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Abstract

Résumé
Les codes de contrôle de parité de faible densité (LDPC) ont été inclus avec succès dans

de nombreuses standard de communication sans fil, car ils atteignent des performances de
correction d’erreur très proches de la limite de Shannon. Les codes LDPC non binaires ont
de meilleures performances que les codes LDPC binaires. Dans cette thèse, nous sommes
concentrés sur la conception et l’implémentation d’une architecture efficace des blocs de base
du décodeur NB-LDPC à l’aide de l’algorithme Min-Max. Afin de fournir un décodeur flex-
ible. La conception et l’implémentation des composants du décodeur sont détaillées. Divers
détails comme les schémas de blocs et la simulation ont été documentés.
Mots clés: LDPC, NB-LDPC, Limite de Shannon, Correction d’erreur, Min-Max, Décodeur,
Architecture, Conception, Implémentation.

Abstract
Low Density Parity-Check (LDPC) codes have been successfully included in numerous

wireless communication standards, since they achieve error correction performance very close
to the Shannon limit. Non-Binary LDPC codes has better performance than the binary
LDPC codes, In this thesis, we focused on the design and implementation of efficient ar-
chitecture of the NB-LDPC decoder basic blocks using the Min-Max algorithm. In order
to provide flexible decoder. The design and implementation of the decoder components are
detailed. Various details like block schematics and simulation have been documented.
Keywords : LDPC, NB-LDPC, Shannon limit, error correction, Min-Max, Decoder, Archi-
tecture, Design, Implementation.
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General Introduction

The reliable transmission of information over noisy channels is one of the basic requirements
of wireless communication systems. Since these systems demand for high-speed information
exchange between transmitter and receiver nodes, the channel impairments become more
harmful, which reduce the reliability of the received information. To overcome this situation
and provide more reliable communications, efficient channel coding techniques are required.
Due to this requirement, these systems rely heavily on error correction codes to detect and
correct transmission errors.

We distinguish two main families of error correction codes according to the way redun-
dancy is added: block codes and convolutional codes [4]. Low Density Parity-Check (LDPC)
codes are a class of linear block codes. They have been successfully included in numerous
standards such as DVB-S2 [5], IEEE 802.16e and IEEE 802.11n , among others. These codes
were first proposed in the 1962 PhD thesis of Gallager at MIT. But they remained largely
neglected for over 35 years, because of the computational power to exploit iterative decoding
schemes was not available until recently. The main reasons for their success are that their
performance are close to the channel capability for long codewords [6].

Non-Binary LDPC (NB-LDPC) codes are an extensions of binary LDPC codes. These
codes perform better than the binary LDPC codes in case of codes with low and medium
codeword length. Despite the error-correcting performance advantages, NB-LDPC codes suf-
fer from high decoding complexity. During the last decade, significant progress has been made
in the development of low-complexity NB- LDPC decoding algorithms and the implemen-
tation of these algorithms in flexible dedicated very-large-scale integration (VLSI) circuits.
The graphical representation of the NB-LDPC codes can be used in the implementation of
these algorithms whose effectiveness has been shown on graph models such as the Belief
Propagation algorithm generally noted BP. This algorithm guarantee optimal decoding per-
formances but it has not great interest for a hardware implementation. Consequently, other
algorithms based on approximations of the BP algorithm have been developed with the aim
of ensuring a reasonable performance/complexity compromise. The well known ones are the
Min-Sum, its variant Extended Min-Sum (EMS) and the Min-Max algorithm. The last one
can be implemented by a more efficient architecture then the others with small performance
degradation.

The objective of our project is to design and implement a NB-LDPC decoder based on
Min-Max decoding algorithm for wireless communication systems. In particular, we provide
concepts and solutions that enable flexible implementation and a compromise between de-
coding speed and implementation complexity, which are the basic requirements of modern
wireless communication standards.
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Chapter 1

Chapter 1: General Digital
Communication Systems

This first chapter aims to present fundamental principles and concepts that will be useful for
the understanding and implementation of LDPC codes.

This chapter begins by illustrating the chain of communication and briefly explaining
the role and interest of each block of the chain, before introducing the different types of
error-correcting codes, and end up with a comparison of their performance.

1.1 Introduction

The reliable transmission of information over noisy channels is one of the basic requirements
of digital information and communication systems. Here, transmission is understood both
as transmission in space, e.g. over mobile radio channels, and as transmission in time by
storing information in appropriate storage media. Because of this requirement, modern
communication systems rely heavily on powerful channel coding methodologies. For practical
applications these coding schemes do not only need to have good coding characteristics with
respect to the capability of detecting or correcting errors introduced on the channel. They
also have to be efficiently implementable, e.g. in digital hardware within integrated circuits.

Practical applications of channel codes include space and satellite communications, data
transmission, digital audio and video broadcasting and mobile communications, as well as
storage systems such as computer memories or the compact disc[7].

1.2 Wireless Digital Communication System

In Figure 1.1 the basic structure of a digital communication system is shown which represents
the architecture of the communication systems in use today.

Within the transmitter of such a communication system the following tasks are carried
out:

• Source Coding

• Channel Coding

• Modulation

12



• Communication Channel

• Channel Decoder

Figure 1.1: Communication System Chain

1.2.1 Source coding

Source codin g, data compression or bit-rate reduction involves encoding information us-
ing fewer bits than the original representation.Compression can be either lossy or lossless.
Lossless compression reduces bits by identifying and eliminating statistical redundancy. No
information is lost in lossless compression. Lossy compression reduces bits by removing un-
necessary or less important information.The process of reducing the size of a data file is
referred to as data compression. In the context of data transmission, it is called source cod-
ing (encoding done at the source of the data before it is stored or transmitted) in opposition
to channel coding.

1.2.2 Channel coding

The purpose of channel coding is to protect the message from disturbances of the channel, by
introducing a redundancy to the useful information in the message, redundancy and useful
information are related by a given law.

At the Receiver, the channel decoder exploits the redundancy produced by the encoder
for the purpose to detect and then to correct if possible the errors introduced during the
transmission ,[8]. This point will be detailed more in the following sections.

1.2.3 Communication channel

The communication channel is the physical medium for routing a message between a source
and one or more recipients. There are several types of channels, but in theory of information,
the most used channels are called discrete channels A discrete channel is a stochastic system
accepting at the input of the sequences of symbols defined on an alphabet X, and outputting

13



sequences of symbols defined on an output alphabet Y, connected by a transition law Py|x
i.e a stochastic matrix My|x.

My|x =

Py1|x1 · · · Pyj |x1
...

. . .
...

Py1|xk · · · Pyj |xk


1.2.4 Modulation

The modulation consists in performing a coding in the Euclidean space, a space generally
adapted to the channels encountered in practice. For an M-ary modulation, each signal of
L bits is associated with a signal xi(t), i = 1, ...,M of duration T chosen from the M = 2L

signals[9].There are three major classes of digital modulation techniques used for transmission
of digitally represented data:

• Amplitude-shift keying (ASK)

• Frequency-shift keying (FSK)

• Phase-shift keying (PSK)

Example of PSK is the Binary-Phase-shift keying is explained in the figure 1.2.

Figure 1.2: The BPSK Modulation (a) , its wave form (c) and the QPSK Modulation (b)

As for demodulation, its role is to extract the samples and to decide In favor of the
symbols most probably emitted [9]. The data provided by the demodulation unit will be
processed by the so-called decoder. There are two types of decoders, the first one being
called a hard decision decoder, because it works on firm data (’0’ or ’1’). The second type
is called a soft decision decoder, because the demodulator provides the decoder with a firm
value accompanied by a reliability measure. The Figure 1.2 illustrate the BPSK example of
digital modulation.

1.3 Information Theory

An important result of information theory is the finding that error-free transmission across a
noisy channel is theoretically possible – as long as the information rate does not exceed the
so-called channel capacity.

In order to quantify this result, we need to measure information.Within Shannon’s infor-
mation theory this is done by considering the statistics of symbols emitted by information
sources[10].

14



1.3.1 Entropy

Let us consider the discrete memoryless information source shown (in Figure 1.3). At a
given time instant, this discrete information source emits the random discrete symbol X =
xi which assumes one out of M possible symbol values x1, x2, ..., xM . The rate at which
these symbol values appear are given by the probabilities PX(x1), PX(x2), ..., PX(xM) with
PX(xi) = Pr{X = xi}.

Figure 1.3: Discrete Information Source

The average information associated with the random discrete symbol X is given by the
so-called entropy measured in the unit ‘bit’

I(X) = −
M∑
i=1

PX(xi) · log2(PX(xi)) (1.1)

1.3.2 Channel Capacity

With the help of the entropy concept we can model a channel according to Berger’s channel
diagram shown in Figure 1.4 (Neubauer, 2006a). Here, X refers to the input symbol and R
denotes the output symbol or received symbol. We now assume that M input symbol values
x1, x2, ..., xM and N output symbol values r1, r2, ..., rN are possible. With the help of the
conditional probabilities

PX|R(xi|rj) = Pr{X = xi|R = rj} (1.2)

and
PR|X(rj|xi) = Pr{R = rj|X = Xi} (1.3)

the conditional entropies are given by

I(X|R) = −
M∑
i=1

N∑
j=1

PX,R(xi, rj) · log2(PR|X(xj|rj)) (1.4)

I(R|X) = −
M∑
i=1

N∑
j=1

PX,R(xi, rj) · log2(PR|X(rj|xi)) (1.5)

With these conditional probabilities the mutual information

I(X;R) = I(X)− I(X|R) = I(R)− I(R|X) (1.6)

can be derived which measures the amount of information that is transmitted across the
channel from the input to the output for a given information source. The so-called chan-
nel capacity C is obtained by maximising the mutual information I(X;R) with respect to
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the statistical properties of the input X, i.e. by appropriately choosing the probabilities
{PX(xi)}1≤i≤M . This leads to

C = max
{PX(xi)}
1≤i≤M

I(X;R) (1.7)

Figure 1.4: Berger’s channel diagram

1.3.3 Coding Theory

If the input entropy I(X) is smaller than the channel capacity C,

I(X) <! C

then information can be transmitted across the noisy channel with arbitrarily small error
probability. Thus, the channel capacity C in fact quantifies the information transmission
capacity of the channel.

1.3.4 Definitions

• The channel encoder is used to generate a code word c of N bits from a Word of
information x of K bits. This code therefore generates M redundancy bits, with M =
N −K, called parity bits, which we shall denote by the vector p.

• A code is said to be systematic if the symbols of x appear explicitly in c. The ratio of
the number of bits Information and the number of bits of the transmitted codeword:
R = K/N

• The symbols of the information message x and the code word c take their values In a
finite field Fq with q elements, called Galois field (GF (q)) and those principal Properties
are illustrated in reference [16]. For example for a binary code , symbols take their value
in the body F2(GF (2)) with two elements {1, 0}.
The elementary operations of addition and multiplication in the field F2 are given in
the table 1.1.
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a b a⊕ b a� b
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 1.1: Addition and multiplication on GF (2)

1.3.5 Error Correcting Performance Measuring

The digital communication systems use BER (Bit Error Rate) as a function of the SNR to
evaluate codes Performances , but to obtain more accurate results, especially when compar-
ing different types codes, another measure is used which gives the BER as a function of Eb
/ No. With:
Eb: The energy transmitted in one bit of information.
No: The spectral density of the noise.

BER =
Number of erroneous bits

Number of transmited bits
(1.8)

1.3.6 Error Correcting Codes Classification

A code is called linear if the coding function is a linear mapping, otherwise it is called non-
linear. When the treatments are required to obtain the detection properties or correction
are made per block of N symbols, we say that we are dealing with a code in block. When
the symbols generated by the source are not processed by the blocks, Continuously, we say
that we are dealing with a convolutional code. For the rest of this chapter, We will only talk
about block codes and convolutional codes.

Figure 1.5: Error Correcting Codes Classification
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1.4 Error Correcting Code Types

1.4.1 Bloc Codes

The purpose of the block encoding operation is to associate with each information word
composed of K q-aire symbols a codeword composed of N q-aire symbols, this operation can
be represented by an application g

g : F q
K → F q

N

x→ c = g(x)
(1.9)

According to the classification diagram given in Figure 1.5, Linear block codes divide in two
main types:
Linear Bloc Codes: Are those where the code words are considered as Being elements in
a vector space.
Cyclic Codes: Are those in which code words are considered to be Elements in an algebra,
namely polynomials [11].

