMTS

or ArcGIS REST service.

BaseMapModal
A modal of basemap thumbnails for selecting a basemap to be used

in the map.

DrawFeature Allows users to draw new features.

Geocoding
Input field to search for placenames using a geocoding service

(OSM nominatim).

Geolocation
Enable geolocation which uses the current position of the user in

the map

ImageExport Export the map as a PNG file.

InfoPopup
Popup to show feature info. This can be through WMS/WMTS

GetFeatureInfo or local vector data.

MapConfig
Export the map configuration and ability to reload it from local

storage.

Measure Adds area and length measure tools as a menu button

Playback

Adds a slider to the map that can be used to select a given date, and

modifies the visibility of layers and features depending on their timestamp

and the current time.

ZoomToLatLon Component that allows zooming the map to a lat/lon position.

93

6.3.2 Web Application’s description

In our application we wanted to give the main features of a Geoportal in order to pro-
vide professionals and general public with access to geographic information. The developed
application has the following features (The complete code can be found on Github link:
https://github.com/ManalBoucennaMaroua/IoT-oriented-GIS-Geoportal.git):

1. Provide different map backgrounds,

2. Connect to GeoServer and display its layers using WMS service, for instance the sensor
layers: "pressure", "temperature"..

Figure 6.9: Geoportal Web Page

3. Connect to GeoServer and display its data in a table and chart using WFS service,

Figure 6.10: Geoportal’s table

4. Measure distance and area,

Figure 6.11: Area measurement

94

5. Allow the user to upload its own spatial files, modify them for personal uses and then
download them.

Figure 6.12: New Layer

6. Search by place names using OpenStreetMap address’s catalog.

7. Query features to filter the data,

8. Print or export map tiles,

9. Draw features (point, line and polygons),

Figure 6.13: Geoportal’s tools

10. Geolocation.

6.4 Conclusion
In this chapter, we presented the performance test results conducted on the implemented
architecture using Apache Jmeter. We noticed that the clustering of Geoserver enhanced
the response time. Next, we introduced the web application used to illustrate some of the
possible features of our architecture: a Geoportal. We believe that this web application can
be improved in the future and that many other projects can be drawn from it.

95

Chapter 7

Conclusion and future work

7.1 Summary
As discussed in the introduction chapter, making cities smarter using geospatial technologies
is now crucial. This work contributes towards smart cities technology by providing an end-to-
end solution for an IoT-oriented GIS architecture using Open Source that collect the sensor’s
data and store it in a big data platform in order to manipulate them and share the results
through the web using OGC services.

In the first chapters of this work we focused on the theoretical concepts of the Smart
city’s key elements: IoT, Big Data and GIS.
Then, we defended our technical choices for the design and implementation of this project.
Different Open Source technologies were used, ranging from GIS technologies to IoT and Big
Data technologies:

1. IoT platform: Sentilo,

2. Big data platform: Greenplum Pivotal MPP database,

3. GIS Server: GeoServer.

Next, we presented the steps followed for the implementation of each element of our
architecture and validated that it works properly with performance tests.

Finally, we highlighted the possible features of our architecture through a web-based
application: Geoportal.

Despite the difficulties we have faced during our graduation project such as logistic prob-
lems with the industrial partners (we couldn’t exploit samples of their data or get deeply in
touch with their GIS team), we wanted to present a work that approaches reality using Open
data.

7.2 Future work
As part of the continuation of this project, recommendations and future work could focus
on:

• Improve the security and authentication configurations,

• Apply more in-depth performance tests on vector and raster data,

96

• Employ data mining methods to derive more information from the spatial data acquired
from sensors by using MADlib library,

• Migrate to the official Sentilo’s platform implemented by the "Algiers Smart City"
project’s team.

To illustrate the capabilities of our architecture we opted for a Geoportal. However, this
is just the tip of the iceberg, hundreds of applications can be drawn from this work such as:

• Waste management:
A web map application that allows the visualization in real time of the sensor’s data
installed in trash cans to provide the garbage tracks with information on the state of
the trash cans (full or empty).

• GPS tracking:
an application that estimates the time of arrival of the bus to its stop station based
on the GPS sensors data installed in buses and the state of the traffic and share this
information through a web mapping with the clients.

• Smart parking:
An application that allows the visualization of the nearest free parking spots in a map
and to pay directly through the map.

97

Bibliography

Bibliography

[1] A. J. H. Stefan Steiniger, “The 2012 free and open source gis software map – a guide to
facilitate research, development, and adoption.”

[2] M. A. Toups, “A study of three paradigms for storing geospatial data:distributed-cloud
model, relational database, and indexed flat file.” https://scholarworks.uno.edu/
cgi/viewcontent.cgi?article=3292&context=td. [Online; accessed April-2018].

[3] T. D. of Economic and S. A. of the United Nations Secretariat, “World ur-
banization prospects.” https://esa.un.org/unpd/wup/publications/files/
wup2014-highlights.pdf. [Online; accessed June-2018].

[4] “What is iot?.” https://www.happiestminds.com/Insights/internet-of-things.

[5] “Iot platforms: What they are how to select one.” https://www.link-labs.com/blog/
what-is-an-iot-platform, 2016.

[6] “5 things to know about the iot platform ecosystem.” https://iot-analytics.com/
5-things-know-about-iot-platform/, 2016.

[7] “How to choose the right iot platform: The ultimate checklist.” https://hackernoon.
com/how-to-choose-the-right-iot-platform-the-ultimate-checklist-47b5575d4e20,
2018.

[8] “Big data platform options and technologies.” http://www.bodhtree.com/blog/2012/
09/14/big-data-platform-options-and-technologies/, 2012.

[9] “Analytical mpp databases.” https://databases.looker.com/analytical. [Online;
accessed March-2018].

[10] “Information system defintion.” http://www.businessdictionary.com/definition/
information-system.html.

[11] S. Shukla, “Gis brings out the best in smart cities.” https://www.geospatialworld.
net/blogs/gis-smart-cities-go-together. [Online; accessed March-2018].

[12] S. DEOGAWANKA, “How gis supports the planning and de-
velopment of smart cities.” https://www.gislounge.com/
how-gis-supports-the-planning-and-development-of-smart-cities. [Online;
accessed March-2018].

[13] C. DEMPSEY, “John snow’s cholera map using gis data.” https://www.gislounge.
com/john-snows-cholera-map-gis-data. [Online; accessed June-2018].

99

https://scholarworks.uno.edu/cgi/viewcontent.cgi?article=3292&context=td
https://scholarworks.uno.edu/cgi/viewcontent.cgi?article=3292&context=td
https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf
https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf
https://www.happiestminds.com/Insights/internet-of-things
https://www.link-labs.com/blog/what-is-an-iot-platform
https://www.link-labs.com/blog/what-is-an-iot-platform
https://iot-analytics.com/5-things-know-about-iot-platform/
https://iot-analytics.com/5-things-know-about-iot-platform/
https://hackernoon.com/how-to-choose-the-right-iot-platform-the-ultimate-checklist-47b5575d4e20
https://hackernoon.com/how-to-choose-the-right-iot-platform-the-ultimate-checklist-47b5575d4e20
http://www.bodhtree.com/blog/2012/09/14/big-data-platform-options-and-technologies/
http://www.bodhtree.com/blog/2012/09/14/big-data-platform-options-and-technologies/
https://databases.looker.com/analytical
http://www.businessdictionary.com/definition/information-system.html
http://www.businessdictionary.com/definition/information-system.html
https://www.geospatialworld.net/blogs/gis-smart-cities-go-together
https://www.geospatialworld.net/blogs/gis-smart-cities-go-together
https://www.gislounge.com/how-gis-supports-the-planning-and-development-of-smart-cities
https://www.gislounge.com/how-gis-supports-the-planning-and-development-of-smart-cities
https://www.gislounge.com/john-snows-cholera-map-gis-data
https://www.gislounge.com/john-snows-cholera-map-gis-data

[14] E. Hamilton, “Client-side versus server-side geoprocessing: Benchmarking the perfor-
mance of web browsers processing geospatial data using common gis operations..”
http://cugos.org/image/slides/CUGOS_20140915.pdf. [Online; accessed May-2018].

[15] S. Depraz, “Ressources de géographie pour les enseignants.” http://geoconfluences.
ens-lyon.fr/glossaire/geoide-ellipsoide. [Online; accessed March-2018].

[16] “Système géodésique (datum).” https://georezo.net/wiki/main/dico/systeme_
geodesique. [Online; accessed March-2018].

[17] “Local vs. earth centered datums.” http://gsp.humboldt.edu/olm_2015/Lessons/
GIS/02%20Datums/Local_vs_Earth_Centered_Datums.html. [Online; accessed March-
2018].

[18] F. DANIEL, “Mercator projection.” https://www.universalis.fr/encyclopedie/
projection-cartographique-de-mercator. [Online; accessed March-2018].

[19] A. Briney, “Types of maps: Topographic, political, climate, and more.” https://www.
thoughtco.com/types-of-maps-1435689. [Online; accessed March-2018].

[20] “The remarkable history of gis.” https://gisgeography.com/history-of-gis, 2018.
[Online; accessed May-2018].

[21] M. Schneider, “Spatial data types.” https://www.cise.ufl.edu/~mschneid/
Research/papers/Sch09BoChb.pdf. [Online; accessed March-2018].

[22] “Spatial database.” https://en.wikipedia.org/wiki/Spatial_database. [Online; ac-
cessed March-2018].

[23] S. Steiniger and R. Weibel, “Gis software - a description in 1000 words,” 2009.

[24] “Application programming interface.” https://en.wikipedia.org/wiki/
Application_programming_interface. [Online; accessed March-2018].

[25] “About the greenplum architecture.” https://gpdb.docs.pivotal.io, 2018.

[26] K. Kommana, “Implementation of a geoserver application for gis data distribution and
manipulation,” 2013.

[27] “Mapserver web site.” http://mapserver.org/fr. [Online; accessed January-2018].

[28] “Geoserver web site.” http://docs.geoserver.org. [Online; accessed January-2018].

[29] “Geotools web site.” www.geotools.org. [Online; accessed May-2018].

[30] “Introduction to geoserver.” http://workshops.boundlessgeo.com/
geoserver-intro/overview/concepts.html.

[31] “Client url definition.” https://fr.wikipedia.org/wiki/CURL. [Online; accessed
April-2018].

[32] L. James, “Defining open data.” https://blog.okfn.org/2013/10/03/
defining-open-data. [Online; accessed March-2018].

100

http://cugos.org/image/slides/CUGOS_20140915.pdf
http://geoconfluences.ens-lyon.fr/glossaire/geoide-ellipsoide
http://geoconfluences.ens-lyon.fr/glossaire/geoide-ellipsoide
https://georezo.net/wiki/main/dico/systeme_geodesique
https://georezo.net/wiki/main/dico/systeme_geodesique
http://gsp.humboldt.edu/olm_2015/Lessons/GIS/02%20Datums/Local_vs_Earth_Centered_Datums.html
http://gsp.humboldt.edu/olm_2015/Lessons/GIS/02%20Datums/Local_vs_Earth_Centered_Datums.html
https://www.universalis.fr/encyclopedie/projection-cartographique-de-mercator
https://www.universalis.fr/encyclopedie/projection-cartographique-de-mercator
https://www.thoughtco.com/types-of-maps-1435689
https://www.thoughtco.com/types-of-maps-1435689
https://gisgeography.com/history-of-gis
https://www.cise.ufl.edu/~mschneid/Research/papers/Sch09BoChb.pdf
https://www.cise.ufl.edu/~mschneid/Research/papers/Sch09BoChb.pdf
https://en.wikipedia.org/wiki/Spatial_database
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://gpdb.docs.pivotal.io
http://mapserver.org/fr
http://docs.geoserver.org
www.geotools.org
http://workshops.boundlessgeo.com/geoserver-intro/overview/concepts.html
http://workshops.boundlessgeo.com/geoserver-intro/overview/concepts.html
https://fr.wikipedia.org/wiki/CURL
https://blog.okfn.org/2013/10/03/defining-open-data
https://blog.okfn.org/2013/10/03/defining-open-data

[33] “Maven pom.xml file.” https://www.javatpoint.com/maven-pom-xml.

[34] “Openstreetmap web site.” https://wiki.openstreetmap.org/wiki/About_
OpenStreetMap.