Linear Bloc Codes

The linear block codes are characterized by a matrix G of size (K,N) called the generating
matrix. This matrix transforms an information message x of K bits into a code word c of N
bits (N > K) by the following matrix operation:

c = x.G (1.10)

with:

G =


g11 g12 . . . g1N
g21 g22 . . . g2N
...

...
. . .

...
gk1 gk2 . . . gkN

 (1.11)

Each code word is a linear combination of the vectors Gi of G. Thus, one linear block code
can be defined as a vector subspace with K < N dimensions constructed in accordance with
relation 1.9 . To facilitate the coding operation, it is always possible to put the matrix G in
the systematic form, by combining the lines between them.

Gsyst = [P t|Ik] (1.12)

Ik =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 (1.13)

and
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P t =


r11 r12 . . . r1N
r21 r22 . . . r2N
...

...
. . .

...
rk1 rk2 . . . rkN

 (1.14)

The linear block codes are also characterized by another matrix H of size (N,M) called the
parity check matrix [9]. The main property of this matrix is:

H.ct = 0 (1.15)

H.Gt = 0 (1.16)

and for a systematic code

Hsyst = [IM |P ] (1.17)

Once the encoding operation is complete, the message c will be transmitted through a
channel which is generally noisy, a noise n is added to the latter. At the reception, the
message will be given by the following relation:

r = c+ n = x.G+ n (1.18)

by using 1.15 and 1.18 we get :

H.rt = H.ct +H.nt = H.nt (1.19)

The product H.rt is called a syndrome, if the result of this product is a zero vector , then r is a
code word, otherwise the vector r contains erroneous bits. The calculation of syndrome is the
method used by most of the block codes, for detect the error presence and then, depending
on the decoding algorithm, correct these errors if possible [11].

Bloc Codes examples

The first block codes are the Hamming codes introduced in 1950 by Richard Hamming [12].
These codes gave poor results compared to the criteria of Varshamov and Gilbert [4], which
is why new error-correcting codes have been developed, for example: Reed-Solomon codes
which are Classes of BCH cyclic codes. These codes, developed by IS Reed and G. Solomon
[13], are widely used for the correction of group errors in most digital data carriers such as
CD, DVD, blu-ray Discs, and in many standards such as DVB-T [5]. There are many other
classes of codes in block, which are not going to be detailed in this manuscript as: Goppa
codes which are widely used in McEliece and Niederreiter crypto-systems, Reed-Muller codes,
the Golay codes ... etc. The most powerful block code to date is called LDPC (Low Density
Parity Check). This family represents the object of our study, which will be presented in
Chapter 2.
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1.4.2 Convolutional Codes

The convolutive codes, invented in 1954 by Peter Elias [14], constitute a family of error-
correcting codes, whose simplicity of coding and decoding are at the origin of their success.
The principle is no longer to cut the message into finite blocks, but to consider it as a semi-
infinite sequence a0a1a2...an of symbols which passes through a succession of shift registers
whose number of stages m is called code memory and 2m the number of possible states. The
quantity µ = m+1 is called the constraint length of the code and the ratio R = K/N is called
the coding efficiency. to illustrate the principle of convolutional codes, here is an example

Figure 1.6: The Principle of convolutional code with coding efficiency R and m memory
registers

presented in Figure 1.7, for K = 1,m = 2 and N = 2. At the instant t, the output bits X
and Y are calculated by The following relationships:

{
X = at + at−1 + at−2

Y = at + at−2

Figure 1.7: Convolutional Code example R = 1/2

NSC and RSC Codes

NSC refers to non-systematic codes and by RSC recursive and systematic codes
A convolutional code is a recursive code if the sequence passing through the shift registers

is fed by the contents of its registers (see Figure 1.8(b)). If the K information symbols at the

20



encoder input are explicitly found in the code, then the code is called systematic, otherwise
it is called non-systematic (see Figure 1.8(a)). The non-systematic and non-recursive codes
methods have high performances better than a systematic and non-recursive code and the
reverse for weak SNRs. For this reason, the NSC codes were mainly studied and used up to
early 1990s. It is recalled that the power of a code (correction capacity Of errors) and the
complexity of the decoder increase with increasing memory M of this code. As for systematic
recursive codes (RSC), they are used by Turbo-codes, as they are the only ones likely to reach
the limit of Shannon[15].

Figure 1.8: (a) Non systematic encoder,(b) Recursif systematic encoder

Figure 1.9: (a) The state transition diagram and (b) a segment of the trellis diagram for the
Rate 1/2 systematic recursive binary convolutional encoder in Figure 1.8

Turbo Codes

The most famous of the convolutive codes is undoubtedly the turbo-code7 invented by
C.Berro, A.Glavieux and P. Thitimajshima in 1993 [10]. These codes and LDPC codes
form So-called advanced coding techniques. The turbo-code uses two (or multiple) convo-
lutional encoders. Figure 1.10 shows the case of a concatenation Parallel, consisting of two
identical convolution codes and one pseudo-random interleaver.
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Each information word x is associated with a redundancy p, which can be divided into a
redundancy p0 resulting from the first encoder and a redundancy p1 from the second encoder.
For the first time, an iterative decoder is introduced. The idea, very simple in Itself, consists
of a decoder comprising two subsets of decoding exchanging informations.

To explain the functioning of such a decoder, the notion of extrinsic information was
introduced. This information that is exchanged between the decoders during the iterations.
After a certain number of iterations, the firm decision is taken on a posteriori information.
This information gathers both the information coming from the observation of the channel
and the extrinsic information from the different decoders [16].

Figure 1.10: Turbo Encoder example

Code Performance Comparison

Low density parity check (LDPC) codes are a powerful FEC coding scheme that can achieve
good error performance under very low signal-to-noise ratios. A communication system
utilizing an LDPC code is able to operate very close to the channel capacity limit established
by Claude Shannon in the 1940’s. Figure 1.11 compares the performance of various coding
schemes used in the communication industry. It shows that LDPC codes achieve the same
code rate of 0.5 as many other codes. It can operate close to the Shannon Capacity Bound
in a lower signal power environment.
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Figure 1.11: FEC Code Performance Comparison

1.5 Channel codes applications in different wireless stan-

dards

With the increasing capabilities of integrated circuits, both LDPC codes and turbo codes
have gradually been considered in various practical applications. Figure 1.12 summarizes
the proliferation of LDPC and turbo codes in practical communication systems with a focus
on prominent recent and emerging wireless standards. Since the use of turbo codes was
specified for UMTS in 1999, turbo codes have become the dominating choice for forward
error-correction in enhanced-2G, 3G, and emerging 4G cellular standards. The practical
consideration of LDPC codes lagged somewhat behind the application of turbo codes. After
the rediscovery of LDPC codes, researchers focused on finding efficient structured codes that
would simplify the encoding and decoding process while maintaining excellent performance.
As a result of these research efforts, several interesting classes of structured codes emerged,
and the particular class of quasi-cyclic (QC) LDPC codes has received special attention in
the context of wireless systems. Structured LDPC codes appeared the first time in 2003 in
the DVB-S2 satellite broadcasting standard for digital television and since then have been
considered in many other advanced wireless systems, such as IEEE 802.16e WiMAX or IEEE
802.11n WLAN.

As implied in Figure 1.12, LDPC codes and turbo codes typically complement classical
channel codes. Especially the well-established convolutional codes are still commonly found
also in emerging wireless standards for low-rate services such as voice and control signaling,
or as fallback solution for receiver terminals not supporting LDPC codes or turbo codes.
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Figure 1.12: Deployment of LDPC and Turbo codes in prominent wireless standards[1]
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Chapter 2

Chapter 2: LDPC Code

Low-density parity-check (LDPC) codes are a class of linear block codes. The name comes
from the characteristic of their parity-check matrix which contains only a few non-zero ele-
ments in comparison to the amount of zeros, They were first proposed in the 1962 PhD thesis
of Gallager at MIT. But they remained largely neglected for over 35 years, because of the
computational power to exploit iterative decoding schemes was not available until recently.
As researchers struggled through the 1990s to understand just why turbo codes worked as
well as they did, two researchers, McKay and Neal, introduced a new class of block codes
designed to posses many of the new turbo codes features. It was soon recognized that these
block codes were in fact a rediscovery of the LDPC codes developed years earlier by Gallager.
Today, design techniques for LDPC codes exist which enable the construction of codes which
approach the Shannon’s capacity limit.

This chapter give a brief presentation of LDPC codes, including the Fundamentals and
mathematical basics. we will introduce the deferent types of representation for these codes,
their proprieties and classes. We will also present some LDPC construction methods and
finally explain the coding and decoding operations and give some basic decoding algorithm .

2.1 Fundamentals of LDPC Codes

Low Density Parity Check (LDPC) codes make up a class of linear block codes that are
characterized by a sparse parity-check matrices H which mean that it contain only a very
small number of non-zero entries. This sparseness of H is essential for an iterative decoding
complexity that increases only linearly with the code length. These codes are built from the
simplest elementary code: the single parity check code.

2.1.1 Parity check code

Parity checking is the most basic form of error detection in communications. The simplest
coding scheme is the single parity-check code. This code involves the addition of a single
extra bit, called a parity-check bit, to the binary message, the value of this bit depends on
the bits in the message. In an even-parity code the additional bit added to each message
ensures an even number of 1s in every codeword.

Example (1) : Denote a code C consists of codeword of length n = 6, and the vectors c =
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Figure 2.1: Parity check code

[c1 c2 c3 c4 c5 c6 ] , where each ci is either 0 or 1 and every codeword satisfies the constraint:

c1 ⊕ c2 ⊕ c3 ⊕ c4 ⊕ c5 ⊕ c6 = 0⊕ 0⊕ 1⊕ 0⊕ 0⊕ 1 = 0 (2.1)

Equation (2.1) is called a parity-check equation. which is an equation linking n binary
data to each other by the exclusive or, denoted ⊕ operator. It is satisfied if the total number
of 1s in the equation is even or null.

While the inversion of a single bit due to channel noise can easily be detected with a single-
parity check code, this code is not sufficiently powerful to indicate which bit, or perhaps bits,
were inverted. Moreover, since any even number of bit inversions produces a vector satisfying
the constraint (2.1), patterns of even numbers of errors go undetected by this simple code.

Detecting more than a single bit error calls for increased redundancy in the form of addi-
tional parity bits. These more sophisticated codes contain multiple parity-check equations,
every one of which must be satisfied by every codeword in the code.

Example (2): Denote the vector c = [c1 c2 c3 c4 c5 c6] that satisfy the three parity-check
equations:

c1 ⊕ c2 ⊕ c4 = 0

c1 ⊕ c2 ⊕ c3 ⊕ c6 = 0

c2 ⊕ c3 ⊕ c5 = 0

(2.2)

Checking the vector ĉ = [1 1 0 0 0 0] we see that :

1⊕ 1⊕ 0 = 0

1⊕ 1⊕ 0⊕ 0 = 0

1⊕ 0⊕ 0 = 1

(2.3)

so ĉ is not a valid codeword for this code because the parity-check equations did not satisfy .
The Codeword constraints are making an equations system in order to simplify the working
in these constraints are often written in matrix form, and so the constraints (2.2) become :

1 1 0 1 0 0
1 1 1 0 0 1
0 1 1 0 1 0


︸ ︷︷ ︸

H


c1
c2
c3
c4
c5
c6

 =

0
0
0

 (2.4)

The matrix H is called a parity-check matrix. Each row of H corresponds to a parity-
check equation and each column of H corresponds to a bit in the codeword. The (j, i)th
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entry of H is 1 if the ith codeword bit is included in the jth parity-check equation. Thus
for a binary code with m parity-check constraints and length-n codewords the parity-check
matrix is an m× n binary matrix.