[35] “Openstreetmap wiki site.” https://wiki.openstreetmap.org. [Online; accessed
March-2018].

[36] “Openstreetmap data to postgis-enabled postgresql databases.” https://wiki.
openstreetmap.org/wiki/Osm2pgsql.

[37] C. Henderson, “Mastering geoserver.”

[38] “Cluster definitions.” https://www.techopedia.com/definition/997/
cluster-servers. [Online; accessed March-2018].

[39] “Message oriented middleware, howpublished = https://www.techopedia.com/
definition/27589/message-oriented-middleware-mom, note =.”

[40] “How are digital technologies influencing geospatial technology trends?.” https://www.
geospatialworld.net/blogs/geospatial-technologies-in-digital-platforms.
[Online; accessed June-2018].

[41] “Gnu lesser general public license.” https://en.wikipedia.org/wiki/GNU_Lesser_
General_Public_License. [Online; accessed March-2018].

[42] “Introduction to postgis.” http://workshops.boundlessgeo.com/postgis-intro/
introduction.html. [Online; accessed March-2018].

[43] “Geowebcache.” http://docs.geoserver.org/stable/en/user/geowebcache/index.
html.

[44] “Rest api definition.” https://searchmicroservices.techtarget.com/definition/
RESTful-API. [Online; accessed March-2018].

[45] R. D. G. Sonam Agrawal, “Development and comparison of open source based web gis
frameworks on wamp and apache tomcat web servers,” 2014.

[46] J. R. P. Miguel R. Luaces, Nieves R. Brisaboa and J. R. Viqueira, “A generic architecture
for geographic information systems.”

[47] B. Y. Stephano Lacovella, “Geoserver beginner’s guide.”

[48] S. Lacovella, “Geoserver beginner’s guide second edition.”

[49] “Why should a municipality become a smart city? the six key benefits of
transforming the place we call home..” https://hub.beesmart.city/strategy/
6-key-benefits-of-becoming-a-smart-city, 2018.

[50] M. F. Goodchild, “Citizens as sensors: the world of volunteered geography,” 2007.

101

https://www.javatpoint.com/maven-pom-xml
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://wiki.openstreetmap.org
https://wiki.openstreetmap.org/wiki/Osm2pgsql
https://wiki.openstreetmap.org/wiki/Osm2pgsql
https://www.techopedia.com/definition/997/cluster-servers
https://www.techopedia.com/definition/997/cluster-servers
https://www.techopedia.com/definition/27589/message-oriented-middleware-mom
https://www.techopedia.com/definition/27589/message-oriented-middleware-mom
https://www.geospatialworld.net/blogs/geospatial-technologies-in-digital-platforms
https://www.geospatialworld.net/blogs/geospatial-technologies-in-digital-platforms
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
http://workshops.boundlessgeo.com/postgis-intro/introduction.html
http://workshops.boundlessgeo.com/postgis-intro/introduction.html
http://docs.geoserver.org/stable/en/user/geowebcache/index.html
http://docs.geoserver.org/stable/en/user/geowebcache/index.html
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://hub.beesmart.city/strategy/6-key-benefits-of-becoming-a-smart-city
https://hub.beesmart.city/strategy/6-key-benefits-of-becoming-a-smart-city

Annex A: Software installation

1 Installation of Sentilo in Ubuntu 14.04
Installing Sentilo requires:

1. Configuring Redis,

2. Configuring MongoDB,

3. Installing dependencies:git, maven2, redis, tomcat.

1.1 Installing dependencies

We need first to install all the dependencies needed for the server:

sudo apt -get install git maven2 redis -server mongdb tomcat

1.2 Download and build code

The source code of Sentio project can be obtained from git, cloning the remote project in a
local directory named Sentilo:

git clone https :// github.com/sentilo/sentilo.git.sentilo

Then, we need to build the project with maven in order to create the executable:

cd sentilo
mvn clean install
mvn eclipse:clean eclipse:eclipse

1.3 Redis settings

The default cofiguration of redis listens to the port 6379, host 127.0.0.1, and with the pa-
rameter requirepass enabled and with value sentilo.

1.4 MongoDB settings

Sentilo default settings consider MongoDB will be listening on 127.0.0.1:27017, and requires
an existing database named sentilo, created before starting the platform, with authentica-
tion enabled and with login credentials preconfigured as sentilo/sentilo (username:sentilo,
password:sentilo).

102

1.5 Configure Tomcat7

To deploy the web application in tomcat7 we need to move the .war file to the tomcat server
webapps folder and restart the server.

sudo cp ~/ sentilo/sentilo -catalog -web/target/sentilo -catalog -web.war
/var/lib/tomcat7/webapps
sudo service tomcat7 restart

1.6 Start services

There are 2 binaries we will need to launch in order to start the background processes of
sentilo. First, create the folders:

mkdir /opt/sentilo -server
mkdir /opt/sentilo -agent -relational

Then copy all the files into the folders.

mv ~/ sentilo/sentilo -platform/sentilo -platform -server/target/
appassembler /* /opt/sentilo -server
mv ~/ sentilo/sentilo -agent -relational/target/appassembler /*
/opt/sentilo -agent -relational

At last, to launch Sentilo we run:.

sudo chmod 500 -Rf /opt/sentilo -server/bin/
sudo /opt/sentilo -server/bin/sentilo -server
sudo /opt/sentilo -server/bin/sentilo -agent -relational -server

2 GeoServer installation and configuration
Installing GeoServer requires:

1. Installing Java

2. Installing Tomcat

2.1 Installing Java

From Geoserver website we quote: "GeoServer’s speed depends a lot on the chosen Java
Runtime Environment (JRE) ... For best performance we recommend the use Oracle JRE
8. As of GeoServer 2.0, a Java Runtime Environment (JRE) is sufficient to run GeoServer.
GeoServer no longer requires a Java Development Kit (JDK).”

To install it, we follow thoses steps:

1. Copy and save this code as get_java.py :

#!/ usr/bin/env python
-*- coding: utf -8 -*-

try:

103

from urllib.request import request , urlopen
except importerror: # python 2

from urllib2 import request , urlopen
import re
import os

valid_packages = [’jre ’, ’server -jre ’, ’jdk ’]
valid_java_versions = xrange(7, 9, 1)

def regex_websearch(url , pattern):
req = request(url)
resp = urlopen(req)
content = resp.read (). decode(’utf -8’)
resp.close ()
match = re.search(pattern , content)
return match

2. Run the code:

python get_java.py

3. Download the JRE-8 version, unpack it and move it to /usr/java/ :

wget http :// download.oracle.com/otn -pub/java/jdk/8u161 -b12/
2f38c3b165be4555a1fa6e98c45e0808/jre -8u161 -linux -x64.tar.gz to
jre -8u161 -linux -x64.tar.gz
tar zxvf jre -8u161 -linux -x64.tar.gz
mvn /usr/java/

4. Configure the JRE as the primary Java alternative in your system:

sudo update -alternatives --install /usr/bin/java java

\item and choose:
\begin{lstlisting }[language=bash]
/usr/java/jre1 .8.0 _161/bin/java

2.2 Installation of Tomcat

2.2.1 Create Tomcat User

For security purposes, Tomcat should be run as an unprivileged user (i.e. not root). We will
create a new user and group that will run the Tomcat service.

1. Create a new tomcat group:

sudo groupadd tomcat

2. Create a new Tomcat user:

sudo useradd -s /bin/false -g tomcat -d /opt/tomcat tomcat

104

2.2.2 Install Tomcat

1. Download the latest binary release:

curl -O http ://www -us.apache.org/dist/tomcat/tomcat -8/v8 .5.29/
bin/apache -tomcat -8.5.29. tar.gz

2. Install Tomcat to the /opt/tomcat directory:

sudo mkdir /opt/tomcat
sudo tar xzvf apache -tomcat -8*tar.gz -C /opt/tomcat
--strip -components =1

2.2.3 Set up the proper user permissions

The tomcat user that we set up needs to have access to the Tomcat installation.

1. Go to the directory where you installed tomcat

cd /opt/tomcat

2. Give the tomcat group ownership over the entire installation directory:

sudo chgrp -R tomcat /opt/tomcat

3. Next, give the tomcat group read access to the conf directory and all of its contents,
and execute access to the directory itself:

sudo chmod -R g+r conf
sudo chmod g+x conf

4. Make the tomcat user the owner of the webapps, work, temp, and logs directories:

sudo chown -R tomcat webapps/ work/ temp/ logs/

2.2.4 Create a systemd Service File

Create a systemd service file1 to manage the Tomcat process:

1. Open a file called tomcat.service in the /etc/systemd/system directory

sudo vi /etc/systemd/system/tomcat.service

2. Paste the following contents into your service file and save it:

[Unit]
Description=Apache Tomcat Web Application Container
After=network.target

[Service]

1Systemd service file provides an easy way to manage and control services and a simple method of creating
your own services.

105

Type=forking

Environment=JAVA_HOME =/usr/java/jre1 .8.0 _161/
Environment=CATALINA_PID =/opt/tomcat/apache -tomcat -8.5.5/ temp/
tomcat.pid
Environment=CATALINA_HOME =/opt/tomcat/apache -tomcat -8.5.5/
Environment=CATALINA_BASE =/opt/tomcat/apache -tomcat -8.5.5/
Environment=’CATALINA_OPTS=-Xms512M -Xmx1024M -server
-XX:+ UseParallelGC ’
Environment=’JAVA_OPTS=-Djava.awt.headless= true
-Djava.security.egd=file:/dev/./ urandom ’
Environment=’GEOSERVER_DATA_DIR =/mnt/share/geoserver -data ’
Environment=’GEOSERVER_LOG_LOCATION =\ $GEOSERVER_DATA_DIR/logs/
geoserver -1.log ’
ExecStart =/opt/tomcat/apache -tomcat -8.5.5/ bin/startup.sh
ExecStop =/opt/tomcat/apache -tomcat -8.5.5/ bin/shutdown.sh

User=tomcat
Group=tomcat
UMask =0007
RestartSec =10
Restart=always

[Install]
WantedBy=multi -user.target

3. Reload the systemd daemon so that it knows about our service file:

sudo systemctl daemon -reload

4. Start the Tomcat service and check the status

sudo systemctl start tomcat
sudo systemctl status tomcat

2.2.5 Adjust the Firewall and Test the Tomcat Server

1. Tomcat uses port 8080 to accept conventional requests. Allow traffic to that port and
Open in Web browser

sudo ufw allow 8080
http :// server_domain_or_IP :8080

You will see the default Tomcat splash page, in addition to other information.

106

Figure 7.1: Tomcat home page

2. Enable the service file so that Tomcat automatically starts at boot:

sudo systemctl enable tomcat

2.2.6 Configure Tomcat Web Management Interface

In order to use the manager web app that comes with Tomcat, we must add a login to our
Tomcat server.

1. We edit the tomcat-users.xml file to add a user who can access to manager-gui and
admin-gui(web apps that come with Tomcat)

sudo vi /opt/tomcat/apache -tomcat -8.5.5/ conf/tomcat -users.xml

<tomcat -users . . .>
<user username="admin"
password="password"
roles="manager -gui ,admin -gui"/>

2. By default, newer versions of Tomcat restrict access to the Manager and Host Manager
apps to connections coming from the server itself. To change the IP address restrictions
on these, open the appropriate context.xml files.

(a) For the Manager app

sudo vi /opt/tomcat/apache -tomcat -8.5.5/ webapps/manager/
META -INF/context.xml

107

(b) For the Host Manager app For the Host Manager app

sudo vi /opt/tomcat/apache -tomcat -8.5.5/ webapps/host -manager/
META -INF/context.xml

Inside, comment out the IP address restriction to allow connections from anywhere.

<Context antiResourceLocking="false" privileged="true" >
<Valve className="org.apache.catalina.valves.RemoteAddrValve"

allow="127\.\d+\.\d+\.\d+|::1|0:0:0:0:0:0:0:1" />
</Context >

3. Restart the Tomcat service

sudo systemctl restart tomcat

2.2.7 Access the Web Interface

1. Open in web browser http://server_domain_or_IP:8080 The page you see should be
the same one you were given when you tested earlier.

2. Enter the account credentials that you added to the tomcat-users.xml file.

Figure 7.2: Web Application Manager

The Web Application Manager is used to manage your Java applications. You can
Start, Stop, Reload, Deploy, and Undeploy here. You can also run some diagnostics on
your apps.