In matrix form a vector ĉ = [c1 c2 c3 c4 c5 c6] is a valid codeword for the code with
parity-check matrix H if and only if it satisfies the matrix equation :

HĉT = 0m (2.5)

More than one parity-check matrix can describe a particular code; two parity check matrices
for the same code do not even have to have the same number of rows, but they must satisfy
(2.3) for every codeword in the code.

In Examples 2 there are three linearly independent equations in six variables, so there are
three dependent variables (one for each equation). These are the variables corresponding to
the parity-check bits. The remaining independent variables correspond to the message bits.
So, for the code in Example 2, the number of codeword bits n = 6, the number of message
bits k = 3 and so we have a rate R = 1/2 code.

In general, a code can have any number of parity-check constraints but only n−k of them
will be linearly independent, where k is the number of code message bits. In matrix notation
n− k is the rank of H over GF (2).

Figure 2.2: Discreption of parity check codeword

2.1.2 Representation of LDPC Codes

We assume that the output of an information source is a sequence of binary digits “0” or
“1” in block coding as the LDPC codes, this binary information sequence is segmented into
message blocks of fixed length; each message block, denoted by x, consists of k information
digits. There are a total of 2k distinct messages. The encoder, according to certain rules,
transforms each input message x into a binary n− tuple c with n > k. This binary n− tuple
c is referred to as the code word of the message x .

There are two ways to represent the LDPC code. As a linear block code, it can be
described via matrices. The second way is via a graphical description.

A. Matrix Representation

The LDPC code can be described by two basic matrix the generator matrix G of dimension
k × n and the parity check matrix H of dimension m × n , with k is the length of the data
before the coding process and n is the length after the coding , m = n− k is the number of
parity check equations or the bits of the parity .

The generator matrix G: This matrix describes the mapping from source words x to
codewords c in the encoding part by the equation c = GTx .
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It is common to consider G in systematic form G = [Ik|P ] so that the first k transmitted
symbols are the source symbols.The notation [A|B] indicates the concatenation of matrix
A with matrix B; Ik represents the k × k identity matrix. The remaining symbols are the
parity-checks.

G = [I3|P ] =

1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1


H = [P T |I3] =

1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

 (2.6)

Parity Check Matrix : The LDPC code is also described by a parity check matrix H
of dimension m×n , This matrix can be seen as a linear system of m parity check equations.
The words c of the code defined by H simultaneously satisfy the m parity check equations.
If the corresponding generator matrix is written in systematic form as above, then H has the
form [−P T |Im]. Note that for codes over finite fields GF (2p), −P ≡ P .

Each row of the parity-check matrix describes a linear constraint satisfied by all code
words HGT and hence the parity-check matrix can be used to detect errors in the received
vector:

H.r = H(c+ e) = H.GT .x+H.e = H.e = s (2.7)

where e is the error vector and s is the syndrome vector. If the syndrome vector is null, we
assume that there has been no error.

B. Graphical Representation

LDPC codes are usually defined in terms of a sparse bipartite graph, the so-called Tanner
graph (Tanner, 1981)[17], in which we can represent the parity check matrix, in this graph
branches link two different classes of nodes to each other:

• The first class of nodes called variable nodes (bit nodes), correspond to the bits of the
codewords (vj, j = 1, ..., n), and therefore to the columns of H.

• The second class of nodes, called parity check nodes, correspond to the parity check
equations (ci, i = 1, ...,m), and therefore to the rows of H.

Thus, to each branch linking a variable node vj to a parity check node ci corresponds the 1
that is situated at the intersection of the j− th column and the i− th row of the parity check
matrix.

A cycle in a Tanner graph is a sequence of connected nodes which starts and ends at the
same node in the graph and which contains other nodes no more than once. The length of a
cycle is the number of edges it contains, and the girth of a graph is the size of its smallest
cycle.

2.2 Proprieties of LDPC Codes

For an (n, k) LDPC we denote :
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Figure 2.3: An example of H matrix and the corresponding Tanner graph

• Information word x = (x0, x1, ..., xk−1) of length k.

• Code word c = (c0, c1, ..., ck−1) of length n.

• The number of code words M = 2k . Received word r = (r0, r1, ..., rn−1) of length n.

• Decoded code word ĉ = (ĉ0, ĉ1, ..., ĉk−1) of length n.

• Decoded information word x̂ = (x̂0, x̂1, ..., x̂k−1) of length k .

• code rate R = k/n

The weight distribution

The so-called weight distribution W (x) of an (n, k) LDPC block code c = c1, c2, ..., cM de-
scribes how many code words exist with a specific weight.

The weight of a vector or matrix is the number of non-zero symbols in it. The density
of a source of random symbols is the expected fraction of non-zero symbols. The number of
non-zeros element (‘1’s in binary codes ) in a row of H is called the row weight ’wr’ , and the
number of non-zeros element (‘1’s in binary codes) in a column is referred to as the column
weight ’wc’ .

The minimum Hamming Distance

The distance between two code words c = (c0, c1, ..., cn−1) and c′ = (c′0, c
′
1, ..., c

′
n−1) is given

by the so-called Hamming distance:

dis(c, c′) = |{i : ci 6= c′i, 0 ≤ i < n}| (2.8)

The Hamming distance dist(c, c′) provides the number of different components of c and c′ and
thus measures how close the code words c and c′ are to each other. For a code C consisting
of M = 2k code words c1, c2, ..., cM , the minimum Hamming distance is given by:

d = min
∀c 6=c′

dist(c, c′) (2.9)
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2.3 Classifications of LDPC codes

There are two type of classification for the LDPC codes the first one depends to the regularity
of the code which divided into two groups, the regular code and the irregular codes . The
second classification based on the representation of data over the Galois Field which we will
discuss it in the next chapter, there are also two groups of codes in this classification the
Binary codes and the Non-Binary codes .

2.3.1 Regular and Irregular LDPC Codes

Regular Codes : Regular codes were the first to be introduced when R. Gallager introduced
the LDPC codes in 1962 . The regularity of these codes is specified by the constant number
of ”1” in the rows and columns of the matrix H It’s mean that wr and wc are constant and
connected by the following relation:

wr = wc.n/m (2.10)

The regular LDPC codes are then described by (n,wr, wc) which n representing the length of
the code word, wr the weight of the lines and wc the weight of the columns. It is clear that
wr (respectively wc) are very small numbers in comparison of n (respectively m ) so that H
is sparse ( low density ).

As the ratio R have a relation with n and m we can rewrite it with other way in function
of wr and wc .

R = 1− wc/wr (2.11)

Irregular codes : In case where the distribution of the non-zero elements is not uniform,
these LDPC codes are called irregular codes . The irregularity of these codes is not charac-
terized just by wr and wc , but also by two polynomials λ(x) and σ(x) which helps to create
these codes [6].

The study shows that the irregular LDPC codes have better performance than the regular
codes . In the other hand the irregular codes have more implementation complexity than the
regular codes .

2.3.2 Binary and Non Binary LDPC Codes

The binary LDPC code is described by a binary-valued m× n parity-check matrix H in
GF (2), where the GF is abbreviation of Galois Field. This code may be generalized to finite
fields GF (q) , where q is a prime number, The elements of GF (q) will be called symbols and
we use the term bits when referring to the binary representation of symbols (when q = 2).
For a code over GF (q), each received symbol can be any of the q elements in GF (q) .

The Non binary LDPC codes over GF (q) can be seen as the generalization of binary
LDPC codes over GF (2) vector space projected over a finite field GF (q) , where q = 2m

(m ∈ Z+). In this case, each symbol can be represented by a m− bit binary tuple[18].

H =


h00 h01 h02 0 0 0
0 h11 0 h13 h14 0
h20 0 0 h23 0 h25
0 0 h32 0 h34 h35

 (2.12)
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In the parity check matrix H, of a NB-LDPC code over GF (q), the nonzero entries are
elements of GF (q). Also each information and codeword symbol is an element of GF (q). We
will present the Non binary code and the Galois Field with details in the next chapter .

2.4 Construction of LDPC Codes

In contrast to other block codes, LDPC codes are constructed using the parity-check matrix
not generator matrix. These codes can be constructed using either the matrix itself or its
graphical representation, the Tanner graph.

The main process of LDPC code construction is simply a replacement of a small number
of values in a zeros matrix by the GF (q) ’s symbols (1’s for binary code) in such a way that
the rows and columns have the required degree distribution.

There are several algorithms to construct suitable LDPC codes. Gallager himself intro-
duced one. Further, MacKay proposed a way to semi-randomly generate sparse parity check
matrices. Suitably chosen array codes also give good performance to the decoding algorithm.
Constructing high performance LDPC codes is not a hard problem. In fact, completely
randomly chosen codes are good with a high probability.

2.4.1 Gallager matrix construction for Regular Codes

The original LDPC codes presented by Gallager were regular and defined by a banded struc-
ture in H, Here is the basic constraints of Gallager code construction :

• The parity-check matrix has a fixed column weight wc and a fixed row weight wr.

• The parity-check matrix is divided into wc sub-matrices, each containing a single 1 in
each column.

• Without loss of generality, the first sub-matrix is constructed in some predetermined
manner.

• The subsequent sub-matrices are random column permutations of the first sub-matrix.

Figure 2.4: Example of length-12 (3,4)-reguler Gallager parity-check matrix

Since H is not in systematic form, Gaussian elimination using row operations and reorder-
ing of columns needs to be performed to derive a parity-check matrix.H = [P T |Im] Then
the original H has to be redefined to include the column reordering as per the Gaussian
elimination. The corresponding generator matrix is then G = [Ik|P ].
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2.4.2 Mackay and Neal matrix construction

In The LDPC codes construction proposed by MacKay and Neal the columns of H are added
one column at a time from left to right. The weight of each column is chosen so as to obtain
the correct bit degree distribution and the locations of the non-zero entries in each column
are chosen randomly from those rows that are not yet full. If at any point there are rows
with more positions unfilled than there are columns remaining to be added, the row degree
distributions for H will not be completely correct. Then the process can be started again or
backtracked by a few columns until the correct row degrees are obtained.

Figure 2.5: Example of a length-12(3,4)-regular MacKay-Neal parity-check matrix

In the example 2.5 when adding the 11th column, shown in bold, the unfilled rows were
the second, fourth, fifth, sixth and ninth, from which the second, fourth and sixth were
chosen.

2.5 Encoding operation

The objective of the encoding operation is to regroup a sequence of information symbols into
words (or blocks) of equal length K which are independently encoded than each information
word uniquely mapped onto a code word of length N . Encoding an LDPC code can turn

Figure 2.6: (n,k) LDPC Encoding

out to be relatively complex if matrix H does not have a particular structure. There exist
generic encoding solutions, including an algorithm with high complexity, requiring complex
preprocessing on the matrix H. Another solution involves directly building matrix H so as
to obtain a systematic code very simple to encode[6].

Each one of the two encoding types have mentioned contain many algorithm or method,
for the generic encoding solutions there are the encoding with a generator matrix method
and the coding with linear complexity method in the other hand the second encoding type
has also the coding with a sparse generator matrix, encoding by solving the system c.HT = 0
obtained by substitution and the cyclic coding method. in our thesis we will give details for
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just two encoding methods. The table summarizes the different possible types of coding have
mentioned .

Figure 2.7: Summary of different possible encodings

Encoding with a generator matrix:
The coding can be done via the generator matrix G of size K × N of the code, such as

defined the section 2.1.2. As we have seen, LDPC codes are defined from their parity check
matrix H, which is generally not systematic. P transformation of H into a systematic matrix
Hsys =[P IN−K ] is possible, for example with the Gaussian elimination algorithm over the
GF (2). This relatively simple technique, however, has a major drawback: the generator
matrix Gsys =[IK P T ] of the systematic code is generally not sparse. The coding complexity
increases rapidly . which makes this operation too complex for usual length codes.

Figure 2.8: An example of Gaussian elimination technique over the GF(2) for length-10
rate-1/2 LDPC code given by H matrix

Cyclic coding:
The classes of LDPC codes defined by finite geometry or by projective geometry enable

cyclic or pseudo-cyclic codes to be obtained .The codes thus obtained can be encoded ef-
ficiently by using shift registers. In addition, they offer good properties in terms of the
distribution of cycle length. The main drawback is that the cardinal of these classes of
code is relatively small. These classes therefore offer only a very limited number of possible
size–rate-irregularity profile combinations.
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2.6 LDPC Decoding

2.6.1 Error Detection and Correction

Error detection is a simple matter: All one does is compute the syndrome and check to see
if it is all zeros. If it is not all zeros, then declare that an error has been detected. If it is all
zeros, then assume that the codeword is correct.

The goal of error correction is to form an estimate ĉ of the transmitted codeword c, given
the received word r. The most likely estimate will be the one that assumes the minimum
number of errors occurred on the channel.

The main issue here is finding a decoding algorithm that can correct the error and find
the desired estimated code word with efficient way to get good performances to simplify the
decoder implementation .

2.6.2 Decoding Algorithms

Actually there is more than one such decoding algorithm. There exists a class of algorithms
that are all iterative procedures where, at each round of the algorithm, messages are passed
from variable nodes to check nodes, and from check nodes back to variable nodes. Therefore,
these algorithms are called message passing decoding algorithms.

As it is known that a factor graph represents a factorization of the global code constraint
into the local code constraints which are represented by the connection between variable
and check nodes. Each variable node sends to the check nodes with which it is associated a
message about the estimated value of the variable. The set of the messages received enables
the check node to compute then return the extrinsic information. The successive processing
of the variable then check nodes make up one iteration. At each iteration, there is therefore
a bilateral exchange of messages between the parity nodes and variable nodes, on the arcs of
the bipartite graph representing the LDPC code. One iteration is illustrated in the Figure
2.9 . It can be construed that the extrinsic message is a soft− value for a symbol when the
direct observation of the symbol is not considered in the computation of this specific value.
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Figure 2.9: One complete iteration message passing example

The basic steps of the message passing algorithm are :

1. Initialization:

The incoming messages received from the channel at the variable nodes are directly
passed along the edges to the neighbouring check nodes because there are no incoming
messages (extrinsic) from the check nodes in the first iteration.

2. Updating the check nodes (CNs):

The check nodes perform local decoding operations to compute outgoing messages
(extrinsic) depending on the incoming messages received from the neighbouring variable
nodes. Thereafter, these new outgoing messages are sent back along the edges to the
neighbouring variable nodes.

3. Updating the variable node (VNs):

The variable nodes will perform the local decoding operations in the same way to
compute the outgoing messages from the incoming messages received from both the
channel and the neighbouring check nodes.

4. Tentative Decoding :

After a complete iteration ( updating of the CNs and VNs ) the last operation is the
calculation of hard decision messages and checking the codeword validity by using the
syndrome .

In this way, the iterations will continue to update the extrinsic messages unless the valid
codeword is found or some stopping criterion is fulfilled ( achieving the limit number
of iterations )

One important message-passing algorithm is the belief propagation algorithm which
was presented by Robert Gallager in his PhD thesis. This algorithm has developed
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several times under different names. The most common ones are sum-product algo-
rithm (SPA)[19], min-sum[20], extended min-sum (EMS) algorithms and the min-max
algorithm[21], these algorithms will be presented in the next chapters .
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Chapter 3

Chapter 3: Non Binary LDPC Code

The non-binary low density parity check (NB-LDPC) codes can achieve better error-correcting
performance than binary LDPC codes when the code length is moderate. Despite the error-
correcting performance advantages, NB-LDPC codes suffer from high decoding complexity.
For a code over GF (q), each received symbol can be any of the q elements in GF (q). Hence,
vectors of q messages representing the probability that the received symbol equals each ele-
ment need to be computed, stored, and passed between the check and variable nodes during
the decoding process.

3.1 Introduction to Galois Field

Many error-correcting codes, such as Reed-Solomon (RS) and low-density parity-check (LDPC)
codes are defined over finite fields. Finite fields are also referred to as Galois Fields, which
are named after a nineteenth-century French mathematician, Evariste Galois. The purpose
of this section is to provide an elementary knowledge of algebra that will aid in the under-
standing of the material in the next sections. The treatment is basically descriptive and no
attempt is made to be mathematically rigorous.

3.1.1 Basic Algebra Notions

Groups

A group is a set of elements G on which an operation (·) is defined such that the following
properties are satisfied:

1. Closure: if a; b ∈ G then a · b = c ∈ G.

2. Associativity: for all a; b; c ∈ G, (a · b) · c = a · (b · c).

3. Identity: there exists a unique element e ∈ G such that a · e = e · a = a.

4. Inverse: for all a ∈ G there exists a unique element a0 ∈ G such that a · a0 = a0 · a =
e.

A group is said to be commutative or abelian if it satisfies the above properties as well
as:

5. Commutativity: for all a; b ∈ G, a · b = b · a.
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The order of a group is the number of elements it contains, i.e. ord(G), which is the
cardinality of set G. If the order is finite, then the group is said to be finite group. A cyclic
group is a group where all elements γ ∈ G are obtained from the powers αi of one element
α ∈ G. The powers are defined according to

α0 = e, α1 = α1, α2 = α2, ...

This particular element α is the primitive element of the group G.

Fields

A field is a set F , together with two operations: the additive operation denoted by +, and
the multiplicative operation denoted by · , such that the following conditions hold:

1. F forms an abelian group under ”+” with (additive) identity element ”0”. The additive
inverse of a is denoted −a.

2. F − {0} forms an abelian group under ” · ” with (multiplicative) identity element ”1”.
The multiplicative inverse of a is denoted a− 1.

3. ” + ” and ” · ” distribute: a.(b+ c) = (a.b) + (a.c), for all a; b; c ∈ F .

Subfields

Let F be a field under ”+” and ”·”. Let K ⊆ F . Then K is a subfield of F if it is also a
field under ”+” and ”·”. If K is a subfield of F , then F is an extension field of K.

3.1.2 The finite Field GF(2)

The number of elements in a finite field can be a prime p . This field with p elements is
denoted by GF (p) . The number of elements in a field is also called the order of the field.
GF (2) is the finite field with the least number of elements. One way to create a Galois field
is to use the set of integers {0..., p − 1} where p is prime and (+) and (·) are modulo − p
addition and modulo− p multiplication, respectively. The modulo− p addition operation of
a and b is by definition:

a⊕p b = (a+ b) mod p

and the modulo− p multiplication operation of a and b is by definition:

a⊗p b = (a.b) mod p

where The notation b = a mod n, means that b is the remainder of the division Euclidean of
a by n.

For example when p = 2 ,the GF (2) is the finite field with the least number of elements
{0, 1} that’s why there are many binary codes that are defined over the binary field GF (2)
,the GF (2) addition is the XOR operation and GF (2) multiplication is the AND operation
.
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3.1.3 Extended Galois Field GF(2m)

We know that the integers {0, ..., q− 1} cannot form a field under modulo− q multiplication
if q is not prime. However this does not mean that GF (q) does not exist if q is not prime, it
just means we can’t use modulo− q multiplication. and since we can create extension fields
(subfields)of the GF (q) one of these extension fields is based on power of p, the GF (pm)
where m is a positive integer and pm is the new order (cardinality) . The data in digital
communication and storage systems is binary {0, 1} as a result the GF (2) is used. Therefore,
the extension fields GF (2m) (m ∈ Z+) are usually used, since each field element can be
represented by a binary vector [18].

In particular, the Galois Fields of order q = 2m, has a great interest in coding theory and
their applications . Indeed, an element of Galois field GF (2m) can be represented in a unique
way in the form of a binary symbol of m bits. Reed Solomon (RS) codes, which are one of
the most commercially successful code, uses Galois Fields of the form GF (2m) with m often
equal to 8.

3.2 GF(2m) Construction

3.2.1 Polynomial Method

Polynomials over GF (2)

A polynomial of shape :

f(X) = anXn + an−1Xn−1 + ...+ a1X + a0 (3.1)

whose coefficients ai are elements of a field GF (2) ({0, 1}), is called a polynomial over GF (2).
The positive integer n is called the degree of the polynomial and is denoted by deg(f) . The
GF (2)[X] denote the collection of the polynomials over GF (2) with coefficients ai .

Irreducible polynomial

A polynomial p(x) with degree m is irreducible in GF (2)[x] if p(x) cannot be factored into
a product of lower-degree polynomials in GF (2)[x], The P (x) can be used to construct
extension field GF (2m) [7] .

To construct the GF (q) with q = 2m, we will proceed in the same way as to construct the
GF (p) with p is a prime but by reasoning not on the relative integers but on the polynomials
of GF (2)[X]. For this we suppose that we know a polynomial p(x) of GF (2)[X] of irreducible
degree m. The set of polynomials modulo p(x) with coefficients in GF (2) is a set Finite: we
can demonstrate that it is a field. To find to which class of polynomials modulo p(x) belongs
a polynomial f(x) we do the Euclidean division of f(x) by p(x):

f(x) = q(x)p(x) + r(x) (3.2)

Then f(x) belongs to the class of r(x). The setGF (2) [p(x)] is formed by the set of polynomial
classes of degree less than or equal to m− 1 (since they are the Euclidean divides by p(x)).
We say that the set GF (2)[p(x)] is formed by the set of all polynomials of degree less than
or equal to m− 1. Each polynomial contains m elements of GF (2) which can take p values:
therefore the number of elements of GF (2)[p(x)] is 2m.
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Example : construction of GF (2m),m = 3, q = 8 : In the GF (2) we chose the irreducible
polynomial:

p(x) = x3 + x+ 1.

The set of values of x are {0, 1} in this case the 0 and 1 are not roots for p(x) so x + 1 and
x are not dividers of p(x). No polynomial of degree 2 divides p(x) otherwise p(x) would be
the product of a polynomial of degree 2 and of a polynomial of degree 1 which is impossible
since no polynomial of degree 1 divides p(x). All polynomials of degree less than 3 form a
class of polynomials modulo p(x) They are presented on the table :

Polynomials Binary
representation

x2 x x0

f0(x) = 0 0 0 0
f1(x) = 1 0 0 1
f2(x) = x 0 1 0
f3(x) = x+ 1 0 1 1
f4(x) = x2 1 0 0
f5(x) = x2 + 1 1 0 1
f6(x) = x2 + x 1 1 0
f7(x) = x2 + x+ 1 1 1 1

Table 3.1: Polynomial construction example (GF(8))

This set contains 23 elements, it is the GF (23) or GF (8). We see that the elements of
the GF (2m) defined in this way are not very convenient to write. To use them, they can
be represented as m − tuples of the starting field GF (2), i.e m bits in this case. We have
defined the set which is still not very original. To define the field, we must Define addition
and multiplication operations. This representation in the form of polynomials is quite limited
for theoretical developments, we will see another method of constructing GF (2m).

3.2.2 Primitive element method

To define the GF (2m) by the first method, we have found an irreducible polynomial p(x) of
degree m, with coefficients in GF (2). This polynomial being prime has no root in GF (2)
( in GF (2) the element {0, 1} are not root of p(x) ). But in this method we imagine that
there are roots ”elsewhere” than in GF (2) , we can find m root, we denote by α one of them
. This root is then the primitive element of the GF (2m) . Indeed, we will find the elements
of the Galois Field by considering all the powers of α : {α0, α, ...., α2m−2} .

Primitive polynomial

Given an irreducible polynomial of degree m, to test whether it is primitive, divide it from
xn − 1 where m < n < pm − 1. If no such n gives 0 remainder, then it is primitive.

Binary extension field GF (2m), is usually adopted for hardware implementations, since
each element can be represented by a m− bit binary tuple.
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Example : constructing of GF (23):
Let p(x) = x3 + x + 1 be the irreducible polynomial. We call α one of its roots, and we

will express the different powers of α in function of α0 = 1, α, α2. Indeed as soon as α3 can
be expressed in function of the lower powers because: α3 + α + 1 = 0 therefore α3 = α + 1.
( There is no negative element in GF (2) ) .