3. Currently, Tomcat installation is functional, but entirely unencrypted. This means
that all data, including sensitive items like passwords, are sent in plain text that can
be intercepted and read by other parties on the internet. In order to prevent this from
happening, it is strongly recommended that you encrypt your connections with SSL.

108

2.3 Installing GeoServer

2.3.1 Create a geoserver instance

1. Download the OS-independent version from Geoserver’s download page and unzip it:

wget http :// sourceforge.net/projects/geoserver/files/GeoServer/
2.12.2/ geoserver -2.12.2 - war.zip
unzip geoserver -2.12.2 - war.zip

2. The war file for GeoServer is quite big (>52 MByte). In Tomcat 8 Manager there is a
default limit for deployable application that is at 50 MByte that we will need to change.

vi /opt/tomcat/apache -tomcat -8.5.5/ webapps/manager/ WEB -INF/web.xml

Look for this section:

<multipart -config >
<!-- 50MB max -->
<max -file -size >52428800 </max -file -size >
<max -request -size >52428800 </max -request -size >
<file -size -threshold >0</file -size -threshold >
</multipart -config >

Set the max-file-size to 62914560 value both in max-file-size and max-request- size
parameters. Save the file and restart Tomcat.

3. Copy and Paste the war file into /opt/tomcat/webapps/

mv geoserver -2.12.2 - war /opt/tomcat/apache -tomcat -8.5.5/ webapps/

This will create a geoserver file.

4. Open in a Web server: http://IP-Address:8080/geoserver

Figure 7.3: GeoServer home page

Connect using the default username and password (admin, geoserver)

109

2.3.2 Implement Basic Security

The new interface will show you some warning about security issues:

• Change the default password for the administrator. Click on the Change it link on the
left-hand side of the warning.

• The users.properties.old file is a security risk because it contains user passwords in plain
text. GeoServer does not need it so it’s safe to delete it:

sudo rm /opt/tomcat/apache -tomcat -8.5.5/ webapps/geoserver/
data/security/users.properties.old

• Now open the masterpw.info file. It contains the password generated by GeoServer for
the root user. Store it in a secure place and delete the file.

sudo rm /opt/tomcat/apache -tomcat -8.5.5/ webapps/geoserver/data/
security/masterpw.info

2.3.3 Configuring multiple instance in a single server

1. Stop the Tomcat service:

sudo systemctl stop tomcat

110

2. Move the configuration folder to an external location:

sudo mv /opt/tomcat/apache -tomcat -8.5.5/ webapps/geoserver/data
/mnt/share/geoserver_data

3. Edit the tomcat.service file to make GeoServer aware of the new configuration folder:

sudo vi /etc/systemctl/system/tomcat.service
Environment=’GEOSERVER_DATA_DIR =/mnt/share/geoserver -data ’
Environment=’GEOSERVER_LOG_LOCATION=$GEOSERVER_DATA_DIR/logs/

geoserver -1.log ’

4. Save the file and then restart the Tomcat service:

sudo systemctl restart tomcat

5. Check that the configuration was properly read.

6. Again, stop the Tomcat service, and copy it to a new location:

sudo cp -r /opt/tomcat /opt/tomcat2

7. Open the server.xml file of the new Tomcat and modify the server ports:

sudo vi /opt/tomcat2/apache -tomcat -8.5.5/ conf/server.xml
<Server port ="8105" shutdown =" SHUTDOWN">
<Connector port ="8180" protocol ="HTTP /1.1"
connectionTimeout ="20000" redirectPort ="8443" />
<Connector port ="8109" protocol ="AJP /1.3"
redirectPort ="8443" />

8. Create another a systemd Service File to manage the new tomcat:

vi /etc/systemd/system/tomcat2.service
[Unit]
Description=Apache Tomcat Web Application Container
After=network.target

[Service]
Type=forking

Environment=JAVA_HOME =/usr/java/jre1 .8.0 _161/
Environment=CATALINA_PID =/opt/tomcat2/apache -tomcat -8.5.5/
temp/tomcat.pid
Environment=CATALINA_HOME =/opt/tomcat2/apache -tomcat -8.5.5/
Environment=CATALINA_BASE =/opt/tomcat2/apache -tomcat -8.5.5/
Environment=’CATALINA_OPTS=-Xms512M -Xmx1024M -server
-XX:+ UseParallelGC ’
Environment=’JAVA_OPTS=-Djava.awt.headless=true
-Djava.security.egd=file:/dev/./ urandom ’
Environment=’GEOSERVER_DATA_DIR =/mnt/share/geoserver -data ’

111

Environment=’GEOSERVER_LOG_LOCATION =\ $GEOSERVER_DATA_DIR/
logs/geoserver -2.log ’
ExecStart =/opt/tomcat2/apache -tomcat -8.5.5/ bin/startup.sh
ExecStop =/opt/tomcat2/apache -tomcat -8.5.5/ bin/shutdown.sh

User=tomcat
Group=tomcat
UMask =0007
RestartSec =10
Restart=always

[Install]
WantedBy=multi -user.target

We have two instances of GeoServer running on our server and sharing a common
data directory. You can test it by opening a web browser and visiting the following:
GeoServer instance 1: http://[your server address]:8080/geoserver GeoServer instance
2 : http://[your server address]:8081/geoserver

2.4 Install Load Balancer

1. Install apache2

sudo apt -get install apache2
sudo service apache2 start

2. In the web browser enter you ip adress to verify that apache2 is running.

3 Installation of PostgreSQL
• Add the official PostgreSQL Apt Repository

sudo add -apt -repository "deb http ://apt.postgresql.org/
pub/repos/apt/ xenial -pgdg main"

• Import the relevant signing key

wget --quiet -O - https ://www.postgresql.org/media/
keys/ACCC4CF8.asc | sudo apt -key add -

• Update your packages

sudo apt update

• Install PostgreSQL and the “contrib” package

sudo apt install postgresql postgresql -contrib

• Check your PostgreSQL Version

psql --version

108

112

Figure 7.4: Apache2 Ubuntu Default Page

113

4 Installation of Postgis
• Add UbuntuGIS-stable repository and update packages.

sudo add -apt -repository ppa:ubuntugis/ubuntugis -stable
sudo apt update

• Install Postgis

sudo apt install postgis postgresql -10-postgis -2.4

5 Installation of Greenplum Pivotal 5.7 onCentOS 64-bit
7.x

Greenplum requires some specifications for servers intended to support Greenplum Database
on Linux systems in a production environment. All servers in your Greenplum Database
system must have the same hardware and software configuration:

1. Operation system: Cenots 64 bits 6.x or 7.x

2. File Systems: xfs

3. Minimum Memory:16 GB RAM per server

4. Disk Requirements:

(a) 150MB per host for Greenplum installation

(b) 300MB per segment instance for meta data

(c) Appropriate free space for data with disks at no more than 70% capacity

5. Network Requirements: 10 Gigabit Ethernet within the array

6. Software and Utilities: zlib, bash shell, GNU tars, GNU zip, GNU sed, perl, secure
shell.

5.1 Setting the Greenplum Recommended OS Parameters (Master
Only)

Greenplum requires the certain Linux operating system (OS) parameters be set on all hosts
in your Greenplum Database system (masters and segments).

5.1.1 Linux System Settings

1. Edit the /etc/hosts file andinclude the host names and all interface address names for
every machine participating in your Greenplum Database system.

2. Set the following parameters in the /etc/sysctl.conf file and reboot:

114

kernel.shmmax = 500000000
kernel.shmmni = 4096
kernel.shmall = 4000000000
kernel.sem = 250 512000 100 2048
kernel.sysrq = 1
kernel.core_uses_pid = 1
kernel.msgmnb = 65536
kernel.msgmax = 65536
kernel.msgmni = 2048
net.ipv4.tcp_syncookies = 1
net.ipv4.conf.default.accept_source_route = 0
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_max_syn_backlog = 4096
net.ipv4.conf.all.arp_filter = 1
net.ipv4.ip_local_port_range = 10000 65535
net.core.netdev_max_backlog = 10000
net.core.rmem_max = 2097152
net.core.wmem_max = 2097152
vm.overcommit_memory = 2

3. Set the following parameters in the /etc/security/limits.conf file:

* soft nofile 65536
* hard nofile 65536
* soft nproc 131072
* hard nproc 131072

5.1.2 Creating the Greenplum Database Administrative User Account

You must create a dedicated operating system user account on the master node to run
Greenplum Database. This user account is named, by convention, gpadmin and it must
have permission to access the services and directories required to install and run Greenplum
Database.

groupadd gpadmin
useradd gpadmin -g gpadmin
passwd gpadmin

And introduce the new password.

5.1.3 Installing the Greenplum Database Software

1. Log in as root on the master machine.

2. Download the RPM distribution file to the master host machine from Greenplum net-
work webpage and unzip it.

3. Launch the installer using bash:

rpm -Uvh ./greenplum -db -5.7.0 -rhel7 -x86_64.rpm

115

The RPM installation copies the Greenplum Database software into a version-specific
directory, /usr/local/greenplum-db-5.7.

4. Change the ownership and group of the installed files to gpadmin:

chown -R gpadmin /usr/local/greenplum*
chgrp -R gpadmin /usr/local/greenplum*

5.2 Installing and Configuring Greenplum on all Hosts

1. Log in to the master host as root:

\$ su -

2. Source the path file from your master host’s Greenplum Database installation directory:

source /usr/local/greenplum -db/greenplum_path.sh

3. Create a file called hostfile_exkeys that has the machine configured host names for
each host in your Greenplum system (master and segments) by checking the correct
host name in /etc/hosts . The names bellow are personal choices:

greenplum -master -1
greenplum -slave -1
greenplum -slave -2
greenplum -slave -3

4. Run as root, gpseginstall that copies the Greenplum Database installation from the
current host and installs it on a list of specified hosts, creates the Greenplum operating
system user account (gpadmin), sets the account password (default:changeme), sets
the ownership of the Greenplum Database installation directory, and exchanges ssh
keys between all specified host address names (both as root and as the specified user
account).

gpseginstall -f hostfile_exkeys

To confirm the Greenplum software was installed and configured correctly, run the following
confirmation steps from your Greenplum master host:

1. Log in to the master host as gpadmin:

\$ su - gpadmin

2. Source the path file from Greenplum Database installation directory:

source /usr/local/greenplum -db/greenplum_path.sh

3. Use the gpssh utility to see if you can login to all hosts without a password prompt,
and to confirm that the Greenplum software was installed on all hosts using the host-
file_exkeys file you used for installation.

\$ gpssh -f hostfile_exkeys -e ls -l \$GPHOME

If the installation was successful, you should be able to log in to all hosts without a
password prompt.

111

116

5.3 Installing Greenplum Database Extensions

We managed to install the PostGIS extension in Greenplum:

source /usr/local/greenplum -db -5.7.0/ greenplum -path.sh
sudo yum install json -c-devel -y
sudo yum install geos -devel -y
sudo yum install -y proj -devel
sudo yum install git
git clone https :// github.com/greenplum -db/geospatial.git
sudo yum install gcc.x86_64
sudo yum install libpqxx.x86_64 libpqxx -devel.x86_64
sudo yum install libxml2 -devel.x86_64
./ configure --with -pgconfig =/usr/local/greenplum -db -5.7.0/ bin/
pg_config --without -raster --without -topology --prefix =\ $GPHOME
make USE_PGXS =1 clean all install
sudo yum install byacc --enablerepo=base
sudo yum groupinstall "Development tool"

117

Annex B: GeoServer Administration
Interface

There are three main areas in the GeoServer web interface:
• The central area is where information is shown; elements inside it change according

to the operation you are performing. Just after you log on, it shows you a briefing of
configured data, and warning or errors that you should correct.

• On the right-hand side, there is a list showing GeoServer capabilities. The listed
acronyms refer to standard OGC protocols.

• On the left-hand side, there is a table of contents listing the configuration areas.
Each area contains links to administrative operations. When you click on one of them,
the central area shows you contextual options.

Figure 7.5: GeoServer’s User Interface

1 About Status
This area contains information about runtime variables and how GeoServer is described to
clients that connect to it.

118

• Server Status: Information about the data directory, memory usage, Java version,..