Continue for the other elements :

α4 = α2 + α

α5 = α3 + α2 = α + 1 + α2

In general we can use the Euclidian division, dividing αn by α3 + α + 1 :
αn = q(α)(α3 + α + 1) + r(α) as α3 + α + 1 = 0, αn = r(α). continue in this way:

α6 = (α3 + α + 1)α3 + α + 1) + α2 + 1 = α2 + 1

α7 = (α4 + α2 + α)(α3 + α + 1) + 1 = 1

We see that α7 = 1, so α7 + 1 = 1 + 1 = 0. (the addition is XOR operation ). This is
general : if the polynomial p(x) is ”correctly” chosen, α2m−1 + 1 = 0 , also for a GF (pm)
with p > 2, αq

m−1 − 1 = 0.

3.2.3 Properties of the Galois Field GF (2m)

• The GF (2m) is the set of primitive element α powers and the element 0

GF (2m) = {0, 1, α, α2, ..., α2m−2}.

• The Field actually contains 2m elements because α2m−1 = 1.

• α is a root of a polynomial p(x) of degree m irreducible in GF (2). This Polynomial
must also be primitive.

That means no other power j lower than qm − 1 can be found such that αj = 1.

The correspondence between the notation of the elements using the power of α and the
notation using polynomials is done by replacing α by x, we obtain the table of the GF (8)
for the previous example(Table 3.2) .

3.3 Galois Field (2m) arithmetic

As explained previously, finite fields can be constructed differently, and the field elements can
be represented as linear combinations of the elements in a basis (m element for the GF (2m) ),
as well as powers of a primitive element. the hardware complexities of finite field operations
are heavily dependent on the element representations.

Proper representations can be chosen based on the computations involved in a given
application. Moreover, a single system can employ different representations in different units
to minimize the overall hardware complexity.
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α2 α 1
0 0 0 0
1 0 0 1
α 0 1 0
α2 1 0 0
α3 0 1 1
α4 1 1 0
α5 1 1 1
α6 1 0 1

Table 3.2: GF (8) Power representation

3.3.1 Polynomial representation

Addition

The addition of 2 elements of the GF (2m) in general is the addition of the term polynomials
to term. We must remember the property of the addition in the starting field where the
coefficients are taken. In case of the GF (2m) the starting field is the GF (2) the addition
in this field is performed modulo − 2 or the XOR operation, so the GF (2m) has the same
operation for each bit that means the bit-wise XOR .The figure represent the addition table
of the GF (8).for x = (x1x2x3) and y = (y1y2y3) ∈ GF (8) ,The addition operation of the
GF (8) is :

x+ y = (x1x2x3) XOR (y1y2y3)

Multiplication

In this representation which based on the polynomials the Multiplication operation is per-
formed by the polynomials multiplication than find the class of the obtained polynomial.
The figure 3.1(b) represent the multiplication table of the GF (8) .

We can conclude from the operations of the polynomial (or basis) representation that the
addition operation are simple and can easily implemented with no complexity as it’s based
just on the bit-wise XOR in the other hand the multiplication operation is more complicated
and not easy to implement because of the the competitions complexities (multiplication and
division of polynomials ) .

3.3.2 Power representation

Addition

If we use the polynomial notation of α. The sum will be the same as we explained it in
the polynomial representation, i.e bit by bit Modulo-2 or the bit-wise XOR. So the addition
cannot be done directly using power representation. Power representation has to be converted
to a basis representation before the additions are done. An example for such a conversion
in GF (28) is shown in Table 3.5 After the addition is completed in a basis representation,
a reverse mapping is needed to get the power representation of the sum. For GF (23), the
conversion or mapping table has 23 (2m in general case ) lines and each line has m bits. The
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Figure 3.1: GF(8) Addition (a) and Multiplication (b) table using the polynomial represen-
tation

implementation of this table becomes quite hardware consuming when m is not small. the
figure 3.2 represent the GF (23) addition table for power representation.

Multiplication

Using power representation, multiplication over GF (2m) can be performed by adding up the
exponents of the operands modulo 2m − 1:

αi.αj = α(i+j)mod(2m−1) (3.3)

The figure 3.2 represent the multiplication table of the GF (8) for the power representation.
We can conclude that the power representation has low complexity and easy to implement
in the case of the multiplication operation and using basis representations are more compli-
cated than those based on power representation. but for the addition it’s better to use the
conversion to the basis presentation .
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power 3-tuple polynomial
representation form representation

0 000 0
1 100 1
α 010 2
α2 001 4
α3 110 3
α4 011 6
α5 111 7
α6 101 5

Table 3.3: GF (8) power-polynomial representation conversion

Figure 3.2: GF(8) power representation operations

3.4 Non Binary LDPC codes over GF(q)

The LDPC codes defined on the Galois Field GF (q = 2m), m > 1 whose symbols of the
code words are elements of the Galois field GF (q) , q > 2. we called non-binary LDPC
codes. In the parity check matrix H of a NB-LDPC code over GF (q), the nonzero entries
are elements of GF (q). Also each information and codeword symbol is an element of GF (q).
For communication and data storage systems, GF (2m) is usually adopted. In this case, each
symbol can be represented by a p-bit binary tuple.

Figure 3.3: Non-binary prity-check matrix

The matrix products of the parity equations are performed using the addition and multi-
plication operations of the Galois Field GF (2m). It is then preferable to add to the bipartite
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graph the new family of nodes called the permutation nodes which serve to model the mul-
tiplication of the symbols of the code word by the non-zero elements of the parity matrix
hij . Figure 3.4 illustrates the bipartite graph for equation 2 in Figure 3.3 by adding the
permutation nodes that correspond to the elements h11,h13 and h14 .

Figure 3.4: Graphical representation of non-binary parity-equation

The binary LDPC codes have asymptotic performances approaching the Shannon limit.
However, for small or medium-sized code words, the performance of binary LDPC codes
degrade considerably. It has been shown that this loss can be compensated by using high
cardinality GF (q)-LDPC codes. Moreover, the high cardinality of the codes ensures better
resistance to frame errors . This improvement in performance can be explained intuitively
by the fact that several bits are grouped together in a single non-binary symbol. Therefore,
erroneous bits are confined to fewer non-binary symbols, and subsequently parity constraints
are affected by fewer errors. Nevertheless, the improvement of the performances by the
increase of the order of the Galois field is accompanied by an exorbitant increase in the
complexity of the decoding which constitutes a brake on the practical use of the GF (q)-
LDPC codes.
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Chapter 4

Chapter 4: Iterative Decoding
Algorithms

The graphical representation of the NB-LDPC codes can be used in the implementation of
algorithms whose effectiveness has been shown on graph models such as the Belief Propa-
gation algorithm generally noted BP. The algorithm BP is an iterative algorithm which is
part of the class messages passage algorithms ( mentioned in chapter 2 ). They are called so
because, at each iteration of the algorithm, messages are transmitted from the CNs to their
related VNs, and reversely from the VNs to their related CNs . We distinguish two types of
messages :

• The intrinsic messages : a priori information messages calculated only from the obser-
vations of the channel.

• The extrinsic messages: each branch of a node of the graph (VNs and CNs) circulates
an incoming message and an outgoing message.

The decoder must be able to converge to a valid code word after a finite number of iterations,
stop the decoding as soon as it converges to this word. To avoid an infinite execution a
maximum number of iterations is fixed. In the algorithm BP, the messages exchanged are
a posteriori probabilities calculated on the symbols of the code word. However, the BP
algorithm suffers from a prohibitive computational complexity, which comes essentially from
the calculations performed during the update of the parity constraints. By noting that
the updating of CNs can be modeled by convolution products, The log-BP algorithm ( Sum-
Product Algorithm )[19] is an algorithm in which the four decoding steps are carried out in the
logarithmic domain to allow a hardware implementation less sensitive to quantization errors,
and therefore better suited to fixed-point arithmetic. However, updating the CNs always
requires a large amount of calculation and the complexity of the decoder still high. The BP
and log-BP algorithms are so-called optimal decoding algorithms because they do not use any
mathematical approximation to reduce the complexity of the decoding. The BP algorithm
and its variants guarantee optimal decoding performances but they have not great interest
for a hardware implementation. Consequently, other algorithms based on approximations of
the BP algorithm have been proposed with the aim of ensuring a reasonable performance /
complexity compromise. We mainly cite the Min-Sum, its variant EMS (Extended Min-Sum),
and the Min-Max algorithm which can be considered as an approximation of the Min-Sum
algorithm.
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4.1 Believe Propagation Algorithm

For a NB-LDPC code over GF (q), the observation of the nth received symbol is rn, the
nth transmitted symbols, is cn, they can be any of the q elements in GF (q). Therefore, the
messages passed between the check and variables nodes in the decoding process are vectors of
q messages. By using the power representation of the GF (q) elements, Let α be a primitive
element of GF (q). Then all the elements of GF (q) are expressed as 0, 1, α, α2, ..., αq−2.

Let c = [c0, c1, ......., cN−1], ci ∈ GF (q = 2m) the code word transmitted. The role of
decoding is to converge to a valid code word ĉ = [ĉ0, ĉ1, ........, ĉN−1] from a noisy signal
r = [r0, r1, ......, rN−1], where ri is the noisy version of ci. The decoding is successful if ĉ = c.

In the BP algorithm, the intrinsic information of a VN vi is a vector of q a posteriori
probabilities defined by Equation 4.1:

Ii = [p(vi = β0|ri), p(vi = β1|ri), ..., p(vi = βq−1|ri)] (4.1)

where p(a|b) is the conditional probability of a given b.
Let i = 0, 1, .......,M − 1 and j = 0, 1, ...., N − 1. If the element hij of the parity matrix

H is nonzero then Mvjci denotes the message sent by the VN vj to the CN ci and Mcivj the
message sent by the CN ci to the VN vj.

The set of steps of the BP algorithm are:

1. Initialization: Each VN vj sends its intrinsic information to all of their related CNs.

2. Update of the VNs: A VN vj receives wc messages M̃civj and supplies wc messages
Mvjci . Messages from vj are computed by Equation 4.2 . Each outgoing message is a
function of all incoming messages to vj except that of ci.

Mvjci [β] = µvjci · Ij[β] ·
∏
s 6=i

hs,j 6=0

M̃csvj(β) β ∈ GF (q) (4.2)

With µvjci is a normalization factor such that
∑

β∈GF (q)

Mvjci [β] = 1

3. Permutation: Before entering the CN ci, the message Mvjci is multiplied by the non-

zero element hij of the parity matrix. The resulting message M̃vjci is obtained by
equation 4.3 .

M̃vjci [β] = Mvjci [β · h−1ij ] β ∈ GF (q) (4.3)

4. Updating the CNs: Updating the CN pi is done by equation 4.4 .

Mcivj [β] =
∑
θs=β

∏
s 6=j
his 6=0

M̃vsci [θs] (4.4)

With β and θ are variables belonging to GF (q). The updating of the CN pi consists in
calculating the probability of all combinations of symbols verifying the parity equation.

5. Inverse Permutation : Before entering the VN vj, the message Mcivj is divided by

the non-zero element hij of the parity matrix. The resulting message M̃civj is obtained
by Equation 4.5 .

M̃civj [β] = Mcivj [β · hij]β ∈ GF (q) (4.5)
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6. Estimation of the code word: At the end of each iteration, each VN vj updates an
a priori probability vector denoted APPj as in equation 4.6 .

APPj[β] = µvj · Ij[β] ·
∏
hs,j 6=0

M̃psvj(β) β ∈ GF (q) (4.6)

With µvj is a normalization factor such that
∑

β∈GF (q)

APPj[β] = 1. Then the decision

is made by equation 4.7 which consists in selecting the symbol which has the greatest
probability in APPj.

ĉj = argmax
β∈GF (q)

{APPj[β]} j = 0, 1, ...N − 1 (4.7)

If the set of symbols ĉj form a valid code word then the decoding ends.

4.2 The Sum-Product Algorithm ( log-BP )

It is now well known that reduced complexity decoding algorithms are built in the logarithm
domain, and this is for two main reasons. First, it transforms the products in into simple
sums . The second reason is that log-domain algorithms are usually more robust to the
quantization effects when the messages are stored on a small number of bits . The practical
decoding algorithms for LDPC codes (Sum-Product, Min-Sum, EMS and Min-Max) are all
expressed in the logarithm domain.

The reliability of a symbol can be measured by the Log-Likelihood Ratio (LLR) defined
by Equation 4.8.

LLR(β) = ln
p(vj = β|ri)
p(vj = 0|ri)

β ∈ GF (q) (4.8)

Replacing the probabilities by LLRs in equations 4.2, 4.4 and 4.6 makes it possible on the one
hand to transform the multiplication operations into additions operations and on the other
hand to reduce the quantification errors. Thus, in the Sum-Product algorithm, the intrinsic
information of a VN vj is defined by equation 4.9.

Ij = [0, ln
p(vj = β1|ri)
p(vj = β0|ri)

, ..., ln
p(vj = βq−1|ri)
p(vj = β0|ri)

] (4.9)

The messages that circulate on the bipartite graph are composed of LLRs. The Sum-Product
algorithm retains the same decoding steps of the BP algorithm while modifying the update
equations. Indeed, the update of a VN vj is done by equation 4.10.

Mvjci [β] = Ij[β] +
∑
s 6=j
his 6=0

M̃csvj [θs] (4.10)

The update of a CN ci is done by equation 4.11.

Mcivj [β] = ln
∑

∑
s 6=j
his 6=0

θs=β

exp(
∑
s 6=j
his 6=0

M̃vsci [θs]) (4.11)

Finally, the updating of the a priori information is done by equation 4.12 .

APPj[β] = Ij[β] +
∑
hs,j 6=0

M̃csvj(β) β ∈ GF (q) (4.12)
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4.3 The Min-Sum algorithm

The Min-Sum algorithm was proposed to reduce the complexity of the Log-BP algorithm
using an approximation of equation 1.16. Indeed, in the Min-Sum algorithm, the update of
a CN ci is performed by equation 4.13 .

Mcivj [β] ≈ min
s 6=j
his 6=0

θs=β
{
∑
s 6=j
his 6=0

M̃vsci [θs]} (4.13)

The Min-Sum algorithm thus makes it possible to simplify the decoder by eliminating the
tables of correspondences necessary for the implementation of the exponential functions and
logarithms and by minimizing the number of arithmetic operations.

4.4 The EMS algorithm

To simplify the Min-Sum decoder, the EMS algorithm has been introduced in which the
messages circulating on the bipartite graph are truncated by selecting the most reliable nm
symbols among the possible q symbols, with nm << q. However, the value of nm must be
carefully chosen so that the decoding performance does not undergo significant degradation.

In the case of the Sum-Product algorithm, the messages are vectors composed of q un-
sorted reliability values. Moreover, it is not necessary to explicitly indicate the value of the
symbol associated with each of the reliabilities, since it can be easily deduced by its position
in the message. Due to truncation, messages from the EMS algorithm must be sorted and
the values of the symbols must be explicitly mentioned. The messages that circulate on the
graph are therefore of the form M = [(LLR(θk), θk)]0≤k<nm ,with θk a variable in GF (q). The
massage M can be divided into two sub-message, theM : GF denotes the partial message
containing the set of symbols of the message M andM : L denotes the vector containing the
set of LLRs of the message M . The most reliable symbol in M is M : (0) (first position for
the smallest LLR value ) and the least reliable symbol is M : GF (nm − 1). The truncation
of the messages results in a performance degradation which can be compensated by using
a constant reliability value denoted γ for the symbols not retained during truncation. The
value of γ is calculated as follows:

γ = M.L(nm − 1)− offset (4.14)

Where offset is a scalar determined by simulation so as to obtain the best possible BER.
The EMS algorithms retains the same decoding steps of the Min-Sum algorithm while

modifying the update process. A compensation scalar γi is associated with each message
M̃civj . The value of γi is determined by equation 1.19. The outgoing message Mvjci contains
the nm most reliable symbols by combining the intrinsic information with the incoming
messages except that of ci. The reliability of a symbol Mvjci is obtained by equation 1.20.

Mvjci .L(k) = Ii[Mvjci .GF (k)] +
∑
s 6=j
his 6=0

Ws(k) (4.15)

With

Ws(k) =

{
M̃psvj [Mvjci .GF (k)] if Mvjci .GF (k) ∈ M̃psvj

γs otherwise
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In the other hand updating the CNs step still the same as the Min-Sum algorithm, except
that the number of outgoing messages are nm rather than q.

4.5 The Min-Max Algorithm

The logarithmic likelihood ratio (LLR) can take negative values. However, it would be simpler
to deal only with positive values. Therefore, there was a proposition to define the LLRs as
follows:

LLR(β) = − ln
p(c = β|r)

max
θ∈GF (2m)

{p(c = θ|r)}
β ∈ GF (2m) (4.16)

Where r = (r0, r1, ...rM−1) is the observation of the channel and c = (c0, c1, ...cM−1) is the
transmitted symbol. In this definition, the normalization is done by the probability of the
most reliable symbol. It follows that the LLR of this symbol is always zero and the LLRs of
the other symbols are positive.

GF 0 α0 α1 α2 α3 α4 α5 α6

Ps 0.1 0.85 10−3 10−7 10−10 0.05 10−10 10−10

-ln(Ps) 2.3 0.2 6.9 16.1 23.0 3.0 23.0 23.0
LLRs 2.1 0 6.7 15.9 22.8 2.8 22.8 22.8

Table 4.1: Exapmle of LLRs values of GF(8)

Min-Max algorithm is an approximation of the MS algorithm, a modifications have been
done in which makes it possible to simplify the processing at the CNs by replacing the sum
in equation 4.13 by the operator max.

We can resume the steps of the Min-Max algorithm by :

• Initialization: Mvjci [β] = Ij[β]
Iterations :

• Check node processing

Mcivj [β] ≈ min∑
s 6=j
his 6=0

θs=β
{max
s 6=j
his 6=0

M̃vsci [θs]} (4.17)

• Variable node processing

M ′
vjci

[β] = Ij[β] +
∑
s 6=j
his 6=0

M̃csvj [β] β ∈ GF (q) (4.18)

Mvjci [β] = M ′
vjci

[β]− min
β∈GF (q)

(M ′
vjci

[β]) (4.19)

• A posteriori information computation

APPj[β] = Ij[β] +
∑
hs,j 6=0

M̃csvj(β) β ∈ GF (q) (4.20)
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After each iteration, hard decision for the ith symbol can be made as:

ĉj = argmax
β∈GF (q)

{APPj[β]} j = 0, 1, ...N − 1

The iterations can be carried out until H[r0, r1, r2, ...]
T = 0 or the maximum iteration number

has been reached.
To simplify The CN operations it can be implemented efficiently by forward-backward

scheme.This scheme consists in constructing the outgoing messages by a set of elementary
operations allowing not to repeat the same calculations and to reduce the latency of process-
ing.We will present it with details in the next chapter.

4.5.1 Variable Node processing example

In this example (see fig 4.1(a) ) we are working on the GF (8) and let the wc = 2, that means
each variable node has two CNs connected to it, We denote by M0 the Intrinsic message
received from the channel.

Figure 4.1: Variable and Check Node Messages processing

GF LLR
α2 5
α5 9
α3 15
α1 0
0 12
α6 3
α0 16
α4 5

M0

+

GF LLR
α4 10
α3 13
0 4
α2 0
α0 17
α1 9
α6 6
α5 8
Mc1v1

=

GF LLR
α2 5
α6 9
α1 9
α4 15
0 16
α5 17
α3 28
α0 33
M ′

v1c2

→

GF LLR
α2 0
α6 4
α1 4
α4 10
0 11
α5 12
α3 23
α0 28
Mv1c2

Table 4.2: Varaible node processing example

As illustrated in the table (4.2) the output message Mv1c2 is calculated by doing the sum
of the LLR values corresponding to the same GF element from Mc1v1 and the M0, than an
LLR normalization by subtracting the minimum from all the LLR values.
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4.5.2 Check Node processing example

Here we have the GF (4) and let wr = 3 (see Fig 4.1(b) ), so each CN connected to 3 VNs. let
Mv1c1 , Mv2c1 be the input messages and Mc1v3 the output message . This example illustrate
the operations processed to compute the output message Mc1v3 . The equation (4.21) present
the check node min-max operation.

LLR(αk) = MIN
αk∈GF (q)

{ MAX
αi,αj∈GF (q)2

αk=αi+αj

(LLR(αi), LLR(αj))} (4.21)

Mv1c1

αi LLR(αi)
0 7
α0 0
α1 3
α2 11

Mv2c1

αj LLR(αj)
0 9
α0 6
α1 4
α2 0

Table 4.3: Input Data form for the CN processing example

The CN resulting message is presented in the table (4.4), and it’s calculated by: First
taking the maximum LLR values for all combination of two messages Mv1c1 and Mv2c1 , which
results 42 LLR values for 4 elements as illustrated in table (4.4), the GF element are obtained
by doing the sum of the GF elements for each combination, at last we take the minimum
LLR value for every GF element, these values and theirs corresponding GF(4) elements are
the output message Mv1v3 .

(GF, LLR) (0,9) (α0,6) (α1,4) (α2,0)
(0,7) (0,9) (α0,7) (α1,7) (α2,7)

(α0,0) (α0,9) (0,6) (α2,4) (α1,0)
(α1,11) (α1,11) (α2,11) (0,11) (α0,11)
(α2,3) (α2,9) (α1,6) (α0,4) (0,3)

⇒

αk LLR(αk)
0 3
α0 4
α1 0
α2 4

Table 4.4: Check Node min-max processing example

4.6 Performance comparison

4.6.1 Influence of iteration number on performance

For a QC-LDPC decoder with the systematic rate 1/2 and a block length K = 972 and thus
a codeword length N = 1944. The simulation of BER performance for this code is illus-
trated in Figure 4.2, this simulation has been performed over an AWGN channel with BPSK
modulation. Its object is to compare the BER performance of the sum-product algorithm
for different number of iterations I. It can be observed that the BER performance improves
considerably for small I and saturates roughly after 25 to 30 iterations. We can conclude
that practical decoder implementations typically perform 5 to 10 iterations.
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Figure 4.2: Iteration number influence on decoding performance [2]

4.6.2 EMS and Min-max algorithm comparison

The Min-max algorithm can be implemented by a more efficient architecture in comparison
to the EMS, that’s because of replacing the sum with the max operation in CN computations.
Despite this, the performance of the Min-max algorithm is only slightly worse. Figure 4.3
show the bit error rates (BERs) of the EMS and Min-max algorithms for a (744, 653) QCNB-
LDPC code over GF (25) with 15 decoding iterations under AWGN channel. This code is
constructed using the method based on the primitive element (power representation ). As

Figure 4.3: BERs of a (744, 653) NB-LDPC code over GF(25) and a (3683,3175) binary
LDPC code under AWGN channel [3]

illustrated the Figure 4.3, the Min-max algorithm has only around 0.075 dB performance
degradation at BER=10−4 compared to the EMS algorithm.
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When using all q messages, this leads to vast memory requirement, especially when the
order of the GF (q) is large. In order to fix the memory problem, the proposition of keeping
only the nm < q most reliable messages can be used. As it can be observed from Fig. 4.3,
keeping only nm = 16 messages from the GF (25) elements leads to around 0.05dB perfor-
mance loss in the Min-max algorithm and 0.04 dB performance loss in the EMS algorithm.
Figure 4.3 also show the performance of a binary (3683, 3175) LDPC code using the Min-sum
decoding. This binary code has similar code rate and code word length in terms of bits as
the (744, 653) NB-LDPC code over GF (25), As observed the performance degradation at
BER=10−5 of Binary code compared to the Non Binary code is around 0.285 dB.