• Geoserver Logs: Explore the error and warnings contained in the log file.

• Contact Information: Information on the organization and managers of Geoserver
to allow users contact them

• About Geoserver: General information about the version of geoserver and links to
documentation

• Process Status: List of all the running and recently completed processes.

Figure 7.6: About and Status

1.1 Data

This area contains links to the data configuration engine

• the Layer Preview: See the published layers in various formats for each. (openlayers,
KML, Geojson, GeoTIFF ..)

• Workspaces: to organize the layers in groups

• Stores:Configure the stores that provide data to Geoserver.

• Layers: Set necessary configuration to publish the data.

• Layers group: Define and manage layer groupings

• Styles describes how a feature type has to be drawn.

Figure 7.7: Data

119

2 Services
Geoserver exposes the data through standard services. This section contains the general
configuration for each service (WMS, WFS, WPS..).

Figure 7.8: Services

3 Settings
This area contains general configuration parameters of Geoserver.

• Global: Settings that apply to all OGC services and control the internal behavior of
GeoServer.

• Image Processing: Administer settings for Java Advanced image processing and
raster encoding.

• Raster Access: Administer settings related to accessing raster data.

Figure 7.9: Settings

4 Tile Caching
This area contains some configuration parameters of the integrated GeoWebCache, that
improves the performance of the server

• Tile Layers: Manage and list the cached layers.

• Caching Defaults: Configure the global settings.

• Gridsets: Manage the available tiling schemas or create a new one

• Disk Quota and BlobStores: Configure the disk limits for layers.

120

Figure 7.10: Tile Caching

5 Security
This area contains the configuration parameters of Geoserver security subsystem, it allows
the creation of users and roles and binding them with the published data and services.

• Settings: Configure security settings

• Authentication: Authentication providers and settings

• Passwords: Password settings

• Users, Groups, Roles: Manage and list users, groups and role services

• Data: Manage data security.

• Services: Manage service security

• WPS security: Manage the processing service security configuration

Figure 7.11: Security

6 Demos
A few demo applications are included with GeoServer.

• WPS request builder

• Demo requests

• SRS List

121

• Reprojection console

• WCS request builder

Figure 7.12: Demos

122

Annex C: Scripts

1 Watchdog Script

Declare instance related variables
INSTANCE =1
HTTP_PORT =8080
Check the command -line arguments
if [! $# -eq 4]; then
Insufficient arguments passed to the script
echo >&2 "usage: $0 -i [instance_number] -p [http_port]"

exit 1
else
Correct number of arguments
while [$# -gt 0]; do

case "$1" in
-i) INSTANCE=$2; shift ;;
-p) HTTP_PORT=$2; shift ;;
-*) echo >&2 \
"usage: $0 -i [instance_number] -p [http_port]"
exit 1;;
*) break ;;

esac
shift

done
fi
Declare other variables
PID= cat /opt/tomcat${INSTANCE }/apache -tomcat -8.5.5/ temp/tomcat.pid

HTTP_URL=http :// localhost:${HTTP_PORT }/ geoserver/openlayers/img/
west -mini.png

TOMCAT_SERVICE=tomcat${INSTANCE}
Set the logfile to stdout if the file does not exist

LOG_FILE =/mnt/share/geoserverdata/logs/logs -1/ watchdog -${INSTANCE }.log
if [! -e "${LOG_FILE}"]; then

LOG_FILE="/dev/stdout"
fi
if [-d /proc/$PID]; then

123

Tomcat is running so we need to check it is responding to requests
echo "’date ’ WatchDog Status: Tomcat service ${TOMCAT_SERVICE}
is running" >> "${LOG_FILE}"
wget $HTTP_URL -T 1 --timeout 20 -O /dev/null &> /dev/null

if [$? -ne "0"]; then
HTTP not responding , restart service

echo "’date ’ WatchDog Status: Tomcat service ${TOMCAT_SERVICE} is
not responding to HTTP requests"

echo "’date ’ WatchDog Action: Restarting Tomcat
service ${TOMCAT_SERVICE}" >> "${LOG_FILE}"
service $TOMCAT_SERVICE restart >> "${LOG_FILE}"
wget $HTTP_URL -T 1 --timeout 20 -O /dev/null &> /dev/null

if [$? -ne "0"]; then
#Send an alert mail
echo "Geoserver is not responding , verify the log files for more
informations" | mail -s "Alert" yasmine.benlefki@g.enp.edu.dz
else
#Send a warning mail
echo "Geoserver was not responding so tomcat has been restarted ,
verify the log file for more
informations verify the log file
for more informations" | mail -s "warning" myemail@watchdog.com

fi
else
HTTP is responding
echo "’date ’ WatchDog Status: Response OK - Tomcat service
${TOMCAT_SERVICE} is responding to HTTP requests" >> "${LOG_FILE}"

fi
else

>> "${LOG_FILE}"

Tomcat is not running , restart the service
echo " ’date ’ WatchDog Status : Tomcat service
${ TOMCAT_SERVICE } process appears to be dead " >> "${ LOG_FILE }"
echo " ’date ’ WatchDog Action : Restarting Tomcat service ${ TOMCAT_SERVICE }"
service
$TOMCAT_SERVICE restart >> "${ LOG_FILE }"
if [-d / proc / $PID]; then
Send an alert mail

"

echo " Tomcat couldn ’t be restarted , verify the log file for more
informations " | mail -s " Alert " email@watchdog . com
else
Send a warning mail
echo " Tomcat has been restarted , verify the log file for more
informations | mail -s " Warning " email@watchdog . com
fi

124

fi

2 Python scripts:

2.1 Open data sensors

import os
import simplejson as json

i=8 #number of sensors
#define arrays of longitude and latitude
longitude =[36.60507 ,36.66138 ,36.8678 ,36.64078 ,36.69914 ,36.58791 ,
36.714170 ,36.788722]
latitude =[3.11 ,2.88254 ,2.77954 ,2.93541 ,2.9512 ,2.95052 ,3.021964 ,
3.015700]
j=0
#Create ...
json2= {"sensors":[{"sensor": "temperature -"+str(j+1),