Figure 4.4: BERs of a (248, 124) NB-LDPC code over GF(25) and a (1270,635) binary LDPC
code under AWGN channel [3]

Figure 4.4 illustrate the performance of a (248, 124) code over GF (25) for EMS and Min-
max decoding algorithms, also the performance of the Min-sum decoding for a (1270, 635)
binary LDPC code. This code has a shorter length and lower rate than the (744, 653) code.
As it can be observed, using the NB-LDPC code lead to benefit more coding gain than the
Binary code .
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Chapter 5

Chapter 5: NB-LDPC Decoder
Architecture and Implementation

In this chapter, we will discuss the design of the decoder on hardware based on the Min-
max algorithm for NB-LDPC codes. We will start from the decoder top level view and go
one level deeper into the basic blocks. The decoder mainly consists of a check node unit, a
variable node unit, and other additive blocks. Our design keeps all q messages on each edge
of the Tanner graph. An optimized scheme and corresponding architecture are developed
to compute the minimum of ’max’ for the elementary step of the check node processing.
There are two basic design strategies, the layered and the non-layered one. The non-layered
one aims at higher throughput, with considerably higher area, while the layered one has
lower throughput, with lower area requirement. Moreover, the computation units and the
scheduling of the computations are optimized to reduce the area and decoding latency. Also
a forward-backward scheme is proposed for the CN processing. Employing this scheme, the
speed of CN processing can be almost doubled when the check node degree is not small. Our
architecture is applied to a NB-LDPC code constructed over GF (23) as an example. It has
also been synthesized on a Xilinx Virtex-5 FPGA ML501 device.

5.1 High level architecture

5.1.1 Global Architecture Description

From a high-level perspective, virtually all implementations of message passing LDPC de-
coders found in the open literature are derived from an isomorphic architecture [22] which is
a direct mapping of the tanner graph.

The global architecture of decoder as illustrated in Figure 5.1 consists of different types
of hardware components:

• VN unit (VNU) block and CN unit (CNU) block to compute the update equations.

• Interconnect network representing the edges of the graph and the hij/h
−1
ij multiplication

block.

• Storage devices in order to save the extrinsic and the intrinsic messages.

• LLRs calculator block to calculate the GF (q)’s LLR values and the Syndrome block to
check the codeword validity.
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• Control unit which generate control signals in order to synchronize and control the data
flow between the blocks.

Figure 5.1: The top level NB-LDPC Decoder architecture

Based on this prototype architecture, different implementation trade-offs are obtained
through architectural transformations such as resource sharing across VNUs and CNUs and
iterative decomposition of the update equations.

5.1.2 Layered and Non-Layered architecture

The design can be partitioned into two basic architecture classes : the non-layered (Full-
parallel) and the layered architecture [23]. The last one also can be divided into two strategies
row parallel, and block-parallel. These architecture classes are depicted in Figure 5.2.

Figure 5.2: Layred and Non-layred Decoder architecture

A high-level block-diagram of a non-layered (full-parallel) design is shown in Figure
5.2(a). The update equations are mapped into individual VNUs and CNUs that exchange
messages through a hard-wired routing network [2]. The parallel processing allows each
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iteration to be performed in a fewer number of clock cycles, by updating all VN units then
all CN units. This architecture enables very high throughput since one iteration is performed
per fewer number of clock cycles with simple computations that allow for high operating clock
frequencies. Unfortunately, the complex routing network that connects CNUs and VNUs
turns out to be a major implementation bottleneck for these designs.

Full-parallel architectures have been considered mainly for wire-line communication stan-
dards (e.g. 10GBASE-T). Since the full-parallel architecture represents the direct hardware
mapping of a specific parity-check matrix, this class cannot provide any flexibility. Therefore,
it is generally ill-suited for wireless communication standards that require the support for
different parity-check matrices in order to tune code rate and block length.

Layered decoding has been widely adopted to reduce the memory requirement and in-
crease the convergence speed of LDPC decoding.

The row-parallel design is a step towards less parallelism. The main objective is to re-
duce the area while maintaining very high throughput. The principle underlying row-parallel
architectures is illustrated in Figure 5.2(b). Essentially, the parity-check matrix is partitioned
vertically into layers. An iteration now consists of multiple cycles in which the VNUs access
the messages corresponding to the current layer sequentially from a small storage array to
compute the output messages and send them to the CNUs through a programmable routing
network. The complexity and the amount of bits required to control this programmable
routing network heavily depend on the structure of the code and on its partitioning into
layers.

The row-parallel architectures provide an area advantage over full-parallel designs. Note
that additional storage to hold the LLR values computed in the previous iteration, while
processing layers of the current iteration, can be avoided for a layered schedule with proper
layer selection. In general, the programmable routing network illustrated in Figure 5.2(b)
required by the row-parallel architecture provides the flexibility to support multiple parity-
check matrices with a single decoder. For this reason, this architecture class has been recently
considered in several flexible QC-LDPC decoders tailored to the emerging high-throughput
wireless standards IEEE 802.11ad and IEEE 802.15.3c.

Block-parallel designs rely on further resource sharing and further iterative decomposi-
tion. Figure 5.2(c) outlines the architectural principle, which is usually used in combination
with the layered message-passing schedule. In essence, this architecture class is obtained
by starting from the row-parallel approach and by partitioning the computation of a layer
further into multiple cycles, corresponding to multiple blocks in the parity-check matrix.
This iterative decomposition simplifies the CN processing and allows for resource sharing
also across the VNUs. The block-based processing in conjunction with structured codes sig-
nificantly facilitates reconfigurability. Due to this reason, this architecture class has been
widely employed for flexible decoder implementations.

5.2 System level architecture

5.2.1 Forward-Backward Based Architecture

Computing the c-to-v messages in a straight-forward manner requires a complexity ofO(qwr−1),
where wr is the number of variable nodes connected to a check node. This manner requires
complicated computations on GF (q) elements, and it is not suitable for efficient hardware
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implementation.
Alternatively, the forward-backward scheme can be applied to the check node process-

ing to avoid computing output message directly. This scheme consists in constructing the
outgoing messages by a set of elementary operations, making it possible not to repeat the
same computations and to reduce the processing latency. These elementary operations are
performed by Elementary Check Node (ECN). Each ECN receives two sorted messages M1

and M2 and generates a sorted message Mo. The message Mo is constructed by selecting the
q most reliable symbols from all the possible combinations ( as explained in min-max CN
updating operation ).

Figure 5.3 illustrates the Forward-Backward architecture of CN with degree wr = 4.
For clarity, the incoming CN messages are denoted by Mvjc and the outgoing messages are
denoted by Mcvj , j = 1, ..., 4.

Figure 5.3: Forward-Backward Check-node architecture

The CN of degree wr realization requires the implantation of 3(wr− 2) ECNs distributed
over 3 layers. In our case, the outgoing Mcv3 message is generated by the first layer of ECNs
that adds incoming messages in the Forward direction (the red). The outgoing message Mcv0

is generated by the second layer of ECNs which adds incoming messages in the backward
direction (the blue). The other outgoing messages are generated by the third layer which
combines the two incoming messages Mv0c and Mv3c with the intermediate messages of the
two upper layers (the green).

5.2.2 Check Node architecture

The CN receives wr messages and generates also wr messages which will be transmitted to
the VNs. The CN architecture uses the Forward-Backward scheme illustrated in previous
section, It consists of 3(wr − 2) ECNs. in our project we are constructing CN with degree
wr = 4 that means we need to 6 ECNs. Figure 5.3 illustrate the scheme construction. We
are also proposing an CN architecture that can be used in both cases, keeping all q messages
in each vector or keeping only the nm < q most reliable messages in each vector. this make
the decoder more flexible, if the q is small we can keep all messages for better performance,

58



in the other hand, if q is not small keeping only nm < q most reliable messages can reduce
the computations latency .

The EVN compute an outgoing message vector from two incoming message vectors. The
message vector consists of two parts: LLRs and corresponding GF (q) elements. Denote the
LLR vectors by LA = [LA(0), LA(1), ..., LA(q − 1)] and LB = [LB(0), LB(1), ..., LB(q − 1)],
and the corresponding finite field element vectors by GFA = [GFA(0), GFA(1), ..., GFA(q−1)]
and GFB = [GFB(0), GFB(1), ..., GFB(q−1)], also denote the output LLR and corresponding
finite field element vectors by LO and GFO. The entries in the output LLR vector for the Min-
max decoding are the q minimum values of max(LA(i), LB(j)) with different GFA(i)+GFB(j)
for any combination of i and j less than q.

The traditional solution of computing the outgoing message consists on comparing q2

pairs of messages from the two input vectors to find the ones with larger LLRs, then find
the q minimums among them. Taking care of all these operations in parallel is hardware-
demanding, also performing them serially make a latency problem. But the ECN developed
in our project uses two incoming messages stored in the order of increasing LLR and generate
sorted outgoing message of the most reliable messages, by using an efficient algorithm to find
the q most reliable LLRs in minimum clock cycles using serial computation to reduce the
hardware area.

Two example input vectors for a NB-LDPC code over GF (8) are considered in the table
in Figure 5.4. The finite field elements are denoted by the exponents in their power repre-
sentations. As illustrated in the table the most reliable q symbols are essentially distributed
in the top left corner (red rectangle), the grey cells are the entries of the output message
vector.

Figure 5.4: Example of ECN computation with two sorted inputs

We can observe from the table in Figure 5.4 that there is a pattern for LLR values distri-
bution , based on this pattern we can make the desired algorithm for the ECN computation
.
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Algorithm:

Initialization:
i = 0, j = 1, n = 0;

loop:

if(LA(i) < LB(j))

for k = 0 to j - 1
{

if (n = q) goto stop

if (GFA(i) +GFB(k) /∈ GFO )
(LO(n), GFO(n)) ← (LA(i), GFA(i) +GFB(k))
n = n + 1

}
i = i + 1; goto loop

else

for k = 0 to i - 1

{
if (n = q) goto stop
if(GFA(k) +GFB(j)) /∈ GFO

(LO(n), GFO(n))← (LA(j), GFA(k) +GFB(j))
n = n + 1

}
j = j + 1; goto loop

stop:

In the algorithm , n is the number of messages inserted into the output vector, i, j and
k are used to indicate the positions in the input vectors, by using the table in Figure 5.4
we can explain the functionality of the Algorithm. Beginning from the top left corner of the
table, a boundary is drawn to follow the comparison results of the LLRs. It goes down when
the LLR in the LA < LB vector, and goes to the right otherwise. As observed , the LLRs
above the horizontal segment of the boundary in the same column are the same, and they
are smaller than those below the segment. Similarly, for the LLRs in the same row to the
left and the right of the vertical segment. The testing result of whether LA(i) < LB(j) in
the algorithm tells the direction of the segments in the boundary. Therefore, starting from
the top left corner, by taking the entries to the left of the vertical segments and those above
the horizontal segments of the boundary. If the GF element corresponding to an entry in
the table is the same as that of an entry previously inserted into the output vector, the new
candidate entry will not be inserted, since the previous entry has smaller LLR.
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ECN architecture

The previous algorithm can be implemented by the architecture illustrated in Figure 5.5.
Since the minimum of ’max’ LLRs need to be kept, the comparisons of the LLRs start from
the first entries in the two input vectors. In the case that LA(i) < LB(j) happens, LA(i) was
the ’max’ value when compared with any previous LB(k) with 0 ≤ k < j, since the LLRs in
each vector are sorted. Hence, LA(i) should be inserted into the output vector together with
GFA(i) +GFB(k) for each 0 ≤ k < j. After this process is completed, i will increment so the
next entry for the LA vector is read out in the next clock cycle to be compared with LB(j).
Similarly, in the case that LA(i) > LB(j) , LB(j) will be inserted into the output vector with
field element GFA(k) +GFB(j) for each 0 ≤ k < i.

Figure 5.5: ECN architecture

It can be observed from the algorithm above that the addresses i and j either do not change
or increase by one in each loop, in which the addressee generator blocks is the responsible
of increasing them. The increase by one is pre-computed and the addresses are selected by
multiplexor in the address generators. Figure 5.6.

If LA(i) < LB(j), the counter ’k’ in the address generator B is cleared and used as the
read address of the B vector. As the counter output increases, GFB(k) is read out and added
up with GFA(i) until the counter reaches j − 1. In the case that LA(i) > LB(j), the address
generator A works in a similar way to generate the read address for the A vector. The write
address n of the output vector increases by one each time a new LLR and corresponding
finite field element needs to be inserted.

5.2.3 Variable Node architecture

The VNs are divided into two categories according to whether all q messages are kept for
each vector or not. In our project we will design a VN with degree wc = 2, that means two
extrinsic messages and one intrinsic message are the incoming messages of the VN. In our
architecture all q messages are kept in each vector.

The architecture of a VN is given in Figure 5.7. It contains several Elementary Blocks
that can make it capable to operates on three basic functions :
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Figure 5.6: Address generator block

• Updating the VN: This operation is done by the EVN block, The EVN receives two
incoming message from the CNs and generate an new outgoing message to the normal-
ization block .

• Normalization : This operation is done by the Norm block, It subtracts the smallest
LLR in the input vector from each LLR in the vector so that the smallest LLR in each
vector is brought back to zero.

• Decision: This operation is done by the Decision block. Firstly it calculates the APP
by the sum of all VN input message vectors, then determine the estimated symbol ĉ by
taking the GF element corresponding to the minimum LLR value.

EVN Architecture

The goal of an EVN is to compute the outgoing message vector stored in the order of in-
creasing LLR by adding the LLRs of the two incoming message vectors corresponding to the
same GF (q) element. Figure 5.8 illustrate the EVN architecture, two RAMs are used to
storage the incoming message vectors, adder to add the LLR values, parallel GF elements
comparators to help in finding the GF element address, sorter for the output vector and
control unit to generate the control signals.

At first, one entry of the A vector is read out. Since the vectors are not sorted by GF
element, the GF element of the GFA vector entry is compared with all those in the GFB
vector. If there is a match, the addr calculator can give the corresponding GF element
address, then using the addresses of A and B vectors to read theirs corresponding LLRs and
perform the addition, the LLR addition result and its corresponding GF element are the
entries of the output vector. The adder’s output is connected to a sorter in order to sort and
store the output elements. Using a counter to read out the next A vector entry and repeat
these steps for all the q entries. All previous operations are controlled by the control unit.
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Figure 5.7: Variable Node Architecture

Figure 5.8: Elementary Variable Node Architecture

Figure 5.9: Sorter architecture
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An architecture for such a sorter was proposed in [24] shown in Figure 5.9. This operator
is used for inserting a new value into an already sorted list of values. The architecture of
such operator with q registers and q parallel comparators in order to reduce the critical path
of the processor to one single clock cycle.

Decision block

The decision operation is based on the APP calculation (explained in chapter 4) which is
the sum of all VN input vectors (M0, Mc1v and Mc2v ), as a result we can use the output of
EVN1 and Mc2v as inputs of the Decision block, which is a modified EVN, that modification
consist of taking as output the GF element corresponding to the minimum LLR value, which
is the first element since the EVN integrate a sorter.
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5.3 Implementation and simulation

In this section we will discuss the FPGA implementation of an efficient decoder architecture
based on the Min-max algorithm for NB-LDPC codes, this architecture provides implemen-
tation flexibility and a compromise between decoding speed and implementation complexity.
The architecture blocks are explained in details such as the CN and VN, they are implemented
on the Xilinx ISE platform using the VHDL description language. After the synthesis of those
codes, the schematics of the architectures from the top level description to the unit descrip-
tion are generated and illustrated in this section. Similarly, the blocks are checked and tested
via the test-bench tool, and the results are also presented. Finally a summery consumption
reports are presented and discussed at the end of each block implementation section.

5.3.1 Variable Node Implementation

In what follow, we will work on GF (8), as a result the GF and LLR vectors contains 8
elements, the GF elements presented in 3 bits and the LLR values in 10 bits.

Elementary Variable Node block

Figure 5.10 illustrates the EVN block schematic generated in Xilinx ISE.

Figure 5.10: EVN schematics generated by Xilinx ISE

As illustrated in the figure the EVN block schematic has 3 type of inputs :

• Synchronization : which is the clk signal .

• Control signals : which are reset and start signals, these signals are generated by the
global control unit of the decoder. Start signal indicates the input data availability to
start the EVN process.

• Data messages : which are the incoming messages, there are 4 input vectors for the
two incoming messages, GFA, LLRA, GFB and LLRB each one has 8 element.

65



The outputs of the block schematic : output message that contains two vectors LLRO and
GFO, the control signal done to indicate the end of EVN process.

The EVN control unit implements a 4 stage state machine, generating all the internal
control signal that controls its function. The state transition diagram is shown in figure 5.11.
INIT State : The EVN starts in this state, all the internal control signals initialized and

Figure 5.11: EVN state machine

remains here until a new data are available. When the start signal is high , a new data are
available, the EVN load those data in the internal RAMs (RAMA and RAMB), and move to
the new state ”Find”.
FIND State: Reading the GF element from the RAMA, find the address of the same GF
element in RAMB, and move to the new state ”SUM”.
SUM State: Reading the LLR values corresponding to the GF element and add them .
then move the new state ”SORT”.
SORT State : Compare the sum result LLR in the sorter to find its address (position) ,then
load it and its corresponding GF on RAMO. If all element are loaded next state is ”STOP”,
else next state ”FIND”.
STOP State : In this state all q elements are loaded in RAMO, the EVN complete its
computations, make the done signal high and next state will be ”INIT”.

This state machine diagram spends 3 clock cycles to compute one element of the output
vector, for all the 8 elements it takes 24 clock cycles. Another state diagram is proposed in
order to reduce this processing cost using pipeline technique on the elementary operations so
they can be working in parallel.

EVN Simulation Results

Using the Xilinx ISE platform and a test bench module, The behavioral simulation results
for the EVN are shown in Figure 5.12 . The input data has the same values as the example
illustrated in table 4.2 (section 4.5).

Since the results are the same obtained in the example in table 4.2 (chapter 4), the
simulation result prove the functionality of the EVN block, as the figure shows, the EVN
complete the computations after 24 clock cycles.
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Figure 5.12: EVN simulation results using testbench in Xilinx ISE

Figure 5.13: EVN Utilization summary estimated by Xilinx ISE

Decision Unit block simulation

Using the Xilinx ISE platform and a test bench module, The behavioral simulation results
for the Decision block are shown in Figure 5.14 . The input data has the same values as the
example illustrated in table 4.2 (Chapter 4).

Figure 5.14: Decision Unit simulation result in Xilinx ISE

As shown in Figure 5.14 the resulting estimated GF element is ’4’ (α2 in power represen-
tation) , which is the same result given in table 4.2 (Chapter 4).This process takes 25 clock
cycles.

VN block

Figure 5.15 shows the block schematic of the VN block as generated in Xilinx ISE .
The VN block schematic has 3 data message inputs (each one has 2 vectors), synchroniza-

tion input (clk) and control signals reset, start to indicate new available data then starting
computations, and initial to indicate if it is the first iteration or not. The block schematic
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Figure 5.15: VN schematic as generated by Xilinx ISE

has as outputs two data messages (each one has 2 vectors ), Decision message contain the
estimated symbol and two control signals done and done decision .

The VN operates on three basic functions update the v-to-c messages, normalizes the
messages and compute the decision symbol. each function has a specific block. Updating
the massages take 24 clock cycles and the normalization take 8 clock cycles so compute the
VN output messages takes 32 clock cycles. The Decision operations will begin after the EVN
computations is done and take 24 clock cycles, by adding the time spent in the two blocks the
compute of the decision output takes 48 clock cycles. The VN output data and the decision
output message are independent because the first ones will be sent to CNs and the second
will be sent to the Syndrome unit.
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5.3.2 Check Node Implementation

ECN block

Figure 5.16 illustrates the block schematic of the ECN block as generated in Xilinx ISE.

Figure 5.16: ECN schematic block generated using Xilinx ISE

The figure shows that ECN block schematic has the following inputs :

• Synchronization : which is the clk signal .

• Control signals : the reset and start signals. Start signal indicates the input data
availability to start the ECN process.

• Data messages : There are 4 input data vectors for the two incoming messages, GFA,
LLRA, GFB and LLRB each one has 8 element.

The outputs of the block schematic are: the output message contains tow vectors LLRO

and GFO, the second one is the control signal done.
The ECN control unit state transition diagram is shown in figure 5.17.

START State : The ECN starts in this state, all the internal control signals initialized
and remains here until a new data are available. When the start signal is high i.e. a new
data are available, the ECN load those data in the internal RAMs (RAMA and RAMB), and
move to the new state ”COMP”.
COMP State : Read then compare two LLR values of address i and j from RAMA and
RAMB the comparison result determines the next state whether ”SUM1” or ”SUM2”. ini-
tialize the k counter.
”SUM1” State (respectively ”SUM2” ): Perform the addition of GF elements corre-
sponding to the addresses i in RAMA and k in RAMB (respectively k in RAMA and j in
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Figure 5.17: ECN state machine

RAMB ). The next state is ”LOAD1” (respectively ”LOAD2”).
”LOAD1” State (respectively ”LOAD2” ): At first check whether the result GF el-
ement has been loaded before or not, if not load it and its corresponding LLR on RAMO

in the address n then check whether n reach 7 or not, if it did next state is ”STOP”, else
increment n. Another test will be performed, check whether the k achieves j-1(respectively
i-1) or not, if it did increment i (respectively j) and next state is ” COMP ”, else increment
k and next state is ”SUM1” (respectively ”SUM2” ).
”STOP” State : In this state all q elements are loaded in RAMO, the ECN complete its
computation, make the done signal high and next state will be ”START”.

ECN Simulation Results

Using the Xilinx ISE platform and a test bench module, The behavioral simulation results
for the ECN are shown in Figure 5.18. The input data has the same values as the table in
figure 5.4 (chapter 5).

The obtained results are the same as the example table results (Figure 5.4), they prove
the functionality of the ECN block, as the figure show, the ECN complete the computations
after 35 clock cycles, which is not constant, since the iteration number of ECN algorithm
changes by changing the input messages values.

CN block

Figure 5.20 shows the block schematic of Forward-Backward CN block as generated in Xilinx
ISE .

The CN architecture based on Forward-Backward scheme consists of 6 ECNs, At the
beginning only the ECNs connected directly to the input data work (ECN number 1 and 4
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Figure 5.18: ECN testbench results on Xilinx ISE

Figure 5.19: ECN Utilization summary estimated by Xilinx ISE

in the Figure 5.3). After they complete their computation the other ECNs (2,3,5 and 6 ) can
begin processing.
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Figure 5.20: Backward-Forward CN block schematic as generated on Xilinx ISE
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Conclusion

The project started with an understanding of the NB-LDPC codes concepts, and various
variants of the error correcting decoding algorithms were investigated with an eye towards
performance and feasible hardware design. Then we have chosen the Min-Max algorithm
because of its low complexity in comparison with others algorithms. The complexity of the
check node processing is further reduced in the Min-max algorithm with slightly lower coding
gain.

It has been shown that the design of NB-LDPC decoders can be partitioned into two
main architecture. The non-layered architecture achieve very high throughput in excess of
10 Gbps but cannot provide any flexibility in terms of code rate or block length. The layered
architecture which consist of row-parallel class and block-parallel class designs reduce the
area compared to the non-layered architecture with different degrees of resource sharing
and iterative decomposition at the expense of a degradation in throughput. While both
architecture classes offer flexibility, the block-parallel class is especially suitable for QC-
LDPC codes as it naturally fits together with the block structure of these codes.

It has been shown that the row-parallel architecture class is highly scalable and supports
the full range of throughput requirements found in modern wireless standards. Due to its
favorable properties and spatially its flexibility i.e. be able to implement any given code,
without changing the design of the decoder. Moreover, it can be adopted to reduce the
memory resources.

In our project we have focused on the design and implementation of an efficient architec-
ture for the NB-LDPC decoder basic blocks, since wireless communication systems decoders
must support a wide range of different parity-check matrices,and because of that we provide
flexible decoder which can works with different block lengths and code rates.

We have designed the check node block using the forward backward technique to reduce
the implementation complexity. In order to optimize the latency, we have used a practical
algorithm to design the elementary check node block, that can work for both cases : all q
messages are kept or only the nm << q most reliable elements. We have also designed the
variable node block using elementary blocks for the same reason.

The decoder components were implemented on a Xilinx ISE platform using VHDL lan-
guage and tested using test benches. All the results and reports have been documented.
Various details like block schematics, state machine diagrams, simulation and resource uti-
lization have been documented.

Finally it was a great opportunity to us, to learn more about channel coding field and
specially the robust NB-LDPC code and its hardware implementation.
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