"description": "Temperature ambiante",
"type": "temperature",
"dataType": "number",
"unit":"C",
"component":"temperature -"+str(j+1),
"componentType": "temperature",
"location": str(longitude[j])+" "+str(latitude[j]),
"timeZone": "CET"}

for j in range (i)]}
j=0
json2=json.dumps(json2)
#create the sensors using curl request
C="curl -X POST -H \’Content -Type:application/json\’
-H \’IDENTITY_KEY:identity_key\’
-d \’ " +json2+ " \’ http ://192.168.20.18:8081/ catalog/ANM"
os.system(C)

2.2 Simulated sensors

import os
from os.path import exists
import simplejson as json
import random
import pprint as pprint
import numpy as np
from datetime import datetime
from random import randint
#ofdata
k=15

125

year="2018"
month=np.random.randint(low=1, high=4, size=(k,))
day=np.random.randint(low=1, high=28, size=(k,))
hour=np.random.randint(low=0, high=24, size=(k,))
minute=np.random.randint(low=0, high=60, size=(k,))
second=np.random.randint(low=0, high=60, size=(k,))
i=0
timestamp =[]
[timestamp.append(str(day[i])+"/"+str(month[i])+"/"+year+"T"+
str(hour[i])+":"+str(minute[i])+":"+str(second[i])+"CET") for i
in range(k)]

i=50 #number of sensors

longitude=np.random.uniform(low =36.6266 , high =36.742 , size=(i,))
latitude=np.random.uniform(low =2.752 , high =3.2032 , size=(i,))
j=0
sensors= {"sensors":[{"sensor": "Station_Velib -"+str(j),

"description": "Velibs disponibles",
"type": "velib",
"dataType": "number",
"component": "Station_Velib -"+str(j),
"componentType": "velib",
"location": str(longitude[j])+" "+str(latitude[j]),
"timeZone": "CET"}

for j in range (i)]}
j=0
a=0
messages ={"sensors":[{

"sensor": "Station_Velib -"+ str(j),
"observations":[

{"value": randint (0,20),
"timestamp": timestamp[a],
"location": str(longitude[j])+" "+str(latitude[j])}

for a in range(k)]}
for j in range (i)]}

sensors=json.dumps(sensors)
messages=json.dumps(messages)
C="curl -X POST -H \’Content -Type: application/json\’
-H \’IDENTITY_KEY:identity_key\’ -d \’ " +sensors+
" \’ http ://ip-address :8081/ catalog/ANT"
os.system(C)
M="curl -X PUT -H \’Content -Type: application/json\’
-H \’IDENTITY_KEY:identity_key\’ -d \’ " +messages+
" \’ http ://ip-address :8081/ data/ANT"
os.system(M)

126

	List of Figures
	List of Tables
	General introduction
	Motivation and Objectives
	Document outline
	IoT-oriented GIS Smart City platform
	Introduction
	Smart City
	Definition
	Smart City applications and benefits
	IoT platforms
	Definitions
	Types of IoT platforms
	Components of an IoT platform
	Big Data platforms
	Definitions
	Types of Big Data platforms
	Components of a Big Data platform
	Geographical Information System platforms
	Definitions
	Information System
	Geography Information System
	Components of a GIS
	GIS for Smart City
	Generic architecture for an IoT-oriented GIS Smart City platform:
	Conclusion
	Geographic information system (GIS)
	Introduction
	GIS History
	Theoretical part:
	Geodetic System
	Types of geodesic systems
	Projections
	EPSG
	Projection used in Algeria
	Types of maps
	Type of GIS applications
	Standalone GIS
	Client/Server GIS
	Client Side
	Web Map Server
	Data store
	Vector data
	Raster data
	Spatial database
	Free and open source GIS software
	Conclusion
	Technical choices
	Introduction
	Cloud platform
	IoT platform
	Definition
	Architecture
	Sentilo resources
	Sentilo's HTTP REST API
	Spatial Database Management System
	Sentilo agents comparison
	PostgreSQL/PostGis vs. Geomesa
	PostgreSQL/PostGis
	Geomesa
	Greenplum
	Definition
	Greenplum architecture
	Web mapping server
	GeoServer Vs. MapServer
	Geoserver
	Architecture
	Geoserver concepts
	GeoServer REST Interface
	Web services
	GeoWebCache
	End-to-end architecture
	Conclusion
	Implementation
	Introduction
	Detailed architecture to implement
	Sentilo
	Data
	OpenData
	Simulated Data
	Sentilo relational agent
	Greenplum database
	Greenplum and Sentilo interconnection
	Geoserver
	Publish the data
	Vector digital map background
	Raster data
	Greenplum sensor's data
	Geoserver in Production
	Clustering
	Definitions
	Implementation
	Security
	Watchdog
	GeoWebCache
	Conclusion
	Performance testing and web-mapping application
	Introduction
	Performance testing
	Apache Jmeter
	Scenario of stress testing
	Results
	Application
	Web mapping
	OpenLayers
	ReactJS
	Boundless
	Web Application's description
	Conclusion
	Conclusion and future work
	Summary
	Future work
	Bibliography
	Annexes
	Annex A: Software installation
	Installation of Sentilo in Ubuntu 14.04
	Installing dependencies
	Download and build code
	Redis settings
	MongoDB settings
	Configure Tomcat7
	Start services
	GeoServer installation and configuration
	Installing Java
	Installation of Tomcat
	Create Tomcat User
	Install Tomcat
	Set up the proper user permissions
	Create a systemd Service File
	Adjust the Firewall and Test the Tomcat Server
	Configure Tomcat Web Management Interface
	Access the Web Interface
	Installing GeoServer
	Create a geoserver instance
	Implement Basic Security
	Configuring multiple instance in a single server
	Install Load Balancer
	Installation of PostgreSQL
	Installation of Postgis
	Installation of Greenplum Pivotal 5.7 onCentOS 64-bit 7.x
	Setting the Greenplum Recommended OS Parameters (Master Only)
	Linux System Settings
	Creating the Greenplum Database Administrative User Account
	Installing the Greenplum Database Software
	Installing and Configuring Greenplum on all Hosts
	Installing Greenplum Database Extensions
	Annex B: GeoServer Administration Interface
	About Status
	Data
	Services
	Settings
	Tile Caching
	Security
	Demos
	Annex C: Scripts
	Watchdog Script
	Python scripts:
	Open data sensors
	Simulated sensors

